Surge protected coaxial termination

Information

  • Patent Grant
  • 9590287
  • Patent Number
    9,590,287
  • Date Filed
    Thursday, July 9, 2015
    9 years ago
  • Date Issued
    Tuesday, March 7, 2017
    7 years ago
Abstract
A surge-protected coaxial termination includes a metallic outer body, a center conductor extending through a central bore of the outer body, and a spark gap created therebetween to discharge high-voltage power surges. A plurality of dielectric insulators surrounds the center conductor on opposite sides of the spark gap. High impedance inductive zones surround the spark gap to form a T-network low pass filter that nullifies the additional capacitance of the spark gap. An enlarged portion of a center conductor mitigates deleterious effects of arcing. An axial, carbon composition resistor is disposed inside the outer body, and inside the dielectric insulator to absorb the RF signal, and prevent its reflection.
Description
BACKGROUND

Field


The present disclosure relates generally to coaxial terminations used to terminate ports that are adapted to receive coaxial cable connectors, and more particularly, to an improved coaxial termination that offers enhanced protection against repeated high-voltage surges.


Technical Background


RF coaxial cable systems are used in the cable television industry for distributing radio frequency signals to subscribers of cable television service, and more recently, voice and data telecommunications services. The coaxial cables used to route such signals include a center conductor for transmitting a radio frequency signal, and a surrounding, grounded outer conductive braid or sheath. Typically, the coaxial cable includes a dielectric material surrounding the center conductor and spacing it from the grounded outer sheath. The diameter of the center conductor, and the diameter of the outer conductor, and type of dielectric are selected to produce a characteristic impedance, such as 75 ohms, in the coaxial line. This same coaxial cable is sometimes used to provide AC power (typically 60-90 Vrms) to the equipment boxes that require external power to function.


Within such coaxial cable systems, such coaxial lines are typically coupled at their ends to equipment boxes, such as signal splitters, amplifiers, etc. These equipment boxes often have several internally-threaded coaxial ports adapted to receive end connectors of coaxial cables. If one or more of such coaxial ports is to be left “open”, i.e., a coaxial cable is not going to be secured to such port, then it is necessary to “terminate” such port with a coaxial termination that matches the characteristic impedance of the coaxial line (e.g., a 75 ohm termination). If such a coaxial termination is omitted, then undesired reflected signals interfere with the proper transmission of the desired radio frequency signal.


When deployed in the field, as in cable TV systems, for example, these known coaxial termination devices can be subjected to power surges caused by lightning strikes and other events. These power surges can damage or destroy the resistive and/or capacitive elements in such a termination, rendering it non-functional.


An older specified surge test, ANSI C62.41 Category B3, specified that a 6,000 Volt open circuit/3,000 Amp short circuit surge pulse be injected into the coaxial termination device. At least some of the known coaxial termination devices have difficulty complying with such surge test. Indeed, efforts to make the resistive and capacitive components larger, in order to withstand such power surges, can have the negative impacts of increased costs and/or creating a larger impedance mismatch, and hence, causing poorer levels of RF Return Loss performance. One approach to designing a termination that can withstand the previously mentioned 6,000 Volt surges would be to use a 6,000 Volt capacitor and a high power resistor. Unfortunately, such components are relatively expensive and have a much larger physical size, which tends to increase the size and cost of the housing necessary to contain such components, thereby resulting in a much bulkier and more costly design. In more recent times, a newer surge test (ANSI/SCTE 81 2012) has been introduced by the industry requiring a different test profile as summarized in table 1 below. Older designs such as that related in U.S. Pat. No. 6,751,081 (Kooiman) exhibit severe Return Loss degradation after subjection to this newer surge test profile.


SUMMARY

Briefly described, and in accordance with various embodiments provided, the present disclosure relates to a surge-protected coaxial termination that includes a metallic outer body having a central bore extending therethrough, a center conductor extending into the central bore of the metallic outer body, and a spark gap created within such coaxial termination for allowing a high-voltage power surge to discharge across the spark gap without damaging other components (e.g., resistive and/or capacitive components) that might also be included in such coaxial termination.


In one embodiment, a surge-protected coaxial termination is provided. The surge-protected coaxial termination includes a metallic outer body having a central bore extending therethrough along a longitudinal axis between first and second ends of the metallic outer body. The central bore is bounded by an inner wall having an inwardly-directed radial step portion extending into the central bore. The inner wall and radial stem together define: a first portion of the central bore disposed on a first side of the radial step, a second orifice portion of the central bore disposed generally at the radial step, and a third portion of the central bore disposed on a second opposing side of the radial step. A center conductor extends into the central bore of the metallic outer body and into each of the first, second and third portions of the central bore. The center conductor further includes a first cylindrical portion disposed at least partially within the first portion of the central bore, a second central portion disposed at least partially within the second orifice portion of the central bore in close proximity to the radial step of the body to form a spark gap therebetween, and a third cylindrical portion disposed at least partially within the third portion of the central bore. The third rearward cylindrical portion of the center conductor is at least partially surrounded by an insulator layer. Air is disposed within at least a portion of the spark gap formed between the radial step of the body and the second central portion of the center conductor.


In another embodiment, a surge-protected coaxial termination is provided. The surge-protected coaxial termination includes a metallic outer body having a central bore extending therethrough along a longitudinal axis between first and second ends of the metallic outer body. The central bore is bounded by an inner wall having an inwardly-directed radial step portion extending into the central bore. The inner wall and the radial step define a first portion of the central bore disposed on a first side of the radial step, and a second orifice portion of the central bore disposed generally at the radial step. A center conductor extends into the central bore of the metallic outer body and into each of the first and second portions of the central bore. The center conductor includes a first cylindrical portion disposed at least partially within the first portion of the central bore, and a second enlarged central portion disposed at least partially within the second orifice portion of the central bore in close proximity to the radial step of the body to form a spark gap therebetween. The second enlarged central portion of the center conductor having an axial length and a diameter. A ratio of the axial length to the diameter of the second enlarged central portion, in some embodiments, is in a range from approximately 0.3 to 1 to approximately 1.3 to 1. Air is disposed within at least a portion of the spark gap formed between the radial step of the body and the enlarged central portion of the center conductor.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description which follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments, and together with the description serve to explain principles and operation of the various embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically depicts a cross-sectional view of an example surge protected coaxial termination;



FIG. 1A schematically depicts a detail partial cross-sectional view of a surge protected coaxial termination of FIG. 1;



FIG. 2 schematically depicts a cross-sectional view of an example surge protected coaxial termination, according to one or more embodiments shown and described herein;



FIG. 2A schematically depicts a detail partial cross-sectional view of the surge protected coaxial termination of FIG. 2, according to one or more embodiments shown and described herein;



FIG. 3 schematically depicts a cross-sectional view of another example of a surge protected coaxial termination, according to one or more embodiments shown and described herein;



FIG. 3A schematically depicts a detail partial cross-sectional view of the surge protected coaxial termination of FIG. 3, according to one or more embodiments shown and described herein;



FIG. 4 schematically depicts a detail partial cross-sectional view of yet another example of a surge protected coaxial termination showing an enlarged portion of a contact, according to one or more embodiments shown and described herein;



FIG. 4A schematically depicts a detail partial cross-sectional end view of the surge protected coaxial termination of FIG. 4, according to one or more embodiments shown and described herein;



FIG. 5 schematically depicts a partial cross-sectional view of an example surge protected coaxial terminator mounted in a device, according to one or more embodiments shown and described herein;



FIG. 5A schematically depicts a cross-sectional view an example surge protected coaxial terminator having a bent center conductor, according to one or more embodiments shown and described herein;



FIG. 5B schematically depicts a cross-sectional view of another example surge protected coaxial terminator having a bent center conductor, according to one or more embodiments shown and described herein;



FIG. 6 schematically depicts a partial cross-sectional view of an example surge protected coaxial terminator including a groove in the center conductor that acts as a mechanical strain relief, according to one or more embodiments shown and described herein; and



FIG. 7 schematically depicts a partial cross-sectional view of another example surge protected coaxial terminator including a groove in the center conductor that acts as a mechanical strain relief, according to one or more embodiments shown and described herein.





DETAILED DESCRIPTION

Embodiments of the present disclosure are directed to a surge-protected coaxial termination that includes a metallic outer body having a central bore extending therethrough, a center conductor extending into the central bore of the metallic outer body, and a spark gap created within such coaxial termination for allowing a high-voltage power surge to discharge across the spark gap without damaging other components (e.g., resistive and/or capacitive components) that might also be included in such coaxial termination.


Referring now to FIG. 1, a cross-sectional view of a typical surge protected coaxial termination 10 is shown. The surge protected coaxial termination 10 includes a metallic outer body 2000. The body 2000, for example, may incorporate a hex-shaped outer profile for receiving jaws of a wrench when the surge protected coaxial terminations 10 is tightened onto a coaxial port of a transmission line equipment box. The metallic outer body 2000 includes a central bore 2024, or central passage, extending therethrough along a longitudinal axis 2026 between a first end 2028 and a second end 2030 of the metallic outer body 2000. The central bore 2024 is defined by an inner wall 2032. As shown in FIG. 1, an inwardly-directed radial step 2034 extends from the inner wall 2032 toward the central axis 2026. The step 2034 is relatively short in the sense that its length along the central axis 2026 is very short in comparison with the axial length of the remaining portion of the inner wall 2032. Likewise, the inner diameter of the inner wall 2032 within the step portion 2034 is significantly smaller than the inner diameter of the remaining portion of the inner wall 2032.


As shown in FIG. 1, the first end 2028 of the outer body includes external mounting threads 2029 that may be used to secure the surge protected coaxial termination 10 to an unterminated coaxial port of a transmission line equipment box. An opposing end of the outer body 2000 includes a smooth outer cylindrical surface 2031 to form a press fit for mating with a protective cap 5000. If desired, outer cylindrical surface 2031 can be formed with external threads for mating with internal threads of the protective cap 5000. A pair of O-rings 2033 and 2035 may be used to form a fluid-tight seal between the outer body 2000 and a coaxial port threadably engaged with the external mounting threads 2029 and the protective cap 5000.


A center conductor contact 1000 extends through the central bore 2024 of the outer body 2000. The center conductor contact 1000 is supported at one end thereof by a first supporting insulator 1500. The first supporting insulator 1500 is in turn supported by an enlarged annular bore 2039 formed in the first end 2028 of the outer body 2000. The portion of the center conductor contact 1000 that protrudes outwardly from the first end 2028 of the outer body 2000 can be cut to any desired length by a user. A typical coaxial port of an equipment box includes a clamping mechanism for clamping the center conductor contact 1000 and establishing an electrical connection therewith.


The center conductor contact is also supported at its opposite end by a second supporting insulator 2500 of dielectric material which fits into central bore 2024 from the second end 2030 thereof. The outer diameter of the center conductor contact 1000 may be selected so that, at any point along its length, given the surrounding dielectric characteristics, and given the diameter of the surrounding inner wall, the characteristic impedance of center conductor contact 1000 will be matched with a desired characteristic impedance of the coaxial cable system (e.g., 75 ohms in a 75-ohm characteristic impedance system).


Spark gap area 6000 is shown in greater detail in the enlarged drawing of FIG. 1A. As indicated in FIG. 1A, the center conductor 1000 includes a slightly enlarged diameter within radial step portion 2034 of inner wall 2032 to facilitate the jumping of a spark across spark gap 6010. The dimensions of the spark gap 6010 are selected to effectively insulate grounded radial step 2034 from center conductor 1000 at normal operating voltages and currents, up to a certain threshold voltage (for example, 1500 Volts). When the surge voltage between center conductor 1000 and outer body 2000 exceeds this threshold voltage, the spark gap 6010 will fire and conduct any excess energy to ground. Such an abnormal power surge might be induced by a lightning strike, for example.


