Surgical access device with fascial closure system

Information

  • Patent Grant
  • 11925387
  • Patent Number
    11,925,387
  • Date Filed
    Tuesday, July 12, 2022
    2 years ago
  • Date Issued
    Tuesday, March 12, 2024
    10 months ago
Abstract
A surgical access device is disclosed and includes a housing, a cannula, a guide, and an expandable member. The cannula extends distally from the housing and defines a longitudinal axis. A wall of the cannula includes a first slot defined therein. The guide is engagable with the housing and defines a first channel. The first channel is disposed at a non-parallel angle relative to the longitudinal axis. The expandable member is disposed adjacent a distal portion of the cannula and is transitionable between a collapsed configuration and an expanded configuration. A first surgical instrument is insertable through the first channel of the guide and through the first slot of the cannula.
Description
BACKGROUND

The present disclosure relates to a surgical apparatus. More particularly, the present disclosure relates to a surgical access device that can maintain its position relative to the patient during a surgical procedure. The surgical access device also includes a system to facilitate fascial closure.


In minimally invasive surgical procedures, including endoscopic and laparoscopic surgeries, a surgical access device permits the introduction of a variety of surgical instruments into a body cavity. A surgical access device (e.g., a cannula) is introduced through an incision in tissue to provide access to an underlying surgical site in the body. The cannula is introduced through the incision with an obturator disposed in the passageway of the cannula. The obturator can have a blunt or sharp tip for penetrating tissue. The obturator is removed to permit introduction of surgical instrumentation through the surgical access device to perform the surgical procedure.


These procedures are performed while the abdominal cavity is inflated with a pressurized gas. To maintain the position of the surgical access device with respect to the body wall, the access device can include an anchor near its distal end. To help maintain the position of the surgical access device with respect to the body wall, an inflatable balloon disposed near a distal end of the surgical access device can be used. The access device is positioned so that the balloon is disposed inside the patient's body, anchoring the access device. Inflating such a balloon while the surgical access device is within the body helps prevent the surgical access device from undesired movement with respect to the body.


Additionally, following such surgical procedures, the incision is closed. A suture and needle is used to close the fascia and other tissue, using a separate instrument. It may be helpful to provide a single surgical access device that can be maintained in its position relative to the body, and that can allow a device to pass therethrough to close the incision. It may also be helpful to provide a single surgical access device that can be maintained in its position without the need to remove the surgical access device and/or desufflate the working space prior to facial closure.


SUMMARY

The present disclosure relates to a surgical access device including a housing, a cannula, a guide, and an expandable member. The cannula extends distally from the housing and defines a longitudinal axis. A wall of the cannula includes a first slot defined therein. The guide is engagable with the housing and defines a first channel. The first channel is disposed at a non-parallel angle relative to the longitudinal axis. The expandable member is disposed adjacent a distal portion of the cannula and is transitionable between a collapsed configuration and an expanded configuration. A first surgical instrument is insertable through the first channel of the guide and through the first slot of the cannula.


In disclosed embodiments, the wall of the cannula may include a second slot defined therein. The second slot may be longitudinally offset from the first slot.


It is also disclosed that the cannula may include an inner tube and an outer tube. It is also disclosed that the inner tube may define the first slot, and the outer tube may define an outer tube slot. The first slot and the outer tube slot may be aligned with each other. In embodiments, the surgical access device may include a film covering at least one of the first slot and the outer tube slot. It is further disclosed that the film may be adhered to a recessed surface of at least one of the inner tube and the outer tube.


In embodiments of the present disclosure, the surgical access device may include at least one channel disposed within the wall of the cannula. It is further disclosed that the at least one channel may extend between a proximal portion of the cannula and the distal portion of the cannula, and that the at least one channel may be radially offset from the first slot.


In disclosed embodiments, the expandable member may include a fixation mesh or a balloon fixation device.


It is further disclosed that in embodiments where the cannula includes an inner tube and an outer tube, the expandable member may include a balloon fixation device. It is also disclosed that the housing may include an inflation port disposed in fluid communication with the balloon fixation device. It is further disclosed that there may be a space between the inner tube and the outer tube that is disposed in fluid communication with the inflation port and with the balloon fixation device.


