The present disclosure relates generally to surgical access devices. In particular, the present disclosure relates to a surgical access device including a single valve for directing fluid flow through different fluid flow pathways of the surgical access device.
In minimally invasive surgical procedures, including endoscopic and laparoscopic surgeries, a surgical access device permits the introduction of a variety of surgical instruments into a body cavity or opening. A surgical access device (e.g., a cannula or an access port) is introduced through an opening in tissue (e.g., a naturally occurring orifice or an incision) to provide access to an underlying surgical site in the body. The opening is typically made using an obturator having a blunt or sharp tip that may be inserted through a passageway of the surgical access device. For example, a cannula has a tube of rigid material with a thin wall construction, through which an obturator may be passed. The obturator is utilized to penetrate a body wall, such as an abdominal wall, or to introduce the surgical access device through the body wall, and is then removed to permit introduction of surgical instruments through the surgical access device to perform the surgical procedure.
Minimally invasive surgical procedures, including both endoscopic and laparoscopic procedures, permit surgery to be performed on organs, tissues, and vessels far removed from an opening within the tissue. In laparoscopic procedures, the abdominal cavity is insufflated with an insufflation gas, e.g., CO2, to create a pneumoperitoneum thereby providing access to the underlying organs. A laparoscopic instrument is introduced through the surgical access device into the abdominal cavity to perform one or more surgical tasks. The surgical access device may incorporate a seal to establish a substantially fluid tight seal about the laparoscopic instrument to preserve the integrity of the pneumoperitoneum. The surgical access device, which is subjected to the pressurized environment, e.g., the pneumoperitoneum, may include an inflatable anchor to prevent the surgical access device from backing out of the opening in the abdominal wall, for example, during withdrawal of the laparoscopic instrument therefrom. Typically, the surgical access device includes separate valves for insufflating the abdominal cavity and for inflating/deflating the inflatable anchor.
This disclosure generally relates to a surgical access device including a universal fluid flow valve for selectively inflating or deflating an expandable anchor of the surgical access device and insufflating a working cavity (e.g., a body cavity) within a patient. The fluid flow valve is movable relative to a port having a plurality of fluid flow channels defined therein to allow a user (e.g., a surgeon) to open and close the fluid flow valve and to select one of the fluid flow channels for inflating (or deflating) the expandable anchor or insufflating the working cavity when the fluid flow valve is open. By incorporating a single valve into the surgical access device that can be utilized to open, close, and direct fluid flow through the surgical access device, instead of using separate valves for each fluid flow pathway, the number of components and assembly steps required to form and use the surgical access device is reduced, as well as the assembly time and/or material costs associated with the surgical access device, thereby simplifying the manufacture and set-up of the surgical access device and reducing cost to the manufacturer and/or user. Additionally, the universal fluid flow valve may be connected to a single fluid source, as compared to surgical access devices having separate valves, saving time and simplifying use to the user.
In an aspect, the disclosure provides a surgical access device including a cannula, an instrument housing coupled to the cannula, a port coupled to the instrument housing, and a valve disposed within the port. The cannula includes an elongated shaft defining an access lumen and an inflation lumen therethrough. The port includes an inflation channel and an insufflation channel defined therethrough. The inflation channel is in fluid communication with the inflation lumen of the cannula and the insufflation channel is in fluid communication with the access lumen of the cannula. The valve is movable within the port between an inflation position in which a passageway defined through the valve is aligned with the inflation channel of the port and an insufflation position in which the passageway of the valve is aligned with the insufflation channel of the port.
The valve may be slidable within the port between the inflation position and the insufflation position. The valve may be rotatable within the port between an open state in which the valve is in the inflation or the insufflation position and a closed state in which the passageway of the valve is out of alignment with the inflation and insufflation channels of the port.
The cannula may include an expandable anchor supported on the elongated shaft and in fluid communication with the inflation lumen. The expandable anchor may be a balloon.