The surge protected coaxial termination 10 also includes a resistive terminating element, resistor 3500, coupled between the center conductor 1000 and the grounded outer body 2000. Referring to FIG. 1, axial resistor 3500 is disposed within the central bore 2024 of the outer body 2000. The resistor 3500 is supported within the central bore 2046 of supporting insulator 2500. A first internal electrode 3502 of resistor 3500 is received within a bore 2049 formed in the end of center conductor 1000 that lies within supporting insulator 2500. The electrode may be soldered to center conductor 1000 before center conductor 1000 and resistor 3500 are inserted into supporting insulator 2500. At the opposite end of the resistor 3500, an external solder electrode 3504 protrudes from the outer face of supporting insulator 3000. The value for resistor 3500 is chosen to be compatible with the characteristic impedance of the coaxial line (e.g., 50 ohms, 75 ohms, etc.). The resistor 3500 is the element that absorbs the RF signal to prevent reflection. The resistor 3500 is preferably chosen to be a carbon composition resistor because such resistors offer good high frequency performance, and also have the ability to withstand the surge current that occurs as the capacitor is alternately charged, and then discharged, during surge protection. As mentioned above, any deviation from the characteristic impedance of the coaxial line can cause RF signal reflection; accordingly, the resistor 3500 is strategically placed on the central axis of the coaxial line structure, and surrounding supporting insulators 2500, 3000, and central bore 2024 of the outer body 2000, are designed to maintain the desired characteristic impedance throughout the length of resistor 3500.


A blocking capacitor 4000 in the form of a so-called “chip capacitor”, extends radially between solder electrode 2048 and a second solder electrode 4500, or grounding post, that extends from a recess formed in outer body 2000. The opposing ends (electrodes) of the blocking capacitor 4000 are soldered to electrodes 2048 and post 4500 in order to electrically couple center conductor 1000 in series with the resistor 3500 and the capacitor 4000 to ground (outer body 2000), in parallel with spark gap 6010. Capacitor 4000 is provided to block DC or AC power from flowing through resistor 3500.



FIG. 1A is detail partial cross-sectional view of the surge protected coaxial termination of FIG. 1 including a spark gap area 6000, a center conductor contact 1000, and a body 2000. The center conductor contact 1000 includes a first cylindrical portion 1010, an enlarged diameter portion 1020 having an axial length “A” and a second cylindrical portion 1030. The body 2000 includes a first chamfer 2002, a second chamfer 2004, an orifice 2010 and the radial step 2034. The spark gap are includes a spark gap 6010.


Radial step 2034 of the body 2000 and spark gap 6010, being in close proximity to the center conductor 1000, represent a highly-capacitive discontinuity in the characteristic impedance of the transmission line relative to RF fields traveling therealong, and would normally cause the RF energy to be reflected, contrary to the purpose of the coaxial termination device. Accordingly, high characteristic impedance inductive zones are formed on both sides of reduced-diameter radial step 2034 to create the equivalent of an electrical T-network low pass filter. High impedance zones lie on opposite sides of radial step portion 2034. The amount of additional inductance introduced by high impedance inductive zones is offset the additional capacitance caused by reduced-diameter step portion 2034. The combined effect of such high impedance inductive zones together with the highly-capacitive radial step portion 2034, effectively nullifies the RF signal reflection that would otherwise occur due to radial step 2034 alone.


Referring now to FIG. 2, a cross-sectional view illustrates an example embodiment of a surge protected coaxial termination 20. The surge protected coaxial termination 20 comprises a metallic outer body 200. The body 200, for example, may incorporate a hex-shaped outer profile for receiving jaws of a wrench when the surge protected coaxial termination 20 is tightened onto a coaxial port of a transmission line equipment box. The metallic outer body 200 includes a central bore 224, or central passage, extending therethrough along a longitudinal axis 226 between a first end 228 and a second end 230 of the metallic outer body 200. The central bore 224 is defined by an inner wall 232. An inwardly-directed radial step 234 extends from the inner wall 232 toward the central axis 226. The step 234 is relatively short in the sense that its length along the central axis 226 is very short in comparison with the axial length of the remaining portion of the inner wall 232. Likewise, the inner diameter of the inner wall 232 within the step portion 234 is significantly smaller than the inner diameter of the remaining portion of the inner wall 232.


The first end 228 of the outer body includes external mounting threads 229 that may be used to secure the surge protected coaxial termination 20 to an unterminated coaxial port of a transmission line equipment box. An opposing end of the outer body 200 includes a smooth outer cylindrical surface 231 to form a press fit for mating with a protective cap 5000. If desired, outer cylindrical surface 231 can be formed with external threads for mating with internal threads of the protective cap 5000. A pair of O-rings 233 and 235 may be used to form a fluid-tight seal between the outer body 2000 and a coaxial port threadably engaged with the external mounting threads 229 and the protective cap 5000.


A center conductor contact 100 extends through the central bore 224 of the outer body 200. The center conductor contact 100 is supported at one end thereof by a first supporting insulator 1500. The first supporting insulator 1500 is in turn supported by an enlarged annular bore 239 formed in the first end 228 of the outer body 200. The portion of the center conductor contact 100 that protrudes outwardly from the first end 228 of the outer body 200 can be cut to any desired length by a user. A typical coaxial port of an equipment box includes a clamping mechanism for clamping the center conductor contact 100 and establishing an electrical connection therewith.


The center conductor contact 100 is also supported at its opposite end by a second supporting insulator 2500 of dielectric material which fits into central bore 224 from the second end 230 thereof. The outer diameter of the center conductor contact 100 may be selected so that, at any point along its length, given the surrounding dielectric characteristics, and given the diameter of the surrounding inner wall, the characteristic impedance of center conductor contact 100 will be matched with a desired characteristic impedance of the coaxial cable system (e.g., 75 ohms in a 75-ohm characteristic impedance system).


Spark gap area 600 is shown in greater detail in the enlarged drawing of FIG. 2A. As indicated in FIG. 2A, the center conductor 100 includes an enlarged diameter within radial step portion 234 of inner wall 232 to facilitate the jumping of a spark across spark gap 601. The dimensions of the spark gap 601 are selected to effectively insulate grounded radial step 234 from center conductor 100 at normal operating voltages and currents, up to a certain threshold voltage (for example, 1500 Volts). When the surge voltage between center conductor 100 and outer body 200 exceeds this threshold voltage, the spark gap 601 will fire and conduct any excess energy to ground. Such an abnormal power surge might be induced by a lightning strike, for example.


The surge protected coaxial termination 20 also includes a resistive terminating element, resistor 3500, coupled between the center conductor 100 and the grounded outer body 200. Referring to FIG. 2, axial resistor 3500 is disposed within the central bore 224 of the outer body 200. The resistor 3500 is supported within a central bore 246 of supporting insulator 2500. A first internal electrode 3502 of resistor 3500 is received within a bore 249 formed in the end of center conductor 100 that lies within supporting insulator 2500. The electrode 3502 may be soldered to center conductor 100 before center conductor 100 and resistor 3500 are inserted into supporting insulator 2500. At the opposite end of the resistor 3500, an external solder electrode 3504 protrudes from the outer face of supporting insulator 3000. The value for resistor 3500 is chosen to be compatible with the characteristic impedance of the coaxial line (e.g., 50 ohms, 75 ohms, etc.). The resistor 3500 is the element that absorbs the RF signal to prevent reflection. The resistor 3500 is preferably chosen to be a carbon composition resistor because such resistors offer good high frequency performance, and also have the ability to withstand the surge current that occurs as the capacitor is alternately charged, and then discharged, during surge protection. As mentioned above, any deviation from the characteristic impedance of the coaxial line can cause RF signal reflection; accordingly, the resistor 3500 is strategically placed on the central axis of the coaxial line structure, and surrounding supporting insulators 2500, 3000, and central bore 224 of the outer body 200, are designed to maintain the desired characteristic impedance throughout the length of resistor 3500.


A blocking capacitor 4000 in the form of a so-called “chip capacitor”, extends radially between solder electrode 3504 and a second solder electrode 4500, or grounding post, that extends from a recess formed in outer body 200. The opposing ends (electrodes) of the blocking capacitor 4000 are soldered to electrodes 3504 and post 4500 in order to electrically couple center conductor 100 in series with the resistor 3500 and the capacitor 4000 to ground (outer body 200), in parallel with spark gap 601. Capacitor 4000 is provided to block DC or AC power from flowing through resistor 3500.



FIG. 2A depicts a detailed partial cross-sectional view of the surge protected coaxial termination 20 of FIG. 2. In this embodiment, the surge protected coaxial termination 20 includes a center conductor contact 100, a body 200, a spark gap area 600 and an insulator 700. The center conductor contact 100 includes a first forward cylindrical portion 101, a second enlarged central portion 102 having an axial length “B”, and a third rearward cylindrical portion 103. The second enlarged central portion 102 is disposed generally at the spark gap 601, adjacent the inwardly-directed radial step 234 extending from the inner wall 232 of the body 200.


The body 200 also includes an orifice 201, a first forward chamfer 202 disposed at a radial inward portion of the radial step, adjacent the second enlarged central portion of the center conductor contact 102 and generally at the spark gap 601 of the spark gap area. A second chamfer 204 and a face 206 formed along a rearward side of the radial step 234 generally adjacent to the spark gap 601. The face 206 and second rearward facing chamfer of the radial step of the body 200 also support a front end 705 of the insulator 700. A cylindrical portion 707 extends within a bore 210 of the body in rearward direction away from the spark gap 601, radial step of the body and the second enlarged central portion 102 of the center conductor contact 100. The cylindrical portion 707 of the insulator 700 also surrounds, and thus insulates, the third rearward cylindrical portion 103 of the center conductor contact 100 within a passage 710 of the insulator 700 that extends in a rearward direction within the bore 210 extending away from the spark gap 601, radial step of the body and the second enlarged central portion 102 of the center conductor contact 100. The insulator 700 further comprises a counter bore 709 disposed at the front end 705 and adapted to receive and support the second enlarged portion 102 of the center conductor contact 100 adjacent to the spark gap.


An ability to withstand power surges in the surge protected coaxial termination 20 is enhanced by a relatively increased length B as compared to length A shown in FIG. 1A. As electrical arcs jump between the enlarged portion 102 and the orifice 201, the surface of enlarged portion 102 is eroded. As the surface of enlarged portion 102 is eroded the ability to shunt power to ground is decreased and Return Loss is somewhat negatively affected. An increased surface area of the enlarged portion 102 allows for a longer period of time before the ability to shunt power to ground is impacted, thereby increasing a length of time that the Return Loss performance remains stable even after multiple power surges required by the new specification previously noted. Additionally, the insulator 700 provides both improved centering of contact 100 within orifice 201 and protection from the breakdown of enlarged portion 102. The effect on electrical impedance of insulator 700 is offset by lengthening the bore 210 of body 200 in such a manner as to “tune” the RF structure of surge protected coaxial termination 20 to produce the desired Return Loss performance. In testing, a change in Return Loss as compared from a virgin state to the first arc was found to be relatively minor (on the order of approximately 2 dB) and remained relatively stable over the duration of the test thereafter.


Referring now to FIG. 3, a cross-sectional view of another embodiment illustrating a surge protected coaxial termination 30. The surge protected coaxial termination 30 comprises a metallic outer body 200′. The metallic outer body 200 includes a central bore 224′, or central passage, extending therethrough along a longitudinal axis 226′ between a first end 220′ and a second end 230′ of the metallic outer body 200′. The central bore 224′ is defined by an inner wall 232′. An inwardly-directed radial step 234 extends from the inner wall 232 toward the central axis 226′. The step 234′ is relatively short in the sense that its length along the central axis 226′ is very short in comparison with the axial length of the remaining portion of the inner wall 232′. Likewise, the inner diameter of the inner wall 232′ within the step portion 234′ is significantly smaller than the inner diameter of the remaining portion of the inner wall 232′.


A center conductor contact 100′ extends through the central bore 224′ of the outer body 200′. The center conductor contact 100′ is supported at one end thereof by a first supporting insulator 1500. The first supporting insulator 1500 is in turn supported by an enlarged annular bore 239′ formed in the first end 228′ of the outer body 200′. The portion of the center conductor contact 100′ that protrudes outwardly from the first end 228′ of the outer body 200′ can be cut to any desired length by a user. A typical coaxial port of an equipment box includes a clamping mechanism for clamping the center conductor contact 100′ and establishing an electrical connection therewith.


The center conductor contact 100′ is also supported at its opposite end by a second supporting insulator 2500 of dielectric material which fits into central bore 224′ from the second end 230′ thereof. The outer diameter of the center conductor contact 100 may be selected so that, at any point along its length, given the surrounding dielectric characteristics, and given the diameter of the surrounding inner wall, the characteristic impedance of center conductor contact 100′ will be matched with a desired characteristic impedance of the coaxial cable system (e.g., 75 ohms in a 75-ohm characteristic impedance system).


