Surgical access device including a universal fluid flow valve

Information

  • Patent Grant
  • 11844549
  • Patent Number
    11,844,549
  • Date Filed
    Thursday, October 15, 2020
    3 years ago
  • Date Issued
    Tuesday, December 19, 2023
    4 months ago
Abstract
A surgical access device includes a cannula, an instrument housing coupled to the cannula, a port coupled to the instrument housing, and a valve disposed within the port. The cannula includes an elongated shaft defining an access lumen and an inflation lumen therethrough. The port includes an inflation channel and an insufflation channel defined therethrough. The inflation channel is in fluid communication with the inflation lumen of the cannula and the insufflation channel is in fluid communication with the access lumen of the cannula. The valve is movable within the port between an inflation position in which a passageway defined through the valve is aligned with the inflation channel of the port, and an insufflation position in which the passageway of the valve is aligned with the insufflation channel of the port.
Description
FIELD

The present disclosure relates generally to surgical access devices. In particular, the present disclosure relates to a surgical access device including a single valve for directing fluid flow through different fluid flow pathways of the surgical access device.


BACKGROUND

In minimally invasive surgical procedures, including endoscopic and laparoscopic surgeries, a surgical access device permits the introduction of a variety of surgical instruments into a body cavity or opening. A surgical access device (e.g., a cannula or an access port) is introduced through an opening in tissue (e.g., a naturally occurring orifice or an incision) to provide access to an underlying surgical site in the body. The opening is typically made using an obturator having a blunt or sharp tip that may be inserted through a passageway of the surgical access device. For example, a cannula has a tube of rigid material with a thin wall construction, through which an obturator may be passed. The obturator is utilized to penetrate a body wall, such as an abdominal wall, or to introduce the surgical access device through the body wall, and is then removed to permit introduction of surgical instruments through the surgical access device to perform the surgical procedure.


Minimally invasive surgical procedures, including both endoscopic and laparoscopic procedures, permit surgery to be performed on organs, tissues, and vessels far removed from an opening within the tissue. In laparoscopic procedures, the abdominal cavity is insufflated with an insufflation gas, e.g., CO2, to create a pneumoperitoneum thereby providing access to the underlying organs. A laparoscopic instrument is introduced through the surgical access device into the abdominal cavity to perform one or more surgical tasks. The surgical access device may incorporate a seal to establish a substantially fluid tight seal about the laparoscopic instrument to preserve the integrity of the pneumoperitoneum. The surgical access device, which is subjected to the pressurized environment, e.g., the pneumoperitoneum, may include an inflatable anchor to prevent the surgical access device from backing out of the opening in the abdominal wall, for example, during withdrawal of the laparoscopic instrument therefrom. Typically, the surgical access device includes separate valves for insufflating the abdominal cavity and for inflating/deflating the inflatable anchor.


SUMMARY

This disclosure generally relates to a surgical access device including a universal fluid flow valve for selectively inflating or deflating an expandable anchor of the surgical access device and insufflating a working cavity (e.g., a body cavity) within a patient. The fluid flow valve is movable relative to a port having a plurality of fluid flow channels defined therein to allow a user (e.g., a surgeon) to open and close the fluid flow valve and to select one of the fluid flow channels for inflating (or deflating) the expandable anchor or insufflating the working cavity when the fluid flow valve is open. By incorporating a single valve into the surgical access device that can be utilized to open, close, and direct fluid flow through the surgical access device, instead of using separate valves for each fluid flow pathway, the number of components and assembly steps required to form and use the surgical access device is reduced, as well as the assembly time and/or material costs associated with the surgical access device, thereby simplifying the manufacture and set-up of the surgical access device and reducing cost to the manufacturer and/or user. Additionally, the universal fluid flow valve may be connected to a single fluid source, as compared to surgical access devices having separate valves, saving time and simplifying use to the user.


In an aspect, the disclosure provides a surgical access device including a cannula, an instrument housing coupled to the cannula, a port coupled to the instrument housing, and a valve disposed within the port. The cannula includes an elongated shaft defining an access lumen and an inflation lumen therethrough. The port includes an inflation channel and an insufflation channel defined therethrough. The inflation channel is in fluid communication with the inflation lumen of the cannula and the insufflation channel is in fluid communication with the access lumen of the cannula. The valve is movable within the port between an inflation position in which a passageway defined through the valve is aligned with the inflation channel of the port and an insufflation position in which the passageway of the valve is aligned with the insufflation channel of the port.


The valve may be slidable within the port between the inflation position and the insufflation position. The valve may be rotatable within the port between an open state in which the valve is in the inflation or the insufflation position and a closed state in which the passageway of the valve is out of alignment with the inflation and insufflation channels of the port.


The cannula may include an expandable anchor supported on the elongated shaft and in fluid communication with the inflation lumen. The expandable anchor may be a balloon.