The port may include a fluid connector portion configured for attachment to a fluid source and defining a first chamber therein. The inflation and insufflation channels of the port may be defined in a fluid channel housing portion of the port. The valve may be disposed between the fluid connector portion and the fluid channel housing portion of the port such that when the valve is in the inflation position, the passageway of the valve fluidly couples the first chamber of the fluid connector portion with the inflation channel of the fluid channel housing portion, and when the valve is in the insufflation position, the passageway of the valve fluidly couples the first chamber of the fluid connector portion with the insufflation channel of the fluid channel housing portion.
The valve may include a body portion extending along a longitudinal axis and the passageway may extend through the body portion along a transverse axis that is orthogonal to the longitudinal axis. The valve may include a pair of legs extending longitudinally from the body portion and flanges extending radially outwardly from the pair of legs. The body portion and the pair of legs of the valve may be disposed within a second chamber defined within a valve connector portion of the port. The valve may be slidable within the port such that when the valve is in the inflation position, the flanges of the valve contact a rim defined in the second chamber of the port and, when the valve is in the insufflation position, the flanges of the valve are spaced inwardly of the rim.
The valve may include a cap disposed at a first end portion thereof. The cap may include a handle extending radially outwardly therefrom. The cap may extend outwardly of or outside of the port. The cap may be laterally spaced from the port when the valve is in the inflation position, and the cap may abut the port when the valve is in the insufflation position. The handle may be aligned with a longitudinal axis of the cannula when the valve is in the open state, and the handle may be out of alignment with the longitudinal axis of the cannula when the valve is in the closed state.
The port may include a collar extending around the elongated shaft of the cannula. The insufflation channel of the port may be in fluid communication with a cavity defined in the instrument housing and the cavity may be in fluid communication with the access lumen of the cannula.
The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the aspects described in this disclosure will be apparent from the description and drawings, and from the claims.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate aspects and features of the disclosure and, together with the detailed description below, serve to further explain the disclosure, in which:
Aspects of the disclosure are described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed aspects are merely exemplary of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the disclosure in virtually any appropriately detailed structure.
Like reference numerals refer to similar or identical elements throughout the description of the figures. Throughout this description, the term “proximal” refers to a portion of a structure, or component thereof, that is closer to a user, and the term “distal” refers to a portion of the structure, or component thereof, that is farther from the user.
Surgical access assemblies with obturators, known as trocar assemblies, are employed during minimally invasive surgery, e.g., laparoscopic surgery, and provide for the sealed access of surgical instruments into an insufflated body cavity, such as the abdominal cavity. The surgical access assemblies of the present disclosure include an instrument housing mounted on a cannula. An obturator (not shown) is insertable through the instrument housing and the cannula. The obturator can have a blunt distal end, or a bladed or non-bladed penetrating distal end, and can be used to incise and/or separate tissue of the abdominal wall so that the surgical access assembly can be introduced into the abdomen. The handle of the obturator can engage or selectively lock into the instrument housing of the surgical access assembly.
In various aspects, a bladeless optical trocar obturator may be provided that permits separation of tissue planes in a surgical procedure and visualization of body tissue fibers as they are being separated, thereby permitting a controlled traversal across a body wall. In other aspects, the trocar obturator may be bladeless without being optical, e.g., without providing contemporaneous visualization thereof through the distal tip of the trocar obturator. The bladeless trocar obturator may be provided for the blunt dissection of the abdominal lining during a surgical procedure.
Trocar obturators suitable for use with the surgical access assembly of the present disclosure are known and include, for example, bladed, bladeless, blunt, optical, and non-optical. For a detailed description of the structure and function of exemplary trocar assemblies, including exemplar trocar obturators and exemplar cannulas, please refer to PCT Publication No. WO 2016/186905, the entire content of which is hereby incorporated by reference herein.