Spark gap area 600′ is shown in greater detail in the enlarged drawing of FIG. 3A. As indicated in FIG. 3A, the center conductor 100′ includes an enlarged diameter within radial step portion 234′ of inner wall 232′ to facilitate the jumping of a spark across spark gap 601′. The dimensions of the spark gap 601′ are selected to effectively insulate grounded radial step 234′ from center conductor 100′ at normal operating voltages and currents, up to a certain threshold voltage (for example, 1500 Volts). When the surge voltage between center conductor 100′ and outer body 200′ exceeds this threshold voltage, the spark gap 601′ will fire and conduct any excess energy to ground. Such an abnormal power surge might be induced by a lightning strike, for example.


The surge protected coaxial termination 20 also includes a resistive terminating element, resistor 3500, coupled between the center conductor 100 and the grounded outer body 200′. Referring to FIG. 3, axial resistor 3500 is disposed within the central bore 224′ of the outer body 200′. The resistor 3500 is supported within a central bore 246′ of supporting insulator 2500. A first internal electrode 3502 of resistor 3500 is received within a bore 249′ formed in the end of center conductor 100′ that lies within supporting insulator 2500. The electrode 3502 may be soldered to center conductor 100′ before center conductor 100′ and resistor 3500 are inserted into supporting insulator 2500. At the opposite end of the resistor 3500, an external solder electrode 3504 protrudes from the outer face of supporting insulator 3000. The value for resistor 3500 is chosen to be compatible with the characteristic impedance of the coaxial line (e.g., 50 ohms, 75 ohms, etc.). The resistor 3500 is the element that absorbs the RF signal to prevent reflection. The resistor 3500 is preferably chosen to be a carbon composition resistor because such resistors offer good high frequency performance, and also have the ability to withstand the surge current that occurs as the capacitor is alternately charged, and then discharged, during surge protection. As mentioned above, any deviation from the characteristic impedance of the coaxial line can cause RF signal reflection; accordingly, the resistor 3500 is strategically placed on the central axis of the coaxial line structure, and surrounding supporting insulators 2500, 3000, and central bore 224′ of the outer body 200′, are designed to maintain the desired characteristic impedance throughout the length of resistor 3500.


A blocking capacitor 4000 in the form of a so-called “chip capacitor”, extends radially between solder electrode 3504 and a second solder electrode 4500, or grounding post, that extends from a recess formed in outer body 200′. The opposing ends (electrodes) of the blocking capacitor 4000 are soldered to electrodes 3504 and post 4500 in order to electrically couple center conductor 100′ in series with the resistor 3500 and the capacitor 4000 to ground (outer body 200′), in parallel with spark gap 601′. Capacitor 4000 is provided to block DC or AC power from flowing through resistor 3500


Referring now to FIG. 3A, a detail partial cross-sectional view shows the surge protected coaxial termination 30 of FIG. 3. The surge protected coaxial termination includes a spark gap area 600′, a contact 100′, and a body 200′. The contact 100′ includes a cylindrical portion 101′, an enlarged portion 102′ and a cylindrical portion 103′. The body 200′ includes a chamfer 202′, another chamfer 203, an orifice 201, and a spark gap 601′. It was discovered that this configuration actually continued to improve Return Loss performance (exhibiting inverse degradation) over a longer period of time as compared to FIG. 2. However, the change in Return Loss as compared from a virgin state to the first arc was greater than that seen in the configuration of FIG. 2.


Enlarged portion 102′ has an axial length “C” and a diameter “T.” The dimensions may vary depending on application. However, in one particular implementation, the enlarged portion 102′ has an axial length “C” in a range from approximately 0.025″ to approximately 0.06″ and a diameter “T” in the range from approximately 0.05″ to approximately 0.08″. The enlarged portion 102′ may also have a ratio of axial length to diameter from approximately 0.3 to 1 to approximately 1.3 to 1, and in some embodiments a ratio of axial length to diameter from approximately 0.5 to 1 to 1 to 1, and in still further embodiments from approximately 0.6 to 1 to approximately 1 to 1.


Referring now to FIG. 4, a detail partial cross-sectional view illustrates yet another embodiment of a spark gap portion 600″ of a surge protected coaxial termination. The spark gap portion 600″ includes an enlarged portion 102″ of a contact 100″. The enlarged portion 102″ is circumscribed with a plurality of raised ridges 104. In one embodiment, raised ridges 104 may be created by a process known in the industry as knurling. The raised ridges 104 create a plurality of arc points. The arc may concentrate at the areas where the spark gap is smallest and dissipate the center conductor material at that point leaving the next knurl peak to concentrate the arc blast during the next surge event, thus prolonging the life of the terminator over multiple arcing situations.



FIG. 4A depicts a detail partial cross-sectional end view of the embodiment of FIG. 4 useful for illustrating the raised ridges 104 circumscribed on the enlarged portion 102″.


Referring now to FIG. 5, the surge protected coaxial termination 30 shown in FIG. 3 is illustrated mounted in a device 701, such as an amplifier. In the embodiment shown in FIG. 5, the surge protected coaxial termination 30 includes a contact 100′ mounted in the device 701 via a retaining screw 705 (shown fully tightened on contact 100′ in FIG. 5). In extreme conditions of tightening the retaining screw 705 can bend the terminator center conductor 100′ as shown in FIG. 5.


Referring now to FIG. 5A, the surge protected coaxial termination 30 of FIG. 5 is shown. In this implementation, the surge protected coaxial terminator 30 is shown having a bent center conductor 100′ as described with reference to FIG. 5 causing distortion of the center conductor 100′ such that it contacts the body 200′ of the terminator 30 at or near point “A” causing an electrical short circuit.



FIG. 5B illustrates the surge protected coaxial termination 20 shown in FIG. 2 again having a bent center conductor 100. Again, the distortion of the center conductor 100 causes the center conductor 100 to contact the body 200 around point “A” shown in FIG. 5B causing an electrical short circuit.



FIG. 6 shows another embodiment of a surge protected coaxial termination 20 including a structural feature ggg, such as a groove, a score or the like providing a mechanical strain relief portion to prevent distortion of the center conductor 100 occurring outside the terminator 20 from translating along the center conductor 100 to the point “A” shown in FIG. 5B.



FIG. 7 shows yet another embodiment of a surge protected coaxial terminator 40 comprising a structural feature ggg, such as a groove, a score or the like, again providing a mechanical strain relief as described with reference to FIG. 6 to prevent distortion of the center conductor 100 from translating to the point “A” as illustrated in FIG. 5B and having an insulator hhh disposed forward of the spark gap area and engaging the insulator 1500 and body 200.


It should now be understood that embodiments described herein are directed to surge protected coaxial connectors. In particular, the surge protected coaxial connectors described herein may include at least one dielectric layer surrounding at least a portion of the central conductor adjacent to a spark gap. In other embodiments, an enlarged portion of the central conductor includes an increased axial length disposed within the spark gap. Furthermore, the embodiments described herein facilitate long term mechanical reliability of surge protected coaxial terminations.


For the purposes of describing and defining the subject matter of the disclosure it is noted that the term “substantially” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation.


Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.


It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the disclosure. Since modifications, combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the disclosure may occur to persons skilled in the art, the embodiments disclosed herein should be construed to include everything within the scope of the appended claims and their equivalents.

Claims
  • 1. A surge-protected coaxial termination comprising: a metallic outer body having a central bore extending therethrough along a longitudinal axis between first and second ends of the metallic outer body, the central bore being bounded by an inner wall having an inwardly-directed radial step extending into the central bore and defining, along with the inner wall: a first portion of the central bore disposed on a first side of the radial step,a second orifice portion of the central bore disposed generally at the radial step, anda third portion of the central bore disposed on a second opposing side of the radial step;a center conductor extending into the central bore of the metallic outer body and extending into each of the first, second and third portions of the central bore, the center conductor comprising: a first cylindrical portion disposed at least partially within the first portion of the central bore,a second central portion disposed at least partially within the second orifice portion of the central bore in close proximity to the radial step of the body to form a spark gap therebetween, anda third cylindrical portion disposed at least partially within the third portion of the central bore, the third cylindrical portion of the center conductor at least partially surrounded by an insulator layer; andair within at least a portion of the spark gap formed between the radial step of the body and the second central portion of the center conductor.
  • 2. The surge-protected coaxial termination of claim 1 wherein the wherein third cylindrical portion of the center conductor is disposed within a passage of the insulator layer for at least a portion of the third portion of the central bore.
  • 3. The surge-protected coaxial termination of claim 1 wherein radial step comprises a face and a chamfer adapted to receive and support a longitudinal end of the insulator layer.
  • 4. The surge-protected coaxial termination of claim 3 wherein the insulator layer at least partially reduces breakdown of the second central portion.
  • 5. The surge-protected coaxial termination of claim 1 wherein the radial step comprises a chamfer adjacent the spark gap.
  • 6. The surge-protected coaxial termination of claim 1 wherein the first side of the first portion of the radial step is disposed forward of the central portion of the central bore.
  • 7. The surge-protected coaxial termination of claim 1 wherein the first side of the first portion of the radial step is disposed rearward of the central portion of the central bore.
  • 8. The surge-protected coaxial termination of claim 1 wherein the air comprises an ionizing gas.
  • 9. The surge-protected coaxial termination of claim 1 wherein an effect on termination electrical impedance due to the insulator layer is offset by a lengthening of the bore of the body to tune an RF structure of the termination.
  • 10. The surge-protected coaxial termination of claim 1 wherein the first portion of the central bore has a first inner diameter the and a first axial length, the second orifice portion of the central bore also has a second inner diameter and a second axial length, wherein the second axial length is significantly shorter than the first axial length, and wherein the second inner diameter is significantly smaller than the first inner diameter.
  • 11. The surge-protected coaxial termination of claim 10 wherein the second central portion of the center conductor has a predetermined outer diameter within the second orifice portion of the central bore, the predetermined outer diameter of the center conductor being slightly less than a second inner diameter of the second orifice portion defined by the radial step of the inner wall for positioning the second portion of the inner wall in close proximity to the center conductor to form a spark gap therebetween.
  • 12. The surge-protected coaxial termination of claim 1 wherein the center conductor is comprises a structural mechanical strain relief feature disposed forward of the spark gap.
  • 13. The surge-protected coaxial termination of claim 12 wherein the structural mechanical strain relief feature comprises a groove or a score in the center conductor.
  • 14. The surge-protected coaxial termination of claim 12 wherein the structural mechanical strain relief feature is disposed within a supporting insulator disposed within an annular bore in the body disposed at a front end of the termination.
  • 15. The A-surge-protected coaxial termination of claim 1 wherein the second central portion of the center conductor has an axial length and a diameter, and a ratio of the axial length to the diameter of the second central portion is in a range from approximately 0.3 to 1 to approximately 1.3 to 1.
  • 16. The surge-protected coaxial termination of claim 15 wherein the radial step comprises a chamfer adjacent the spark gap.
  • 17. The surge-protected coaxial termination of claim 15 wherein the air comprises an ionizing gas.
  • 18. The surge-protected coaxial termination of claim 15 wherein the first portion of the central bore has a first inner diameter and a first axial length, the second orifice portion of the central bore also has a second inner diameter and a second axial length, wherein the second axial length is significantly shorter than the first axial length, and wherein the second inner diameter is significantly smaller than the first inner diameter.
  • 19. The surge-protected coaxial termination of claim 18 wherein the second central portion of the center conductor has a predetermined outer diameter within the second orifice portion of the central bore, the predetermined outer diameter of the center conductor being slightly less than a second inner diameter of the second orifice portion defined by the radial step of inner wall for positioning the second portion of the inner wall in close proximity to the center conductor to form the spark gap therebetween.
  • 20. The surge-protected coaxial termination of claim 15 wherein the center conductor is comprises a structural mechanical strain relief feature disposed forward of the spark gap.
  • 21. The surge-protected coaxial termination of claim 20 wherein the structural mechanical strain relief feature comprises a groove or a score in the center conductor.
  • 22. The surge-protected coaxial termination of claim 20 wherein the structural mechanical strain relief feature is disposed within a supporting insulator disposed within an enlarged annular bore in the body disposed at a front end of the termination.
  • 23. The surge-protected coaxial termination of claim 15 wherein the ratio of the axial length to the diameter of the second enlarged central portion is in a range from approximately 0.5 to 1 to approximately 1 to 1.
RELATED APPLICATIONS

