The field of the disclosure relates generally to control systems, and more particularly, to control systems for machines including dynamic compressors.
Dynamic compressors, including centrifugal compressors, are used in many applications, such as HVAC. Centrifugal compressors have a driveshaft operatively connected to a motor between compression mechanisms or impeller stages that is supported by gas foil bearings. The driveshaft can be positioned between impeller stages so the impellers are rotated at a rotation speed to compress the refrigerant to a selected pressure in an HVAC system. The compressor bearings are typically provided with one or more features to reduce friction between the compressor bearing and the driveshaft. Once the shaft is spinning fast enough, gas pushes the foil away from the shaft so that no contact occurs. The shaft and gas foil bearing are separated by the gas's high pressure, which is generated by the rotation that pulls gas into the bearing via viscosity effects. A high speed of the shaft with respect to the gas foil bearing is required to initiate the gas gap, and once this has been achieved, no contact should occur. These bearings have several advantages over other bearings including reduced weight, stable operation at higher speeds and temperatures, low power loss at high speeds, and long life with little maintenance.
Compressor surge events cause accelerated wear of the compressor and compressor components, including bearings. Surge is a characteristic behavior of a dynamic compressor that can occur when the head developed by the compressor is insufficient to overcome the system pressure at the discharge of the compressor. Once surge occurs, the output pressure of the compressor is drastically reduced, resulting in flow reversal within the compressor. When a dynamic compressor surges, there is an actual reversal of gas flow through the impeller. The surge usually starts in one stage of a multistage compressor and can occur very rapidly. Compressors are especially susceptible to surge events during startups and shutdowns due to the lower operating speeds. The severity of surge events and the damage they cause increases with compressor speed.
This background section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
One aspect of this disclosure is a system includes a dynamic compressor, a variable frequency drive (VFD), and a controller. The dynamic compressor includes a motor having a driveshaft rotatably supported within the dynamic compressor, and a compression mechanism connected to the driveshaft and operable to compress a working fluid upon rotation of the driveshaft. The VFD includes a sensor configured to sense a current provided to the motor. The controller is connected to the motor and includes a processor and a memory. The memory stores instructions that program the processor to operate the motor using the VFD to compress the working fluid, receive signals representing the current from the VFD to the motor, and determine when a surge event has occurred based at least in part on the received signals representing the current from the VFD to the motor.
Another aspect is a controller for a dynamic compressor that includes a motor and a compression mechanism connected to the motor and operable to compress a working fluid upon operation of the motor. The controller includes a processor and a memory. The memory stores instructions that program the processor to operate the motor to compress the working fluid, receive signals representing the current provided to the motor to operate the motor, and determine when a surge event has occurred based at least in part on the received signals representing the current provided to the motor.
Another aspect is a method of detecting occurrence of a surge event in a dynamic compressor including a motor and a compression mechanism connected to the motor and operable to compress a working fluid upon operation of the motor. The method includes operating the motor to compress the working fluid, receiving signals representing the current provided to the motor to operate the motor, and determining when a surge event has occurred based only on the received signals representing the current provided to the motor and a surge threshold.
Various refinements exist of the features noted in relation to the above-mentioned aspects. Further features may also be incorporated in the above-mentioned aspects. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to any of the illustrated embodiments may be incorporated into any of the above-described aspects, alone or in any combination.
The following figures illustrate various aspects of the disclosure.
Corresponding reference characters indicate corresponding parts throughout the drawings.
For conciseness, examples will be described with respect to a centrifugal compressor with gas foil bearings (GFB). However, the methods and systems described herein may be applied to any suitable dynamic compressor. In a surge control system of a centrifugal compressor, monitoring for surge event occurrences, monitoring the number of surge events that have happened, monitoring severity of surge events, determining surge thresholds, determining the relationship between motor speed and surge events, adjusting control margins to provide larger surge margin, and determining whether or not to take protective action, such as generating alerts, stopping operation of the machine, and the like, when a surge event has occurred may prevent damage and increase centrifugal compressor life. These steps may further prevent catastrophic failure of a centrifugal compressor by enabling more accurate scheduling of preventative maintenance, increasing sensitivity of surge prevention controls, improving reliability by limiting surge severity on start-up by holding the centrifugal compressor at a lower speed until stable, allowing the system to continue to provide cooling by increasing runtime on the centrifugal compressor before faulting and shutting down, and improving reliability by limiting surge severity by operating an unloading device on surge detection instead of on estimated maps.