The present disclosure also relates to a method of performing a surgical procedure including inserting a portion of a cannula through an incision in a patient, transitioning an expandable member of the cannula from a collapsed configuration to an expanded configuration, inserting a first surgical instrument along a longitudinal axis through an aperture of the cannula, performing a surgical task with the first surgical instrument, inserting a second surgical instrument along a second axis which is disposed at a non-parallel angle relative to the longitudinal axis, inserting a distal tip of the second surgical instrument through a slot within a wall of the cannula, and performing a surgical task with the second surgical instrument.


In disclosed embodiment, the method may include removing the first surgical instrument from the aperture of the cannula prior to inserting the second surgical instrument along the second axis.


It is further disclosed that the method may include urging the distal tip of the second surgical instrument through a film covering the slot within the wall of the cannula.


Additionally, the method may include transitioning the expandable member of the cannula from the expanded configuration to the collapsed configuration.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure are illustrated herein with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view of a surgical access device including a balloon fixation device of the present disclosure;



FIG. 1A is a perspective view of the surgical access device of FIG. 1 with a guide separated from a housing of the surgical access device;



FIG. 2 is a perspective view of the surgical access device of FIG. 1 including a suture passer inserted therethrough;



FIG. 3 is a side view of the surgical access device of FIG. 1 including a suture passer inserted therethrough;



FIG. 4 is a perspective view of an inner tube and an outer tube of the surgical access device of FIGS. 1-3 in accordance with an embodiment of the present disclosure;



FIG. 5 is a perspective view of an inner tube and an outer tube of the surgical access device of FIGS. 1-3 in accordance with another embodiment of the present disclosure;



FIG. 5A is an enlarged view of the area of detail indicated in FIG. 5;



FIG. 6 is a perspective view of a distal end of a cannula of a surgical access device in accordance with another embodiment of the present disclosure;



FIG. 7 is a perspective view of a surgical access device including a fixation mesh device in accordance with another embodiment of the present disclosure;



FIG. 7A is a perspective view of an inner tube of the surgical access device of FIG. 7;



FIG. 8 is a perspective view of the surgical access device of FIG. 7 including a suture passer inserted therethrough;



FIG. 9 is a perspective view of a surgical access device in accordance with another embodiment of the present disclosure including a suture passer extending therethrough and illustrating a fixation mesh in a deployed configuration; and



FIG. 10 is a side view of a distal end of the surgical access device and suture passer of FIG. 9 illustrating the fixation mesh in an undeployed configuration.





DETAILED DESCRIPTION

Embodiments of the presently disclosed surgical access device are described in detail with reference to the drawings, wherein like reference numerals designate corresponding elements in each of the several views.


Various embodiments of a surgical access device are described herein. Generally, the surgical access devices include a fixation device (e.g., a balloon fixation device or a fixation mesh device) configured to engage tissue to help maintain the surgical access device in its position relative to the body during use, and include a fascial closure system which creates an efficient way of closing the incision through which the surgical access device entered the body. FIGS. 1-6 illustrate embodiments of a surgical access device including a balloon fixation device, and FIGS. 7-10 illustrate embodiments of a surgical access device including a fixation mesh device. It is envisioned that the surgical access devices disclosed herein are useful in Hasson techniques, as well as those using blunt, bladeless, bladed and/or optical obturators where the surgical access device is used to gain entry to the abdomen for laparoscopy, for example.


With initial reference to FIGS. 1-3, a surgical access device 100 is shown. Surgical access device 100 includes a housing 109 and a cannula 200 extending distally from housing 109. The cannula 200 defines a longitudinal axis “A-A.” A guide or suture guide 110 is attached to or configured to selectively engage the housing 109. The guide has an upper flange and a tube extending from the flange. The guide 110 flange and tube define a first channel 112 and a second channel 114 extending therethrough (FIG. 2), and includes a seal 115 (e.g., an O-ring) (FIG. 1A) on the tube configured to engage an inner wall of cannula 200 for establishing a fluid-tight boundary in the cannula that maintains a pneumoperitoneum in a patient. The access device 100 has an instrument seal housing that is removed from the housing 109 before the guide is attached to the access device 100. The housing 109 includes a zero closure seal, such as a duckbill seal, for sealing the passageway of the cannula when no instrument is inserted through it.