This application claims the benefit of priority under 35 U.S.C. §119 of U.S. Provisional Application No. 62/118,684 filed on Feb. 20, 2015, the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (1075)
Number Name Date Kind
331169 Thomas Nov 1885 A
346958 Stone Aug 1886 A
459951 Warner Sep 1891 A
589216 McKee Aug 1897 A
1371742 Dringman Mar 1921 A
1488175 Strandell Mar 1924 A
1667485 MacDonald Apr 1928 A
1766869 Austin Jun 1930 A
1801999 Bowman Apr 1931 A
1885761 Peirce, Jr. Nov 1932 A
1959302 Paige May 1934 A
2013526 Schmitt Sep 1935 A
2059920 Weatherhead, Jr. Nov 1936 A
2102495 England Dec 1937 A
2258528 Wurzburger Oct 1941 A
2258737 Browne Oct 1941 A
2325549 Ryzowitz Jul 1943 A
2480963 Quinn Sep 1949 A
2544654 Brown Mar 1951 A
2549647 Turenne Apr 1951 A
2694187 Nash Nov 1954 A
2705652 Kaiser Apr 1955 A
2743505 Hill May 1956 A
2754487 Carr et al. Jul 1956 A
2755331 Melcher Jul 1956 A
2757351 Klostermann Jul 1956 A
2762025 Melcher Sep 1956 A
2785384 Wickesser Mar 1957 A
2805399 Leeper Sep 1957 A
2816949 Curtiss Dec 1957 A
2870420 Malek Jan 1959 A
2878039 Hoegee et al. Mar 1959 A
2881406 Arson Apr 1959 A
2963536 Kokalas Dec 1960 A
3001169 Blonder Sep 1961 A
3015794 Kishbaugh Jan 1962 A
3051925 Felts Aug 1962 A
3091748 Takes et al. May 1963 A
3094364 Lingg Jun 1963 A
3103548 Concelman Sep 1963 A
3106548 Lavalou Oct 1963 A
3140106 Thomas et al. Jul 1964 A
3161451 Neidecker Dec 1964 A
3184706 Atkins May 1965 A
3193309 Morris Jul 1965 A
3194292 Borowsky Jul 1965 A
3196382 Morello, Jr. Jul 1965 A
3206540 Cohen Sep 1965 A
3245027 Ziegler, Jr. Apr 1966 A
3275913 Blanchard et al. Sep 1966 A
3278890 Cooney Oct 1966 A
3281756 O'Keefe et al. Oct 1966 A
3281757 Bonhomme Oct 1966 A
3290069 Davis Dec 1966 A
3292136 Somerset Dec 1966 A
3320575 Brown et al. May 1967 A
3321732 Forney, Jr. May 1967 A
3336563 Hyslop Aug 1967 A
3348186 Rosen Oct 1967 A
3350667 Shreve Oct 1967 A
3350677 Daum Oct 1967 A
3355698 Keller Nov 1967 A
3372364 O'Keefe et al. Mar 1968 A
3373243 Janowiak et al. Mar 1968 A
3390374 Forney, Jr. Jun 1968 A
3406373 Forney, Jr. Oct 1968 A
3430184 Acord Feb 1969 A
3448430 Kelly Jun 1969 A
3453376 Ziegler, Jr. et al. Jul 1969 A
3465281 Florer Sep 1969 A
3475545 Stark et al. Oct 1969 A
3494400 McCoy et al. Feb 1970 A
3498647 Schroder Mar 1970 A
3499671 Osborne Mar 1970 A
3501737 Harris et al. Mar 1970 A
3517373 Jamon Jun 1970 A
3526871 Hobart Sep 1970 A
3533051 Ziegler, Jr. Oct 1970 A
3537065 Winston Oct 1970 A
3544705 Winston Dec 1970 A
3551882 O'Keefe Dec 1970 A
3564487 Upstone et al. Feb 1971 A
3587033 Brorein et al. Jun 1971 A
3596933 Luckenbill Aug 1971 A
3601776 Curl Aug 1971 A
3603912 Kelly Sep 1971 A
3614711 Anderson et al. Oct 1971 A
3622952 Hilbert Nov 1971 A
3629792 Dorrell Dec 1971 A
3633150 Schwartz Jan 1972 A
3646502 Hutter et al. Feb 1972 A
3663926 Brandt May 1972 A
3665371 Cripps May 1972 A
3668612 Nepovim Jun 1972 A
3669472 Nadsady Jun 1972 A
3671922 Zerlin et al. Jun 1972 A
3671926 Nepovim Jun 1972 A
3678444 Stevens et al. Jul 1972 A
3678445 Brancaleone Jul 1972 A
3680034 Chow et al. Jul 1972 A
3681739 Kornick Aug 1972 A
3683320 Woods et al. Aug 1972 A
3686623 Nijman Aug 1972 A
3694792 Wallo Sep 1972 A
3694793 Concelman Sep 1972 A
3697930 Shirey Oct 1972 A
3706958 Blanchenot Dec 1972 A
3708186 Takagi et al. Jan 1973 A
3710005 French Jan 1973 A
3739076 Schwartz Jun 1973 A
3744007 Horak Jul 1973 A
3744011 Blanchenot Jul 1973 A
3761870 Drezin et al. Sep 1973 A
3778535 Forney, Jr. Dec 1973 A
3781762 Quackenbush Dec 1973 A
3781898 Holloway Dec 1973 A
3783178 Philibert et al. Jan 1974 A
3787796 Barr Jan 1974 A
3793610 Brishka Feb 1974 A
3798589 Deardurff Mar 1974 A
3808580 Johnson Apr 1974 A
3810076 Hutter May 1974 A
3824026 Gaskins Jul 1974 A
3835443 Arnold et al. Sep 1974 A
3836700 Niemeyer Sep 1974 A
3845453 Hemmer Oct 1974 A
3846738 Nepovim Nov 1974 A
3847463 Hayward et al. Nov 1974 A
3854003 Duret Dec 1974 A
3854789 Kaplan Dec 1974 A
3858156 Zarro Dec 1974 A
3879102 Horak Apr 1975 A
3886301 Cronin et al. May 1975 A
3907335 Burge et al. Sep 1975 A
3907399 Spinner Sep 1975 A
3910673 Stokes Oct 1975 A
3915539 Collins Oct 1975 A
3936132 Hutter Feb 1976 A
3937547 Lee-Kemp Feb 1976 A
3953097 Graham Apr 1976 A
3960428 Naus et al. Jun 1976 A
3963320 Spinner Jun 1976 A
3963321 Burger et al. Jun 1976 A
3970355 Pitschi Jul 1976 A
3972013 Shapiro Jul 1976 A
3976352 Spinner Aug 1976 A
3980805 Lipari Sep 1976 A
3985418 Spinner Oct 1976 A
3986736 Takagi et al. Oct 1976 A
4012105 Biddle Mar 1977 A
4017139 Nelson Apr 1977 A
4022966 Gajajiva May 1977 A
4030742 Eidelberg et al. Jun 1977 A
4030798 Paoli Jun 1977 A
4032177 Anderson Jun 1977 A
4045706 Daffner et al. Aug 1977 A
4046451 Juds et al. Sep 1977 A
4053200 Pugner Oct 1977 A
4056043 Sriramamurty et al. Nov 1977 A
4059330 Shirey Nov 1977 A
4079343 Nijman Mar 1978 A
4082404 Flatt Apr 1978 A
4090028 Vontobel May 1978 A
4093335 Schwartz et al. Jun 1978 A
4100943 Terada et al. Jul 1978 A
4106839 Cooper Aug 1978 A
4109126 Halbeck Aug 1978 A
4118097 Budnick Oct 1978 A
4125308 Schilling Nov 1978 A
4126372 Hashimoto et al. Nov 1978 A
4131332 Hogendobler et al. Dec 1978 A
4136897 Haluch Jan 1979 A
4150250 Lundeberg Apr 1979 A
4153320 Townshend May 1979 A
4156554 Aujla May 1979 A
4165911 Laudig Aug 1979 A
4168921 Blanchard Sep 1979 A
4173385 Fenn et al. Nov 1979 A
4174875 Wilson et al. Nov 1979 A
4187481 Boutros Feb 1980 A
4193655 Herrmann, Jr. Mar 1980 A
4194338 Trafton Mar 1980 A
4197628 Conti et al. Apr 1980 A
4206963 English et al. Jun 1980 A
4212487 Jones et al. Jul 1980 A
4225162 Dola Sep 1980 A
4227765 Neumann et al. Oct 1980 A
4229714 Yu Oct 1980 A
4239318 Schwartz Dec 1980 A
4250348 Kitagawa Feb 1981 A
4260212 Ritchie Apr 1981 A
4273405 Law Jun 1981 A
4280749 Hemmer Jul 1981 A
4285564 Spinner Aug 1981 A
4290663 Fowler et al. Sep 1981 A
4296986 Herrmann, Jr. Oct 1981 A
4307926 Smith Dec 1981 A
4309050 Legris Jan 1982 A
4310211 Bunnell et al. Jan 1982 A
4322121 Riches et al. Mar 1982 A
4326768 Punako Apr 1982 A
4326769 Dorsey et al. Apr 1982 A
4334730 Colwell et al. Jun 1982 A
4339166 Dayton Jul 1982 A
4345375 Hayward Aug 1982 A
4346958 Blanchard Aug 1982 A
4354721 Luzzi Oct 1982 A
4358174 Dreyer Nov 1982 A
4373767 Cairns Feb 1983 A
4389081 Gallusser et al. Jun 1983 A
4400050 Hayward Aug 1983 A
4407529 Holman Oct 1983 A
4408821 Forney, Jr. Oct 1983 A
4408822 Nikitas Oct 1983 A
4412717 Monroe Nov 1983 A
4421377 Spinner Dec 1983 A
4426127 Kubota Jan 1984 A
4428639 Hillis Jan 1984 A
4444453 Kirby et al. Apr 1984 A
4447107 Major et al. May 1984 A
4452503 Forney, Jr. Jun 1984 A
4456323 Pitcher et al. Jun 1984 A
4459881 Hughes, Jr. Jul 1984 A
4462653 Flederbach et al. Jul 1984 A
4464000 Werth et al. Aug 1984 A
4464001 Collins Aug 1984 A
4469386 Ackerman Sep 1984 A
4470657 Deacon Sep 1984 A
4477132 Moser et al. Oct 1984 A
4484792 Tengler et al. Nov 1984 A
4484796 Sato et al. Nov 1984 A
4490576 Bolante et al. Dec 1984 A
4491685 Drew et al. Jan 1985 A
4506943 Drogo Mar 1985 A
4515427 Smit May 1985 A
4525017 Schildkraut et al. Jun 1985 A
4531790 Selvin Jul 1985 A
4531805 Werth Jul 1985 A
4533191 Blackwood Aug 1985 A
4540231 Forney, Jr. Sep 1985 A
RE31995 Ball Oct 1985 E
4545633 McGeary Oct 1985 A
4545637 Bosshard et al. Oct 1985 A
4553877 Edvardsen Nov 1985 A
4575274 Hayward Mar 1986 A
4580862 Johnson Apr 1986 A
4580865 Fryberger Apr 1986 A
4583811 McMills Apr 1986 A
4585289 Bocher Apr 1986 A
4588246 Schildkraut et al. May 1986 A
4593964 Forney, Jr. et al. Jun 1986 A
4596434 Saba et al. Jun 1986 A
4596435 Bickford Jun 1986 A
4597621 Burns Jul 1986 A
4598959 Selvin Jul 1986 A
4598961 Cohen Jul 1986 A
4600263 DeChamp et al. Jul 1986 A
4613199 McGeary Sep 1986 A
4614390 Baker Sep 1986 A
4616900 Cairns Oct 1986 A
4623205 Barron Nov 1986 A
4632487 Wargula Dec 1986 A
4634213 Larsson et al. Jan 1987 A
4640572 Conlon Feb 1987 A
4645281 Burger Feb 1987 A
4647135 Reinhardt Mar 1987 A
4650228 McMills et al. Mar 1987 A
4655159 McMills Apr 1987 A
4655534 Stursa Apr 1987 A
4660921 Hauver Apr 1987 A
4666190 Yamabe et al. May 1987 A
4666231 Sheesley et al. May 1987 A
4668043 Saba et al. May 1987 A
4670574 Malcolm Jun 1987 A
4673236 Musolff et al. Jun 1987 A
4674809 Hollyday et al. Jun 1987 A
4674818 McMills et al. Jun 1987 A
4676577 Szegda Jun 1987 A
4682832 Punako et al. Jul 1987 A
4684201 Hutter Aug 1987 A
4688876 Morelli Aug 1987 A