The port may include a fluid connector portion configured for attachment to a fluid source and defining a first chamber therein. The inflation and insufflation channels of the port may be defined in a fluid channel housing portion of the port. The valve may be disposed between the fluid connector portion and the fluid channel housing portion of the port such that when the valve is in the inflation position, the passageway of the valve fluidly couples the first chamber of the fluid connector portion with the inflation channel of the fluid channel housing portion, and when the valve is in the insufflation position, the passageway of the valve fluidly couples the first chamber of the fluid connector portion with the insufflation channel of the fluid channel housing portion.


The valve may include a body portion extending along a longitudinal axis and the passageway may extend through the body portion along a transverse axis that is orthogonal to the longitudinal axis. The valve may include a pair of legs extending longitudinally from the body portion and flanges extending radially outwardly from the pair of legs. The body portion and the pair of legs of the valve may be disposed within a second chamber defined within a valve connector portion of the port. The valve may be slidable within the port such that when the valve is in the inflation position, the flanges of the valve contact a rim defined in the second chamber of the port and, when the valve is in the insufflation position, the flanges of the valve are spaced inwardly of the rim.


The valve may include a cap disposed at a first end portion thereof. The cap may include a handle extending radially outwardly therefrom. The cap may extend outwardly of or outside of the port. The cap may be laterally spaced from the port when the valve is in the inflation position, and the cap may abut the port when the valve is in the insufflation position. The handle may be aligned with a longitudinal axis of the cannula when the valve is in the open state, and the handle may be out of alignment with the longitudinal axis of the cannula when the valve is in the closed state.


The port may include a collar extending around the elongated shaft of the cannula. The insufflation channel of the port may be in fluid communication with a cavity defined in the instrument housing and the cavity may be in fluid communication with the access lumen of the cannula.


The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the aspects described in this disclosure will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate aspects and features of the disclosure and, together with the detailed description below, serve to further explain the disclosure, in which:



FIG. 1 is a perspective view of a surgical access assembly including a surgical access device and a retention collar in accordance with an aspect of the disclosure;



FIG. 2 is cross-sectional view of the surgical access assembly of FIG. 1, taken along section line 2-2 of FIG. 1;



FIG. 3 is a perspective view of a proximal end portion of the surgical access device of FIG. 1, shown with an upper housing section of an instrument housing removed and a valve separated from a port of the surgical access device;



FIG. 4 is a perspective view of the valve of FIG. 3;



FIG. 5 is a close-up view of the area of detail indicated in FIG. 2, shown with the valve disposed in an open state and an inflation position;



FIG. 6 is a close-up view of the surgical access device of FIG. 5, shown with the valve disposed in the open state and an insufflation position;



FIG. 7 is a perspective view of a proximal end portion of the surgical access device of FIG. 1, shown with the upper housing section of the instrument housing removed and the valve disposed in a closed state;



FIG. 8 is a cross-sectional view of the surgical access assembly of FIG. 7, taken along section line 8-8 of FIG. 7; and



FIG. 9 is a side view of the surgical access assembly of FIG. 1, shown connected to a fluid source and positioned in tissue.





DETAILED DESCRIPTION

Aspects of the disclosure are described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed aspects are merely exemplary of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the disclosure in virtually any appropriately detailed structure.


Like reference numerals refer to similar or identical elements throughout the description of the figures. Throughout this description, the term “proximal” refers to a portion of a structure, or component thereof, that is closer to a user, and the term “distal” refers to a portion of the structure, or component thereof, that is farther from the user.


Surgical access assemblies with obturators, known as trocar assemblies, are employed during minimally invasive surgery, e.g., laparoscopic surgery, and provide for the sealed access of surgical instruments into an insufflated body cavity, such as the abdominal cavity. The surgical access assemblies of the present disclosure include an instrument housing mounted on a cannula. An obturator (not shown) is insertable through the instrument housing and the cannula. The obturator can have a blunt distal end, or a bladed or non-bladed penetrating distal end, and can be used to incise and/or separate tissue of the abdominal wall so that the surgical access assembly can be introduced into the abdomen. The handle of the obturator can engage or selectively lock into the instrument housing of the surgical access assembly.


In various aspects, a bladeless optical trocar obturator may be provided that permits separation of tissue planes in a surgical procedure and visualization of body tissue fibers as they are being separated, thereby permitting a controlled traversal across a body wall. In other aspects, the trocar obturator may be bladeless without being optical, e.g., without providing contemporaneous visualization thereof through the distal tip of the trocar obturator. The bladeless trocar obturator may be provided for the blunt dissection of the abdominal lining during a surgical procedure.


Trocar obturators suitable for use with the surgical access assembly of the present disclosure are known and include, for example, bladed, bladeless, blunt, optical, and non-optical. For a detailed description of the structure and function of exemplary trocar assemblies, including exemplar trocar obturators and exemplar cannulas, please refer to PCT Publication No. WO 2016/186905, the entire content of which is hereby incorporated by reference herein.