Surgical access device 100 also includes an expandable member or balloon fixation device 300 disposed adjacent a distal end of cannula 200, and at least one slot 250 defined in the cannula 200. As shown in FIGS. 2 and 3, a suture passer “SP” (for example) is insertable through one of channels 112, 114 of guide 110 and through one of slots 250 of cannula 200. Generally, suture passers “SP” are configured to pass a suture through a cannula 200 and to tissue adjacent an incision, for instance.


Additional description of an access device, guide, and suture passer can be found in U.S. Patent Application Publication No. 2015/003879, filed on Jul. 29, 2014, now U.S. Pat. No. 10,258,324, the entire contents of which being hereby incorporated by reference herein. A sealing member is disposed over the slot 250 in the cannula and can be formed from an elastomeric film or tube disposed over the slot 250.


Further details of various embodiments of surgical access device 100 are discussed below with reference to FIGS. 4-6. FIG. 4 illustrates an embodiment of a cannula 200a for use with surgical access device 100. Cannula 200a includes an inner tube 220a and an outer tuber 240a. Inner tube 220a is configured to fit within outer tube 240a, and includes at least one slot 230a defined therein. In embodiments, inner tube 220a includes two slots 230a that are 180° offset from each other. In particular, slot 230a is defined by a recessed surface 222a of an outer wall of inner tube 220a. While slot 230a is oval-shaped in the accompanying figures, slot 230a may be any regular or irregular shape, such as circular, rectangular, etc. Further, a film 235a covers slot 230a and may be affixed to recessed surface 222a of inner tube 220a by welding (e.g., ultrasonic welding), for instance, or adhesive bonding. It is envisioned that the outer wall of inner tube 220a and film 235a cooperate to form a flush or nearly flush surface.


With continued reference to FIG. 4, outer tube 240a is configured to fit over inner tube 220a, has a shorter length than inner tube 220a, and includes at least one slot 250a defined therein. As shown in FIG. 3, outer tube 240a includes two slots 250a that are 180° offset from each other. Each slot 250a is shaped to correspond with slot 230a of inner tube 220a, is covered by a film 255a, and is configured to radially and longitudinally align with slot 230a of inner tube 220a when outer tube 240a and inner tube 220a are engaged.


Balloon 300 (FIGS. 1-3) is mounted adjacent a distal end of cannula 200a and is transitionable between a collapsed or deflated configuration and an expanded or inflated configuration. In particular, a distal end 302 of balloon 300 is mounted to or adjacent a distal end 221a of inner tube 220a, and a proximal end 304 of balloon 300 is mounted to or adjacent a distal end 241a of outer tube 240a (FIGS. 1 and 4). In this arrangement, air (or another inflation medium) is forced from an inflation port 111 (FIGS. 1-3), between inner tube 220a and outer tube 240a of cannula 200a, out distal end 241a of outer tube 240a (distal end 241a of outer tube 240 is disposed proximally of distal end 221a of inner tube 220a), and into balloon 300 to inflate balloon 300. To deflate balloon 300, the inflation medium is removed from balloon 300, between inner tube 220a and outer tube 240a of cannula 200a, and out of inflation portion 111. Films 235a and 255a help ensure the air/gas from a pressurized environment within the patient does not escape through inner tube 220a or outer tube 240a of cannula 200a. The balloon can be formed as disclosed in U.S. Pat. No. 10,987,128, the entire disclosure of which is hereby incorporated by reference herein.