4688878 Cohen et al. Aug 1987 A
4690482 Chamberland et al. Sep 1987 A
4691976 Cowen Sep 1987 A
4703987 Gullusser et al. Nov 1987 A
4703988 Raux et al. Nov 1987 A
4713021 Kobler Dec 1987 A
4717355 Mattis Jan 1988 A
4720155 Schildkraut et al. Jan 1988 A
4728301 Hemmer et al. Mar 1988 A
4734050 Negre et al. Mar 1988 A
4734666 Ohya et al. Mar 1988 A
4737123 Paler et al. Apr 1988 A
4738009 Down et al. Apr 1988 A
4738628 Rees Apr 1988 A
4739009 Down et al. Apr 1988 A
4739126 Gutter et al. Apr 1988 A
4746305 Nomura May 1988 A
4747656 Miyahara et al. May 1988 A
4747786 Hayashi et al. May 1988 A
4749821 Linton et al. Jun 1988 A
4755152 Elliot et al. Jul 1988 A
4757297 Frawley Jul 1988 A
4759729 Kemppainen et al. Jul 1988 A
4761146 Sohoel Aug 1988 A
4772222 Laudig et al. Sep 1988 A
4789355 Lee Dec 1988 A
4789759 Jones Dec 1988 A
4795360 Newman et al. Jan 1989 A
4797120 Ulery Jan 1989 A
4806116 Ackerman Feb 1989 A
4807891 Neher Feb 1989 A
4808128 Werth Feb 1989 A
4810017 Knak et al. Mar 1989 A
4813886 Roos et al. Mar 1989 A
4820185 Moulin Apr 1989 A
4834675 Samchisen May 1989 A
4834676 Tackett May 1989 A
4835342 Guginsky May 1989 A
4836580 Farrell Jun 1989 A
4836801 Ramirez Jun 1989 A
4838813 Pauza et al. Jun 1989 A
4846731 Alwine Jul 1989 A
4854893 Morris Aug 1989 A
4857014 Alf et al. Aug 1989 A
4867489 Patel Sep 1989 A
4867706 Tang Sep 1989 A
4869679 Szegda Sep 1989 A
4874331 Iverson Oct 1989 A
4881912 Thommen et al. Nov 1989 A
4892275 Szegda Jan 1990 A
4902246 Samchisen Feb 1990 A
4906207 Banning et al. Mar 1990 A
4915651 Bout Apr 1990 A
4921447 Capp et al. May 1990 A
4923412 Morris May 1990 A
4925403 Zorzy May 1990 A
4927385 Cheng May 1990 A
4929188 Lionetto et al. May 1990 A
4934960 Capp et al. Jun 1990 A
4938718 Guendel Jul 1990 A
4941846 Guimond et al. Jul 1990 A
4952174 Sucht et al. Aug 1990 A
4957456 Olson et al. Sep 1990 A
4963105 Lewis et al. Oct 1990 A
4964805 Gabany Oct 1990 A
4964812 Siemon et al. Oct 1990 A
4973265 Heeren Nov 1990 A
4976632 Riches Dec 1990 A
4979911 Spencer Dec 1990 A
4990104 Schieferly Feb 1991 A
4990105 Karlovich Feb 1991 A
4990106 Szegda Feb 1991 A
4992061 Brush, Jr. et al. Feb 1991 A
5002503 Campbell et al. Mar 1991 A
5007861 Stirling Apr 1991 A
5011422 Yeh Apr 1991 A
5011432 Sucht et al. Apr 1991 A
5018822 Freismuth et al. May 1991 A
5021010 Wright Jun 1991 A
5024606 Ming-Hwa Jun 1991 A
5030126 Hanlon Jul 1991 A
5037328 Karlovich Aug 1991 A
5046964 Welsh et al. Sep 1991 A
5052947 Brodie et al. Oct 1991 A
5055060 Down et al. Oct 1991 A
5059139 Spinner Oct 1991 A
5059747 Bawa et al. Oct 1991 A
5062804 Jamet et al. Nov 1991 A
5066248 Gaver, Jr. et al. Nov 1991 A
5067912 Bickford et al. Nov 1991 A
5073129 Szegda Dec 1991 A
5074809 Rousseau et al. Dec 1991 A
5080600 Baker et al. Jan 1992 A
5083943 Tarrant Jan 1992 A
5088937 Gabany Feb 1992 A
5120260 Jackson Jun 1992 A
5127853 McMills et al. Jul 1992 A
5131862 Gershfeld Jul 1992 A
5137470 Doles Aug 1992 A
5137471 Verespej et al. Aug 1992 A
5139440 Volk et al. Aug 1992 A
5141448 Mattingly et al. Aug 1992 A
5141451 Down Aug 1992 A
5149274 Gallusser et al. Sep 1992 A
5150924 Yokomatsu et al. Sep 1992 A
5154636 Vaccaro et al. Oct 1992 A
5161993 Leibfried, Jr. Nov 1992 A
5166477 Perin, Jr. et al. Nov 1992 A
5167545 O'Brien et al. Dec 1992 A
5169323 Kawai et al. Dec 1992 A
5176530 Reylek Jan 1993 A
5176533 Sakurai et al. Jan 1993 A
5181161 Hirose et al. Jan 1993 A
5183417 Bools Feb 1993 A
5186501 Mano Feb 1993 A
5186655 Glenday et al. Feb 1993 A
5195904 Cyvoct Mar 1993 A
5195905 Pesci Mar 1993 A
5195906 Szegda Mar 1993 A
5205547 Mattingly Apr 1993 A
5205761 Nilsson Apr 1993 A
D335487 Volk et al. May 1993 S
5207602 McMills et al. May 1993 A
5215477 Weber et al. Jun 1993 A
5217391 Fisher, Jr. Jun 1993 A
5217392 Hosler, Sr. Jun 1993 A
5217393 Del Negro et al. Jun 1993 A
5221216 Gabany et al. Jun 1993 A
5227587 Paterek Jul 1993 A
5247424 Harris et al. Sep 1993 A
5263880 Schwarz Nov 1993 A
5269701 Leibfried, Jr. Dec 1993 A
5281762 Long et al. Jan 1994 A
5283853 Szegda Feb 1994 A
5284449 Vaccaro Feb 1994 A
5294864 Do Mar 1994 A
5295864 Birch et al. Mar 1994 A
5316348 Franklin May 1994 A
5316494 Flanagan et al. May 1994 A
5318459 Shields Jun 1994 A
5321205 Bawa et al. Jun 1994 A
5334032 Myers et al. Aug 1994 A
5334051 Devine et al. Aug 1994 A
5338225 Jacobsen et al. Aug 1994 A
5342218 McMills et al. Aug 1994 A
5352134 Jacobsen et al. Oct 1994 A
5354217 Gabel et al. Oct 1994 A
5362250 McMills et al. Nov 1994 A
5362251 Bielak Nov 1994 A
5366260 Wartluft Nov 1994 A
5371819 Szegda Dec 1994 A
5371821 Szegda Dec 1994 A
5371827 Szegda Dec 1994 A
5380211 Kawagauchi et al. Jan 1995 A
5389005 Kodama Feb 1995 A
5393244 Szegda Feb 1995 A
5397252 Wang Mar 1995 A
5413504 Kloecker et al. May 1995 A
5431583 Szegda Jul 1995 A
5435745 Booth Jul 1995 A
5435751 Papenheim et al. Jul 1995 A
5435760 Miklos Jul 1995 A
5439386 Ellis et al. Aug 1995 A
5444810 Szegda Aug 1995 A
5455548 Grandchamp et al. Oct 1995 A
5456611 Henry et al. Oct 1995 A
5456614 Szegda Oct 1995 A
5466173 Down Nov 1995 A
5470257 Szegda Nov 1995 A
5474478 Ballog Dec 1995 A
5475921 Johnston Dec 1995 A
5488268 Bauer et al. Jan 1996 A
5490033 Cronin Feb 1996 A
5490801 Fisher, Jr. et al. Feb 1996 A
5494454 Johnsen Feb 1996 A
5499934 Jacobsen et al. Mar 1996 A
5501616 Holliday Mar 1996 A
5511305 Garner Apr 1996 A
5516303 Yohn et al. May 1996 A
5525076 Down Jun 1996 A
5542861 Anhalt et al. Aug 1996 A
5548088 Gray et al. Aug 1996 A
5550521 Bernaud et al. Aug 1996 A
5564938 Shenkal et al. Oct 1996 A
5571028 Szegda Nov 1996 A
5586910 Del Negro et al. Dec 1996 A
5595499 Zander et al. Jan 1997 A
5598132 Stabile Jan 1997 A
5607320 Wright Mar 1997 A
5607325 Toma Mar 1997 A
5609501 McMills et al. Mar 1997 A
5620339 Gray et al. Apr 1997 A
5632637 Diener May 1997 A
5632651 Szegda May 1997 A
5644104 Porter et al. Jul 1997 A
5649723 Larsson Jul 1997 A
5651698 Locati et al. Jul 1997 A
5651699 Holliday Jul 1997 A
5653605 Woehl et al. Aug 1997 A
5667405 Holliday Sep 1997 A
5681172 Moldenhauer Oct 1997 A
5683263 Hsu Nov 1997 A
5702263 Baumann et al. Dec 1997 A
5722856 Fuchs et al. Mar 1998 A
5735704 Anthony Apr 1998 A
5743131 Holliday et al. Apr 1998 A
5746617 Porter, Jr. et al. May 1998 A
5746619 Harting et al. May 1998 A
5759618 Taylor Jun 1998 A
5769652 Wider Jun 1998 A
5769662 Stabile et al. Jun 1998 A
5774344 Casebolt Jun 1998 A
5775927 Wider Jul 1998 A
5788289 Cronley Aug 1998 A
5791698 Wartluft et al. Aug 1998 A
5797633 Katzer et al. Aug 1998 A
5817978 Hermant et al. Oct 1998 A
5863220 Holliday Jan 1999 A
5874603 Arkles Feb 1999 A
5877452 McConnell Mar 1999 A
5879191 Burris Mar 1999 A
5882226 Bell et al. Mar 1999 A
5890924 Endo Apr 1999 A
5897795 Lu et al. Apr 1999 A
5906511 Bozzer et al. May 1999 A
5917153 Geroldinger Jun 1999 A
5921793 Phillips Jul 1999 A
5938465 Fox, Sr. Aug 1999 A
5944548 Saito Aug 1999 A
5951327 Marik Sep 1999 A
5954708 Lopez et al. Sep 1999 A
5957716 Buckley et al. Sep 1999 A
5967852 Follingstad et al. Oct 1999 A
5975479 Suter Nov 1999 A
5975591 Guest Nov 1999 A
5975949 Holliday et al. Nov 1999 A
5975951 Burris et al. Nov 1999 A
5977841 Lee et al. Nov 1999 A
5997350 Burris et al. Dec 1999 A
6010349 Porter, Jr. Jan 2000 A
6019635 Nelson Feb 2000 A
6022237 Esh Feb 2000 A
6032358 Wild Mar 2000 A
6036540 Beloritsky Mar 2000 A
6042422 Youtsey Mar 2000 A
6042429 Bianca Mar 2000 A
6048229 Lazaro, Jr. Apr 2000 A
6053743 Mitchell et al. Apr 2000 A
6053769 Kubota et al. Apr 2000 A
6053777 Boyle Apr 2000 A
6062607 Bartholomew May 2000 A
6080015 Andreescu Jun 2000 A
6083030 Wright Jul 2000 A
6083053 Anderson, Jr. et al. Jul 2000 A
6089903 Stafford Gray et al. Jul 2000 A
6089912 Tallis et al. Jul 2000 A
6089913 Holliday Jul 2000 A
6093043 Gray et al. Jul 2000 A
6095828 Burland Aug 2000 A
6095841 Felps Aug 2000 A
6123550 Burkert et al. Sep 2000 A
6123567 McCarthy Sep 2000 A
6126487 Rosenberger et al. Oct 2000 A
6132234 Waidner et al. Oct 2000 A
6142812 Hwang Nov 2000 A
6146197 Holliday et al. Nov 2000 A
6152752 Fukuda Nov 2000 A
6152753 Johnson et al. Nov 2000 A
6153830 Montena Nov 2000 A
6162995 Bachle et al. Dec 2000 A
6164977 Lester Dec 2000 A
6174206 Yentile et al. Jan 2001 B1
6183298 Henningsen Feb 2001 B1
6199913 Wang Mar 2001 B1
6199920 Neustadtl Mar 2001 B1
6210216 Tso-Chin et al. Apr 2001 B1
6210219 Zhu et al. Apr 2001 B1
6210222 Langham et al. Apr 2001 B1
