Surface treatment of a sulfide glass solid electrolyte layer

Information

  • Patent Grant
  • 12021187
  • Patent Number
    12,021,187
  • Date Filed
    Friday, June 4, 2021
    3 years ago
  • Date Issued
    Tuesday, June 25, 2024
    2 months ago
Abstract
Chemically treating ionically conductive sulfide glass solid electrolyte separators or separator layers can improve performance. In particular, treatment involving chemically etching a surface or surface region of the sulfide glass separator to blunt, lessen or remove edge defects or surface flaws, and/or to enhance surface smoothness is cost effective, reliable and well suited for high production environments compared to physical methods of removing scratches or smoothing surfaces, such as mechanical grinding and polishing.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

An Application Data Sheet is filed concurrently with this specification as part of the present application. Each application that the present application claims benefit of or priority to as identified in the concurrently filed Application Data Sheet is incorporated by reference herein in its entirety and for all purposes.


BACKGROUND
1. Field

This disclosure relates to batteries, in particular batteries with a glass electrolyte separator based on lithium sulfide. Sulfide glass electrolyte sheets can be strengthened via removal of surface and edge flaws, such as by wet chemical etching. Lithium sulfide glass etching media and techniques are also described.


2. Description of Related Art

Theoretically, the strength of a solid electrolyte glass, in particular of a Li ion conducting sulfide glass sheet, is determined by the glass atomic bond strength. However, the practical strength of a solid electrolyte strongly depends on the presence of surface flaws and edge defects. Under realistic glass and battery processing conditions, cracks are oftentimes caused by the presence of edge defects, which may arise during trimming or cutting a web of ionically conductive glass when sizing the glass as a solid electrolyte separator in a battery cell. Mechanical polishing of solid electrolyte surfaces to remove defects and smooth surfaces is both time consuming and expensive and involves handling of particulate waste products. Accordingly, there is a need for improved methods of smoothing and removing edge defects and surface flaws that may be present in manufactured sheets of glassy sulfide electrolytes.


SUMMARY

The present disclosure provides a method for chemically treating ionically conductive sulfide glass solid electrolyte separators or separator layers. In particular, the treatment involves chemically etching a surface or surface region of the sulfide glass separator to blunt, lessen or remove edge defects or surface flaws, and/or to enhance surface smoothness. Compared to physical methods of removing scratches or smoothing surfaces, such as mechanical grinding and polishing, a chemical etching treatment, as described herein, is cost effective, reliable and well suited for high production environments.


In one aspect the present disclosure provides a method for chemically etching an ion conductive sulfide glass solid electrolyte article by contacting a surface of the glass electrolyte with etching media. In accordance with this aspect of the disclosure, in various embodiments the glass electrolyte may be in the form of a sheet or membrane, or more generally layer-like, and the chemical etching may be performed on one or both major opposing surfaces and/or peripheral edge surfaces. Theoretically, the strength of the sulfide glass sheet is determined by the glass atomic bond strength. However, practical strength often strongly depends on the lack of surface flaws and edge defects. The etching process described herein may be used to remove or polish defects such as scratches and edge protrusions and to enhance surface smoothness and improve surface uniformity and homogeneity, and thereby improve mechanical strength of the sulfide glass solid electrolyte sheets and membranes, facilitating high yield and improving battery performance.


In various embodiments, the chemically etched sulfide glass separator is a self-supporting or substrate-less sheet or web of ionically conductive sulfide glass (e.g., a glass sheet), and the etching treatment improves the structural strength of the glass electrolyte, which, in turn, enhances manufacturing yield and facilitates roll to roll processing.


In various embodiments the method involves applying or exposing a chemical etching media to a surface or surface region of a Li ion conducting sulfide glass solid electrolyte. In some embodiments the etching media is liquid phase (i.e., wet or liquid etching), and in other embodiments the etching media is a gas or vapor (i.e., dry or gaseous/vapor phase etching). It is also contemplated that the chemical etch process involves both wet and dry etching (e.g., simultaneously or sequentially).


Methods of application for wet etching include, but are not limited to, spraying, brushing, dripping, dip coating or spin coating the etching media onto the sulfide glass electrolyte or conveyance of the glass electrolyte through or into an etching bath or cartridge containing etching media. In a particular embodiment, etching is achieved by conveying the Li ion conductive sulfide glass sheet (e.g., in the form of a web) through an etching bath or etching cartridge, in line with continuous roll to roll processing and other processing steps. In various embodiments, prior to chemical etching, a masking material is applied or positioned to cover one or more portions of the glass sheet in order to protect those portions from exposure to the etching media.


In various embodiments, the active etchant species is water (i.e., water molecules). In various embodiments the chemical etching media is a liquid solution of water dissolved in a carrier solvent that is chemically inert in direct contact with the sulfide glass solid electrolyte. Sulfide glass solid electrolytes are highly sensitive to water, and conventional etching solutions would immediately attack and decompose the glass. It is therefore somewhat counter-intuitive that in accordance with various embodiments of the present disclosure, the etchant is water (i.e., water molecules), and the etching mechanism is hydrolysis. In accordance with the present disclosure, a key aspect to hydrolytic etching of a sulfide glass solid electrolyte is controlling the extent of etching and the etching rate. In various embodiments, this is achieved by formulating an etching solution that includes a low concentration of water molecules (as etchant) mixed with an inert carrier solvent (e.g., aprotic organic solvents such as glymes and acetonitrile). In other embodiments organic carbonic acids (e.g., formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, and malonic acid) have been discovered to be effective etchants for sulfide glass solid electrolyte; for instance, when diluted in an appropriate inert carrier solvent.


In another aspect the present disclosure provides compositions that are usefully employed for chemically etching ionically conductive sulfide glass solid electrolytes. In various embodiments the etching solutions are prepared and dispensed into bottles or containers, and may be sold to battery or battery component manufacturers or processors as a sulfide glass solid electrolyte etching solution.


In yet other aspects the etching methods described herein may be utilized to structuralize the edges of a sulfide glass solid electrolyte separator sheet in order to facilitate edge seals, such as sealing the glass separator to an adjacent battery component or to a second glass separator.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 illustrates sulfide glass sheet/membranes having various useful edge shapes in accordance with embodiments.





DETAILED DESCRIPTION

Reference will now be made in detail to specific embodiments. Examples of the specific embodiments are illustrated in the accompanying drawings. While the disclosure will be described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the disclosure to such specific embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the disclosure as defined by the appended claims. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. Embodiments described in the present disclosure may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present disclosure.


When used in combination with “comprising,” “a method comprising,” “a device comprising” or similar language in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs.


In one aspect the present disclosure provides methods for chemically strengthening a Li ion conducting sulfide glass solid electrolyte. In various embodiments the sulfide glass solid electrolyte is in the form of a sheet as described in U.S. Pat. No. 10,164,289, hereby incorporated by reference for its disclosure relating to sulfide glass solid electrolyte structure, fabrication and composition. Non-limiting examples of sulfide glass solid electrolyte compositions that may be fabricated into a glass sheet separator include lithium phosphorous sulfide, lithium phosphorous oxysulfide, lithium boron sulfide, lithium boron oxysulfide, lithium boron phosphorous oxysulfide, lithium silicon sulfide, lithium silicon oxysulfide, lithium germanium sulfide, lithium germanium oxysulfide, lithium arsenic sulfide, lithium arsenic oxysulfide, lithium selenium sulfide, lithium selenium oxysulfide, lithium aluminum sulfide, lithium aluminum oxysulfide, and combinations thereof.


