This present disclosure relates to a surface winder for winding a web into rolls or logs. More particularly, the present disclosure relates to an in-feed mechanism for feeding cores axially into a surface winder and for moving the cores toward the winding rolls of the winder.
In the paper converting industry, rewinding machines are used for the production of tissue paper articles in the form of wound rolls, such as bath tissue, paper toweling, and the like. These rewinding machines generally have the function of rewinding a web material coming from large reels (so-called parent reels) into logs having a diameter equal to the diameter of the wound finished articles which are then sold to consumers. These logs are much longer than the axial length of the finished articles that are sold. Therefore, the logs are generally cut square to their axis to obtain the finished product which is subsequently packaged.
Winding or rewinding a web material is usually performed in a continuous manner at high speed. For example, winding one single log can occur in about 1-3 seconds. At the end of winding a log, the web material is severed (i.e. torn or cut) to create a trailing edge of web material for the finished log and a leading edge of web material for a succeeding (e.g., next) log. Severing the web material, discharging the finished log, and the beginning of winding of the next log are generally known to those of skill in the art as an exchange phase or operation. This operation is performed typically without interrupting or slowing down the feed of the web material in order to maintain a set hourly throughput.
Winding a web material usually occurs around tubular winding cores. The leading edge of the web material is typically adhered to the core material with an adhesive. Some operations may utilize suction provided from inside an apertured core material. In still other embodiments, a tubular core can be electrostatically charged to attract the free leading edge of the web material.
Surface rewinding machines provide for the winding of a log that is in contact with the surface of at least two winding rollers. More precisely, the log is formed starting from a continuous web material that is provided with transverse perforations. The perforated web material is carried by a first conveyor and is wrapped at least partially around an upper winding roller. A core having adhesive disposed thereon is placed into contacting engagement with the web material disposed about the upper winding roller. The material-adhered core then enters into contact with a lower winding roller and is kept in rotating engagement between both the upper and lower winding rollers with a pressure roller. The three rollers form a ‘cradle’ and define a ‘winding zone’ wherein the wound log is formed by rotating the core and disposing the web material onto the core as it rotates within the winding zone.
The core can be inserted into the winding zone in a plurality of manners. In a first case, one a core at a time can be fed onto a loading tray and a pusher disposes the core into the winding zone. Here, the pusher forces the core into position between the winding rollers. This can result in the core being dented in the winding zone and producing a faulty winding.
In a second method, the core can be brought on a feeding cradle of curved shape located under the upper winding roller. Friction against the upper roller brings it forward up to the contact with the lower winding roller for starting the winding. The cradle is formed by a series of integral curved guides that protrude rearwardly from the lower winding roller. According to the size of the core, the lower roller is brought forward or away from the upper roller. However, a different cradle is necessary for each different diameter of the core. This causes stops in the production, an adjusting work and the need of a set of cradles, one for each different diameter of the core.
A third method provides an inserter that allows for independent movement of pneumatically activated fingers disposed across the width of the rewinder that grip an incoming core and translate it to the winding zone. An exemplary inserter that functions in this manner is shown in
Thus, it would be easily recognized by one of skill in the art that a better system for inserting cores into the winding cradle of a surface rewinding system is needed. Such an improved winding system would provide better control of the core during the insertion process, provide a more reliable and consistent insertion in production, and provide an insertion system that is not as effected by contamination generated during the rewinding process.
The present disclosure provides for a surface winder for winding a log of web material convolutely about a core. The surface winder comprises a frame providing the web material with a path therethrough, a first winding roll rotatably mounted in the frame on one side of the path, a stationary finger mounted on the frame on the other side of the path adjacent the first winding roll and spaced therefrom a distance sufficient to receive the core to be wound in the path, the first winding roll cooperating with the stationary finger means to rotate the core, a cam-controlled core insertion device for a surface winder, and a second winding roll rotatably mounted in the frame on the other side of the path and downstream in the direction of web advance from the stationary finger means and forming a nip with the first winding roll.
The cam-controlled core insertion device comprises a cam housing having a longitudinal axis disposed therethrough; a cam disposed within a first surface of the cam housing; a fixed finger plate juxtaposed proximate to the cam housing and the cam and having a fixed finger fixably attached thereto; a first cam follower cooperatively associated with the cam. The cam is disposed within the cam housing about the longitudinal axis. The fixed finger plate is fixably attached to a shaft disposed through the cam housing. The shaft is disposed coaxially about the longitudinal axis and is rotatable thereabout. The fixed finger has a fixed orientation relative to the longitudinal axis as the shaft rotates about the longitudinal axis. The fixed finger has an end distal from the fixable attachment to the fixed finger plate.