6217383 Holland et al. Apr 2001 B1
6238240 Yu May 2001 B1
6239359 Lilienthal, II et al. May 2001 B1
6241553 Hsia Jun 2001 B1
6250942 Lemke et al. Jun 2001 B1
6250974 Kerek Jun 2001 B1
6257923 Stone et al. Jul 2001 B1
6261126 Stirling Jul 2001 B1
6267612 Arcykiewicz et al. Jul 2001 B1
6271464 Cunningham Aug 2001 B1
6331123 Rodrigues Dec 2001 B1
6332815 Bruce Dec 2001 B1
6352448 Holliday et al. Mar 2002 B1
6358077 Young Mar 2002 B1
6361348 Hall et al. Mar 2002 B1
6361364 Holland et al. Mar 2002 B1
6375509 Mountford Apr 2002 B2
6379183 Ayres et al. Apr 2002 B1
6394840 Gassauer et al. May 2002 B1
6396367 Rosenberger May 2002 B1
D458904 Montena Jun 2002 S
6398571 Nishide et al. Jun 2002 B1
6406330 Bruce Jun 2002 B2
6409534 Weisz-Margulescu Jun 2002 B1
D460739 Fox Jul 2002 S
D460740 Montena Jul 2002 S
D460946 Montena Jul 2002 S
D460947 Montena Jul 2002 S
D460948 Montena Jul 2002 S
6422884 Babasick et al. Jul 2002 B1
6422900 Hogan Jul 2002 B1
6425782 Holland Jul 2002 B1
D461166 Montena Aug 2002 S
D461167 Montena Aug 2002 S
D461778 Fox Aug 2002 S
D462058 Montena Aug 2002 S
D462060 Fox Aug 2002 S
6439899 Muzslay et al. Aug 2002 B1
D462327 Montena Sep 2002 S
6443763 Richet Sep 2002 B1
6450829 Weisz-Margulescu Sep 2002 B1
6454463 Halbach Sep 2002 B1
6464526 Seufert et al. Oct 2002 B1
6464527 Volpe et al. Oct 2002 B2
6467816 Huang Oct 2002 B1
6468100 Meyer et al. Oct 2002 B1
6491546 Perry Dec 2002 B1
D468696 Montena Jan 2003 S
6506083 Bickford et al. Jan 2003 B1
6510610 Losinger Jan 2003 B2
6520800 Michelbach et al. Feb 2003 B1
6530807 Rodrigues et al. Mar 2003 B2
6540531 Syed et al. Apr 2003 B2
6558194 Montena May 2003 B2
6572419 Feye-Homann Jun 2003 B2
6576833 Covaro et al. Jun 2003 B2
6619876 Vaitkus et al. Sep 2003 B2
6632104 Quadir Oct 2003 B2
6634906 Yeh Oct 2003 B1
6637101 Hathaway et al. Oct 2003 B2
6645011 Schneider et al. Nov 2003 B2
6663397 Lin et al. Dec 2003 B1
6676446 Montena Jan 2004 B2
6683253 Lee Jan 2004 B1
6683773 Montena Jan 2004 B2
6692285 Islam Feb 2004 B2
6692286 De Cet Feb 2004 B1
6695636 Hall et al. Feb 2004 B2
6705875 Berghorn et al. Mar 2004 B2
6705884 McCarthy Mar 2004 B1
6709280 Gretz Mar 2004 B1
6709289 Huber et al. Mar 2004 B2
6712631 Youtsey Mar 2004 B1
6716041 Ferderer et al. Apr 2004 B2
6716062 Palinkas et al. Apr 2004 B1
6733336 Montena et al. May 2004 B1
6733337 Kodaira May 2004 B2
6743040 Nakamura Jun 2004 B1
6749454 Schmidt et al. Jun 2004 B2
6751081 Kooiman Jun 2004 B1
6752633 Aizawa et al. Jun 2004 B2
6761571 Hida Jul 2004 B2
6767248 Hung Jul 2004 B1
6769926 Montena Aug 2004 B1
6780029 Gretz Aug 2004 B1
6780042 Badescu et al. Aug 2004 B1
6780052 Montena et al. Aug 2004 B2
6780068 Bartholoma et al. Aug 2004 B2
6783394 Holliday Aug 2004 B1
6786767 Fuks et al. Sep 2004 B1
6790081 Burris et al. Sep 2004 B2
6793528 Lin et al. Sep 2004 B2
6796847 AbuGhazaleh Sep 2004 B2
6802738 Henningsen Oct 2004 B1
6805583 Holliday et al. Oct 2004 B2
6805584 Chen Oct 2004 B1
6808415 Montena Oct 2004 B1
6817272 Holland Nov 2004 B2
6817896 Derenthal Nov 2004 B2
6817897 Chee Nov 2004 B2
6827608 Hall et al. Dec 2004 B2
6830479 Holliday Dec 2004 B2
6848115 Sugiura et al. Jan 2005 B2
6848939 Stirling Feb 2005 B2
6848940 Montena Feb 2005 B2
6848941 Wlos et al. Feb 2005 B2
6884113 Montena Apr 2005 B1
6884115 Malloy Apr 2005 B2
6887102 Burris et al. May 2005 B1
6916200 Burris et al. Jul 2005 B2
6929265 Holland et al. Aug 2005 B2
6929508 Holland Aug 2005 B1
6935866 Kerekes et al. Aug 2005 B2
6939169 Islam et al. Sep 2005 B2
6942516 Shimoyama et al. Sep 2005 B2
6942520 Barlian et al. Sep 2005 B2
6944005 Kooiman Sep 2005 B2
6945805 Bollinger Sep 2005 B1
6948976 Goodwin et al. Sep 2005 B2
6953371 Baker et al. Oct 2005 B2
6955563 Croan Oct 2005 B1
D511497 Murphy et al. Nov 2005 S
D512024 Murphy et al. Nov 2005 S
D512689 Murphy et al. Dec 2005 S
6971912 Montena et al. Dec 2005 B2
6979234 Bleicher Dec 2005 B2
7008263 Holland Mar 2006 B2
7018216 Clark et al. Mar 2006 B1
7018235 Burris et al. Mar 2006 B1
7029326 Montena Apr 2006 B2
D521454 Murphy et al. May 2006 S
7063565 Ward Jun 2006 B2
7070447 Montena Jul 2006 B1
7077697 Kooiman Jul 2006 B2
7077699 Islam et al. Jul 2006 B2
7086897 Montena Aug 2006 B2
7090525 Morana Aug 2006 B1
7094114 Kurimoto Aug 2006 B2
7097499 Purdy Aug 2006 B1
7102866 Bo Sep 2006 B2
7102868 Montena Sep 2006 B2
7108547 Kisling et al. Sep 2006 B2
7108548 Burris et al. Sep 2006 B2
7112078 Czikora Sep 2006 B2
7112093 Holland Sep 2006 B1
7114990 Bence et al. Oct 2006 B2
7118285 Fenwick et al. Oct 2006 B2
7118382 Kerekes et al. Oct 2006 B2
7118416 Montena et al. Oct 2006 B2
7125283 Lin Oct 2006 B1
7128603 Burris et al. Oct 2006 B2
7128604 Hall Oct 2006 B2
7131867 Foster et al. Nov 2006 B1
7131868 Montena Nov 2006 B2
7140645 Cronley Nov 2006 B2
7144271 Burris et al. Dec 2006 B1
7144272 Burris et al. Dec 2006 B1
7147509 Burris et al. Dec 2006 B1
7153159 Burris et al. Dec 2006 B2
7156696 Montena Jan 2007 B1
7161785 Chawgo Jan 2007 B2
7165974 Kooiman Jan 2007 B2
7173121 Fang Feb 2007 B2
7179121 Burris et al. Feb 2007 B1
7179122 Holliday Feb 2007 B2
7182639 Burris Feb 2007 B2
7183639 Mihara et al. Feb 2007 B2
7189097 Benham Mar 2007 B2
7189114 Burris et al. Mar 2007 B1
7192308 Rodrigues et al. Mar 2007 B2
7229303 Vermoesen et al. Jun 2007 B2
7229550 Montena Jun 2007 B2
7238047 Saettele et al. Jul 2007 B2
7252536 Lazaro, Jr. et al. Aug 2007 B2
7252546 Holland Aug 2007 B1
7255598 Montena et al. Aug 2007 B2
7261594 Kodama et al. Aug 2007 B2
7264502 Holland Sep 2007 B2
7278882 Li Oct 2007 B1
7288002 Rodrigues et al. Oct 2007 B2
7291033 Hu Nov 2007 B2
7297023 Chawgo Nov 2007 B2
7299550 Montena Nov 2007 B2
7303435 Burris et al. Dec 2007 B2
7311555 Burris et al. Dec 2007 B1
7318609 Naito et al. Jan 2008 B2
7322846 Camelio Jan 2008 B2
7322851 Brookmire Jan 2008 B2
7329139 Benham Feb 2008 B2
7331820 Burris et al. Feb 2008 B2
7335058 Burris et al. Feb 2008 B1
7347129 Youtsey Mar 2008 B1
7347726 Wlos Mar 2008 B2
7347727 Wlos et al. Mar 2008 B2
7347729 Thomas et al. Mar 2008 B2
7351088 Qu Apr 2008 B1
7357641 Kerekes et al. Apr 2008 B2
7364462 Holland Apr 2008 B2
7371112 Burris et al. May 2008 B2
7371113 Burris et al. May 2008 B2
7375533 Gale May 2008 B2
7387524 Cheng Jun 2008 B2
7393245 Palinkas et al. Jul 2008 B2
7396249 Kauffman Jul 2008 B2
7404737 Youtsey Jul 2008 B1
7410389 Holliday Aug 2008 B2
7416415 Hart et al. Aug 2008 B2
7438327 Auray et al. Oct 2008 B2
7452239 Montena Nov 2008 B2
7455550 Sykes Nov 2008 B1
7458850 Burris et al. Dec 2008 B1
7458851 Montena Dec 2008 B2
7462068 Amidon Dec 2008 B2
7467980 Chiu Dec 2008 B2
7476127 Wei Jan 2009 B1
7478475 Hall Jan 2009 B2
7479033 Sykes et al. Jan 2009 B1
7479035 Bence et al. Jan 2009 B2
7484988 Ma et al. Feb 2009 B2
7484997 Hofling Feb 2009 B2
7488210 Burris et al. Feb 2009 B1
7494355 Hughes et al. Feb 2009 B2
7497729 Wei Mar 2009 B1
7500868 Holland et al. Mar 2009 B2
7500873 Hart Mar 2009 B1
7507116 Laerke et al. Mar 2009 B2
7507117 Amidon Mar 2009 B2
7513788 Camelio Apr 2009 B2
7537482 Burris et al. May 2009 B2
7540759 Liu et al. Jun 2009 B2
7544094 Paglia et al. Jun 2009 B1
7563133 Stein Jul 2009 B2
7566236 Malloy et al. Jul 2009 B2
7568945 Chee et al. Aug 2009 B2
7578693 Yoshida et al. Aug 2009 B2
7588454 Nakata et al. Sep 2009 B2
7607942 Van Swearingen Oct 2009 B1
7625227 Henderson et al. Dec 2009 B1
7632143 Islam Dec 2009 B1
7635283 Islam Dec 2009 B1
7648393 Burris et al. Jan 2010 B2
7651376 Schreier Jan 2010 B2
7674132 Chen Mar 2010 B1
7682177 Berthet Mar 2010 B2
7682188 Lu Mar 2010 B1
7694420 Ehret et al. Apr 2010 B2
7714229 Burris et al. May 2010 B2
7726996 Burris et al. Jun 2010 B2
7727011 Montena et al. Jun 2010 B2
7749021 Brodeur Jul 2010 B2
7753705 Montena Jul 2010 B2
7753710 George Jul 2010 B2
7753727 Islam et al. Jul 2010 B1
7758356 Burris et al. Jul 2010 B2
7758370 Flaherty Jul 2010 B1
7794275 Rodrigues Sep 2010 B2
7806714 Williams et al. Oct 2010 B2
7806725 Chen Oct 2010 B1
7811133 Gray Oct 2010 B2
7814654 Pichler Oct 2010 B2
D626920 Purdy et al. Nov 2010 S
7824216 Purdy Nov 2010 B2
7828594 Burris et al. Nov 2010 B2
7828595 Mathews Nov 2010 B2
7830154 Gale Nov 2010 B2
7833053 Mathews Nov 2010 B2
7845976 Mathews Dec 2010 B2
7845978 Chen Dec 2010 B1
7845980 Amidon Dec 2010 B1
7850472 Friedrich et al. Dec 2010 B2
7850487 Wei Dec 2010 B1
7857661 Islam Dec 2010 B1
7874870 Chen Jan 2011 B1