The present disclosure is not limited to any particular sulfide glass composition. However, it is particularly useful for sulfide glasses that are highly sensitive to water, and decompose in the presence of excess water. For this reason it is somewhat counter intuitive that in various embodiments the active etchant is water (i.e., water molecules). Indeed, conventional etching solutions which may be used to textualize or strengthen structural silicate glasses are aqueous acids that are chemically incompatible in contact with sulfide glass solid electrolytes and therefore entirely unsuitable for use herein as an etching media.


In accordance with the present disclosure, in various embodiments the chemical etching process is a hydrolytic etch that involves hydrolysis at the sulfide glass solid electrolyte surface, the etching media including water molecules as the active etchant (e.g., liquid phase or vapor phase). In the presence of water or its vapor, ionically conductive sulfide glasses generally undergo rapid hydrolysis followed by evolution of hydrogen gas. In various embodiments the hydrolysis rate may be reduced and controlled by mixing water with one or more non-aqueous solvents as the etching media. For instance, using non-aqueous solvents mixed with a low concentration of water as the chemical etchant. In various embodiments the concentration of water in the etching solution is between 0.01 to 2 Molar, and in particular embodiments, the etching solution is between 0.01 to 0.1 Molar or between 0.1 to 0.2 Molar or between 0.2 to 0.5 Molar. For example, such mixtures of water with acetonitrile or glymes, such as monoglyme (DME), may be used to decrease the rate of glass etching via hydrolysis. In other embodiments a gaseous mixture of water vapor and a carrier gas for which the glass sheet is inert may be used for controlling the etching rate. For example, the gaseous etching media may be a mixture of water vapor (as the active etchant) with nitrogen or argon as the carrier gas.


In various embodiments hydrolytic etching of the sulfide glass sheet produces a hydrolysis product, such as a salt, that is poorly soluble in water and the other non-aqueous solvents which are used in the etching media as an inert carrier. The presence of insoluble products can lead to the formation of a solid precipitate on the glass surface and a progressive reduction in the rate of surface etching. For instance, hydrolysis of Li2S-P2S5 glasses leads to formation of lithium orthophosphate having low solubility in water. To mitigate solid precipitation taking place during the etching process, in various embodiments the etching media includes a solid product dissolving additive that is able to dissolve otherwise insoluble products resulting from the hydrolytic etch. In various embodiments the dissolving additive is an inorganic acid such as hydrochloric acid or sulfuric acid. In various embodiments the acid is dissolved in the carrier solvent. For instance, a nitrile such as acetonitrile is a particular suitable carrier solvent as it is inert in contact with the sulfide glass solid electrolyte and miscible with inorganic acids. For instance, concentrations of the dissolving additive may be in the range of 0.1 to 5 vol %. In a particular embodiment the etching media is a mixture of acetonitrile, water, and hydrochloric acid (e.g., having a hydrochloric acid concentration in the range of 0.1 to 5 vol % and a concentration of water in the range of 0.01 to 2 Molar). Because some inorganic acids are soluble in acetonitrile, it is contemplated to use low concentrations of hydrochloric or sulfuric acid in acetonitrile as the etching media. In various embodiments the process involves etching a surface or surface region of the sulfide glass solid electrolyte followed by rinsing the surface with an excess of acetonitrile, which does not react with sulfide glasses.


In various embodiments organic carbonic acids are used as the etchant, and, in particular, formic, acetic, propionic, butyric, oxalic, and malonic acids.


Liquid formic, acetic, propionic and butyric acids are miscible with aprotic solvents that are not reactive with sulfide glasses, and in particular glymes and organic carbonates. The solid carbonic acids such as oxalic and malonic acids have significant solubility in these solvents. In various embodiments, to control the rate of glass hydrolysis (or completely eliminate it), mixtures of formic, acetic, propionic and butyric acids with glymes, in particular dimethyl ether (DME), diglyme and triglyme may be used as carrier solvent, and/or organic carbonates, in particular, dimethyl carbonate (DMC).


The carbonic acid based etching media may be used in liquid phase. It is also contemplated to use a vapor of carbonic acids or their mixtures with carrier gases (e.g., nitrogen or argon). Regulation of the acid vapor pressure may be achieved by controlling the temperature and/or adjusting the ratio between the acid in the vapor phase and the carrier gas.


In various embodiments, the extent of etching may be controlled, in part, by modifying the composition of the etching media, as described above, as well as the duration of etching. Etching times may vary from seconds to minutes depending on the type of flaw or defect and more generally on the amount of material to be removed. In various embodiments these parameters are selected to remove an equivalent thickness of glass of about 0.1, 0.3, 0.5, 1.0, or about 5.0 microns, and in some embodiments, it is contemplated to remove more than 5 microns (e.g., between 5 to 10 microns) of glass.


In various embodiments the chemical etching process involves multiple etching steps. For instance, an initial controlled hydrolysis step using a water-based etchant followed by applying an acidic solution onto the etched surface to dissolve insoluble products formed during the hydrolytic etch, and especially those precipitates with low solubility in water. Once any surface precipitates or sludge has been removed by acid dissolution, a final rinsing may be applied to remove any residual products (water and acids) using aprotic solvent(s), such as glymes and organic carbonates.


In various embodiments a mask may be used to limit exposure of the etching media to only those areas intended for etching and material/defect removal. For instance, in various embodiments it is particularly important to etch the edges of the glass sheet or web in order to remove flaws that may result from trimming the edges during glass sheet manufacturing. In such embodiments the mask is positioned to cover the major opposing surfaces of the glass sheet while only exposing a narrow width along the sheet edge (e.g., the exposed width of about 10 um to 1 mm wide).


The material makeup of the mask depends, in part, on the composition of the etching media. In various embodiments the masks may be fabricated from metal and/or plastic layers.


For wet etching using a liquid solution of carbonic acid, as described, particularly useful masks may be made from chromium, titanium, aluminum, and nickel, for example. Titanium masks are particularly suitable for etching media based on acetic, formic, malonic, butyric and propionic acids. Nickel masks are particularly suitable for use with malonic, oxalic, and formic acids. And aluminum masks for use with propionic and butyric acid.


In various embodiments, a liquid mask may be employed. For instance mineral oil may be applied onto the surfaces of the sulfide glass solid electrolyte sheet or membrane and thereon serve as a masking overlayer. Methods for applying a mineral oil liquid mask include coating and printing techniques. In accordance with the present disclosure, in various embodiments the etching process may be incorporated as an inline station when fabricating a sulfide glass solid electrolyte sheet (e.g., using a drawdown process) and in particular for web and roll to roll manufacture. U.S. Pat. No. 10,164,289 describes manufacturing methods for making a web of sulfide glass solid electrolyte sheet (e.g., in line with drawing the sheet and trimming the edges to a certain width). In accordance with the present disclosure, wet etching processes, as disclosed herein, may be incorporated as an inline station for the web manufacture after the drawn down or otherwise processed sheet has been trimmed (e.g., mechanically sliced or laser cut).


In various embodiments the chemical etching processes described herein may be applied to the edge surfaces of a sulfide glass solid electrolyte sheet to modify the edge shape for sealing the glass electrolyte when incorporated in a battery cell. In particular shaping the edges may be used to optimize edge sealing of the glass separator to an adjacent electrode (e.g., cathode or anode) or some other component in the battery cell. In FIG. 1 sulfide glass sheet/membranes 101a/b/c having various useful edge shapes, for example for facilitating sealing to adjacent battery cell components, are illustrated in cross sectional depiction. This approach is particularly useful for edge sealing in battery cells that include a liquid electrolyte that should be prevented from contacting the electroactive material of one of the electrodes.


CONCLUSION

Although the foregoing has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. It should be noted that there are many alternative ways of implementing both the process and compositions of the present disclosure. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the disclosure is not to be limited to the details given herein.


All references cited herein are incorporated by reference for all purposes.