Referring to
Referring to
Referring to
Referring to
Referring again to
In other embodiments, as illustrated in
The foil bearing assembly 300 of the embodiment illustrated in
The foil retaining lip 214 may be positioned within any region of the cylindrical bore 206 near the compression mechanism end 216 including, without limitation, a position immediately adjacent to the opening of the cylindrical bore 206 at the compression mechanism end 216. Alternatively, the foil retaining lip 214 may be positioned within any region of the cylindrical bore 206 near the motor end 218 including, without limitation, a position immediately adjacent to the opening of the cylindrical bore 206 at the motor end 218. In such embodiments, the foil retaining clip 314 snaps into a circumferential groove 212 formed within the radial inner surface 204 of the cylindrical bore 206 near the compression mechanism end 216, in an arrangement that is essentially the opposite of the arrangement illustrated in
Referring again to
In other embodiments, any suitable method for affixing the foil bearing assembly 300 within the sleeve 202 may be used. Non-limiting examples of suitable methods include keepers and retaining clips, adhesives, set screws, and any other suitable affixing method.
The bearing housings 200/200a may further serve as a mounting structure for a variety of elements including, but not limited to, radial bearings, such as the foil bearing assembly 300 described above, a thrust bearing, and sensing devices (not shown) used as feedback for passive or active control schemes such as proximity probes, pressure transducers, thermocouples, key phasers, and the like.
The foil bearing assembly 300 may be provided in any suitable form without limitation. For example, the foil bearing assembly 300 may be provided with two layers, three layers, four layers, or additional layers without limitation. The bump foil 310 of the foil bearing assembly 300 may be formed from a radially elastic structure to provide a resilient surface for the spinning driveshaft 104 during operation of the compressor 100. The bump foil 310 may be formed from any suitable radially elastic structure without limitation including, but not limited to, an array of deformable bumps or other features designed to deform and rebound under intermittent compressive radial loads, and any other elastically resilient material capable of compressing and rebounding under intermittent compressive radial loads. The bump foil 310 may be connected to at least one adjacent layer including, but not limited to, at least one of the outer layer 302 and the inner layer 306. In some embodiments, the bump foil 310 may be connected to both the outer layer 302 and the inner layer 306. In other embodiments, the bump foil 310 may be free-floating and not connected to any layer of the foil bearing assembly 300.
Referring to
The unloading device 401 in the system 400 removes and/or reduces the load on the compressor during start-up and shut-down routines and detected surge events to limit severity of surge events. In the example embodiment, the unloading device 401 is a bypass valve. Bypass valves, such as refrigerant bypass valves, provide an alternative path for the gas, thereby stopping the pressure rise of the compressor 404 and limiting any potential surging, no matter how slowly the compressor motor 406 is accelerating during start-up or decelerating during shut-down. In other embodiments, the unloading device 401 is an expansion valve. In other embodiments, the unloading device 401 may be a variable orifice or diameter valve, such as a servo valve, and a fixed orifice or diameter valve, such as a solenoid valve or a pulse-width-modulated (PWM) valve configured to control opening and closing according to a duty cycle. In still other embodiments, the unloading device 401 may be, but is not limited to, a variable diffuser, or a Variable Inlet Guide Vane (VIGV). Although many types of unloading devices are described here, the unloading device 401 may be any suitable device, or combination of devices, that reduce the load on the compressor 404.