The first cam follower has a finger shaft attached thereto. The finger shaft is disposed through the fixed finger plate and has a movable finger attached thereto. The first cam follower orbits about the longitudinal axis while juxtaposed proximate to, and in contacting engagement with, the cam. The movable finger has an adjustable orientation relative to the longitudinal axis as the first cam follower orbits about the longitudinal axis. The movable finger has an end distal from the first cam follower.
The distal end of the movable finger and the distal end of the fixed finger are capable of forming a space therebetween for contacting engagement and containment of a core suitable for the convolute disposal of a web material thereabout. The cam causes the movable finger to rotate toward the fixed finger when the first cam follower is disposed at a first orbital position relative to the longitudinal axis to engage the core between the distal end of the movable finger and the distal end of the fixed finger. The cam causes the movable finger to rotate away from the fixed finger to disengage from the core when the first cam follower is disposed at a second orbital position relative to the longitudinal axis.
The second winding roll 120 can be movably mounted on the re-winder so that the roll can move toward and away from the first winding roll. This is generally described in U.S. Pat. Nos. 4,828,195 and 4,909,452. The second winding roll can be provided with a variable speed profile. A non-limiting and exemplary variable speed profile is described in U.S. Pat. No. 5,370,335.
The rider roll 130 is pivotably mounted so that it can move toward lower winding roll 120 when the core is inserted into the three roll winding cradle. The rider roll 130 can move away from the lower winding roll 120 as web material W is convolutely wound about core 12 as the winding log builds.
The web material W is preferably advanced in a downstream direction as indicated by the arrow A. The web material W can be (and can be preferably) transversely perforated along longitudinally spaced lines of perforation to form individual sheets. In the particular embodiment illustrated, a perforator assembly 150 includes an anvil 160 and a rotating perforating roll 170.
Before the web material W reaches the first winding roll 110, it can traverse over a stationary pinch bar 200 mounted adjacent to the first winding roll 110. A stationary plate 210 (also referred to by those of skill in the art as a transfer plate or dead plate) can be mounted below the first winding roll 110 upstream of the second winding roll 120. The upstream end 220 of the stationary plate 210 is spaced from the first winding roll 110 a distance slightly greater than the diameter of the cores 12. The spacing between the remainder of the stationary plate 210 and the first winding roll 110 is slightly less than the diameter of the cores 12 so that the cores 12 will be compressed slightly and will be rolled along the stationary plate 210 by the rotating first winding roll 110. The stationary plate 210 includes a solid portion which generally extends for the axial length of the re-winder 100.
Cores 12 can be typically fed to the core inserter 10 from a conventional core magazine (not shown). A glue applicator (not shown) can apply an axially extending stripe of glue on the core 12 as the core 12 moves past the glue applicator (not shown). An exemplary glue applicator (not shown) can include a spray nozzle that can spray a heated glue or cold adhesive onto the core 12. Other types of glue applicators can also be used for applying a continuous or intermittent line of glue to the core 12. This could include slot extruders, printers, and glue wheels.
Referring to
Referring to
As the core inserter 10 continues to rotate, fixed finger 14 and pivot finger 16 on the core inserter 10 push the core 12 into contacting engagement with the first winding roll 110 and the stationary plate 210, and the rotating winding roll 110 causes the core 12 to roll over the stationary plate 210. If an axial glue stripe is disposed upon the core 12, the glue stripe can contact the severed web material W, and the web material W can then begin to be convolutely wound about the core 12 as the core 12 rolls over the stationary plate 210. Fixed finger 14 and pivot finger 16 both pass through gaps disposed within stationary plate 210 as the core inserter 10 rotates clockwise. When the core 12 and the winding log L reach the second winding roll 120, the winding log L continues to have web material W wound thereabout as the winding log L is disposed between the first winding roll 110 and second winding roll 120. Winding log L is eventually contacted by the rider roll 130 that applies a compressive force to the winding log L.