Claims
  • 1. A method for treating a surface of an ion conductive sulfide glass solid electrolyte, the method comprising exposing a surface or surface region of the sulfide glass solid electrolyte to an etching media, wherein water is the etching media active etching species.
  • 2. A method for treating a surface of an ion conductive sulfide glass solid electrolyte, the method comprising exposing a surface or surface region of the sulfide glass solid electrolyte to an etching media, wherein the etching media is a liquid etching solution comprising water and a carrier solvent that is inert in direct contact with the sulfide glass, wherein the inert carrier solvent is acetonitrile or a glyme.
  • 3. A method for treating a surface of an ion conductive sulfide glass solid electrolyte, the method comprising exposing a surface or surface region of the sulfide glass solid electrolyte to an etching media, wherein the etching media is a liquid etching solution comprising water and a carrier solvent that is inert in direct contact with the sulfide glass, and wherein the concentration of water in the etching solution is between 0.01 to 2 Molar.
  • 4. The method of claim 3 wherein the concentration of water in the etching solution is between 0.01 to 0.1 Molar.
  • 5. A method for treating a sulfide glass solid electrolyte, the method comprising contacting the sulfide glass solid electrolyte with an etching solution comprising an organic carbonic acid that serves as an active etchant in the etching solution; wherein the etching solution comprises a carrier solvent that is an aprotic solvent inert in direct contact with the sulfide glass.
  • 6. The method of claim 5 wherein organic carbonic acid is selected from the group consisting of formic acid, acetic acid, propionic acid, butyric acid, oxalic acid, and malonic acid.
  • 7. The method of claim 5 wherein the carrier solvent is selected from the group consisting of glymes and organic carbonates.
  • 8. The method of claim 5 wherein the organic carbonic acid is a solid at standard temperature and pressure and soluble in the carrier solvent.
  • 9. The method of claim 8 wherein the solid organic carbonic acid is oxalic acid or malonic acid.
  • 10. The method of claim 5 wherein the concentration of the organic carbonic acid in the etching solution is between 0.1 to 2 Molar.
  • 11. The method of claim 5 wherein the concentration of the organic carbonic acid in the etching solution is between 0.1 to 0.01 Molar.
  • 12. The method of claim 1, wherein i) the lithium ion conducting sulfide glass solid electrolyte has first and second major opposing and substantially parallel surfaces and peripheral edge surfaces, and at least one of said surfaces includes a defect that degrades the mechanical strength of the sulfide glass solid electrolyte; andii) the mechanical strengthen of the sulfide glass solid electrolyte is increased by contacting the defect with an etching solution.
  • 13. The method of claim 12 wherein the etching solution comprises water as an active etchant and further comprises a carrier solvent that is inert in direct contact with the sulfide glass sheet.
  • 14. A method for treating a sulfide glass solid electrolyte, the method comprising: i) providing a lithium ion conducting sulfide glass solid electrolyte having a first and second surface region;ii) providing an etching media, the etching media comprising water as an active etchant and a carrier solvent that is inert in direct contact with the sulfide glass electrolyte;iii) providing an etching mask having first and second opposing surfaces;iii) positioning the etching mask to cover the first surface region of the sulfide glass solid electrolyte, wherein the mask first surface adjacently opposes the sulfide glass solid electrolyte first surface region;iv) exposing the sulfide glass solid electrolyte to the etching media;wherein the etching media directly contacts the mask second surface; andfurther wherein the mask prevents contact between the first surface region and the etching media.
STATEMENT OF GOVERNMENT SUPPORT

This invention was made with Government support under Award No.: DE-AR0000772 awarded by the Advanced Research Projects Agency—Energy (ARPA-E), U.S. Department of Energy. The Government has certain rights in this invention.