The surgical access device 100 includes a cannula 110 and an instrument housing 120 secured to the cannula 110. The cannula 110 generally includes an elongated shaft 112 extending along a longitudinal axis “X.” A proximal end portion 110a of the cannula 110 supports the instrument housing 120 thereon and a distal end portion 110b of the cannula 110 supports an expandable anchor 118 (e.g., an inflatable anchor, such as a balloon). The elongated shaft 112 includes an access lumen 111 defined by an inner surface 112a of the elongated shaft 112 that extends along the longitudinal axis “X” for reception and passage of a surgical instrument (not shown) therethrough.
The elongated shaft 112 also includes an inflation lumen 113 defined between the inner and outer surfaces 112a, 112b of the elongated shaft 112 that extends substantially parallel to the longitudinal axis “X.” The inflation lumen 113 is open at a distal end 113a thereof through the outer surface 112b of the elongated shaft 112 such that the inflation lumen 113 is in fluid communication with an interior 118a of the expandable anchor 118. The expandable anchor 118 is movable from a collapsed position in which the expandable anchor 118 is positioned directly against the outer surface 112b of the elongated shaft 112 and an expanded position in which the expandable anchor 118 extends radially outwardly from the elongated shaft 112, as seen in
The retention collar 150 is supported on the elongated shaft 112 of the cannula 110. The retention collar 150 is releasably engageable with the elongated shaft 112, and slidable therealong to adjust the longitudinal position of the retention collar 150 on the elongated shaft 112. The retention collar 150 secures the cannula 110 against an outer surface of tissue “T” (see e.g.,
The instrument housing 120 includes an upper housing section 122 and a lower housing section 124, and defines a cavity 121 therein that communicates with the access lumen 111 of the elongated shaft 112 of the cannula 110. The upper housing section 122 may be selectively attachable to, and detachable from, the lower housing section 124, and the lower housing section 124 may be releasably or permanently attached to the cannula 110. In aspects, either or both of the upper and lower housing sections 122, 124 of the instrument housing 120 may include knurls, indentations, tabs, or be otherwise configured to facilitate engagement by a user.
The instrument housing 120 supports a seal assembly 126 and a valve assembly 128 therein. The seal assembly 126 is disposed proximally of the valve assembly 128. The seal assembly 126 generally includes an instrument seal 126a for sealing around surgical instruments (not shown) inserted into the cannula 110, and the valve assembly 128 generally includes a zero-closure seal 128a for sealing the access lumen 111 of the cannula 110 in the absence of a surgical instrument inserted through the cannula 110. The seal assembly 126 and the valve assembly 128 prevent the escape of the insufflation fluid therefrom, while allowing surgical instruments to be inserted therethrough and into the body cavity. The instrument seal 126a may include any known instrument seal used in cannulas and/or trocars, such as septum seal. The zero-closure seal 128a may be any known zero-closure seal for closing off the passageway into the access lumen 111, such as a duckbill seal or flapper valve.
As shown in
As seen in
As seen in
With continued reference to
As seen in
As shown in
In the inflation position of
In the insufflation position of
As shown in
Accordingly, the valve 140 is rotatable between the open and closed states and the slidable between the inflation and insufflation positions. In aspects, indicia may be provided on the port 130 and/or the valve 140 to indicate the state and/or position of the valve 140 relative to the port 130.
In a method of use, as shown in
The retention collar 150 is slid distally along the elongated shaft 112 of the cannula 110 until the retention collar 150 abuts or presses on a second side of the tissue “T” disposed outside of the body cavity “C”. The tissue “T” is thus sandwiched between the expandable anchor 118 and the retention collar 150 to prevent the cannula 110 from being withdrawn from or over-inserted into the tissue “T”. In this manner, the surgical access assembly 10 is secured to the tissue “T” and longitudinal movement of the cannula 110 relative to the tissue “T” is prevented or minimized throughout insertion, withdrawal, and/or manipulation of a surgical instrument (not shown) through the cannula 110.