FIGS. 1 and 2 illustrate a surgical access assembly 10 including a surgical access device 100 and a retention collar 150 supported on the surgical access device 100. The surgical access assembly 10 will further be described to the extent necessary to disclose aspects of the disclosure. For a detailed description of the structure and function of components of exemplary surgical access assemblies, surgical access devices, and/or retention collars, reference may be made to U.S. Pat. Nos. 7,300,448; 7,691,089; and 8,926,508, the entire content of each of which is hereby incorporated by reference herein.


The surgical access device 100 includes a cannula 110 and an instrument housing 120 secured to the cannula 110. The cannula 110 generally includes an elongated shaft 112 extending along a longitudinal axis “X.” A proximal end portion 110a of the cannula 110 supports the instrument housing 120 thereon and a distal end portion 110b of the cannula 110 supports an expandable anchor 118 (e.g., an inflatable anchor, such as a balloon). The elongated shaft 112 includes an access lumen 111 defined by an inner surface 112a of the elongated shaft 112 that extends along the longitudinal axis “X” for reception and passage of a surgical instrument (not shown) therethrough.


The elongated shaft 112 also includes an inflation lumen 113 defined between the inner and outer surfaces 112a, 112b of the elongated shaft 112 that extends substantially parallel to the longitudinal axis “X.” The inflation lumen 113 is open at a distal end 113a thereof through the outer surface 112b of the elongated shaft 112 such that the inflation lumen 113 is in fluid communication with an interior 118a of the expandable anchor 118. The expandable anchor 118 is movable from a collapsed position in which the expandable anchor 118 is positioned directly against the outer surface 112b of the elongated shaft 112 and an expanded position in which the expandable anchor 118 extends radially outwardly from the elongated shaft 112, as seen in FIG. 1. The expandable anchor 118 is movable through body tissue when in the collapsed position and secures the cannula 110 against an inner surface of tissue “T”, such as an abdominal wall, when in the expanded position (see e.g., FIG. 9).


The retention collar 150 is supported on the elongated shaft 112 of the cannula 110. The retention collar 150 is releasably engageable with the elongated shaft 112, and slidable therealong to adjust the longitudinal position of the retention collar 150 on the elongated shaft 112. The retention collar 150 secures the cannula 110 against an outer surface of tissue “T” (see e.g., FIG. 9). The retention collar 150 may be formed from a compressible material to aid in sealing the opening into the tissue of the body wall. The retention collar 150 may include any known retention mechanism used on cannulas and/or trocars, such as foam collars.


The instrument housing 120 includes an upper housing section 122 and a lower housing section 124, and defines a cavity 121 therein that communicates with the access lumen 111 of the elongated shaft 112 of the cannula 110. The upper housing section 122 may be selectively attachable to, and detachable from, the lower housing section 124, and the lower housing section 124 may be releasably or permanently attached to the cannula 110. In aspects, either or both of the upper and lower housing sections 122, 124 of the instrument housing 120 may include knurls, indentations, tabs, or be otherwise configured to facilitate engagement by a user.


The instrument housing 120 supports a seal assembly 126 and a valve assembly 128 therein. The seal assembly 126 is disposed proximally of the valve assembly 128. The seal assembly 126 generally includes an instrument seal 126a for sealing around surgical instruments (not shown) inserted into the cannula 110, and the valve assembly 128 generally includes a zero-closure seal 128a for sealing the access lumen 111 of the cannula 110 in the absence of a surgical instrument inserted through the cannula 110. The seal assembly 126 and the valve assembly 128 prevent the escape of the insufflation fluid therefrom, while allowing surgical instruments to be inserted therethrough and into the body cavity. The instrument seal 126a may include any known instrument seal used in cannulas and/or trocars, such as septum seal. The zero-closure seal 128a may be any known zero-closure seal for closing off the passageway into the access lumen 111, such as a duckbill seal or flapper valve.


As shown in FIGS. 1-5, the surgical access device 100 includes a port 130 extending outwardly therefrom and includes a valve 140 disposed partially therein. The port 130 may be integrally formed as a single piece with the instrument housing 120 (e.g., the lower housing section 124) or the port 130 may be a separate component secured to the instrument housing 120. The port 130 may include a collar 132 extending around and engaged with the elongated shaft 112 of the cannula 110. The collar 132 may be secured to the cannula 110 by, for example, snap fit or friction fit engagement, although other mating structures and relationships are envisioned.