US Referenced Citations (264)
Number Name Date Kind
3994676 Strimple et al. Nov 1976 A
4037043 Segsworth Jul 1977 A
4042482 Shannon et al. Aug 1977 A
4090054 Heine et al. May 1978 A
4208474 Jacobson et al. Jun 1980 A
4331750 Malugani et al. May 1982 A
4444857 Duchange et al. Apr 1984 A
4447393 Weirauch May 1984 A
4465745 Akridge Aug 1984 A
4465746 Akridge Aug 1984 A
4477545 Akridge et al. Oct 1984 A
4478920 Gabano et al. Oct 1984 A
4513070 Carette et al. Apr 1985 A
4529027 Brice et al. Jul 1985 A
4585714 Akridge et al. Apr 1986 A
4599284 Adridge Jul 1986 A
4735850 Eitman Apr 1988 A
4863553 Lehoczky et al. Sep 1989 A
4863798 Arenz et al. Sep 1989 A
4985317 Adachi et al. Jan 1991 A
5314765 Bates May 1994 A
5338625 Bates et al. Aug 1994 A
5413881 Licht May 1995 A
5455126 Bates et al. Oct 1995 A
5512147 Bates et al. Apr 1996 A
5567210 Bates et al. Oct 1996 A
5569520 Bates Oct 1996 A
5597660 Bates et al. Jan 1997 A
5612152 Bates Mar 1997 A
5648187 Skotheim Jul 1997 A
5702995 Fu Dec 1997 A
5958281 Takada et al. Sep 1999 A
5961672 Skotheim et al. Oct 1999 A
6030909 Fu Feb 2000 A
6042739 Itoh Mar 2000 A
6214061 Visco et al. Apr 2001 B1
6315881 Fu Nov 2001 B1
6402795 Chu et al. Jun 2002 B1
6405565 Aitken et al. Jun 2002 B1
6413285 Chu et al. Jul 2002 B1
6432584 Visco et al. Aug 2002 B1
6479028 Kaner et al. Nov 2002 B1
6485622 Fu Nov 2002 B1
6723140 Chu et al. Apr 2004 B2
6733924 Skotheim et al. May 2004 B1
6797428 Skotheim et al. Sep 2004 B1
7211532 Fu May 2007 B2
7247408 Skotheim Jul 2007 B2
7273682 Park et al. Sep 2007 B2
7282295 Visco et al. Oct 2007 B2
7282296 Visco et al. Oct 2007 B2
7282302 Visco et al. Oct 2007 B2
7390591 Visco et al. Jun 2008 B2
7645543 Visco et al. Jan 2010 B2
7666233 Visco et al. Feb 2010 B2
7824806 Visco et al. Nov 2010 B2
7829212 Visco et al. Nov 2010 B2
7838144 Visco et al. Nov 2010 B2
7858223 Visco et al. Dec 2010 B2
8012631 Seino et al. Sep 2011 B2
8048570 Visco et al. Nov 2011 B2
8048571 Visco et al. Nov 2011 B2
8088697 Yuh et al. Jan 2012 B2
8092941 Weppner et al. Jan 2012 B2
8114171 Visco et al. Feb 2012 B2
8129052 Visco et al. Mar 2012 B2
8182943 Visco et al. May 2012 B2
8202649 Visco et al. Jun 2012 B2
8293398 Visco et al. Oct 2012 B2
8304019 Pichler Nov 2012 B1
8304115 Petkov et al. Nov 2012 B1
8323820 Visco et al. Dec 2012 B2
8334075 Visco et al. Dec 2012 B2
8389147 Visco et al. Mar 2013 B2
8404388 Visco et al. Mar 2013 B2
8445136 Visco et al. May 2013 B2
8455131 Visco et al. Jun 2013 B2
8501339 Visco et al. Aug 2013 B2
8556197 Hama et al. Oct 2013 B2
8652686 Visco et al. Feb 2014 B2
8658304 Visco et al. Feb 2014 B2
8658317 Weppner et al. Feb 2014 B2
8673477 Visco et al. Mar 2014 B2
8691444 Visco et al. Apr 2014 B2
8691928 Hsieh et al. Apr 2014 B2
8778522 Visco et al. Jul 2014 B2
8778543 Shinohara et al. Jul 2014 B2
8828573 Visco et al. Sep 2014 B2
8828574 Visco et al. Sep 2014 B2
8828575 Visco et al. Sep 2014 B2
8828580 Visco et al. Sep 2014 B2
8923360 Coleman et al. Dec 2014 B2
9123941 Visco et al. Sep 2015 B2
9130198 Visco et al. Sep 2015 B2
9136568 Visco et al. Sep 2015 B2
9287573 Visco et al. Mar 2016 B2
9321652 Paquette et al. Apr 2016 B2
9362538 Visco et al. Jun 2016 B2
9379368 Roumi Jun 2016 B2
9598769 Elam et al. Mar 2017 B2
9601779 Visco et al. Mar 2017 B2
9660265 Visco et al. May 2017 B2
9905860 Visco et al. Feb 2018 B2
10147968 Visco et al. Dec 2018 B2
10164289 Visco et al. Dec 2018 B2
10601071 Visco et al. Mar 2020 B2
10629950 Visco et al. Apr 2020 B2
10707536 Visco et al. Jul 2020 B2
10833361 Visco et al. Nov 2020 B2
10840546 Visco et al. Nov 2020 B2
10840547 Visco et al. Nov 2020 B2
10862171 Visco et al. Dec 2020 B2
10868293 Visco et al. Dec 2020 B2
10916753 Visco et al. Feb 2021 B2
11171364 Visco et al. Nov 2021 B2
11239495 Visco et al. Feb 2022 B2
11444270 Visco et al. Sep 2022 B2
11631889 Visco et al. Apr 2023 B2
11646444 Visco et al. May 2023 B2
11646445 Visco et al. May 2023 B2
11749834 Visco et al. Sep 2023 B2
11817569 Visco et al. Nov 2023 B2
11876174 Visco et al. Jan 2024 B2
20020012846 Skotheim et al. Jan 2002 A1
20020036131 Kugai et al. Mar 2002 A1
20030099884 Chiang et al. May 2003 A1
20030134734 Nishimoto et al. Jul 2003 A1
20040005504 Kugai et al. Jan 2004 A1
20040200519 Sterzel et al. Oct 2004 A1
20050063652 Johnson et al. Mar 2005 A1
20050107239 Akiba et al. May 2005 A1
20060222954 Skotheim et al. Oct 2006 A1
20070037058 Visco et al. Feb 2007 A1
20070059533 Burdette et al. Mar 2007 A1
20070087269 Inda Apr 2007 A1
20070119212 Huang et al. May 2007 A1
20070148533 Anglin et al. Jun 2007 A1
20070160911 Senga et al. Jul 2007 A1
20070172739 Visco et al. Jul 2007 A1
20070231704 Inda Oct 2007 A1
20070248888 Seino et al. Oct 2007 A1
20070271957 Nakamura et al. Nov 2007 A1
20070281089 Heller et al. Dec 2007 A1
20070295385 Sheats et al. Dec 2007 A1
20080057386 Visco et al. Mar 2008 A1
20080057387 Visco et al. Mar 2008 A1
20080057399 Visco et al. Mar 2008 A1
20080113261 De Jongye et al. May 2008 A1
20080318132 Visco et al. Dec 2008 A1
20090100874 Tateishi et al. Apr 2009 A1
20090142669 Shinohara et al. Jun 2009 A1
20090159839 Seino et al. Jun 2009 A1
20090297935 Visco et al. Dec 2009 A1
20100022378 Nguyen et al. Jan 2010 A1
20100040952 Kimura et al. Feb 2010 A1
20100075209 Kimura et al. Mar 2010 A1
20100190063 Fukumoto et al. Jul 2010 A1
20110065007 Kamya et al. Mar 2011 A1
20110076570 Hama et al. Mar 2011 A1
20110108642 Hama et al. May 2011 A1
20110117726 Pinnington et al. May 2011 A1
20120034529 Tatsumisago et al. Feb 2012 A1
20120077020 Muramatsu et al. Mar 2012 A1
20120094188 Visco et al. Apr 2012 A1
20120177997 Nakamoto et al. Jul 2012 A1
20120183834 Kanda et al. Jul 2012 A1
20120183880 Toussaint et al. Jul 2012 A1
20120189918 Tatsumisago et al. Jul 2012 A1
20120204601 Murakami Aug 2012 A1
20120309157 Iwamatsu et al. Dec 2012 A1
20120315482 Muramatsu et al. Dec 2012 A1
20130122365 Hydro-Quebec May 2013 A1
20130164631 Ohtomo et al. Jun 2013 A1
20130164632 Kato et al. Jun 2013 A1
20130288134 Hama et al. Oct 2013 A1
20140072875 Uchiyama Mar 2014 A1
20140090421 Shock et al. Apr 2014 A1
20140093785 Sugiura et al. Apr 2014 A1
20140141341 Ohtomo et al. May 2014 A1
20140151371 Chang et al. Jun 2014 A1
20140154586 Hayashi et al. Jun 2014 A1
20140162108 Visco et al. Jun 2014 A1
20140170465 Visco et al. Jun 2014 A1
20140186785 Mellen Jul 2014 A1
20140322584 Visco et al. Oct 2014 A1
20140339194 Gu Nov 2014 A1
20150068251 Ottermann et al. Mar 2015 A1
20150107510 Lindfors Apr 2015 A1
20150214555 Visco et al. Jul 2015 A1
20150340720 Visco et al. Nov 2015 A1
20150344342 Nguyen et al. Dec 2015 A1