The body cavity “C” is insufflated by moving the valve 140 to the open state and the insufflation position seen in
Surgical instruments (not shown) may then be introduced through the surgical access assembly 10 and into the body cavity “C” to perform one or more surgical tasks. The surgical instruments may be, for example, laparoscopic or endoscopic clip appliers, graspers, dissectors, retractors, staplers, laser probes, photographic devices, tubes, endoscopes, laparoscopes, electro-surgical devices, etc. At any time during the surgical procedure, if the cannula 110 needs to be adjusted within the tissue “T” or insufflation of the body cavity “C” needs to be adjusted, the valve 140 of the surgical access device 100 may be moved to the appropriate state and/or position to allow for fluid flow through the appropriate fluid flow pathway, as needed or desired.
Following the surgical procedure, the expandable anchor 118 is deflated to permit the withdrawal of the surgical access assembly 10 from the tissue “T”. The expandable anchor 118 is deflated by moving the valve 140 to the open state and the inflation position seen in
It should be understood that while aspects of the disclosure have been described, other aspects are possible.
For example, while the surgical access device is described as having inflation and insufflation fluid flow pathways, other configurations are additionally or alternatively possible. For example, the surgical access device may include additional or alternative fluid flow pathway(s) and the port of the surgical access device may be modified to accommodate fluid flow through the additional or alternative fluid flow pathway(s).
As another example, while the valve of the surgical access device is described as having an outward or inflation position and an inward or insufflation position, these positions may be switched depending upon the configuration of the inflation and insufflation channels within the port and the inflation and access lumens within the cannula.
While aspects of the disclosure have been described and shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. It is to be understood, therefore, that the disclosure is not limited to the precise aspects described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, the elements and features shown and described in connection with certain aspects of the disclosure may be combined with the elements and features of certain other aspects without departing from the scope of the present disclosure, and that such modifications and variation are also included within the scope of the present disclosure. Therefore, the above description should not be construed as limiting, but merely as exemplifications of aspects of the disclosure. Thus, the scope of the disclosure should be determined by the appended claims and their legal equivalents, rather than by the examples given.
Number | Name | Date | Kind |
---|---|---|---|
397060 | Knapp | Jan 1889 | A |
512456 | Sadikova | Jan 1894 | A |
1213005 | Pillsbury | Jan 1917 | A |
2912981 | Keough | Nov 1959 | A |
2936760 | Gains | May 1960 | A |
3039468 | Price | Jun 1962 | A |
3050066 | Koehn | Aug 1962 | A |
3253594 | Matthews et al. | May 1966 | A |
3397699 | Kohl | Aug 1968 | A |