7887354 Holliday Feb 2011 B2
7892004 Hertzler et al. Feb 2011 B2
7892005 Haube Feb 2011 B2
7892024 Chen Feb 2011 B1
7914326 Sutter Mar 2011 B2
7918687 Paynter et al. Apr 2011 B2
7927135 Wlos Apr 2011 B1
7934955 Hsia May 2011 B1
7938662 Burris et al. May 2011 B2
7942695 Lu May 2011 B1
7950958 Mathews May 2011 B2
7950961 Chabalowski et al. May 2011 B2
7955126 Bence et al. Jun 2011 B2
7972158 Wild et al. Jul 2011 B2
7972176 Burris et al. Jul 2011 B2
7982005 Ames et al. Jul 2011 B2
8011955 Lu Sep 2011 B1
8025518 Burris et al. Sep 2011 B2
8029315 Purdy et al. Oct 2011 B2
8029316 Snyder et al. Oct 2011 B2
8037599 Pichler Oct 2011 B2
8047872 Burris et al. Nov 2011 B2
8062044 Montena et al. Nov 2011 B2
8062063 Malloy et al. Nov 2011 B2
8070504 Amidon et al. Dec 2011 B2
8075337 Malloy et al. Dec 2011 B2
8075338 Montena Dec 2011 B1
8079860 Zraik Dec 2011 B1
8087954 Fuchs Jan 2012 B2
8113875 Malloy et al. Feb 2012 B2
8113879 Zraik Feb 2012 B1
8157587 Paynter et al. Apr 2012 B2
8157588 Rodrigues et al. Apr 2012 B1
8167635 Mathews May 2012 B1
8167636 Montena May 2012 B1
8172612 Bence et al. May 2012 B2
8177572 Feye-Hohmann May 2012 B2
8192237 Purdy et al. Jun 2012 B2
8206172 Katagiri et al. Jun 2012 B2
D662893 Haberek et al. Jul 2012 S
8231412 Paglia et al. Jul 2012 B2
8262408 Kelly Sep 2012 B1
8272893 Burris et al. Sep 2012 B2
8287310 Burris et al. Oct 2012 B2
8287320 Purdy et al. Oct 2012 B2
8313345 Purdy Nov 2012 B2
8313353 Purdy et al. Nov 2012 B2
8317539 Stein Nov 2012 B2
8319136 Byron et al. Nov 2012 B2
8323053 Montena Dec 2012 B2
8323058 Flaherty et al. Dec 2012 B2
8323060 Purdy et al. Dec 2012 B2
8337229 Montena Dec 2012 B2
8366481 Ehret et al. Feb 2013 B2
8366482 Burris et al. Feb 2013 B2
8376769 Holland et al. Feb 2013 B2
D678844 Haberek Mar 2013 S
8398421 Haberek et al. Mar 2013 B2
8430688 Montena et al. Apr 2013 B2
8449326 Holland et al. May 2013 B2
8465322 Purdy Jun 2013 B2
8469739 Rodrigues et al. Jun 2013 B2
8469740 Ehret et al. Jun 2013 B2
D686164 Haberek et al. Jul 2013 S
D686576 Haberek et al. Jul 2013 S
8475205 Ehret et al. Jul 2013 B2
8480430 Ehret et al. Jul 2013 B2
8480431 Ehret et al. Jul 2013 B2
8485845 Ehret et al. Jul 2013 B2
8506325 Malloy et al. Aug 2013 B2
8517763 Burris et al. Aug 2013 B2
8517764 Wei et al. Aug 2013 B2
8529279 Montena Sep 2013 B2
8550835 Montena Oct 2013 B2
8568163 Burris et al. Oct 2013 B2
8568165 Wei et al. Oct 2013 B2
8591244 Thomas et al. Nov 2013 B2
8597050 Flaherty et al. Dec 2013 B2
8622776 Morikawa Jan 2014 B2
8636529 Stein Jan 2014 B2
8636541 Chastain et al. Jan 2014 B2
8647136 Purdy et al. Feb 2014 B2
8690603 Bence et al. Apr 2014 B2
8721365 Holland May 2014 B2
8727800 Holland et al. May 2014 B2
8758050 Montena Jun 2014 B2
8777658 Holland et al. Jul 2014 B2
8777661 Holland et al. Jul 2014 B2
8858251 Montena Oct 2014 B2
8888526 Burris Nov 2014 B2
8920192 Montena Dec 2014 B2
9017101 Ehret et al. Apr 2015 B2
9048599 Burris Jun 2015 B2
9153911 Burris et al. Oct 2015 B2
9166348 Burris et al. Oct 2015 B2
9172154 Burris Oct 2015 B2
9172157 Burris Oct 2015 B2
20010034143 Annequin Oct 2001 A1
20010046802 Perry et al. Nov 2001 A1
20010051448 Gonzales Dec 2001 A1
20020013088 Rodrigues et al. Jan 2002 A1
20020019161 Finke et al. Feb 2002 A1
20020038720 Kai et al. Apr 2002 A1
20020064014 Montena May 2002 A1
20020146935 Wong Oct 2002 A1
20030110977 Batlaw Jun 2003 A1
20030119358 Henningsen Jun 2003 A1
20030139081 Hall et al. Jul 2003 A1
20030194890 Ferderer et al. Oct 2003 A1
20030214370 Allison et al. Nov 2003 A1
20030224657 Malloy Dec 2003 A1
20040031144 Holland Feb 2004 A1
20040077215 Palinkas et al. Apr 2004 A1
20040102089 Chee May 2004 A1
20040137778 Mattheeuws et al. Jul 2004 A1
20040157499 Nania et al. Aug 2004 A1
20040194585 Clark Oct 2004 A1
20040209516 Burris et al. Oct 2004 A1
20040219833 Burris et al. Nov 2004 A1
20040229504 Liu Nov 2004 A1
20050042919 Montena Feb 2005 A1
20050079762 Hsia Apr 2005 A1
20050159045 Huang Jul 2005 A1
20050170692 Montena Aug 2005 A1
20050181652 Montena et al. Aug 2005 A1
20050181668 Montena et al. Aug 2005 A1
20050208827 Burris et al. Sep 2005 A1
20050233636 Rodrigues et al. Oct 2005 A1
20060014425 Montena Jan 2006 A1
20060099853 Sattele et al. May 2006 A1
20060110977 Matthews May 2006 A1
20060154519 Montena Jul 2006 A1
20060166552 Bence et al. Jul 2006 A1
20060178034 Shimirak Aug 2006 A1
20060178046 Tusini Aug 2006 A1
20060194465 Czikora Aug 2006 A1
20060199040 Yamada Sep 2006 A1
20060223355 Hirschmann Oct 2006 A1
20060246774 Buck Nov 2006 A1
20060258209 Hall Nov 2006 A1
20060276079 Chen Dec 2006 A1
20070004276 Stein Jan 2007 A1
20070026734 Bence et al. Feb 2007 A1
20070049113 Rodrigues et al. Mar 2007 A1
20070054535 Hall et al. Mar 2007 A1
20070059968 Ohtaka et al. Mar 2007 A1
20070082533 Currier et al. Apr 2007 A1
20070087613 Schumacher et al. Apr 2007 A1
20070123101 Palinkas May 2007 A1
20070155232 Burris et al. Jul 2007 A1
20070173100 Benham Jul 2007 A1
20070175027 Khemakhem et al. Aug 2007 A1
20070232117 Singer Oct 2007 A1
20070243759 Rodrigues et al. Oct 2007 A1
20070243762 Burke et al. Oct 2007 A1
20070287328 Hart et al. Dec 2007 A1
20080032556 Schreier Feb 2008 A1
20080102696 Montena May 2008 A1
20080171466 Buck et al. Jul 2008 A1
20080200066 Hofling Aug 2008 A1
20080200068 Aguirre Aug 2008 A1
20080214040 Holterhoff et al. Sep 2008 A1
20080289470 Aston Nov 2008 A1
20080310026 Nakayama Dec 2008 A1
20090029590 Sykes et al. Jan 2009 A1
20090098770 Bence et al. Apr 2009 A1
20090104801 Silva Apr 2009 A1
20090163075 Blew et al. Jun 2009 A1
20090186505 Mathews Jul 2009 A1
20090264003 Hertzler et al. Oct 2009 A1
20090305560 Chen Dec 2009 A1
20100007441 Yagisawa et al. Jan 2010 A1
20100022125 Burris et al. Jan 2010 A1
20100028563 Ota Feb 2010 A1
20100055978 Montena Mar 2010 A1
20100080563 DiFonzo et al. Apr 2010 A1
20100081321 Malloy et al. Apr 2010 A1
20100081322 Malloy et al. Apr 2010 A1
20100087071 DiFonzo et al. Apr 2010 A1
20100105246 Burris et al. Apr 2010 A1
20100124839 Montena May 2010 A1
20100130060 Islam May 2010 A1
20100178799 Lee Jul 2010 A1
20100216339 Burris et al. Aug 2010 A1
20100233901 Wild et al. Sep 2010 A1
20100233902 Youtsey Sep 2010 A1
20100233903 Islam Sep 2010 A1
20100255719 Purdy Oct 2010 A1
20100255721 Purdy et al. Oct 2010 A1
20100279548 Montena et al. Nov 2010 A1
20100297871 Haube Nov 2010 A1
20100297875 Purdy et al. Nov 2010 A1
20100304579 Kisling Dec 2010 A1
20100323541 Amidon et al. Dec 2010 A1
20110021072 Purdy Jan 2011 A1
20110021075 Orner et al. Jan 2011 A1
20110027039 Blair Feb 2011 A1
20110039448 Stein Feb 2011 A1
20110053413 Mathews Mar 2011 A1
20110074388 Bowman Mar 2011 A1
20110080158 Lawrence et al. Apr 2011 A1
20110111623 Burris et al. May 2011 A1
20110111626 Paglia et al. May 2011 A1
20110117774 Malloy et al. May 2011 A1
20110143567 Purdy et al. Jun 2011 A1
20110151714 Flaherty et al. Jun 2011 A1
20110230089 Amidon et al. Sep 2011 A1
20110230091 Krenceski et al. Sep 2011 A1
20110237123 Burris et al. Sep 2011 A1
20110237124 Flaherty et al. Sep 2011 A1
20110250789 Burris et al. Oct 2011 A1
20110318958 Burris et al. Dec 2011 A1
20120021642 Zraik Jan 2012 A1
20120040537 Burris Feb 2012 A1
20120045933 Youtsey Feb 2012 A1
20120064768 Islam et al. Mar 2012 A1
20120094530 Montena Apr 2012 A1
20120100751 Montena Apr 2012 A1
20120108098 Burris et al. May 2012 A1
20120122329 Montena May 2012 A1
20120129387 Holland et al. May 2012 A1
20120171894 Malloy et al. Jul 2012 A1
20120178289 Holliday Jul 2012 A1
20120202378 Krenceski et al. Aug 2012 A1
20120222302 Purdy et al. Sep 2012 A1
20120225581 Amidon et al. Sep 2012 A1
20120315788 Montena Dec 2012 A1
20130065433 Burris Mar 2013 A1
20130072057 Burris Mar 2013 A1
20130178096 Matzen Jul 2013 A1
20130273761 Ehret et al. Oct 2013 A1
20140106612 Burris Apr 2014 A1
20140106613 Burris Apr 2014 A1
20140120766 Meister et al. May 2014 A1
20140137393 Chastain et al. May 2014 A1
20140148044 Balcer et al. May 2014 A1
20140148051 Bence et al. May 2014 A1
20140154907 Ehret et al. Jun 2014 A1
20140298650 Chastain et al. Oct 2014 A1
20140322968 Burris Oct 2014 A1
20140342605 Burris et al. Nov 2014 A1
20150118901 Burris Apr 2015 A1
20150295331 Burris Oct 2015 A1
Foreign Referenced Citations (75)
Number Date Country
2096710 Nov 1994 CA
201149936 Nov 2008 CN
201149937 Nov 2008 CN
201178228 Jan 2009 CN
201904508 Jul 2011 CN
47931 Oct 1888 DE