20150349371 Neudecker et al. Dec 2015 A1
20160028053 Visco et al. Jan 2016 A1
20160028063 Visco et al. Jan 2016 A1
20160072153 Ichikawa et al. Mar 2016 A1
20160087263 Gadkaree et al. Mar 2016 A1
20160133989 Suzuki et al. May 2016 A1
20160156065 Visco et al. Jun 2016 A1
20160190640 Visco et al. Jun 2016 A1
20160197326 Visco et al. Jul 2016 A1
20160211547 Hwang et al. Jul 2016 A1
20160218349 Hasegawa et al. Jul 2016 A1
20160257593 Nguyen et al. Sep 2016 A1
20160261002 Trevey et al. Sep 2016 A1
20160351878 Visco et al. Dec 2016 A1
20160351879 Visco et al. Dec 2016 A1
20170229731 Visco et al. Aug 2017 A1
20170288228 Ito et al. Oct 2017 A1
20170309899 Son et al. Oct 2017 A1
20170331156 Visco et al. Nov 2017 A1
20170355632 McEnroe et al. Dec 2017 A1
20170365853 Visco et al. Dec 2017 A1
20180131040 Visco et al. May 2018 A1
20180309157 Visco et al. Oct 2018 A1
20190013546 Visco et al. Jan 2019 A1
20190148768 Visco et al. May 2019 A1
20190173128 Visco et al. Jun 2019 A1
20190177878 Kanatzidis et al. Jun 2019 A1
20190181496 Visco et al. Jun 2019 A1
20190194052 Nguyen et al. Jun 2019 A1
20190229370 Visco et al. Jul 2019 A1
20190237801 Kanno et al. Aug 2019 A1
20190237810 Visco et al. Aug 2019 A1
20190276356 Abbott Sep 2019 A1
20190305370 Minamida Oct 2019 A1
20200014063 Visco et al. Jan 2020 A1
20200028209 Visco et al. Jan 2020 A1
20200127275 Visco et al. Apr 2020 A1
20200243902 Visco et al. Jul 2020 A1
20200251773 Visco et al. Aug 2020 A1
20200259212 Visco et al. Aug 2020 A1
20200395633 Visco et al. Dec 2020 A1
20210098818 Visco et al. Apr 2021 A1
20210098819 Visco et al. Apr 2021 A1
20210111427 Visco et al. Apr 2021 A1
20210126236 Visco et al. Apr 2021 A1
20210218005 Matzner et al. Jul 2021 A1
20210218055 Visco et al. Jul 2021 A1
20210320328 Visco et al. Oct 2021 A1
20210340048 Visco et al. Nov 2021 A1
20210380456 Visco et al. Dec 2021 A1
20210395128 Visco et al. Dec 2021 A1
20220013857 Visco et al. Jan 2022 A1
20220045328 Visco et al. Feb 2022 A1
20220045352 Visco et al. Feb 2022 A1
20220216509 Sasaki et al. Jul 2022 A1
20220263137 Visco et al. Aug 2022 A1
20220302492 Visco et al. Sep 2022 A1
20220320573 Visco et al. Oct 2022 A1
20220320579 Visco et al. Oct 2022 A1
20220328865 Visco et al. Oct 2022 A1
20220328866 Visco et al. Oct 2022 A1
20220336849 Visco et al. Oct 2022 A1
20220396516 Visco et al. Dec 2022 A1
20220399567 Visco et al. Dec 2022 A1
20230091921 Visco et al. Mar 2023 A1
20230098257 Visco et al. Mar 2023 A1
20230299336 Visco et al. Sep 2023 A1
20230335786 Visco et al. Oct 2023 A1
20230335789 Visco et al. Oct 2023 A1
20230420634 Visco et al. Dec 2023 A1
20240088359 Visco et al. Mar 2024 A1
20240088433 Visco et al. Mar 2024 A1
20240092676 Visco et al. Mar 2024 A1
Foreign Referenced Citations (40)
Number Date Country
112017011548 Jul 2018 BR
112017011768 Jul 2018 BR
101346424 Jan 2009 CN
101494299 Jul 2009 CN
101535039 Sep 2009 CN
0774654 Jan 2000 EP
3 227 952 Oct 2017 EP
2004-063419 Feb 2004 JP
2004127743 Apr 2004 JP
2007311084 Nov 2007 JP
2008-103229 May 2008 JP
2008103258 May 2008 JP
2008-300300 Dec 2008 JP
2009-158476 Jul 2009 JP
2009252670 Oct 2009 JP
2010-108881 May 2010 JP
2010123463 Jun 2010 JP
2012-043654 Mar 2012 JP
2012-089424 May 2012 JP
2012-096973 May 2012 JP
2012089244 May 2012 JP
2013-117398 Jan 2013 JP
2013-232335 Nov 2013 JP
2014-035989 Feb 2014 JP
2014-096311 May 2014 JP
2014127272 Jul 2014 JP
2014-221714 Nov 2014 JP
20140011258 Jan 2014 KR
WO-9801401 Jan 1998 WO
2009003695 Jan 2009 WO
WO-2012017544 Feb 2012 WO
WO-2013141481 Sep 2013 WO
2016089897 Jun 2016 WO
2016089899 Jun 2016 WO
2017112550 Jun 2017 WO
2017197039 Nov 2017 WO
2018141919 Aug 2018 WO
2019010047 Jan 2019 WO
2019018386 Jan 2019 WO
WO-2019121340 Jun 2019 WO
Non-Patent Literature Citations (206)
Entry
Non-Final Office Action for U.S. Appl. No. 14/954,812, dated Aug. 1, 2018.
Notice of Allowance for U.S. Appl. No. 14/954,812, dated Oct. 30, 2018.
Non-Final Office Action for U.S. Appl. No. 14/954,816, dated Aug. 1, 2018.
Notice of Allowance for U.S. Appl. No. 14/954,816, dated Oct. 15, 2018.
Non-final Office Action for U.S. Appl. No. 16/161,720, dated Apr. 28, 2020.
Notice of Allowance for U.S. Appl. No. 16/161,720, dated Aug. 6, 2020.
Notice of Allowance for U.S. Appl. No. 16/161,720, dated Nov. 2, 2020.
Non-final Office Actions for U.S. Appl. No. 15/380,989, dated Mar. 26, 2019.
Notice of Allowance for U.S. Appl. No. 15/380,989, dated Dec. 6, 2019.
Restriction Requirement for U.S. Appl. No. 15/380,989, dated Jul. 5, 2018.
Final Office Action for U.S. Appl. No. 15/726,302, dated Dec. 30, 2020.
Non-final Office Action for U.S. Appl. No. 15/726,302, dated Apr. 16, 2020.
Restriction Requirement for U.S. Appl. No. 15/726,302, dated May 6, 2019.
Restriction Requirement for U.S. Appl. No. 15/726,302, dated Nov. 19, 2019.
Non-final Office Action for U.S. Appl. No. 16/179,803, dated Apr. 28, 2020.
Notice of Allowance for U.S. Appl. No. 16/179,803, dated Aug. 11, 2020.
Notice of Allowance for U.S. Appl. No. 16/179,803, dated Nov. 2, 2020.
Restriction Requirement for U.S. Appl. No. 16/174,058, dated Apr. 16, 2020.
Non-Final Office Action for U.S. Appl. No. 15/929,959, dated Oct. 15, 2020.
Final Office Action for U.S. Appl. No. 15/929,959, dated Apr. 29, 2021.
Notice of Allowance for U.S. Appl. No. 15/929,959, dated Jul. 12, 2021.
Final Office Action for U.S. Appl. No. 15/592,102, dated Jan. 27, 2020.
Non-final Office Action for U.S. Appl. No. 15/592,102, dated Aug. 8, 2019.
Notice of Allowance for U.S. Appl. No. 15/592,102, dated Mar. 6, 2020.
Restriction Requirement for U.S. Appl. No. 15/592,102, dated Mar. 7, 2019.
Notice of Allowance for U.S. Appl. No. 16/012,588, dated Dec. 3, 2019.
Notice of Allowance for U.S. Appl. No. 16/341,872, dated Aug. 21, 2020.
Notice of Allowance for U.S. Appl. No. 16/341,872, dated Oct. 15, 2020.
Notice of Allowance for U.S. Appl. No. 16/341,874, dated Sep. 3, 2020.
Notice of Allowance for U.S. Appl. No. 16/663,177, dated Sep. 3, 2020.
First Office Action dated Jan. 14, 2020, for Brazilian Patent Application No. BR112017011548-1, with English Translation.
First Office Action dated Dec. 15, 2020, for Canadian Patent Application No. 2,969,113.
First Office Action dated Aug. 15, 2017, for Mexican Application No. MX/a/2017/007265. No Translation.
WO patent application No. PCT/US2015/063231, International Preliminary Report on Patentability, dated mailed Jun. 15, 2017.
WO patent application No. PCT/US2015/063231, International Search Report and Written Opinion mailed Mar. 11, 2016.