3545443 | Ansari et al. | Dec 1970 | A |
3713447 | Adair | Jan 1973 | A |
3774596 | Cook | Nov 1973 | A |
3800788 | White | Apr 1974 | A |
3882852 | Sinnreich | May 1975 | A |
3896816 | Mattler | Jul 1975 | A |
3961632 | Moossun | Jun 1976 | A |
RE29207 | Bolduc et al. | May 1977 | E |
4083369 | Sinnreich | Apr 1978 | A |
4217889 | Radovan et al. | Aug 1980 | A |
4243050 | Littleford | Jan 1981 | A |
4276874 | Wolvek et al. | Jul 1981 | A |
4312353 | Shahbabian | Jan 1982 | A |
4327709 | Hanson et al. | May 1982 | A |
4345606 | Littleford | Aug 1982 | A |
4411654 | Boarini et al. | Oct 1983 | A |
4416267 | Garren et al. | Nov 1983 | A |
4490137 | Moukheibir | Dec 1984 | A |
4496345 | Hasson | Jan 1985 | A |
4574806 | McCarthy | Mar 1986 | A |
4581025 | Timmermans | Apr 1986 | A |
4596554 | Dastgeer | Jun 1986 | A |
4596559 | Teischhacker | Jun 1986 | A |
4608965 | Anspach, Jr. et al. | Sep 1986 | A |
4644936 | Schiff | Feb 1987 | A |
4654030 | Moll et al. | Mar 1987 | A |
4685447 | Iversen et al. | Aug 1987 | A |
4701163 | Parks | Oct 1987 | A |
4738666 | Fuqua | Apr 1988 | A |
4769038 | Bendavid et al. | Sep 1988 | A |
4772266 | Groshong | Sep 1988 | A |
4779611 | Grooters et al. | Oct 1988 | A |
4784133 | Mackin | Nov 1988 | A |
4793348 | Palmaz | Dec 1988 | A |
4798205 | Bonomo et al. | Jan 1989 | A |
4800901 | Rosenberg | Jan 1989 | A |
4802479 | Haber et al. | Feb 1989 | A |
4813429 | Eshel et al. | Mar 1989 | A |
4840613 | Balbierz | Jun 1989 | A |
4854316 | Davis | Aug 1989 | A |
4861334 | Nawaz | Aug 1989 | A |
4865593 | Ogawa et al. | Sep 1989 | A |
4869717 | Adair | Sep 1989 | A |
4888000 | McQuilkin et al. | Dec 1989 | A |
4899747 | Garren et al. | Feb 1990 | A |
4917668 | Haindl | Apr 1990 | A |
4931042 | Holmes et al. | Jun 1990 | A |
4955895 | Sugiyama et al. | Sep 1990 | A |
5002557 | Hasson | Mar 1991 | A |
5009643 | Reich et al. | Apr 1991 | A |
5030206 | Lander | Jul 1991 | A |
5030227 | Rosenbluth et al. | Jul 1991 | A |
5074871 | Groshong | Dec 1991 | A |
5098392 | Fleischhacker et al. | Mar 1992 | A |
5104383 | Shichman | Apr 1992 | A |
5116318 | Hillstead | May 1992 | A |
5116357 | Eberbach | May 1992 | A |
5122122 | Allgood | Jun 1992 | A |
5122155 | Eberbach | Jun 1992 | A |
5137512 | Burns et al. | Aug 1992 | A |
5141494 | Danforth et al. | Aug 1992 | A |
5141515 | Eberbach | Aug 1992 | A |
5147302 | Euteneuer et al. | Sep 1992 | A |
5147316 | Castillenti | Sep 1992 | A |
5147374 | Fernandez | Sep 1992 | A |
5158545 | Trudell et al. | Oct 1992 | A |
5159925 | Neuwirth et al. | Nov 1992 | A |
5163949 | Bonutti | Nov 1992 | A |
5176692 | Wilk et al. | Jan 1993 | A |
5176697 | Hasson et al. | Jan 1993 | A |
5183463 | Debbas | Feb 1993 | A |
5188596 | Condon et al. | Feb 1993 | A |
5188630 | Christoudias | Feb 1993 | A |
5195507 | Bilweis | Mar 1993 | A |
5201742 | Hasson | Apr 1993 | A |
5201754 | Crittenden et al. | Apr 1993 | A |
5209725 | Roth | May 1993 | A |
5215526 | Deniega et al. | Jun 1993 | A |
5222970 | Reeves | Jun 1993 | A |
5226890 | Ianniruberto et al. | Jul 1993 | A |
5232446 | Arney | Aug 1993 | A |
5232451 | Freitas et al. | Aug 1993 | A |
5234454 | Bangs | Aug 1993 | A |
5250025 | Sosnowski et al. | Oct 1993 | A |
5258026 | Johnson et al. | Nov 1993 | A |