As can be seen in
For example, an uneven flow of air in an air feed system used to activate each pneumatically activated cylinder 18 of core inserter 10 or any binding in the core inserter 10 system can cause the core inserter 10 to secure the core 12 late. In addition, if a spring return is used (e.g., a ‘spring unload’) age and wear of the spring can dramatically change the speed and strength of the core 12 loading and core 12 unloading (i.e., core 12 disengaging from between fixed finger 14 and pivot finger 16) process. The use of a spring return can also cause a ‘bounce’ of the pivot finger 16 which may interfere or impede the release of the core 12 into the winding cradle 30. Experience has indicated that this can lead to failure to insert the core 12 at the right time in the wind cycle, release of the core 12 from containment between fixed finger 14 and pivot finger 16 prematurely, or impede the core 12 from insertion into the winding cradle 30 space between stationary plate 210 and first winding roll 110. Overall, this can result in the pivot finger 14 causing jams, web material W breaks, winding log L wraps, as well as wraps about first winding roll 110 and/or second winding roll 120. This can also lead to a delay in securing or releasing the core 12 for insertion into the space between the upstream end 220 of the stationary plate 210 and the first winding roll 110 resulting in the need for additional dwell time thereby adversely impacting process speeds.
In light of these issues generally experienced by users of the prior art core inserter 10 in conjunction with a surface winder 100, using the cam-controlled core inserter 10A of the present disclosure in place of the prior art core inserter 10 can effectively reduce these detrimental experiences.
The improved cam-controlled core inserter 10A a shown generally in the perspective views of
The cam-controlled core inserter 10A is provided with fixed finger 22 and movable finger 28. A suitable core 12 for convolutely winding a web material W thereabout can be disposed between fixed finger 22 and moveable finger 28 for insertion into winding cradle 30 of any form of surface winder 100.
As shown in
In this regard, movable finger 28 can be disposed upon finger shaft 42 emanating from a centroid of cam follower 26 (shown in
As shown in
Referring now to
Further, it is believed that each fixed finger plate 46 can be provided with an associated latch 50 (e.g., a first latch, a second latch, a third latch, etc.) that is fixably disposed upon fixed finger plate in an orientation that allows cooperative engagement with fixed finger 22. Each latch 50 can assist in securing the associated fixed finger 22 in a fixed orientation relative to shaft 40 and longitudinal axis 38 as shaft 40 and fixed finger plate 46 are rotated about longitudinal axis 38. Each latch 50 can also facilitate the pivotable movement of an associated fixed finger 22 (as well as the distal end of fixed finger 22) about pivot point 52 in a direction generally away from moveable finger 28. Such a scenario can be understood by one of skill in the art as useful when cam-controlled core inserter 10A and/or any component thereof experiences a mechanical and/or operational malfunction. Such malfunctions can include, but not be limited to, the mechanical binding (e.g., a ‘jam’) of cam-controlled core inserter 10A and/or any component thereof, a misfeed of core 12 into cam-controlled core inserter 10A and/or surface winder 100, and the like.
It is envisioned that latch 50 can be provided as a magnetic latch. It is also believed that one of skill in the art could provide latch 50 as a safety mechanism incorporating the use of a shear pin. Other embodiments of latch 50 could provide a slip-clutch, ball detent, or other such mechanism that can provide the reversible nature and safety-oriented goals intended by the presence of latch 50. Such a cam 24/cam follower 26 system provided for cam-controlled core inserter 10A as described herein can provide for the relationships of each fixed finger 22/moveable finger 28 pair of cam-controlled core inserter 10A to be identical relative to longitudinal axis 38 across the entire cross-machine direction of cam-controlled core inserter 10A. In other words, the movement of each fixed finger 22/movable finger 28 pair can be more accurately coordinated, alone and collectively. This can provide for a significantly more precise engagement of core 12 between fixed finger 22 and movable finger 28 and control of core 12 as it traverses from a point of initial contacting engagement (i.e., pick-up) between fixed finger 22 and movable finger 28 to a point of release of the core 12 from between fixed finger 22 and movable finger 28 for insertion into winding cradle 30. Further, as will be shown infra, release of the core 12 from between fixed finger 22 and movable finger 28 into winding cradle 30 can be achieved much later in the transfer process with significantly more control.
This better alignment of each fixed finger 22/movable finger 28 pair across the width of the cam-controlled core inserter 10A relative to core 12 is shown in
As shown in representative
As shown more clearly in
For purposes of comparison, FIGS. 16A,B-18A,B show the respective differences in core 12 control relative to winding cradle 30 of surface winder 100 for core inserter 10 of the prior art and cam-controlled core inserter 10A of the present disclosure.