The unloading device 401 is operatively coupled to the controller 410, and the controller 410 is configured to control at least one operating parameter of the unloading device 401, such as opening a bypass valve. The current sensor 408 measures a current of the motor 406 and the controller 410 determines if and when a surge event of the compressor 404 has occurred by detecting a spike in the measured current of the motor 406. The controller 410 further determines when a surge event is completed and normal operation resumes when the measured current of the motor 406 is substantially constant. Other embodiments may detect occurrence and termination of a surge event using other techniques, such as detecting a change in voltage, detecting a change in pressure, sensing vibrations caused by the surge, or the like. The controller 410 further determines whether or not to take a protective action when a surge event has occurred. Non-limiting examples of suitable sensors for use in the one or more control schemes include temperature sensors, pressure sensors, flow sensors, current sensors, voltage sensors, rotational rate sensors, and any other suitable sensors.
Control system 400 includes a motor interface 413 for connection of the VFD 416 to the motor 406, an interface for connection of the controller 410 to the VFD 416, and an unloading interface 414 for connection of the controller 410 to the unloading device 401. The processor 411 may then execute instructions stored in memory 412 to determine when a surge event has occurred based at least in part on the received signals representing the current from the VFD 416 to the motor 406, and whether or not to take a protective action when the processor 411 determines that a surge event has occurred.
Control system 400 includes a user interface 415 configured to output (e.g., display) and/or receive information (e.g., from a user) associated with the system 400. In some embodiments, the user interface 415 is configured to receive an activation and/or deactivation input from a user to activate and deactivate (i.e., turn on and off) or otherwise enable operation of the system 400. Moreover, in some embodiments, user interface 415 is configured to output information associated with one or more operational characteristics of the system 400, including, for example and without limitation, warning indicators such as severity alerts, occurrence alerts, fault alerts, and motor speed alerts, as well as a status of the gas foil bearing 409, and any other suitable information.
The user interface 415 may include any suitable input devices and output devices that enable the user interface 415 to function as described herein. For example, the user interface 415 may include input devices including, but not limited to, a keyboard, mouse, touchscreen, joystick(s), throttle(s), buttons, switches, and/or other input devices. Moreover, the user interface 415 may include output devices including, for example and without limitation, a display (e.g., a liquid crystal display (LCD) or an organic light emitting diode (OLED) display), speakers, indicator lights, instruments, and/or other output devices. Furthermore, the user interface 415 may be part of a different component, such as a system controller (not shown). Other embodiments do not include a user interface 415.
In some embodiments, the system 400 may be controlled by a remote control interface. For example, the system 400 may include a communication interface (not shown) configured for connection to a wireless control interface that enables remote control and activation of the system 400. The wireless control interface may be embodied on a portable computing device, such as a tablet or smartphone.
The controller 410 is generally configured to control operation of the compressor 404. The controller 410 controls operation through programming and instructions from another device or controller or is integrated with the control system 400 through a system controller. In some embodiments, for example, the controller 410 receives user input from the user interface 415, and controls one or more components of the system 400 in response to such user inputs. For example, the controller 410 may control the motor 406 based on user input received from the user interface 415.
The controller 410 may generally include any suitable computer and/or other processing unit, including any suitable combination of computers, processing units and/or the like that may be communicatively coupled to one another and that may be operated independently or in connection within one another (e.g., controller 410 may form all or part of a controller network). Controller 410 may include one or more modules or devices, one or more of which is enclosed within system 400, or may be located remote from system 400. The controller 410 may be part of compressor 404 or separate and may be part of a system controller in an HVAC system. Controller 410 and/or components of controller 410 may be integrated or incorporated within other components of system 400. In some embodiments, for example, controller 410 may be incorporated within motor 406 or unloading device 401. The controller 410 may include one or more processor(s) 411 and associated memory device(s) 412 configured to perform a variety of computer-implemented functions (e.g., performing the calculations, determinations, and functions disclosed herein). As used herein, the term “processor” refers not only to integrated circuits, but also to a controller, a microcontroller, a microcomputer, a programmable logic controller (PLC), an application-specific integrated circuit, and other programmable circuits. Additionally, memory device(s) 412 of controller 410 may generally be or include memory element(s) including, but not limited to, computer readable medium (e.g., random access memory (RAM)), computer readable non-volatile medium (e.g., a flash memory), a floppy disk, a compact disc-read only memory (CD-ROM), a magneto-optical disk (MOD), a digital versatile disc (DVD) and/or other suitable memory elements. Such memory device(s) 412 may generally be configured to store suitable computer-readable instructions that, when implemented by the processor(s) 411, configure or cause controller 410 to perform various functions described herein including, but not limited to, controlling the system 400, controlling operation of the motor 406, receiving inputs from user interface 415, providing output to an operator via user interface 415, controlling the unloading device 401 and/or various other suitable computer-implemented functions.