In use, a distal portion of cannula 200a is positioned within a patient (e.g., in the abdominal cavity), balloon 300 is inflated through inflation port 111 to help secure cannula 200a with respect to the patient, and a surgical procedure is performed (e.g., by a surgical instrument inserted through a lumen 270a (FIG. 3) of cannula 200a). Following the surgical procedure, the surgical instrument is removed from lumen 270a, and the instrument seal housing is removed from engagement with housing 109, and a portion of guide 110 is inserted through cannula 200a. Next, a suture passer “SP” (FIGS. 2 and 3) is inserted through first channel 112 or second channel 114 of guide 110 and at a non-parallel angle with respect to the longitudinal axis “A-A.” Thus, the suture passer “SP” follows a different pathway from the surgical instruments previously used. First channel 112 is angled such that a distal tip of the suture passer “SP” is moved through a neck of balloon 300 and toward slot 230a of inner tube 220a. Urging the suture passer “SP” distally forces the distal tip of the suture passer “SP” to pierce film 235a covering slot 230a of inner tube 220a, to pierce film 255a covering slot 250a of outer tube 240a, and to extend out from the outer tube 240a. Depending on the shape, size and/or orientation of balloon 300, a physician may opt to insert suture passer “SP” into guide 110 and to patient tissue following deflation of balloon 300 to help prevent the distal tip of the suture passer “SP” from interfering with balloon 300. After the distal tip of the suture passer “SP” is positioned at tissue, the suture passer “SP” can be used to suture tissue, or perform a fascial closure. The cannula can include a single slot. In additional embodiments, the cannula 200a includes more than one set of slots, and an additional suture passer or other device can also be inserted through guide 110 (e.g., through channel 114) and through cannula 200a. This can be done while the first suture passer “SP” is at the tissue, or after the first suture passer “SP” has been removed. Thus, the first channel and second channel of the guide 110 is arranged and shaped so that the suture passer is directed toward a particular slot through the cannula when the guide is properly attached to the access device.



FIG. 5 illustrates a further embodiment of a cannula 200b for use with surgical access device 100. Cannula 200b includes an inner tube 220b and an outer tuber 240b. Inner tube 220b is configured to fit within outer tube 240b, and includes at least one slot 230b defined therein. While slot 230b is oval-shaped in the accompanying figures, slot 230b may be any regular or irregular shape, such as circular, rectangular, etc. Inner tube 220b includes a flange 232b surrounding slot 230b. While slot 230b is not covered by a film in the accompanying figures, slot 230b may be covered by a film. Flange 232b (see FIG. 5A) protrudes from inner tube 220b and is configured to engage or nest within a portion of outer tube 240b, as discussed below.


Outer tube 240b is configured to fit over inner tube 220b, has a shorter length than inner tube 220b, and includes at least one slot 250b defined therein. In embodiments, the inner tube 220b includes two slots 250b that are 180° offset from each other to provide further options to the surgeon during fascial closure. Each slot 250b is shaped to correspond with a slot 230b of inner tube 220b, and is configured to radially and longitudinally align with slot 230b of inner tube 220b when outer tube 240b and inner tube 220b are assembled. Additionally, flange 232b of inner tube 220b is configured to nest within slot 250b of outer tube 240b when outer tube 240b and inner tube 220b are engaged. This helps align the inner tube 220b and the outer tube 240b. Thus, only one film is needed for providing an air-tight or nearly air-tight passage. Additionally, cannula 200b can include a balloon 300 or other expandable structure at or adjacent a distal end thereof.



FIG. 6 illustrates another embodiment of a cannula 200c for use with surgical access device 100. Cannula 200c includes an elongated tube 220c having channels 240c defined within the wall of elongated tube 220c. Elongated tube 220c extends distally from housing 109, and includes at least one slot 230c defined therein. While slot 230c is oval-shaped in the accompanying figures, slot 230c may be any regular or irregular shape, such as circular, rectangular, etc. In particular, slot 230c is defined by a recessed surface 222c of elongated tube 220c. Further, a film 235c covers slot 230c and may be affixed to recessed surface 222c of elongated tube 220c by welding (e.g., ultrasonic welding), for instance, or adhesive bonding. It is envisioned that an outer surface 221c of elongated tube 220c and film 235c cooperate to form a flush or nearly flush surface.


Channels 240c extend along a length (e.g., an entire length) of elongated tube 220c and are defined within the wall of elongated tube 220c. In particular, channels 240c extend between outer surface 221c and an inner surface 223c of elongated tube 220c. Channels 240c are in fluid communication with balloon 300, which is mounted adjacent a distal end of elongated tube 220c, such that when air (or another inflation medium) is forced from inflation port 111 of housing 109 through channels 240c, the air flows out of channel openings 242c into balloon 300 and inflates balloon 300. To deflate balloon 300, the inflation medium is removed from balloon 300, proximally through channels 240c, and out of inflation port 111. Film 235c helps ensure the air/gas from the pressurized environment within the patient does not escape through the wall of elongated tube 220c of cannula 200c.