As seen in FIGS. 3 and 5, the port 130 includes a fluid connector portion 130a, a valve connector portion 130b, and a fluid channel housing portion 130c. The fluid connector portion 130a is configured for attachment to a fluid source “F” (FIG. 9) and defines a first chamber 131 therein to allow for the flow of fluid (e.g., air, CO2, or other gases or liquids) into and out of the port 130. The valve connector portion 130b defines a second chamber 133 therein that is configured to receive the valve 140 in a substantially fluid tight manner for controlling fluid flow from the fluid connector portion 130a to the fluid channel housing portion 130c. The fluid channel housing portion 130c contains separate inflation and insufflation channels 135, 137 defined therethrough that are in fluid communication with the inflation and access lumens 113, 111, respectively, of the cannula 110 (FIG. 2) for directing fluid flow to either the inflation lumen 113 or the access lumen 111. The port 130 allows fluid to flow from the fluid source and into the first chamber 131 of the fluid connector portion 130a which, in turn, is in selective communication with the inflation channel 135 or the insufflation channel 137 of the fluid channel housing portion 130c via the valve 140 positioned in the second chamber 133 of the valve connector portion 130b.


As seen in FIGS. 2 and 5, the inflation channel 135 of the port 130 is in fluid communication with the inflation lumen 113 of the cannula 110 to inflate or deflate the expandable anchor 118. The insufflation channel 137 of the port 130 is in fluid communication with the cavity 121 of the instrument housing 120 which, in turn, is in fluid communication with the access lumen 111 of the cannula 110 to insufflate a body cavity, such as an abdominal cavity (e.g., create a pneumoperitoneum). The insufflation channel 137 is disposed distally of the valve assembly 128 to maintain insufflation pressure within the body cavity. Accordingly, the inflation channel 135 and the inflation lumen 113 provide a fluid flow pathway from a fluid source “F” (FIG. 9) coupled to the port 130 to the expandable anchor 118, and the insufflation channel 137, the cavity 121, and the access lumen 111 provide a fluid flow pathway from the fluid source coupled to the port 130 to a body cavity “C” of a patient (FIG. 9).


With continued reference to FIGS. 1-5, the valve 140 is coupled to the port 130. The valve 140 is slidable relative to the port 130 between an inflation position and an insufflation position, and is rotatable relative to the port between open and closed states, as described in further detail below. As seen in FIG. 4, the valve 140 includes a body portion 142 extending along a longitudinal axis “A” and having a generally cylindrical shape. A passageway 141 extends through a central portion 142a of the body portion 142 along a transverse axis “B” that is orthogonal to the longitudinal axis “A.” A first end portion 140a of the valve 140 includes a cap 144 having a larger radial dimension than that of the body portion 142 and a handle 145 extending radially outwardly from the cap 144. A second end portion 140b of the valve 140 includes a pair of legs 146 extending longitudinally from the body portion 142 and a flange 148 extending radially outwardly from each leg 146. A lip 148a of each flange 148 faces the first end portion 140a of the valve 140.


As seen in FIG. 5, the body portion 142 and the pair of legs 146 of the valve 140 are positioned within the second chamber 133 of the port 130 such that the cap 144 extends outwardly of the port 130. The second chamber 133 is configured to slidably and rotatably receive the body portion 142 and the pair of legs 146 therein. The second chamber 133 includes an outer chamber portion 133a shaped and sized to retain the body portion 142 of the valve 140 therein in a fluid tight manner, and an inner chamber portion 133b having a larger dimension than the outer chamber portion 133a for accommodating the flanges 148 of the valve 140. A rim 133c is defined on a first end of the inner chamber portion 133b for catching the lip 148a of the flange 148 when the valve 140 is slid outwardly away from the port 130. This arrangement limits movement of the valve 140 and keeps the valve 140 coupled to the port 130 (e.g., a limit stop to prevent separation/expulsion). An end wall 133d is defined on a second end of the inner chamber portion 133b for limiting movement of the valve 140 when the valve 140 is slid inwardly into the port 130.


As shown in FIGS. 5 and 6, the valve 140 has an open state in which the passageway 141 defined therethrough is aligned with the first chamber 131 of the port 130 on one side thereof and with the inflation or insufflation channel 135, 137 on the other side thereof to provide a flow path through the port 130. In the open state, the handle 145 is aligned with the longitudinal axis “X” (FIG. 2) of the cannula 110 (e.g., the handle 145 extends along an axis parallel to the longitudinal axis “X” of the cannula 110). The valve 140 is laterally movable within the port 130 between an outward or inflation position, seen in FIG. 5, and an inward or insufflation position, seen in FIG. 6.


In the inflation position of FIG. 5, the flange 148 of the valve 140 is positioned against the rim 133c of the port 130, the cap 144 of the valve 140 is laterally spaced away from the port 130 (e.g., a gap is defined between the cap 144 and the port 130), and the passageway 141 defined through the valve 140 is aligned with the inflation channel 135 of the port 130 such that the passageway 141 fluidly couples the first chamber 131 of the port 130 with the inflation channel 135 to allow fluid to flow into or out of the inflation lumen 113 (FIG. 2) of the cannula 110 and thus, the expandable anchor 118. Accordingly, fluid is deliverable through a fluid flow pathway indicated by the arrows in FIG. 5 through the first chamber 131 of the port 130, the passageway 141 of the valve 140, the inflation channel 135 of the port 130, the inflation lumen 113 (FIG. 2) of the cannula 110, and into the expandable anchor 118 (FIG. 2) to expand the expandable anchor 118.