First Office Action dated Jan. 14, 2020, for Brazilian Patent Application No. BR112017011768-1, with English Translation.
WO patent application No. PCT/US2016/067338, International Preliminary Report on Patentability, dated mailed Jul. 5, 2017.
WO patent application No. PCT/US2016/067338, International Search Report and Written Opinion mailed May 19, 2017.
First Office Action dated May 10, 2021, for Canadian Patent Application No. 2,969,117.
First Office Action dated Feb. 3, 2019, for Chinese Patent Application No. 201580075233.0, with Chinese Search Report and English Translation.
Notice of Allowance, dated Mar. 10, 2020, for Chinese Patent Application No. 201580075233.0, with English Translation.
Second Office Action dated Nov. 15, 2019, for Chinese Patent Application No. 201580075233.0, with English Translation.
Communication Pursuant to Article 94(3) EPC, First Office Action, dated May 13, 2019, for European Patent Application No. 15864779.2
Communication Pursuant to Rules 161(2) and 162 EPC, (request for extra claims fees), dated Aug. 4, 2018, for European Patent Application No. 15864779.2
Communication Pursuant to Rules 70(2) and 70a(2), dated Jun. 8, 2018, deadline for response to Extended European Search Report, for European Patent Application No. 15864779.2.
Examination Report, dated Sep. 14, 2020, for European Patent Application No. 15864779.2, 3 Pages.
Extended European Search Report, dated May 22, 2018, for European Patent Application No. 15864779.2.
Notice of Intention to Grant, dated Jan. 26, 2021, for European Patent Application No. 15864779.2, 7 Pages.
Decision for Grant, dated Sep. 24, 2020, for Japanese Patent Application No. 2017-529785, without translation.
Notice of Reasons for Rejection, dated Jan. 14, 2020, for Japanese Patent Application No. 2017-529785, with machine translation.
Notice of Reasons for Rejection, dated May 24, 2019, for Japanese Patent Application No. 2017-529785, with machine translation.
WO patent application No. PCT/US2015/063234, International Preliminary Report on Patentability, dated mailed Jun. 15, 2017.
WO patent application No. PCT/US2015/063234, International Search Report and Written Opinion mailed Apr. 1, 2016.
WO patent application No. PCT/US2017/032034, International Preliminary Report on Patentability, dated Nov. 13, 2018.
WO patent application No. PCT/US2017/032034, International Search Report and Written Opinion, dated Aug. 21, 2017.
WO patent application No. PCT/US2018/039862, International Preliminary Report on Patentability, dated Jan. 7, 2020.
WO patent application No. PCT/US2018/039862, International Search Report and Written Opinion mailed Oct. 19, 2018.
WO patent application No. PCT/US2018/039862, Invitation to Pay Additional Fees and, where applicable, Protest Fee, dated Aug. 28, 2018.
WO patent application No. PCT/US2018/042476, International Preliminary Report on Patentability, dated Jan. 21, 2020.
WO patent application No. PCT/US2018/042476, International Search Report and Written Opinion mailed Nov. 9, 2018.
WO patent application No. PCT/US2018/042476, Invitation to Pay Additional Fees and, where applicable, Protest Fee, dated Sep. 12, 2018.
Akridge, James R. et al., “Solid state batteries using vitreous solid electrolytes,” Solid State Ionics 18 & 19 (1986) 1082-1087.
Bartholomew, Roger F. et al., “Electrical properties of new glasses based on the Li2S—SiS2 system,” Journal of Non-Crystalline Solids 256&257 (1999) 242-247.
Bates, J.B. et al., “Electrical properties of amorphous lithium electrolyte thin films,” 1992, Solid State Ionics.
Bates, J.B. et al., “Thin-film rechargeable lithium batteries,” 1995, Journal of Power Sources.
Bertschler, Eva-Maria et al., “Li+ Ion Conductors with Adamantane-Type Nitridophosphate Anions β-Li10P4N10 and Li13P4N10X3 with X=Cl, Br”, Chemistry: A European Journal, vol. 24, Issue 1, (Jan. 2, 2018), pp. 196-205.
Burckhardt, W. et al., “Fast Li+ ion transport in iodine-thioborate glasses,” Mat. Res. Bull., vol. 19, pp. 1083-1089, 1984.
Cao, Can et al., “Recent advances in inorganic solid electrolytes for lithium batteries,” Frontiers in Energy Research, Jun. 27, 2014, vol. 2, Article 25, pp. 1-10.
Fu, Jie, “Fast Li+ ion conducting glass-ceramics in the system Li2O—Al2O3—GeO2—P2O5” Solid State Ionics 104 (1997), pp. 191-194.
Fu, Jie, “Fast Li+ Ion Conduction in Li2O—Al2O3—TiO2—SiO2—P2O5 Glass-Ceramics,” Journal of the American Ceramics Society, vol. 80, No. 7, Jul. 1997, pp. 1-5.
Fu, Jie, “Superionic conductivity of glass-ceramics in the system Li2O—Al2O3—TiO3—P2O5”, Solid State Ionics 96 (1997), pp. 195-200.
George, S.M., “Atomic layer deposition: an overview”, Chemical reviews, (Jan. 13, 2010), 110(1):111-31.
Hayashi, A. et at., “Formation of superionic crystals from mechanically milled Li2S—P2S5 glasses”, Electrochemistry Communications, (Feb. 1, 2003), 5(2):111-4.
Hayashi, Akitoshi et al., “Mechanochemical synthesis of amorphous solid electrolytes using SiS2 and various lithium compounds,” Solid State Ionics 175 (2004) 637-640, Dec. 9, 2003.
Hayashi, Akitoshi et al., “Characterization of Li2S—P2S5 glass-ceramics as a solid electrolyte for lithium secondary batteries,” Solid State Ionics 175 (2004) 683-686.
Hayashi, Akitoshi et al., “Preparation and ionic conductivity of Li7P3S11-z glass-ceramic electrolytes,” Journal of Non-Crystalline Solids 356 (2010) 2670-2673.
Hayashi, Akitoshi et al., “Preparation of Li2S—P2S5 amorphous solid electrolytes by mechanical milling,” J. Am. Ceram. Soc., 84 [2] 477-79 (Feb. 28, 2001).
Hirota, Yukihiro and Osamu Mikami, “Energy Barrier Height Measurements of Chemically Vapour Deposited, P3N5 Films by Internal Photoinjection”, Thin Solid Films, vol. 162, (Aug. 1988), pp. 41-47.
Hoffman, E. E., “Solubility of Nitrogen and Oxygen in Lithium and Methods of Lithium Purification,” in Symposium on Newer Metals, ed. R. Jaffee (West Conshohocken, PA: ASTM International, 1960), 195-206. https://doi.org/10.1520/STP46339S.
Johnson, R. W., Hultqvist, A., Bent, S.F., “A brief review of atomic layer deposition: from fundamentals to applications”, Materials today, (Jun. 1, 2014), 17(5):236-46.
Jones, Steven D. et al., “A thin-film solid-state microbattery,” Journal of Power Sources, 43-44 (1993) 505-513.
Kanno, R. and M. Murayama, “Lithium ionic conductor thio-LISICON: the Li2 S GeS2 P 2 S 5 system”, Journal of the electrochemical society, (Jun. 5, 2001), 148(7):A742.
Kennedy, J.H., “Ionically conductive glasses based on SiS2,” Materials Chemistry and Physics, 23 (1989) 29-50.
Kennedy, John H. et al., “Improved stability for the SiS2—P2S5—Li2S—LiI glass system,” Solid State Ionics 28-30 (1998) 726-728.