In embodiments where channels 240c extend an entire length of elongated tube 220c, a distal end 244c of each channel 240c is occluded or blocked to prevent air from escaping therefrom. Including channels 240c that extend an entire length of elongated tube 220c may help optimize manufacturing of cannula 200c. For example, elongated tube 220c can be extruded, and channels 240c extending the length of elongated tube 220c can be formed during the extrusion of elongated tube 220c.


Additionally, in embodiments where cannula 200c includes two channels 240c and two slots 230c, channels 240c and slots 230c may be angularly offset from each other to prevent interference therebetween. For example, channels 240c and slots 230c can be offset by 90° or another suitable angle.


In use, a distal portion of cannula 200c is positioned within a patient (e.g., in the abdominal cavity), balloon 300 is inflated through inflation port 111 to help secure cannula 200c with respect to the patient, and a surgical procedure is performed (e.g., by a surgical instrument inserted through a lumen 270c of cannula 200c). Following the surgical procedure, the surgical instrument is removed from lumen 270c, and the instrument seal housing is removed from engagement with housing 109, and a portion of guide 110 is inserted through cannula 200c. Next, a suture passer “SP” (FIGS. 2 and 3) is inserted through first channel 112 or second channel 114 of guide 110 and at a non-parallel angle with respect to the longitudinal axis “A-A.” Thus, the suture passer “SP” follows a different pathway from the surgical instruments previously used. First channel 112 is angled such that a distal tip of the suture passer “SP” is moved toward slot 230c of cannula 200c. Urging the suture passer “SP” distally forces the distal tip of the suture passer “SP” to pierce film 235c covering slot 230c of cannula 200c, and to extend out from the cannula 200c. One or more suture passers “SP” can be used. If cannula 200c includes more than one slot 230c, the slots can be angularly and/or longitudinally offset from one another to accommodate multiple suture passers “SP.” The suture passers “SP” deliver suture to tissue at the incision, so the incision can be closed.



FIGS. 7-8 illustrate a further embodiment of a cannula 200d for use with surgical access device 100. Cannula 200d includes an inner tube 220d (FIG. 7A), an outer tuber 240d, and a fixation mesh 260d. Inner tube 220d is configured to fit within outer tube 240d, and includes at least one slot 230d defined therein. While slot 230d is oval-shaped in the accompanying figures, slot 230d may be any regular or irregular shape, such as circular, rectangular, etc. In particular, slot 230d is defined by a recessed surface 222d of inner tube 220d. Further, a film 235d covers slot 230d and may be affixed to recessed surface 222d of inner tube 220d by welding (e.g., ultrasonic welding), for instance, or adhesive bonding. It is envisioned that the outer wall of inner tube 220d and film 235d cooperate to form a flush or nearly flush surface. Film 235d helps ensure the insufflation medium (e.g., CO2) from a pressurized environment within the patient does not escape through inner tube 220d of cannula 200d.


Fixation mesh 260d includes a balloon-like cover and is positioned around (e.g., surrounding the walls of) inner tube 220d. The cover can be formed from an elastomeric film. The film can be molded in a shape to encourage the expansion of the mesh member 260d.


Outer tube 240d is configured to fit over inner tube 220d, has a shorter length than inner tube 220d, and includes at least one slot 250d defined therein. Slot 250d is shaped to correspond to slot 230d and is configured to radially and longitudinally align with slot 230d of inner tube 220d when outer tube 240d and inner tube 220d are assembled. Two angularly aligned and longitudinally offset slots 250d are provided, as shown in FIG. 7, and will be discussed in further detail below.