In the insufflation position of FIG. 6, the flange 148 of the valve 140 is laterally spaced inwardly of the rim 133c of the port 130 and may be adjacent to or abutting the end wall 133d of the port 130, the cap 144 of the valve 140 is disposed against the port 130 (e.g., no gap is present between the cap 144 and the port 130), and the passageway 141 defined through the valve 140 is aligned with the insufflation channel 137 of the port 130 such that the passageway 141 fluidly couples the first chamber 131 of the port 130 with the insufflation channel 137 to allow fluid to flow into or out of the access lumen 111 of the cannula 110 and thus, into or out of a body cavity within which the cannula 110 is placed. Accordingly, fluid is deliverable through a fluid flow pathway indicated by the arrows in FIG. 6 through the first chamber 131 of the port 130, the passageway 141 of the valve 140, the insufflation channel 137 of the port 130, the cavity 121 of the instrument housing 120, and into the access lumen 111 (FIG. 2) of the cannula 110 to insufflate the body cavity “C” (FIG. 9).


As shown in FIGS. 7 and 8, the valve 140 is movable to a closed state in which the passageway 141 defined therethrough is not aligned (e.g., out of alignment) with the first chamber 131 of the port 130 or either of the inflation or insufflation channels 135, 137. Rather, the valve 140 is rotated so that the passageway 141 of the valve 140 faces an inner wall 133e of the second chamber 133 of the port 130 effectively interrupting or disconnecting the fluid flow path through the port 130 and preventing the flow of fluid therethrough. The valve 140 is moved to the closed state by rotating the handle 145 of the valve 140 in the direction of arrow “D” so that the handle 145 is no longer aligned (e.g., out of alignment) with the longitudinal axis “X” (FIG. 1) of the cannula 110 (e.g., the handle 145 extends along an axis that is not parallel to the longitudinal axis “X” of the cannula 110). In aspects, the handle 145 extends along an axis that is perpendicular to the longitudinal axis “X” when in the valve 140 is in the closed state.


Accordingly, the valve 140 is rotatable between the open and closed states and the slidable between the inflation and insufflation positions. In aspects, indicia may be provided on the port 130 and/or the valve 140 to indicate the state and/or position of the valve 140 relative to the port 130.


In a method of use, as shown in FIG. 9, the surgical access assembly 10 is positioned through tissue “T”, such as an abdominal wall. The elongated shaft 112 of the cannula 110 is received through the tissue “T” (e.g., by utilizing an obturator (not shown) to facilitate entry of the cannula 110 through the tissue), and the expandable anchor 118 is inflated within a body cavity “C” on a first side of the tissue “T” to prevent the cannula 110 from being withdrawn through the tissue “T”. The expandable anchor 118 is inflated by connecting the port 130 of the surgical access device 100 to a fluid source “F” and moving the valve 140 to the open state and the inflation position seen in FIG. 5 thereby allowing pressurized fluid to be introduced from the fluid source “F” through the port 130 and the valve 140, the cannula 110, and into the expandable anchor 118 causing the expandable anchor 118 to expand.


The retention collar 150 is slid distally along the elongated shaft 112 of the cannula 110 until the retention collar 150 abuts or presses on a second side of the tissue “T” disposed outside of the body cavity “C”. The tissue “T” is thus sandwiched between the expandable anchor 118 and the retention collar 150 to prevent the cannula 110 from being withdrawn from or over-inserted into the tissue “T”. In this manner, the surgical access assembly 10 is secured to the tissue “T” and longitudinal movement of the cannula 110 relative to the tissue “T” is prevented or minimized throughout insertion, withdrawal, and/or manipulation of a surgical instrument (not shown) through the cannula 110.


The body cavity “C” is insufflated by moving the valve 140 to the open state and the insufflation position seen in FIG. 6 so that the fluid source “F” that is coupled to the port 130 pressurizes the body cavity by allows fluid from the fluid source “F” to be introduced through the port 130 and the valve 140, the instrument housing 120, the cannula 110, and into the body cavity “C” to create a working space therein.


Surgical instruments (not shown) may then be introduced through the surgical access assembly 10 and into the body cavity “C” to perform one or more surgical tasks. The surgical instruments may be, for example, laparoscopic or endoscopic clip appliers, graspers, dissectors, retractors, staplers, laser probes, photographic devices, tubes, endoscopes, laparoscopes, electro-surgical devices, etc. At any time during the surgical procedure, if the cannula 110 needs to be adjusted within the tissue “T” or insufflation of the body cavity “C” needs to be adjusted, the valve 140 of the surgical access device 100 may be moved to the appropriate state and/or position to allow for fluid flow through the appropriate fluid flow pathway, as needed or desired.


