1. Field of the Invention
Embodiments of the invention generally relate to power conversion and, more particularly, to power converter surge protection.
2. Description of the Related Art
Power converters connected to an AC power grid are required via government standards to survive power surges from the grid-side and thus must survive both simulated lightning strikes as well as real ones. A typical standard that must be met by such power converters is ANSI C62.41. To meet the standard, a power converter must handle a voltage amplitude as high as 6000 v, open circuit, and a current amplitude as high as 3000 A on a short circuit. In order to survive these simulated surges, power converters must either survive the 6000 v (which is rarely feasible) or dissipate the energy while clamping the voltage to a survivable value.
Typical voltage protection networks used in power conversion involve clamps such as, for example, metal oxide varistor (MOV), Zener and other solid state devices.
Therefore, there is a need in the art for an improved surge blocking inductor for use in power converters.
An apparatus for a surge blocking inductor substantially as shown and/or described in connection with at least one of the figures, as set forth more completely in the claims.
Various advantages, aspects and novel features of the present disclosure, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
A new inductor structure is created which maximizes the saturated inductance value of the structure. The structure comprises two counter-wound inductors wound on a common core such that the coils are coupled magnetically when the common core is saturated.
In accordance with one or more embodiments of the present invention, the mechanical dimensions of the inductor assembly 300 are optimized in such a way to:
Mechanical dimensions of the inductor assembly 300 are dependent on current requirements and may range, for example, from 10 millimeters (mm) to 300 mm. In some embodiments, the inductor assembly 300 may have a diameter on the order of 40 mm and a total height on the order of 24 mm.
When operating in a non-saturated state, the coils 302 and 304 operate as two magnetically independent inductors. However, the coils 302 and 304 are positioned (i.e., on top of one another and close to each other) such that when saturated, their corresponding fields couple to one another. By such coupling, the total effect of the coils 302 and 304 when in a saturated state is increased beyond their sum. For example, if the coils 302 and 304 each have an inductance of 10 microhenries (μH), when in a saturated state the total effect may be increased to 40 μH.
In order to maximize the saturated inductance, each coil 302 and 304 has multiple turns around the core 310. Each coil 302 and 304 is wound to have multiple layers with few turns/layer; in some embodiments, each coil 302 and 304 may have between 3-10 layers with a number of turns per layer less than its number of layers, such as only one turn per layer (i.e., a pancake winding). Such a structure of the inductor assembly 300 has maximum blocking capability with very high current going through it.
The losses for the inductive assembly 300 are dependent upon the number of coil layers on top of one another. As such, the structure of the inductor assembly 300 results in a high resistance Rac (for example, a Rac/Rdc ratio may be higher than 10 in certain embodiments) of each coil 302 and 304, thereby dissipating significant amounts of energy in the coils themselves. The inductor assembly 300 thus both blocks as well as dissipates energy due to surges.
The inductor assembly 300 may also be used in a filter for EMI frequencies. The high Rac of the inductor assembly 300 helps dampen resonances of the EMI filter; as such, the Q-factor can be reduced at the desired frequency.
In addition to providing the surge protection and EMI filtering previously described, the inductor assembly 300 allows the energy being propagated all the way through the system to be used to reduce the voltage rating on switches used in some devices that employ the inductor assembly 300. In some embodiments, power converters may be able to use 650V switches rather than 800V switches when utilizing the inductor assembly 300, thus providing cost as well as efficiency savings.
In some embodiments, the core center section 406 may be formed from a single piece of ferromagnetic material. In other embodiments, the core center section 406 may be formed from a plurality of pieces of ferromagnetic material. For example, two cores (such as planar cores) may be stacked on top of each other to form the core center section 406. The inductor assembly 300 may have four identical or similar half core pieces stacked on top of each other.
The magnetic path is independent for the first and second coils 404 and 408; however, the center section (i.e., the core center section 406) can be shared between both halves. Each magnetic path consists of the core center section 406, a gap 412 or 414, and a plate 402 or 414.