Kennedy, John H. et al., “Ionically conductive sulfide-based lithium glasses,” Journal of Non-Crystalline Solids 123 (1990) 328-338.
Kennedy, John H. et al., “Preparation and conductivity measurements of SiS2—Li2S glasses doped with LiBr and LiCl,” Solid State Ionics 18 & 19 (1986) 368-371.
Kitaura, Hirokazu et al., “Fabrication of electrode-electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes,” J. Mater. Chem., 2011, 21, 118.
Kondo, S. et al., “New lithium ion conductors based on Li2S—SiS2 system,” Solid State Ionics 53-56 (1992) 1183-1186.
Levason, Bill and Andrew L. Hector (eds.), “Chemistry and Applications of Metal Nitrides,” (Preface only), Coordinated Chemistry Reviews, vol. 257, Issues 13-14, (Jul. 2013), p. 1945.
Li, Xuemin et al., “Facile Synthesis of Lithium Sulfide Nanocrystals for Use in Advanced Rechargeable Batteries”, ACS Appl. Mater. Interfaces, (Dec. 3, 2015), 7, 51, 28444-28451.
Maier-Komor, P., “Preparation of Phosphorus Targets Using the Compound Phosphorus Nitride”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 257, Issue 1, (Jun. 1, 1987), pp. 1-3.
Malugani, J.P. et al., “Preparation and electrical properties of the 0,37 Li2S—0,18P2S5-0,45 LiI glass,” Solid State Ionics 1 (1980) 519-523.
Mercier, René et al., “Superionic conduction in Li2S—P2S5—LiI—glasses,” Solid State Ionics. (Oct. 1981) 5:663-666.
Minami, Keiichi et al., “Electical and electrochemical properties of glass-ceramic electrolytes in the systems Li2S—P2S5—P2S3 and Li2S—P2S5—P2O5,” Solid State Ionics 192 (2011) 122-125.
Minami, Keiichi et al., “Mechanochemical synthesis of Li2S—P2S5 glass electrolytes with lithium salts,” Solid State Ionics 181 (2010) 1505-1509.
Minami, Keiichi et al., “Preparation and characterization of lithium ion conducting Li2S—P2S5—GeS2 glasses and glass-ceramics,” Journal of Non-Crystalline Solids 356 (2010) 2666-2669.
Minami, Tsutomu et al., “Preparation and characterization of lithium ion-conducting oxysulfide glasses,” Solid State Ionics 136-137 (2000) 1015-1023.
Mizuno, F., et al. “High lithium ion conducting glass-ceramics in the system Li2S—P2S5”, Solid State Ionics, (Oct. 3, 20061), 177(26-32):2721-5.
Mizuno, Fuminori et al., “Lithium ion conducting solid electrolytes prepared from Li2S, elemental P and S,” Solid State Ionics 177 (2006) 2753-2757.
Mizuno, Fuminori et al., “All Solid-state Lithium Secondary Batteries Using High Lithium Ion Conducting Li2S—P2S5 Glass-Ceramics”, Chemistry Letters 2002, No. 12, The Chemical Society of Japan, (Dec. 5, 2002), 31(12):1244-1245 (with 2 cover pages).
Mizuno, Fuminori et al., “New, highly Ion-Conductive Crystals Precipitated from Li2S—P2S5 Glasses”, Advanced Materials, (Apr. 4, 2005), 17(7):918-21.
Murayama, M., et al., “Material design of new lithium ionic conductor, thio-LISICON, in the Li2S—P2S5 system”, Solid State Ionics, (May 31, 2004), 170(3-4):173-80.
Ohtomo, Takamasa et al., “All-solid-state lithium secondary batteries using the 75Li2S. 25P2S5glass and the 70Li2S ⋅ 30P2S5 glass-ceramic as solid electrolytes,” Journal of Power Sources 233 (2013) 231-235.
Ohtomo, Takamasa et al., “Electrical and electrochemical properties of Li2S—P2S5—P2—O5 glass-ceramic electrolytes,” Journal of Power Sources 146 (2005) 715-718.
Ohtomo, Takamasa et al., “Mechanochemical synthesis of lithium ion conducting glasses and glass-ceramics in the system Li2S—P—S,” Solid State Ionics 176 (2005) 2349-2353.
Pradel, Annie et al., “Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching,” Solid State Ionics 18 & 19 (1986) 351-355.
Rudolph, B. et al., “Cyclic voltammetry studies of the lithiumthioborate glass-indium interface,” Electrochimica Acta, vol. 34, No. 11, pp. 1519-1521, 1989.
Sahami, Saeed et al., “Preparation and conductivity measurements of SiS2—Li2S—LiBr lithium ion conductive glasses,” Journal of the Electrochemical Society, Apr. 1985, pp. 985-986.
Sakuda, Atsushi et al., “Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery,” Scientific Reports 3:2261, Jul. 23, 2013.
Stock, Alfred and Hans Grüneberg, “Über den Phosphorstickstoff”, Berichte der deutschen chemischen Gesellschaft, vol. 40, Issue 2, (Mar.-May 1907), pp. 2573-2578. No Translation.
Svensson PH, Kloo L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chemical Reviews. (Mar. 22, 2003), 103(5):1649-84.
Tatsumisago, M., et al., “Superionic conduction in rapidly quenched Li2S—SiS2—Li3PO4 glasses”, Journal of the Ceramic Society of Japan, (Nov. 1, 1993), 101(1179):1315-7.
Tatsumisago, Masahiro et al., “Preparation and structure of lithium-ion-conducting mixed-anion glasses in the system LiBO2—LiBS2,” J. Am. Ceram. Soc., 71 [9] 766-69 (1988).
Tatsumisago, Masahiro et al., “Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries,” Journal of Asian Ceramic Societies 1 (2013) 17-25.
Tatsumisago, Masahiro, “Glassy materials based on Li2S for all-solid-state lithium secondary batteries,” Solid State Ionics 175 (2004) 13-18.
Trevey, James et al., “Glass-ceramic Li2S—P2S5 electrolytes prepared by a single step ball billing process and their appliction for all-solid-state lithium-ion batteries,” Electrochemistry Communications 11 (2009) 1830-1833.
Visco, Steven J. et al., “Complex plane and 7Li NMR studies of arsenic sulfide-based lithium glasses,” J. Electrochem. Soc.: Solid-State Science and Technology, Jul. 1985, pp. 1766-1770.
Visco, Steven J. et al., “Complex plane and 7Li NMR studies of highly conductive sulfide-based lithium glasses,” Battery Testing, vol. 132, No. 4, pp. 751-753.
Wada, H., et al., “Preparation and ionic conductivity of new B2S3—Li2S—LiI glasses”, Materials research bulletin, (Feb. 1, 1983), 18(2):189-93.
Wenzel, Sebastian et al., “Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte”, Solid State Ionics, (Mar. 1, 2016), 286:24-33.
Yang, Min et al., “Membranes in lithium ion batteries,” Membranes, (Jul. 4, 2012), 2, 367-383.
U.S. Appl. No. 16/948,835, filed Oct. 1, 2020, Visco et al.
U.S. Appl. No. 16/948,836, filed Oct. 1, 2020, Visco et al.
U.S. Appl. No. 16/948,864, filed Oct. 2, 2020, Visco et al.
U.S. Appl. No. 16/948,863, filed Oct. 2, 2020, Visco et al.
U.S. Appl. No. 16/949,026, filed Oct. 9, 2020, Visco et al.
U.S. Appl. No. 17/248,225, filed Jan. 14, 2021, Visco et al.
U.S. Appl. No. 17/249,864, filed Mar. 16, 2021, Visco et al.
U.S. Appl. No. 17/243,429, filed Apr. 28, 2021, Visco et al.
U.S. Appl. No. 17/301,453, filed Apr. 2, 2021, Visco et al.
U.S. Appl. No. 17/302,027, filed Apr. 21, 2021, Visco et al.
U.S. Appl. No. 17/302,491, filed May 4, 2021, Visco et al.