Following the surgical procedure, the expandable anchor 118 is deflated to permit the withdrawal of the surgical access assembly 10 from the tissue “T”. The expandable anchor 118 is deflated by moving the valve 140 to the open state and the inflation position seen in FIG. 5 and either reversing the flow of fluid from the fluid source “F” or allowing the pressurized fluid within the expandable anchor 118 to escape through the fluid flow pathway causing the expandable anchor 118 to retract or collapse.


It should be understood that while aspects of the disclosure have been described, other aspects are possible.


For example, while the surgical access device is described as having inflation and insufflation fluid flow pathways, other configurations are additionally or alternatively possible. For example, the surgical access device may include additional or alternative fluid flow pathway(s) and the port of the surgical access device may be modified to accommodate fluid flow through the additional or alternative fluid flow pathway(s).


As another example, while the valve of the surgical access device is described as having an outward or inflation position and an inward or insufflation position, these positions may be switched depending upon the configuration of the inflation and insufflation channels within the port and the inflation and access lumens within the cannula.


While aspects of the disclosure have been described and shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. It is to be understood, therefore, that the disclosure is not limited to the precise aspects described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, the elements and features shown and described in connection with certain aspects of the disclosure may be combined with the elements and features of certain other aspects without departing from the scope of the present disclosure, and that such modifications and variation are also included within the scope of the present disclosure. Therefore, the above description should not be construed as limiting, but merely as exemplifications of aspects of the disclosure. Thus, the scope of the disclosure should be determined by the appended claims and their legal equivalents, rather than by the examples given.