As shown in
Comparatively, as shown in
As shown in
Conversely, as shown in
Turning to
Contrastingly,
Returning to
Further, it would be advantageous and understood by one of skill in the art to manufacture cam housing 34 and cam 24 in the form of a uni-body construction. Such uni-body constructions typically enable building parts one layer at a time through the use of typical techniques such as SLA/stereo lithography, SLM/Selective Laser Melting, RFP/Rapid freeze prototyping, SLS/Selective Laser sintering, SLA/Stereo lithography, EFAB/Electrochemical fabrication, DMDS/Direct Metal Laser Sintering, LENS®/Laser Engineered Net Shaping, DPS/Direct Photo Shaping, DLP/Digital light processing, EBM/Electron beam machining, FDM/Fused deposition manufacturing, MJM/Multiphase jet modeling, LOM/Laminated Object manufacturing, DMD/Direct metal deposition, SGC/Solid ground curing, JFP/Jetted photo polymer, EBF/Electron Beam Fabrication, LMJP/liquid metal jet printing, MSDM/Mold shape deposition manufacturing, SALD/Selective area laser deposition, SDM/Shape deposition manufacturing, combinations thereof, and the like. However, as would be recognized by one familiar in the art, such a uni-body cam housing 34 and cam 24 system can be constructed using these technologies by combining them with other techniques known to those of skill in the art such as casting.
In still yet another non-limiting example, cam housing 34 and cam 24 could be fabricated separately and combined into a cam housing 34/cam 24 assembly. This can facilitate assembly and repair work to the parts of the cam housing 34/cam 24 such as coating, machining, heating and the like, etc. before they are assembled together to make a complete cam-controlled core inserter 10A. In such techniques, two or more of the components of a cam-controlled core inserter 10A commensurate in scope with the instant disclosure can be combined into a single integrated part.
Further the use of less components of cam-controlled core inserter 10A relative to core inserter 10 can be considerably easier by removing any requirement to remove the cam-controlled core inserter 10A, and any components thereof from the re-winder 100. Furthermore, disposing shroud 32 around to the face of each cam housing 34 can provide a sealing function that can actively protect any critical moving parts such as cam follower 26 and any components thereof from contamination.
In another embodiment, the cam follower 26 is in an “active” configuration for orbital rotation within or about cam 24. It is envisioned that inertia can be provided to a particular cam follower 26 to allow the cam follower 26 to orbit about the longitudinal axis 38 within cam 24. By way of non-limiting example, a plurality of electromagnets can be provided within or upon cam follower 26 that can generate an electromotive force (EMF) sufficient to propel a cam follower 26 to orbit about the longitudinal axis 38 within cam 24. Naturally, one of skill in the art would recognize that other arrangements can be used to provide a particular cam follower 26 with a motion such as a belt drive, gear drive, and the like. If used, it is believed that the electromagnets can be provided as a plurality of individual electromagnets or as a single linear electromagnet.
In any regard it would be possible to provide control programming to cause a particular series of individual electromagnets or a single linear electromagnet to provide the necessary and/or desired motion to a cam follower 26 necessary to maintain concerted and cooperative engagement with a cam 24 cooperatively associated thereto while orbiting about the longitudinal axis 38 within or upon cam 24. Such a motion profile can be used to provide each cam follower 26 with a characteristic motion about the longitudinal axis 38 that may be required at a particular position.
As would be understood by one of skill in the art, cam-controlled core inserter 10A of the present disclosure can provide several benefits over previous core inserters 10. These are, without limitation: 1. Increased restriction in the movement of movable finger 28 in both an ‘open’ (i.e., non-contacting engagement with core 12) and ‘closed’ (i.e., contacting engagement with core 12) directions; 2. Increased production speed due to better and longer control of the core 12 prior to insertion into winding cradle; 3. Better machine reliability due to a reduced number of parts within the cam-controlled core inserter 10A of the present disclosure; 4. Better reliability due to the capability of both the fixed fingers 22 and movable fingers 28 to rotate past each other when there is contact due to equipment failure or accident; 5. Facilitating a rapid re-setting of a mechanical failure/accident condition in an instance where magnets are used; 6. More control of securing/release of the core 12 so the core 12 can be held by cam-controlled core inserter 10A longer and inserted into the winding cradle 30 in a more stable manner; 7. Providing a more precise positioning and application of an adhesive (e.g., a ‘glue stripe’) to the core 12 prior to presentation and contact of the web material to the core 12; 8. An increased resistance to hygiene and contamination issues; and 9. Rapid replacement and serviceability.
Any dimensions and/or values disclosed herein are not to be understood as being strictly limited to the exact dimensions and/or numerical values recited. Instead, unless otherwise specified, each such dimension and/or value is intended to mean both the recited dimension and/or value and a functionally equivalent range surrounding that dimension or value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. To the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Date | Country | |
---|---|---|---|
61875172 | Sep 2013 | US |