This disclosure generally relates to estimating properties of downhole fluids. In certain aspects, the disclosure relates to analysis of fluids using surface waves.
Fluid evaluation techniques are well known. Broadly speaking, analysis of fluids may provide valuable data indicative of formation and wellbore parameters. Many fluids, such as formation fluids, production fluids, and drilling fluids, contain a large number of components with a complex composition.
The complex composition of such fluids may be sensitive to changes in the environment, e.g., pressure changes, temperature changes, contamination, etc. Thus, retrieval of a sample may cause unwanted separation or precipitation within the fluid. Additionally, some components of the fluid may change state (gas to liquid, or liquid to solid) when removed to surface conditions. If precipitation or separation occurs, it may not be possible to restore the original composition of the fluid.
In aspects, this disclosure generally relates to analysis of fluids. More specifically, this disclosure relates to analysis of fluids using a device configured to respond to a dissipation of surface waves.
One embodiment according to the present disclosure includes an apparatus for estimating a parameter of interest of a fluid downhole, comprising: a first transducer responsive to a dissipation of at least one surface wave in the fluid and configured to generate an electrical signal indicative of the parameter of interest.
Another embodiment according to the present disclosure includes a method of estimating a parameter of interest in a fluid downhole, comprising: estimating the parameter of interest using an electrical signal indicative of a dissipation of at least one surface wave in the fluid, the electrical signal being generated using a first transducer.
Examples of certain features of the disclosure have been summarized rather broadly in order that the detailed description thereof that follows may be better understood and in order that the contributions they represent to the art may be appreciated.
For a detailed understanding of the present disclosure, reference should be made to the following detailed description of the embodiments, taken in conjunction with the accompanying drawings, in which like elements have been given like numerals, wherein:
This disclosure generally relates to analysis of fluids. In one aspect, this disclosure relates to analysis of fluids using a transducer responsive to a dissipation of at least one surface wave and configured to generate an electric signal indicative of the dissipation. Herein, the term “surface wave” relates to a mechanical wave that propagates along the interface between differing media.
A surface wave may be introduced to a fluid by a transmitter. The resulting vibrations may begin to dissipate due to resistance to motion due to the fluid. Herein, the term “dissipation” relates to damping, reduction, or attenuation of the amplitude or energy of a wave. The time and manner of the dissipation may be related to properties of the fluid, such as, but not limited to, viscosity, density, and viscosity-density product. A receiver may be configured to generate a signal in response to the dissipation of the surface waves in the fluid. The transmitter and receiver may be separate devices or a single device may be configured to operate as transmitter and receiver. The surface wave transmitted into the fluid may be, but is not limited to, a square pulse or a sinusoid (continuous or stored in memory). The modification of the signal in amplitude, frequency, or phase may be used individually or together to estimate the viscosity and density of the fluid using suitable analytical and empirical models known to those of skill in the art. In embodiments where the same transducer may be used as both transmitter and receiver, the transmitter may be switched off during a period for the reflected signal from a metal-liquid interface.
Different configurations of transmitters may be used for different types of surface waves. A lamb wave transmitter may include a wedge configured to couple lamb waves with a body in contact with the fluid. Herein, the term “couple” relates to channeling the energy from a transducer to a structure from which surface waves may propagate. In some embodiments, the wedge may be configured to reduce undesired wave components. A love wave transmitter may use a transducer directed to generate a wave in a thin layer surrounding, at least in part, a solid body in communication with the fluid. The solid body may include a crystal, such as, but not limited to, one of: i) an XY-cut quartz crystal, ii) an ST-quartz crystal, and iii) a Y-rotated quartz crystal. The thin layer may include a metal configured to act as a waveguide for love waves. In some embodiments, the love wave transmitter may include a solid body of lithium tantalite with a thin layer that includes silica. Finally, a Rayleigh wave sensor may include a surface acoustic crystal disposed in the fluid. Transducers that may be used to generate lamb, love, and Rayleigh waves, may also be used to generate flexural plate waves and skimming bulk waves. Several non-limiting embodiments of an apparatus configured to use the proposed technique are described below.
Referring initially to
After a lamb wave is introduced to the fluid 240, the dissipation of the lamb wave may be detected by a transducer. The actuator 210 may be configured to serve as the transducer and thus receive the dissipating vibrations from the lamb waves in the fluid 240. In some embodiments, a separate transducer (not shown) may be placed in communication with the lamb waves in the fluid 240 to generate an electrical signal in response to the dissipating waves. The use of a separate transducer may enable wave generation and dissipation measurement to take place simultaneously. In some embodiments, the actuator 210 may be used to both transmit the surface waves and measure the dissipation of the surface waves, separately. When using the actuator 210 to transmit and receive, the actuator 210 may use a duty cycle where the transmission aspect of actuator 210 is active to transmit and inactive to receive. In some embodiments, fluid analysis module 112 may include multiple transducers disposed to estimate the dissipation of surface waves at several points along housing 250. The transducers may be configured to transmit, receive, or transmit/receive. The estimates from multiple locations may compensate for variations in dissipation estimates due to differences in environmental conditions along housing 250. The environmental conditions may include, but are not limited to, one or more of: i) temperature and ii) pressure. In some embodiments, one or more of flexural plate waves and skimming bulk waves may be substituted for lamb waves.