Referring to
Referring to
Referring to
A surge limit line 1004 indicates the maximum loading condition before surging occurs in the surge region 1006 (i.e., to the left of surge limit line 1004). A surge control line 1003 roughly indicates the maximum loading condition under which the compressor 404 can safely operate without risk of slipping into surge. The surge control line 1003 is defined by a surge margin 1005 from the surge limit line 1004. By operating to the right of the surge control line 1003, the compressor should avoid surging. One operating point 1009 of the operating map 1000 for the compressor 404 is shown as the intersection of a speed line, inlet mass flow rate, and total pressure ratio. For example, the operating point 1009 shown in operating map 1000 is at 80% inlet mass flow rate, 108% head, and 100% speed. If a surge occurred when operating at operating point 1009, the surge margin 1005 may be increased, for example, by an amount 1008 to shift the surge control line 1003 to a new surge control line 1002. The choke line 1001 is shown in the operating map 1000.
Referring to
Determining 1203 that a surge event has occurred includes determining a difference between a previous current and a present current based on the received signals representing the current from the VFD 416 to the motor 406. In some embodiments, the previous current is determined by averaging a plurality of the signals representing the current from the VFD 416 to the motor 406 that are received by the processor 411 before receiving a signal from the VFD representing the present current from the VFD 416 to the motor 406. A surge event has occurred when the difference between the previous current and the present current exceeds a surge threshold. For example, the surge threshold is a variable threshold (e.g., as shown in
Referring to
is generated for the period of time associated with the rolling data set Irolling. The “rolling average” is an average of a series of measured current values with a fixed subset size. Once the first average Iaverage is taken by the controller 410 of the first subset of current values Irolling for a period of time, the subset is modified by shifting forward or excluding the first current value in the rolling data set and adding a new (e.g., the most recent) current value, so a new subset Irolling2={Iprevious2, Iprevious3, . . . IpreviousN+1} is then generated and stored in memory 412 over a different time interval. This is done continuously over the entire current data set for the life of the compressor 404. The rate at which subsets Irolling are created and stored may be set by an OEM or may be tuned by a user via user interface 415. The controller 410 calculates the difference Idifference between the rolling average Iaverage and the present current Ipresent. The controller 410 then checks whether the compressor 404 is in start-up operation. If the compressor 404 is in start-up operation, the difference Idifference=Iaverage−Ipresent is compared to a pre-set start-up current Istart-up. In some embodiments, the start-up current Istart-up is 2 amps. In other embodiments, the start-up current Istart-up is any other suitable fixed or variable current. If the difference Idifference is greater than or equal to the start-up current Istart-up, then a surge event has been detected. If a surge event has been detected, then the occurrence of the surge event is stored in memory 412. If the compressor is in normal operation, the controller 410 determines a surge threshold current Ithreshold based on the detected speed Sactual of the compressor 404. The surge threshold current Ithreshold is found by using the graphical relationship 1100 between the current swing percentage and the speed percentage of the compressor 404 described above in
Referring to
If the determining 1404 step of method 1400 concludes that generating an alert is the protective action needed after the processor 411 determines a surge event has occurred, then the following steps are further taken in various embodiments. Generating an alert may include generating an occurrence alert when a number of surge events having an indication stored in the memory 412 is greater than or equal to an occurrence alarm limit. Generating an alert may include generating a fault alert when the number of surge events having an indication stored in the memory 412 is greater than or equal to a fault limit that is greater than the occurrence alarm limit. When the fault alert is generated, then a control margin, such as the control margin 1005 of the operating map 1000 shown in
If the determining 1404 step of method 1400 concludes that stopping the motor 406 is the protective action needed after determining a surge event has occurred, with the indication of each surge event including a magnitude of the surge event, then the method may include the following. In some embodiments, stopping the motor 406 occurs when a number of detected surge events is greater than or equal to an occurrence shutdown threshold. Alternatively or additionally, the motor 406 may be stopped when a sum of the magnitudes of the determined surge events is greater than or equal to an accumulation shutdown threshold.