The coils 402 and 404 each are wound with a large center diameter in order to maximize the saturated inductance (i.e., air core) value; the center diameter may be on the order of 15 mm in some embodiments. The windings are narrow but have many layers, for example between 3 to 10 layers, in order to increase and optimize the losses at higher frequencies (e.g., 10 kHz or greater) through proximity effects (i.e., eddy currents).
The high layer count (for example, 5 or more) for each of the coils 402 and 404 multiplies the effective resistance of the corresponding coil at higher frequencies. This further reduces the energy going through the corresponding coil and dampens the EMI filter, making it less resonant at its natural frequency. Additionally, the high layer count for each of the coils 402 and 404 reduces the intra-winding capacitance, thereby increasing the self-resonance frequency of the corresponding coil (i.e., the corresponding inductor).
The structure 300 also improves the voltage handling capability of each of the coils 402 and 404 by reducing the maximum electric field in the structure 300 during surges. Given that magnet wire has limited voltage withstand capabilities, a higher number of layers in each of the coils 402 and 404 will increase the breakdown voltage across the winding. In some embodiments, the layers may have only one turn each yielding a pancake winding.
The structure 300 provides both common mode and differential mode inductance to provide both EMI suppression and surge protection. Such an inductor structure 300 may be used between a circuit (e.g., a power converter) and the AC power grid.
The system 500 comprises a plurality of power converters 502-1, 502-2, 502-3 . . . 502-N, collectively referred to as power converters 502; a plurality of DC power sources 504-1, 504-2, 504-3 . . . 504-N, collectively referred to as DC power sources 504; a controller 506; a bus 508; and a load center 510. The DC power sources 504 may be any suitable DC source, such as an output from a previous power conversion stage, a battery, a renewable energy source (e.g., a solar panel or photovoltaic (PV) module, a wind turbine, a hydroelectric system, or similar renewable energy source), or the like, for providing DC power.
Each power converter 502-1, 502-2, 502-3 . . . 502-N is coupled to a DC power source 504-1, 504-2, 504-3 . . . 504-N, respectively, in a one-to-one correspondence; in some alternative embodiments, multiple DC power sources 504 may be coupled to a single power converter 502. The power converters 502 are coupled to the controller 506 via the bus 508. The controller 506 is capable of communicating with the power converters 502 by wireless and/or wired communication for providing operative control of the power converters 502. The power converters 502 are further coupled to the load center 510 via the bus 508.
The power converters 502 convert the DC power from the DC power sources 504 to an output power; in some embodiments the output power may be DC output power (i.e., the power converters 502 are DC-DC converters), while in other embodiments the output power may be AC output power (i.e., the power converters 502 are DC-AC converters). The power converters 502 couple the generated output power to the load center 510 via the bus 508. The generated power may then be distributed for use, for example to one or more appliances, and/or the generated energy may be stored for later use, for example using batteries, heated water, hydro pumping, H2O-to-hydrogen conversion, or the like. In some embodiments, the power converters 502 convert the DC input power to AC power that is commercial power grid compliant and couple the AC power to the commercial power grid via the load center 510.
Each of the power converters 502 comprises an inductor assembly 300 (i.e., the power converters 502-1, 502-2 . . . 502-N comprise the inductor assemblies 300-1, 300-2 . . . 300-N, respectively) between the power converter 502 and the grid for providing surge protection as well as EMI filtering as previously described. In some alternative embodiments, each inductor assembly 300 may be part of a component that is located external to the corresponding power converter 502 (i.e., between the power converter 502 and the grid).
The foregoing description of embodiments of the invention comprises a number of elements, devices, circuits and/or assemblies that perform various functions as described. These elements, devices, circuits, and/or assemblies are exemplary implementations of means for performing their respectively described functions.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. provisional patent application Ser. No. 61/703,865, filed Sep. 21, 2012, which is herein incorporated in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
61703865 | Sep 2012 | US |