Claims
  • 1. A surgical access device comprising: a cannula including an elongated shaft, the cannula including an access lumen and an inflation lumen extending through the elongated shaft;an instrument housing coupled to the cannula;a port coupled to the instrument housing, the port including an inflation channel and an insufflation channel defined through the port, the inflation channel in fluid communication with the inflation lumen of the cannula and the insufflation channel in fluid communication with the access lumen of the cannula; anda valve disposed within the port, the valve including a passageway defined through the valve, the valve slidable axially within the port between an inflation position in which the passageway defined through the valve is aligned with the inflation channel of the port and an insufflation position in which the passageway of the valve is aligned with the insufflation channel of the port.
  • 2. The surgical access device of claim 1, wherein the valve is rotatable within the port between an open state in which the valve is in the inflation position or the insufflation position and a closed state in which the passageway of the valve is out of alignment with the inflation channel and the insufflation channel of the port.
  • 3. The surgical access device of claim 2, wherein the valve includes a cap disposed at a first end portion of the valve, the cap including a handle extending radially outwardly therefrom.
  • 4. The surgical access device of claim 3, wherein, when the valve is in the inflation position, the cap is laterally spaced from the port, and when the valve is in the insufflation position, the cap abuts the port.
  • 5. The surgical access device of claim 3, wherein, when the valve is in the open state, the handle is aligned with a longitudinal axis of the cannula, and when the valve is in the closed state, the handle is out of alignment with the longitudinal axis of the cannula.
  • 6. The surgical access device of claim 1, wherein the cannula includes an expandable anchor supported on the elongated shaft and in fluid communication with the inflation lumen.
  • 7. The surgical access device of claim 6, wherein the expandable anchor is a balloon.
  • 8. The surgical access device of claim 1, wherein the port includes a fluid connector portion configured for attachment to a fluid source and defines a first chamber in the fluid connector portion.
  • 9. The surgical access device of claim 8, wherein the inflation channel and the insufflation channel of the port are defined in a fluid channel housing portion of the port.
  • 10. The surgical access device of claim 9, wherein the valve is disposed between the fluid connector portion and the fluid channel housing portion of the port such that when the valve is in the inflation position, the passageway of the valve fluidly couples the first chamber of the fluid connector portion with the inflation channel of the fluid channel housing portion, and when the valve is in the insufflation position, the passageway of the valve fluidly couples the first chamber of the fluid connector portion with the insufflation channel of the fluid channel housing portion.
  • 11. The surgical access device of claim 1, wherein the valve includes a body portion extending along a longitudinal axis and the passageway extends through the body portion along a transverse axis that is orthogonal to the longitudinal axis.
  • 12. The surgical access device of claim 11, wherein the valve includes a pair of legs extending longitudinally from the body portion and flanges extending radially outwardly from the pair of legs.
  • 13. The surgical access device of claim 12, wherein the body portion and the pair of legs of the valve are disposed within a second chamber defined within a valve connector portion of the port.
  • 14. The surgical access device of claim 13, wherein, when the valve is in the inflation position, the flanges of the valve contact a rim defined in the second chamber of the port and, when the valve is in the insufflation position, the flanges of the valve are spaced inwardly of the rim.
  • 15. The surgical access device of claim 1, wherein the port includes a collar extending around the elongated shaft of the cannula.
  • 16. The surgical access device of claim 1, wherein the insufflation channel of the port is in fluid communication with a cavity defined in the instrument housing and the cavity is in fluid communication with the access lumen of the cannula.
  • 17. The surgical access device of claim 16, wherein the cavity of the instrument housing and the access lumen of the cannula are longitudinally aligned along a longitudinal axis.
  • 18. The surgical access device of claim 16, wherein the instrument housing includes at least one of a seal assembly or a valve assembly disposed within the cavity of the instrument housing, and the insufflation channel of the port is in communication with the cavity distal to the at least one of the seal assembly or the valve assembly.
  • 19. The surgical access device of claim 1, wherein the port extends outwardly from a side surface of the instrument housing.
  • 20. The surgical access device of claim 1, wherein the access lumen is defined by an inner surface of the elongated shaft and extends along a central longitudinal axis of the elongated shaft, and the inflation lumen is defined between the inner surface of the elongated shaft and an outer surface of the elongated shaft, the inflation lumen extending along a longitudinal axis that is substantially parallel to the central longitudinal axis.