In use, a distal portion of cannula 200d is positioned within a patient (e.g., in the abdominal cavity), fixation mesh 260d is deployed by moving an activation tab 241 distally along the cannula length to expand fixation mesh 260d and to help secure cannula 200d with respect to the patient. In doing this, lower slot 250d1 of outer tube 240d moves away from slot 230d of inner tube 220d, and upper slot 250d2 of outer tube 240d moves into alignment with slot 230d. A surgical procedure is then performed (e.g., by a surgical instrument inserted through a lumen 270d defined through guide 110 and cannula 200d). Following the surgical procedure, the surgical instrument is removed from lumen 270d, and the instrument seal housing is removed from engagement with housing 109, and a portion of guide 110 is inserted through cannula 200d. Next, a suture passer “SP” (FIGS. 2 and 3) is inserted through first channel 112 or second channel 114 of guide 110 and at a non-parallel angle with respect to the longitudinal axis “A-A.” Thus, the suture passer “SP” follows a different pathway from the surgical instruments previously used. First channel 112 is angled such that a distal tip of the suture passer “SP” is moved toward slot 230d of inner tube 220d. Urging the suture passer “SP” distally forces the distal tip of the suture passer “SP” to pierce film 235d covering slot 230d of inner tube 220d, and extend through slot 250d of outer tube 240d. Depending on the shape, size and/or orientation of fixation mesh 260d, a physician may opt to insert suture passer into patient following the movement of fixation mesh 260d to its pre-deployed or undeployed position to help prevent the distal tip of the suture passer from interfering with a deployed portion of fixation mesh 260d. After the distal tip of the suture passer is positioned at tissue, the suture passer can be used to perform a fascial closure. The suture passer can extend through slot 230d and slot 250d1 when fixation mesh 260d is not deployed, or through slot 230d and slot 250d2 when fixation mesh 260d is deployed.


In some embodiments, inner tube 220d and outer tube 240d of cannula 200d include more than one angularly offset sets of slots to accommodate more than one suture passer.



FIGS. 9 and 10 illustrate another embodiment of a cannula 200e for the surgical access device 100. Cannula 200e includes an elongated tube 220e, and a fixation mesh 260e. Elongated tube 220e includes at least one slot 230e (e.g., an oval-, round-, rectangular-, or other-shaped slot) defined therein. In contrast to the embodiment of cannula 200d discussed above with regard to FIGS. 7 and 8, slot 230e is not covered by a film, but a film may be provided in other embodiments.


Fixation mesh 260e can include a balloon-like cover and is positioned around (e.g., surrounding the wall of) elongated tube 220e. Further, fixation mesh 260e covers a substantial portion of the length of cannula 200e, and can be adhered or affixed to a flange 205e of cannula 200e in an air-tight manner to provide an air-tight seal therebetween. In this regard, fixation mesh 260e helps ensure the air/gas from a pressurized environment within the patient does not escape through elongated tube 220e of cannula 200e.


In use, a distal portion of cannula 200e is positioned within a patient (e.g., in the abdominal cavity), fixation mesh 260e is deployed by moving flange 205e distally along the cannula length. This expands fixation mesh 260e to help secure cannula 200e with respect to the patient. A surgical procedure is performed (e.g., by a surgical instrument inserted through a lumen 270e defined through guide 110 and cannula 200e). Following the surgical procedure, the surgical instrument is removed from lumen 270e, and the instrument seal housing is removed from engagement with housing 109, and a portion of guide 110 is inserted through cannula 200d. Next, a suture passer “SP” (FIGS. 2 and 3) is inserted through first channel 112 or second channel 114 of guide 110 and at a non-parallel angle with respect to the longitudinal axis “A-A.” Thus, the suture passer “SP” follows a different pathway from the surgical instruments previously used. First channel 112 is angled such that a distal tip of the suture passer “SP” is moved adjacent slot 230e of elongated tube 220e at a non-parallel angle with respect to the longitudinal axis “A-A.” Urging the suture passer “SP” distally forces the distal tip of the suture passer “SP” to pierce fixation mesh 260e, and to thereby extend out from cannula 200e. A physician may opt to insert suture passer “SP” into patient following the movement of fixation mesh 260e to its pre-deployed or undeployed position or may pass the suture passer through fixation mesh 260e while it is in the deployed state. After the distal tip of the suture passer “SP” is positioned within tissue, the suture passer “SP” can be used to perform a fascial closure or other closure or suturing of tissue. Additionally, in embodiments where elongated tube 220e of cannula 200e includes more than one angularly offset slot, a second suture passer can also be inserted through cannula 200e.