102289 Jul 1897 DE
1117687 Nov 1961 DE
2261973 Jun 1974 DE
3117320 Apr 1982 DE
3211008 Oct 1983 DE
9001608.4 Apr 1990 DE
4439852 May 1996 DE
19749130 Aug 1999 DE
19957518 Sep 2001 DE
10346914 May 2004 DE
115179 Aug 1984 EP
116157 Aug 1984 EP
167738 Jan 1986 EP
72104 Feb 1986 EP
223464 May 1987 EP
265276 Apr 1988 EP
350835 Jan 1990 EP
428424 May 1991 EP
867978 Sep 1998 EP
1069654 Sep 1998 EP
1094565 Apr 2001 EP
1115179 Jul 2001 EP
1191268 Mar 2002 EP
1455420 Sep 2004 EP
1501159 Jan 2005 EP
1548898 Jun 2005 EP
1603200 Dec 2005 EP
1701410 Sep 2006 EP
2051340 Apr 2009 EP
2204331 May 1974 FR
2232846 Jan 1975 FR
2462798 Feb 1981 FR
2494508 May 1982 FR
589697 Jun 1947 GB
1087228 Oct 1967 GB
1270846 Apr 1972 GB
1332888 Oct 1973 GB
1401373 Jul 1975 GB
1421215 Jan 1976 GB
2019665 Oct 1979 GB
2079549 Jan 1982 GB
2252677 Aug 1992 GB
2264201 Aug 1993 GB
2331634 May 1999 GB
2448595 Oct 2008 GB
2450248 Dec 2008 GB
3280369 Dec 1991 JP
200215823 Jan 2002 JP
4129978 Aug 2008 JP
2009277571 Nov 2009 JP
4391268 Dec 2009 JP
4503793 Jul 2010 JP
100622526 Sep 2006 KR
427044 Mar 2001 TW
8700351 Jan 1987 WO
0005785 Feb 2000 WO
0186756 Nov 2001 WO
02069457 Sep 2002 WO
2004013883 Feb 2004 WO
2004098795 Nov 2004 WO
2006081141 Aug 2006 WO
2007062845 Jun 2007 WO
2009066705 May 2009 WO
2010135181 Nov 2010 WO
2011057033 May 2011 WO
2012162431 May 2011 WO
2011128665 Oct 2011 WO
2011128666 Oct 2011 WO
2013126629 Aug 2013 WO
Non-Patent Literature Citations (60)
Entry
Office Action dated Mar. 10, 2016 pertaining to U.S. Appl. No. 14/166,653.
Corning Gilbert 2004 OEM Coaxial Products Catalog, Quick Disconnects, 2 pages.
Digicon AVL Connector. ARRIS Group Inc. [online] 3 pages. Retrieved from the Internet: <URL: http://www.arrisi.com/special/digiconAVL.asp . . . .
US Office Action, U.S. Appl. No. 10/997,218; Jul. 31, 2006, pp. 1-10.
Society of Cable Telecommunications Engineers, Engineering Committee, Interface Practices Subcommittee; American National Standard; ANSI/SCTE Jan. 2006; Specification for “F” Port, Female, Outdoor. Published Jan. 2006. 9 pages.
The American Society of Mechanical Engineers; “Lock Washers (Inch Series), An American National Standard”; ASME 818.21.1-1999 (Revision of ASME B18.21.1-1994); Reaffirmed 2005. Published Feb. 11, 2000. 28 pages.
Notice of Allowance (Mail Date Mar. 20, 2012) for U.S. Appl. No. 13/117,843.
Search Report dated Jun. 6, 2014 pertaining to International application No. PCT/US2014/023374.
Search Report dated Apr. 9, 2014 pertaining to International application No. PCT/US2014/015934.
Society of Cable Telecommunications Engineers, Engineering Committee, Interface Practices Subcommittee; American National Standard; ANSI/SCTE Feb. 2006; “Specification for “F” Port, Female, Indoor”. Published Feb. 2006. 9 pages.
PPC, “Next Generation Compression Connectors,” pp. 1-6, Retrieved from http://www.tessco.com/yts/partnearnanufacturer list/vendors/ppc/pdf/ppcdigital spread.pdf.
Patent Cooperation Treaty, International Search Report for PCT/US2013/070497, Feb. 11, 2014, 3 pgs.
Patent Cooperation Treaty, International Search Report for PCT/US2013/064515, 10 pgs.
Patent Cooperation Treaty, International Search Report for PCT/US2013/064512, Jan. 21, 2014, 11 pgs.
Huber+Suhner AG, RF Connector Guide: Understanding connector technology, 2007, Retrieved from http://www.ie.itcr.ac.cr/marin/lic/e14515/HUBER+SUENER—RF—Connector—Guide.pdf.
Slade, Paul G,. Electrical Contacts: Principles and Applications, 1999, Retrieved from http://books.google.com/books (table of contents only).
U.S. Reexamination Control No. 95/002,400 filed Sep. 15, 2012, regarding U.S. Pat. No. 8,192,237 filed Feb. 23, 2011 (Purdy et al.).
U.S. Inter Partes Review Case No. 2013-00346 filed Jun. 10, 2013, regarding U.S. Pat. No. 8,287,320 filed Dec. 8, 2009, claims 1-8, 10-16, 18-31 (Purdy et al.).
U.S. Inter Partes Review Case No. 2013-00343 filed Jun. 10, 2013, regarding U.S. Pat. No. 8,313,353 filed Apr. 30, 2012, claims 1-6 (Purdy et al.).
U.S. Inter Partes Review Case No. 2013-00340 filed Jun. 10, 2013, regarding U.S. Pat. No. 8,323,060 filed Jun. 14, claims 1-9 (Purdy et al.).
U.S. Inter Partes Review Case No. 2013-00347 filed Jun. 10, 2013, regarding U.S. Pat. No. 8,287,320 filed Dec. 8, 2009, claims 9, 17, 32 (Purdy et al.).
U.S. Inter Partes Review Case No. 2013-00345 filed Jun. 10, 2013, regarding U.S. Pat. No. 8,313,353 filed Apr. 30, 2012, claims 7-27 (Purdy et al.).
U.S. Inter Partes Review Case No. 2013-00342 filed Jun. 10, 2013, regarding U.S. Pat. No. 8,323,060 filed Jun. 14, 2012, claims 10-25 (Purdy et al.).
U.S. Inter Partes Review Case No. 2014-00441 filed Feb. 18, 2014, regarding U.S. Pat. No. 8,562,366 filed Oct. 15, 2012, claims 31,37, 39, 41, 42, 55 56 (Purdy et al.).
U.S. Inter Partes Review Case No. 2014-00440 filed Feb. 18, 2014, regarding U.S. Pat. No. 8,597,041 filed Oct. 15, 2012, claims 1, 8, 9, 11, 18-26, 29 (Purdy et al.).
Office Action dated Jun. 12, 2014 pertaining to U.S. Appl. No. 13/795,737.
Office Action dated Aug. 25, 2014 pertaining to U.S. Appl. No. 13/605,481.
Election/Restrictions Requirement dated Jul. 31, 2014 pertaining to U.S. Appl. No. 13/652,969.
Office Action dated Aug. 29, 2014 pertaining to U.S. Appl. No. 13/827,522.
Election/Restrictions Requirement dated Jun. 20, 2014 pertaining to U.S. Appl. No. 13/795,780.
Office Action dated Sep. 19, 2014 pertaining to U.S. Appl. No. 13/795,780.
Office Action dated Oct. 6, 2014 pertaining to U.S. Appl. No. 13/732,679.
Corning Cabelcon waterproof CX3 7.0 QuickMount for RG6 cables; Cabelcon Connectors; www.cabelcom.dk; Mar. 15, 2012.
Maury Jr., M.; Microwave Coaxial Connector Technology: A Continuaing Evolution; Maury Microwave Corporation; Dec. 13, 2005; pp. 1-21; Maury Microwave Inc.
“Snap-On/Push-On” SMA Adapter; RF TEC Mfg., Inc.; Mar. 23, 2006; 2 pgs.
RG6 quick mount data sheet; Corning Cabelcon; 2010; 1 pg.; Corning Cabelcon ApS.
RG11 quick mount data sheet; Corning Cabelcon; 2013; 1 pg.; Corning Cabelcon ApS.
Gilbert Engineering Co., Inc.; OEM Coaxial Connectors catalog; Aug. 1993; p. 26.
UltraEase Compression Connectors; “F” Series 59 and 6 Connectors Product Information; May 2005; 4 pgs.
Pomona Electronics Full Line Catelog; vol. 50; 2003; pp. 1-100.
Office Action dated Dec. 31, 2014 pertaining to U.S. Appl. No. 13/605,498.
Office Action dated Dec. 16, 2014 pertaining to U.S. Appl. No. 13/653,095.
Office Action dated Dec. 19, 2014 pertaining to U.S. Appl. No. 13/652,969.
Office Action dated Dec. 29, 2014 pertaining to U.S. Appl. No. 13/833,793.
Notice of Allowance dated Feb. 2, 2015 pertaining to U.S. Appl. No. 13/795,737.
Office Action dated Feb. 25, 2015 pertaining to U.S. Appl. No. 13/605,481.
Office Action dated Feb. 18, 2015 pertaining to U.S. Appl. No. 13/827,522.
Office Action dated Mar. 19, 2015 pertaining to U.S. Appl. No. 13/795,780.
Patent Cooperation Treaty, International Search Report for PCT/US2014/037841, Mail Date Aug. 19, 2014, 3 pages.
Office Action dated Jun. 24, 2015 pertaining to U.S. Appl. No. 13/652,969.
Patent Cooperation Treaty, International Preliminary Report on Patentability for PCT/US2013/064512, mail date Apr. 30, 2015, 9 pages.
Patent Cooperation Treaty, International Preliminary Report on Patentability for PCT/US2013/064515, mail date Apr. 30, 2015, 8 pages.
Office Action dated Jun. 24, 2015 pertaining to U.S. Appl. No. 14/259,703.
Office Action dated Jul. 20, 2015 pertaining to U.S. Appl. No. 14/279,870.
Office Action dated Feb. 2, 2016 pertaining to U.S. Appl. No. 14/259,703.
Office Action dated Oct. 7, 2015 pertaining to U.S. Appl. No. 13/927,537.
Search Report dated Oct. 7, 2014 pertaining to International application No. PCT/US2014/043311.
Report on the Filing or Determination of an Action Regarding a Patent or Trademark regarding U.S. Pat. Nos. 8,313,353; 8,313,345; 8,323,060—Eastern District of Arkansas.
Report on the Filing or Determination of an Action Regarding a Patent or Trademark regarding U.S. Pat. Nos. 8,192,237; 8,287,320; 8,313,353; 8,323,060—Northern District of New York.
Report on the Filing or Determination of an Action Regarding a Patent or Trademark regarding U.S. Pat. No. 8,562,366—Northern District of New York.
Related Publications (1)
Number Date Country
20160248176 A1 Aug 2016 US
Provisional Applications (1)
Number Date Country
62118684 Feb 2015 US