US Referenced Citations (165)
Number Name Date Kind
397060 Knapp Jan 1889 A
512456 Sadikova Jan 1894 A
1213005 Pillsbury Jan 1917 A
2912981 Keough Nov 1959 A
2936760 Gains May 1960 A
3039468 Price Jun 1962 A
3050066 Koehn Aug 1962 A
3253594 Matthews et al. May 1966 A
3397699 Kohl Aug 1968 A
3545443 Ansari et al. Dec 1970 A
3713447 Adair Jan 1973 A
3774596 Cook Nov 1973 A
3800788 White Apr 1974 A
3882852 Sinnreich May 1975 A
3896816 Mattler Jul 1975 A
3961632 Moossun Jun 1976 A
RE29207 Bolduc et al. May 1977 E
4083369 Sinnreich Apr 1978 A
4217889 Radovan et al. Aug 1980 A
4243050 Littleford Jan 1981 A
4276874 Wolvek et al. Jul 1981 A
4312353 Shahbabian Jan 1982 A
4327709 Hanson et al. May 1982 A
4345606 Littleford Aug 1982 A
4411654 Boarini et al. Oct 1983 A
4416267 Garren et al. Nov 1983 A
4490137 Moukheibir Dec 1984 A
4496345 Hasson Jan 1985 A
4574806 McCarthy Mar 1986 A
4581025 Timmermans Apr 1986 A
4596554 Dastgeer Jun 1986 A
4596559 Teischhacker Jun 1986 A
4608965 Anspach, Jr. et al. Sep 1986 A
4644936 Schiff Feb 1987 A
4654030 Moll et al. Mar 1987 A
4685447 Iversen et al. Aug 1987 A
4701163 Parks Oct 1987 A
4738666 Fuqua Apr 1988 A
4769038 Bendavid et al. Sep 1988 A
4772266 Groshong Sep 1988 A
4779611 Grooters et al. Oct 1988 A
4784133 Mackin Nov 1988 A
4793348 Palmaz Dec 1988 A
4798205 Bonomo et al. Jan 1989 A
4800901 Rosenberg Jan 1989 A
4802479 Haber et al. Feb 1989 A
4813429 Eshel et al. Mar 1989 A
4840613 Balbierz Jun 1989 A
4854316 Davis Aug 1989 A
4861334 Nawaz Aug 1989 A
4865593 Ogawa et al. Sep 1989 A
4869717 Adair Sep 1989 A
4888000 McQuilkin et al. Dec 1989 A
4899747 Garren et al. Feb 1990 A
4917668 Haindl Apr 1990 A
4931042 Holmes et al. Jun 1990 A
4955895 Sugiyama et al. Sep 1990 A
5002557 Hasson Mar 1991 A
5009643 Reich et al. Apr 1991 A
5030206 Lander Jul 1991 A
5030227 Rosenbluth et al. Jul 1991 A
5074871 Groshong Dec 1991 A
5098392 Fleischhacker et al. Mar 1992 A
5104383 Shichman Apr 1992 A
5116318 Hillstead May 1992 A
5116357 Eberbach May 1992 A
5122122 Allgood Jun 1992 A
5122155 Eberbach Jun 1992 A
5137512 Burns et al. Aug 1992 A
5141494 Danforth et al. Aug 1992 A
5141515 Eberbach Aug 1992 A
5147302 Euteneuer et al. Sep 1992 A
5147316 Castillenti Sep 1992 A
5147374 Fernandez Sep 1992 A
5158545 Trudell et al. Oct 1992 A
5159925 Neuwirth et al. Nov 1992 A
5163949 Bonutti Nov 1992 A
5176692 Wilk et al. Jan 1993 A
5176697 Hasson et al. Jan 1993 A
5183463 Debbas Feb 1993 A
5188596 Condon et al. Feb 1993 A
5188630 Christoudias Feb 1993 A
5195507 Bilweis Mar 1993 A
5201742 Hasson Apr 1993 A
5201754 Crittenden et al. Apr 1993 A
5209725 Roth May 1993 A
5215526 Deniega et al. Jun 1993 A
5222970 Reeves Jun 1993 A
5226890 Ianniruberto et al. Jul 1993 A
5232446 Arney Aug 1993 A
5232451 Freitas et al. Aug 1993 A
5234454 Bangs Aug 1993 A
5250025 Sosnowski et al. Oct 1993 A
5258026 Johnson et al. Nov 1993 A
5269753 Wilk Dec 1993 A
5290249 Foster et al. Mar 1994 A
5308327 Heaven et al. May 1994 A
5309896 Moll et al. May 1994 A
5314443 Rudnick May 1994 A
5318012 Wilk Jun 1994 A
5330497 Freitas et al. Jul 1994 A
5342307 Euteneuer et al. Aug 1994 A
5346504 Ortiz et al. Sep 1994 A
5359995 Sewell, Jr. Nov 1994 A
5361752 Moll et al. Nov 1994 A
5370134 Chin et al. Dec 1994 A
5383889 Warner et al. Jan 1995 A
5397311 Walker et al. Mar 1995 A
5402772 Moll et al. Apr 1995 A
5407433 Loomas Apr 1995 A
5431173 Chin et al. Jul 1995 A
5445615 Yoon Aug 1995 A
5468248 Chin et al. Nov 1995 A
5514091 Yoon May 1996 A
5514153 Bonutti May 1996 A
5540658 Evans et al. Jul 1996 A
5540711 Kieturakis et al. Jul 1996 A
5607441 Sierocuk et al. Mar 1997 A
5607443 Kieturakis et al. Mar 1997 A
5632761 Smith et al. May 1997 A
5656013 Yoon Aug 1997 A
5667479 Kieturakis Sep 1997 A
5667520 Bonutti Sep 1997 A
5704372 Moll et al. Jan 1998 A
5707382 Sierocuk et al. Jan 1998 A
5713869 Morejon Feb 1998 A
5722986 Smith et al. Mar 1998 A
5728119 Smith et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5730756 Kieturakis et al. Mar 1998 A
5738628 Sierocuk et al. Apr 1998 A
5755693 Walker et al. May 1998 A
5762604 Kieturakis Jun 1998 A
5772680 Kieturakis et al. Jun 1998 A
5779728 Lunsford et al. Jul 1998 A
5797947 Mollenauer Aug 1998 A
5803901 Chin et al. Sep 1998 A
5810867 Zarbatany et al. Sep 1998 A
5814060 Fogarty et al. Sep 1998 A
5836913 Orth et al. Nov 1998 A
5836961 Kieturakis et al. Nov 1998 A
5865802 Yoon et al. Feb 1999 A
5865812 Correia Feb 1999 A
5893866 Hermann et al. Apr 1999 A
5925058 Smith et al. Jul 1999 A
6099511 Devos Aug 2000 A
6361543 Chin et al. Mar 2002 B1
6368337 Kieturakis et al. Apr 2002 B1
6375665 Nash et al. Apr 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6432121 Jervis Aug 2002 B1
6447529 Fogarty et al. Sep 2002 B2
6468205 Mollenauer et al. Oct 2002 B1
6506200 Chin Jan 2003 B1
6514272 Kieturakis et al. Feb 2003 B1
6517514 Campbell Feb 2003 B1
6527787 Fogarty et al. Mar 2003 B1
6540764 Kieturakis et al. Apr 2003 B1
6796960 Cioanta et al. Sep 2004 B2
7300448 Criscuolo et al. Nov 2007 B2
7691089 Gresham Apr 2010 B2
8454645 Criscuolo et al. Jun 2013 B2
8926508 Hotter Jan 2015 B2
20140012194 Terwiske Jan 2014 A1
20140121515 Vitullo May 2014 A1
Foreign Referenced Citations (13)
Number Date Country
0480653 Apr 1992 EP
0610099 Aug 1994 EP
0880939 Dec 1998 EP
9206638 Apr 1992 WO
9218056 Oct 1992 WO
9221293 Dec 1992 WO
9221295 Dec 1992 WO
9309722 May 1993 WO
9721461 Jun 1997 WO
9912602 Mar 1999 WO
0126724 Apr 2001 WO
02096307 Dec 2002 WO
2004032756 Apr 2004 WO
Related Publications (1)
Number Date Country
20220117630 A1 Apr 2022 US