The present disclosure also includes methods of performing a surgical procedure including using the fixation device (e.g., inflatable member 300 or fixation mesh 260d, 260e) to secure the surgical access device 100 within tissue, performing a surgical procedure through the cannula, removing a seal housing from housing 109, mounting guide 100 to housing 109, inserting a distal portion of a suture passer through channel 112, 114 of guide 110 and through a slot in the cannula 200, and performing a fascial closure or other procedure on tissue. As noted above, depending on the particular embodiment of the surgical access device 100, the fixation device can remain inflated/deployed during the fascial closure, or the fixation device can be deflated/undeployed while the fascial closure is performed.


While the above description contains many specifics, these specifics should not be construed as limitations on the scope of the present disclosure, but merely as illustrations of various embodiments thereof. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A surgical access device, comprising: a housing;a cannula extending distally from the housing and defining a longitudinal axis, the cannula including a wall defining a first slot;a guide engagable with the housing and defining a first channel that is disposed at a non- parallel angle relative to the longitudinal axis; anda lumen extending through the housing, through the cannula, and through the guide, the lumen being coaxial with the longitudinal axis while the guide is engaged with the housing,wherein a first surgical instrument is insertable through the first channel of the guide and through the first slot of the cannula.
  • 2. The surgical access device according to claim 1, wherein the wall of the cannula defines a second slot.
  • 3. The surgical access device according to claim 2, wherein the first slot of the cannula is disposed at a first distance along the longitudinal axis from the housing, the second slot of the cannula is disposed at a second distance along the longitudinal axis from the housing, the second distance is greater than the first distance.
  • 4. The surgical access device according to claim 2, wherein each of the first slot and the second slot is completely bound by the wall of the cannula.
  • 5. The surgical access device according to claim 1, wherein the first slot is completely bound by the wall of the cannula.
  • 6. The surgical access device according to claim 1, wherein an entirety of the lumen is coaxial with the longitudinal axis.
  • 7. The surgical access device according to claim 1, wherein the first channel includes a proximal end, the housing includes a proximal end, and the proximal end of the first channel extends through the proximal end of the housing.
  • 8. The surgical access device according to claim 1, further including a channel disposed within the wall of the cannula, the cannula including a proximal portion and a distal portion, the channel extending between the proximal portion of the cannula and the distal portion of the cannula.
  • 9. A surgical access device, comprising: a cannula defining a longitudinal axis, the cannula including a proximal portion, a distal portion, and a wall defining a first slot;a guide disposed in mechanical cooperation with the cannula, the guide defining a first channel that is disposed at a non-parallel angle relative to the longitudinal axis; anda lumen extending through the cannula, and through the guide, the lumen being coaxial with the longitudinal axis while the guide is in mechanical cooperation with the cannula,wherein a first surgical instrument is simultaneously insertable through the first channel of the guide and through the first slot of the cannula.
  • 10. The surgical access device according to claim 9, further having an expandable member disposed adjacent the distal portion of the cannula, the expandable member transitionable between a collapsed configuration and an expanded configuration.
  • 11. The surgical access device according to claim 10, wherein the expandable member includes a fixation mesh.
  • 12. The surgical access device according to claim 9, wherein the wall of the cannula is formed from an inner tube and an outer tube.
  • 13. The surgical access device according to claim 12, further having an expandable member disposed adjacent the distal portion of the cannula, the expandable member being a mesh member that expands upon movement of the outer tube distally from a first position to a second position relative to the inner tube.
  • 14. The surgical access device according to claim 9, wherein an entirety of the lumen is coaxial with the longitudinal axis.
  • 15. The surgical access device according to claim 9, wherein the wall of the cannula defines a second slot.
  • 16. The surgical access device according to claim 15, wherein the first slot of the cannula is disposed at a first distance along the longitudinal axis from the guide, the second slot of the cannula is disposed at a second distance along the longitudinal axis from the guide, the second distance is greater than the first distance.
  • 17. The surgical access device according to claim 15, wherein each of the first slot and the second slot is completely bound by the wall of the cannula.
  • 18. The surgical access device according to claim 9, wherein the first slot is completely bound by the wall of the cannula.
  • 19. The surgical access device according to claim 9, further including a housing disposed adjacent the proximal portion of the cannula, wherein the guide is engageable with the housing.
  • 20. A surgical access device, comprising: a housing;a cannula extending distally from the housing and defining a longitudinal axis, the cannula including a wall defining a first slot, the cannula including an inner tube and an outer tube;a guide engagable with the housing and defining a first channel that is disposed at a non- parallel angle relative to the longitudinal axis; anda lumen extending through the housing, through the cannula, and through the guide, the lumen being coaxial with the longitudinal axis,wherein a first surgical instrument is insertable through the first channel of the guide and through the first slot of the cannula.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/550,470, filed on Aug. 26, 2019, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/739,909 filed Oct. 2, 2018, the entire contents of each of which being incorporated by reference herein.