Referring to
Next, me surge count N and the surge severity accumulation
are checked to see if a shut-down condition for the compressor 404 is met. If the surge count N is greater than or equal to a shut-down surge count limit Nshutdown (N≥Nshutdown), or if the surge severity accumulation
is greater than or equal to a shut-down surge severity limit
then the control system 400 initiates shut-down and the compressor 404 is locked out. If the conditions for shut-down as described above are not met, then a fault check is conducted using thresholds lower than those used in the shut-down determination. If the surge count N is greater than or equal to a fault surge count limit Nfault (N≥Nfault), or if the surge severity accumulation
is greater than or equal to a fault surge severity limit
then the control system 400 increases the surge speed control margin of the dynamic compressor 404, as indicated by the control margin shift 1008 of the operating map 1000 shown in
is greater than or equal to an alarm surge severity limit
then the control system 400 issues a surge warning to the controller 410. In some embodiments, the surge warning is an alarm issued to a separate system controller of an HVAC system. Further, when a surge event is detected, the speed S of the dynamic compressor 404 is measured and compared to a predicted surge speed Spredict plus a charge margin Smargin. If the speed S is greater than the predicted surge speed Spredict plus the charge margin Smargin (S>Spredict Smargin), then the surge speed control margin is increased. When this occurs, a low charge warning to the controller 410 is issued indicating that the system may need additional working fluid (e.g., refrigerant). In some embodiments, the low charge warning is an alarm issued to a separate system controller (not shown in
In some embodiments, when a surge event is detected, the unloading device is actuated as the protective action to unload the compressor to reduce the severity of the surge. In the example embodiment, the unloading device is a load balance valve and reduces the load on the compressor 404 for time Tdelay minutes before returning the load on the compressor 404.
Technical benefits of the methods and systems described herein are as follows: (a) continuous monitoring of the number of surge events and surge severity as seen by a compressor in a HVAC system, (b) comparing the surge events and surge severity to the maximum number of surges a compressor can handle in an HVAC system, and (c) comparing compressor speed during surge events to predicted surge speed at a current pressure ratio.
When introducing elements of the present disclosure or the embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” “containing” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. The use of terms indicating a particular orientation (e.g., “top”, “bottom”, “side”, etc.) is for convenience of description and does not require any particular orientation of the item described.
As various changes could be made in the above constructions and methods without departing from the scope of the disclosure, it is intended that all matter contained in the above description and shown in the accompanying drawing(s) shall be interpreted as illustrative and not in a limiting sense.
Number | Name | Date | Kind |
---|---|---|---|
4151725 | Bauman et al. | May 1979 | A |
4581900 | Lowe et al. | Apr 1986 | A |
4594051 | Gaston | Jun 1986 | A |
4608833 | Kountz | Sep 1986 | A |
4940391 | Elms et al. | Jul 1990 | A |
5746062 | Beaverson | May 1998 | A |
5971712 | Kann | Oct 1999 | A |
8070456 | Mertens et al. | Dec 2011 | B2 |
8239091 | Mertens et al. | Aug 2012 | B2 |
20050158172 | Snyder | Jul 2005 | A1 |
20110093133 | Turney et al. | Apr 2011 | A1 |
20140026598 | Trawicki | Jan 2014 | A1 |
20140219820 | Koki et al. | Aug 2014 | A1 |
20140260388 | Umeda et al. | Sep 2014 | A1 |
20170002820 | Benim | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
2765313 | Aug 2014 | EP |
H1162887 | Mar 1999 | JP |
2019074220 | May 2019 | JP |
2014191051 | Dec 2014 | WO |
Entry |
---|
PCT International Search Report and Written Opinion of the International Searching Authority PCT/US2021/062800 dated Jun. 27, 2022 regarding PCT/US2021/062800; pp. 1-20. |
Number | Date | Country | |
---|---|---|---|
20220196024 A1 | Jun 2022 | US |