5269753 | Wilk | Dec 1993 | A |
5290249 | Foster et al. | Mar 1994 | A |
5308327 | Heaven et al. | May 1994 | A |
5309896 | Moll et al. | May 1994 | A |
5314443 | Rudnick | May 1994 | A |
5318012 | Wilk | Jun 1994 | A |
5330497 | Freitas et al. | Jul 1994 | A |
5342307 | Euteneuer et al. | Aug 1994 | A |
5346504 | Ortiz et al. | Sep 1994 | A |
5359995 | Sewell, Jr. | Nov 1994 | A |
5361752 | Moll et al. | Nov 1994 | A |
5370134 | Chin et al. | Dec 1994 | A |
5383889 | Warner et al. | Jan 1995 | A |
5397311 | Walker et al. | Mar 1995 | A |
5402772 | Moll et al. | Apr 1995 | A |
5407433 | Loomas | Apr 1995 | A |
5431173 | Chin et al. | Jul 1995 | A |
5445615 | Yoon | Aug 1995 | A |
5468248 | Chin et al. | Nov 1995 | A |
5514091 | Yoon | May 1996 | A |
5514153 | Bonutti | May 1996 | A |
5540658 | Evans et al. | Jul 1996 | A |
5540711 | Kieturakis et al. | Jul 1996 | A |
5607441 | Sierocuk et al. | Mar 1997 | A |
5607443 | Kieturakis et al. | Mar 1997 | A |
5632761 | Smith et al. | May 1997 | A |
5656013 | Yoon | Aug 1997 | A |
5667479 | Kieturakis | Sep 1997 | A |
5667520 | Bonutti | Sep 1997 | A |
5704372 | Moll et al. | Jan 1998 | A |
5707382 | Sierocuk et al. | Jan 1998 | A |
5713869 | Morejon | Feb 1998 | A |
5722986 | Smith et al. | Mar 1998 | A |
5728119 | Smith et al. | Mar 1998 | A |
5730748 | Fogarty et al. | Mar 1998 | A |
5730756 | Kieturakis et al. | Mar 1998 | A |
5738628 | Sierocuk et al. | Apr 1998 | A |
5755693 | Walker et al. | May 1998 | A |
5762604 | Kieturakis | Jun 1998 | A |
5772680 | Kieturakis et al. | Jun 1998 | A |
5779728 | Lunsford et al. | Jul 1998 | A |
5797947 | Mollenauer | Aug 1998 | A |
5803901 | Chin et al. | Sep 1998 | A |
5810867 | Zarbatany et al. | Sep 1998 | A |
5814060 | Fogarty et al. | Sep 1998 | A |
5836913 | Orth et al. | Nov 1998 | A |
5836961 | Kieturakis et al. | Nov 1998 | A |
5865802 | Yoon et al. | Feb 1999 | A |
5865812 | Correia | Feb 1999 | A |
5893866 | Hermann et al. | Apr 1999 | A |
5925058 | Smith et al. | Jul 1999 | A |
6099511 | Devos | Aug 2000 | A |
6361543 | Chin et al. | Mar 2002 | B1 |
6368337 | Kieturakis et al. | Apr 2002 | B1 |
6375665 | Nash et al. | Apr 2002 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6432121 | Jervis | Aug 2002 | B1 |
6447529 | Fogarty et al. | Sep 2002 | B2 |
6468205 | Mollenauer et al. | Oct 2002 | B1 |
6506200 | Chin | Jan 2003 | B1 |
6514272 | Kieturakis et al. | Feb 2003 | B1 |
6517514 | Campbell | Feb 2003 | B1 |
6527787 | Fogarty et al. | Mar 2003 | B1 |
6540764 | Kieturakis et al. | Apr 2003 | B1 |
6796960 | Cioanta et al. | Sep 2004 | B2 |
7300448 | Criscuolo et al. | Nov 2007 | B2 |
7691089 | Gresham | Apr 2010 | B2 |
8454645 | Criscuolo et al. | Jun 2013 | B2 |
8926508 | Hotter | Jan 2015 | B2 |
20140012194 | Terwiske | Jan 2014 | A1 |
20140121515 | Vitullo | May 2014 | A1 |
Number | Date | Country |
---|---|---|
0480653 | Apr 1992 | EP |
0610099 | Aug 1994 | EP |
0880939 | Dec 1998 | EP |
9206638 | Apr 1992 | WO |
9218056 | Oct 1992 | WO |
9221293 | Dec 1992 | WO |
9221295 | Dec 1992 | WO |
9309722 | May 1993 | WO |
9721461 | Jun 1997 | WO |
9912602 | Mar 1999 | WO |
0126724 | Apr 2001 | WO |
02096307 | Dec 2002 | WO |
2004032756 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20220117630 A1 | Apr 2022 | US |