After a lamb/love wave is introduced to the fluid 240, the dissipation of the wave may be detected by vibrations of the fluid causing vibrations in metallic plate 330. The dissipation of the waves may be estimated from an electrical signal generated by the magnetic field interaction between the metallic plate and the magnetic field source 320. In some embodiments, a separate transducer (not shown) may be in communication with the fluid 240 to estimate the dissipation of the surface waves in the fluid 240. The use of a separate transducer may enable wave generation and dissipation measurement to take place simultaneously. In some embodiments, the magnetic field source 320 may be used to both transmit the surface waves and measure the dissipation of the surface waves, separately. When using the magnetic field source 320 to transmit and receive, the magnetic field source 320 may use a duty cycle where the transmission aspect of magnetic field source 320 is active to transmit and inactive to receive. In some embodiments, one or more of flexural plate waves and skimming bulk waves may be substituted for lamb/love waves.
The crystal 460 may include a piezoelectric crystal that may be configured to generate a Rayleigh wave, such as by being cut along a specific plane of the piezoelectric crystal. Techniques for cutting crystals to generate different types of waves are known to those of skill in the art. The crystal 460 may include, but is not limited to, one or more of: quartz, langasite, GaPO4, and lithium niobiate. The interdigitated transducer 450 may be configured to convert acoustic waves into electric signals and vice versa.
After the Rayleigh wave is introduced to the fluid 240, the dissipation of the wave may be detected by vibrations of the fluid causing vibrations in SAW crystal 410. The dissipation of the waves may be estimated from an electrical signal generated due to the vibrations in the SAW crystal 410. In some embodiments, a sound speed sensor 430 may be configured to estimate the speed of sound in the fluid 240 and/or compressibility of the fluid 240. The sound speed sensor 430 may be separated from the fluid by a metallic plate 440. The sound speed sensor 430 may include an ultrasonic transducer. In some embodiments, a separate transducer (not shown) may be in communication with the fluid 240 to estimate the dissipation of the surface waves in the fluid 240. The use of a separate transducer may enable wave generation and dissipation measurement to take place simultaneously. In some embodiments, the SAW crystal 410 may be used to both transmit the surface waves and measure the dissipation of the surface waves, separately. When using the SAW crystal 410 to transmit and receive, the SAW crystal 410 may use a duty cycle where the transmission aspect of SAW crystal 410 is active to transmit and inactive to receive. In some embodiments, one or more of flexural plate waves and skimming bulk waves may be substituted for Rayleigh waves.
One example of a SAW crystal 410 is a shear-horizontal SAW crystal, wherein the crystal may be configured to generate surface waves with a shear-horizontal propagation. The shear-horizontal SAW crystal may be configured to concentrate wave energy on the surface in contact with lower attenuation than a bulk acoustic wave sensor.
After the Rayleigh wave is introduced to the fluid 240, the dissipation of the wave may be detected by vibrations of the fluid causing vibrations in SAW crystal 510. The dissipation of the waves may be estimated from an electrical signal generated due to the vibrations in the SAW crystal 510. In some embodiments, a separate transducer (not shown) may be in communication with the fluid 240 to estimate the dissipation of the surface waves in the fluid 240. The use of a separate transducer may enable wave generation and dissipation measurement to take place simultaneously. In some embodiments, the SAW crystal 510 may be used to both transmit the surface waves and measure the dissipation of the surface waves, separately. When using the SAW crystal 510 to transmit and receive, the SAW crystal 510 may use a duty cycle where the transmission aspect of SAW crystal 510 is active to transmit and inactive to receive. In some embodiments, one or more of flexural plate waves and skimming bulk waves may be substituted for Rayleigh waves.
While the present teachings have been discussed in the context of hydrocarbon producing wells, it should be understood that the present teachings may be applied to geothermal wells, groundwater wells, subsea analysis, etc. Also, the present teachings may be applied to downhole installations for wellbore fluid monitoring and surface-based fluid recovery and analysis.
While the foregoing disclosure is directed to the one mode embodiments of the disclosure, various modifications will be apparent to those skilled in the art. It is intended that all variations be embraced by the foregoing disclosure.
This application claims priority from U.S. Provisional Patent Application Ser. No. 61/477,864, filed on 21 Apr. 2011, incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61477864 | Apr 2011 | US |