U.S. Appl. No. 17/303,706, filed Jun. 4, 2021, Visco et al.
U.S. Appl. No. 17/303,707, filed Jun. 4, 2021, Visco et al.
BR Office Action dated Aug. 3, 2022, in Application No. BR112017011768-1.
BR Office Action dated Mar. 28, 2022 in Application No. BR20171111548 with English translation.
BR Office Action dated Mar. 28, 2022 in Application No. BR20171111768 with English translation.
CA Office Action dated May 31, 2022, in Application No. CA2969113.
CA Office Action dated Oct. 7, 2021, in application No. CA2,969,117.
Decision for Grant, dated Sep. 29, 2020, for Japanese Patent Application No. 2017- 529785, with translation.
EP Search Report dated Dec. 22, 2021, in Application No. EP21183687.9.
Flexible Graphite Foil as viewed at https://hpmsgraphite.com/graphitefoil using the Wayback machine (Year: 2004).
Flexible Graphite Foil as viewed at https://hpmsgraphite.com/graphitefoil via the Wayback archive (Year: 2018).
Geiss, M. “Sacrificial Interlayers for All-solid-state Batteries”, Aug. 14, 2020, pp. 243.
HPMS HP Materials Solutions Inc., “Flexible Graphite Foil”, The Wayback Machine, 2021, pp. 1-7.
JP Notice of Reasons for Rejection dated Oct. 5, 2021, in application No. JP20200181662 with English translation.
JP Office Action dated Jan. 4, 2023, in Application No. JP2020-181662 with English translation.
JP Office Action dated May 31, 2022, in Application No. JP2020-181662 with English translation.
Kato, A. et al ., “High-Temperature Performance of All-Solid-State Lithium-Metal Batteries Having Li/Li3PS4 Interfaces Modified with Au Thin Films”, Journal of The Electrochemical Society, 2018, vol. 165, No. 9, pp. A1950-A1954.
KR Office Action dated Jun. 23, 2022 in Application No. KR10-2017-7018176 with English translation.
KR Office Action dated Nov. 23, 2023, in KR Application No. 10-2023-7010384 with English translation.
Lau, J., et al., “Sulfide Solid Electrolytes for Lithium Battery Applications,” Advanced Energy Materials, 2018, vol. 8, pp. 1-24.
Mexican Office Action dated Oct. 20, 2022 issued in Application No. MX/a/2017/007265 with English translation.
Non-final Office Action for U.S. Appl. No. 15/726,302, dated Sep. 10, 2021.
Non-Final Office Action for U.S. Appl. No. 16/174,058, dated Sep. 17, 2021.
Notice of Allowance dated Oct. 1, 2021, in U.S. Appl. No. 16/781,713.
Notice of Allowance for U.S. Appl. No. 15/929,959, dated Aug. 4, 2021.
Panasonic Industry “PGS” Graphite Sheets as viewed at 2021.
Park., 2013.—(machine translation), 13 pages.
Pradel, A., et al., “Lithium Chalcogenide Conductive glasses,” Materials Chemistry and Physics, 1989, vol. 23, pp. 121-142.
Sandfire Scientific., “Quartz Ampoules Coated with Layer of Pyrolyzed Carbon,” 2015, pp. 1-2. https://sandfire.com/quartz-ampoules-coated-with-layer-of-pyrolyzed-carbon/.
Senevirathne, K. et al., “A New Crystalline LiPON Electrolyte: Synthesis, Properties, and Electronic Structure”, Solid State Ionics, Feb. 21, 2013, vol. 233, pp. 95-101.
Thangadurai, V. et al., “Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M=Nb, Ta)”, Journal of the American Ceramic Society, Mar. 2003, vol. 86, No. 3, pp. 437-440.
U.S. Restriction Requirement dated Aug. 31, 2022 in U.S. Appl. No. 16/949,026.
U.S. Corrected Notice of Allowance dated Jun. 13, 2022, in U.S. Appl. No. 16/948,863.
U.S. Corrected Notice of Allowance dated Sep. 20, 2023, in U.S. Appl. No. 18/175,374.
U.S. Final Office Action dated Jan. 16, 2024 in U.S. Appl. No. 17/243,429.
U.S. Final Office Action dated Mar. 6, 2023 in U.S. Appl. No. 16/948,835.
U.S. Final office Action dated Oct. 6, 2023 in U.S. Appl. No. 16/556,736.
U.S. Final Office Action dated Oct. 27, 2023 in U.S. Appl. No. 16/949,026.
U.S. Non Final Office Action dated Feb. 2, 2023 in U.S. Appl. No. 16/949,026.
U.S. Non Final Office Action dated Mar. 31, 2023 for U.S. Appl. No. 16/556,736.
U.S. Non-Final office Action dated Oct. 27, 2022 in U.S. Appl. No. 16/948,835.
U.S. Non-Final Office Action dated Apr. 11, 2023 in U.S. Appl. No. 17/303,707.
U.S. Non-Final Office Action dated Aug. 18, 2023, in U.S. Appl. No. 17/303,706.
U.S. Non-Final Office Action dated Dec. 4, 2023 in U.S. Appl. No. 17/302,027.
U.S. Non-Final Office Action dated Dec. 23, 2022 in U.S. Appl. No. 16/784,162.
U.S. Non-Final Office Action dated Jan. 5, 2024 in U.S. Appl. No. 17/453,033.
U.S. Non-Final Office Action dated Jun. 7, 2023, in U.S. Appl. No. 17/243,429.
U.S. Non-Final Office Action dated Mar. 14, 2024 in U.S. Appl. No. 17/301,453.
U.S. Non-Final Office Action dated Nov. 18, 2022, in U.S. Appl. No. 16/948,836.
U.S. Notice of Allowance dated May 12, 2022, in U.S. Appl. No. 16/948,863.
U.S. Notice of Allowance dated Apr. 15, 2024 in U.S. Appl. No. 17/303,706.
U.S. Notice of allowance dated Dec. 9, 2022 in U.S. Appl. No. 17/248,225.
U.S. Notice of Allowance dated Feb. 15, 2024 in U.S. Appl. No. 16/721,787.
U.S. Notice of Allowance dated Jan. 9, 2023 in U.S. Appl. No. 16/948,836.
U.S. Notice of Allowance dated Jan. 19, 2023 in U.S. Appl. No. 16/948,836.
U.S. Notice of Allowance dated Jan. 30, 2024 in U.S. Appl. No. 16/721,787.
U.S. Notice of Allowance dated Jun. 20, 2023 in U.S. Appl. No. 16/509,385.
U.S. Notice of Allowance dated Mar. 15, 2023 in U.S. Appl. No. 16/948,835.
U.S. Notice of Allowance dated Mar. 20, 2023 in U.S. Appl. No. 17/817,494.
U.S. Notice of Allowance dated Mar. 27, 2024 in U.S. Appl. No. 17/302,491.
US Notice of Allowance dated Oct. 20, 2021, in U.S. Appl. No. 16/781,713.
U.S. Notice of Allowance dated Sep. 12, 2023 in U.S. Appl. No. 18/175,374.
U.S. Appl. No. 17/934,470, inventors Visco et al., filed Sep. 22, 2022.
U.S. Appl. No. 18/048,400, inventors Visco et al., filed Oct. 20, 2022.
U.S. Appl. No. 18/149,524, inventors Visco et al., filed Jan. 3, 2023.
U.S. Appl. No. 18/175,374, inventors Visco et al., filed Feb. 27, 2023.
U.S. Appl. No. 18/529,777, inventors Visco S J, et al., filed Dec. 5, 2023.
U.S. Appl. No. 18/590,753, inventor Visco S, filed Feb. 28, 2024.
U.S. Restriction requirement dated Apr. 3, 2023 in U.S. Appl. No. 17/303,706.
U.S. Restriction Requirement dated Dec. 23, 2022 in U.S. Appl. No. 16/556,736.
U.S. Restriction Requirement dated Jan. 18, 2023 in U.S. Appl. No. 17/303,707.
U.S. Restriction requirement dated May 18, 2023, in U.S. Appl. No. 16/721,787.
U.S. Restriction Requirement dated Nov. 3, 2022 in U.S. Appl. No. 16/509,385.
Wikipedia., “Sintering”, The Free Encyclopedia, 2023, pp. 1-15.
Related Publications (1)
Number Date Country
20220045353 A1 Feb 2022 US
Provisional Applications (1)
Number Date Country
63061126 Aug 2020 US