US Referenced Citations (480)
Number Name Date Kind
3402710 Paleschuck Sep 1968 A
3495586 Regenbogen Feb 1970 A
4016884 Kwan-Gett Apr 1977 A
4112932 Chiulli Sep 1978 A
4183357 Bentley et al. Jan 1980 A
4356826 Kubota Nov 1982 A
4402683 Kopman Sep 1983 A
4653476 Bonnet Mar 1987 A
4737148 Blake Apr 1988 A
4863430 Klyce et al. Sep 1989 A
4863438 Gauderer et al. Sep 1989 A
4984564 Yuen Jan 1991 A
5002557 Hasson Mar 1991 A
5073169 Raiken Dec 1991 A
5082005 Kaldany Jan 1992 A
5122122 Allgood Jun 1992 A
5159921 Hoover Nov 1992 A
5176697 Hasson et al. Jan 1993 A
5183471 Wilk Feb 1993 A
5192301 Kamiya et al. Mar 1993 A
5209741 Spaeth May 1993 A
5209754 Ahluwalia May 1993 A
5217466 Hasson Jun 1993 A
5242409 Buelna Sep 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5257973 Villasuso Nov 1993 A
5257975 Foshee Nov 1993 A
5269772 Wilk Dec 1993 A
5290249 Foster et al. Mar 1994 A
5312391 Wilk May 1994 A
5312417 Wilk May 1994 A
5314417 Stephens et al. May 1994 A
5318516 Cosmescu Jun 1994 A
5330486 Wilk Jul 1994 A
5334143 Carroll Aug 1994 A
5336169 Divilio et al. Aug 1994 A
5336203 Goldhardt et al. Aug 1994 A
5337937 Remiszewski et al. Aug 1994 A
5345927 Bonutti Sep 1994 A
5360417 Gravener et al. Nov 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5375588 Yoon Dec 1994 A
5378588 Tsuchiya Jan 1995 A
5391156 Hildwein et al. Feb 1995 A
5394863 Sanford et al. Mar 1995 A
5395367 Wilk Mar 1995 A
5437683 Neumann et al. Aug 1995 A
5445615 Yoon Aug 1995 A
5451222 De Maagd et al. Sep 1995 A
5460170 Hammerslag Oct 1995 A
5464409 Mohajer Nov 1995 A
5480410 Cuschieri et al. Jan 1996 A
5490843 Hildwein et al. Feb 1996 A
5507758 Thomason et al. Apr 1996 A
5511564 Wilk Apr 1996 A
5514133 Golub et al. May 1996 A
5514153 Bonutti May 1996 A
5520698 Koh May 1996 A
5522791 Leyva Jun 1996 A
5524644 Crook Jun 1996 A
5540648 Yoon Jul 1996 A
5545150 Danks et al. Aug 1996 A
5545179 Williamson, IV Aug 1996 A
5556385 Andersen Sep 1996 A
5569159 Anderson et al. Oct 1996 A
5577993 Zhu et al. Nov 1996 A
5601581 Fogarty et al. Feb 1997 A
5624399 Ackerman Apr 1997 A
5634911 Hermann et al. Jun 1997 A
5634937 Mollenauer et al. Jun 1997 A
5643285 Rowden et al. Jul 1997 A
5649550 Crook Jul 1997 A
5651771 Tangherlini et al. Jul 1997 A
5653705 de la Torre et al. Aug 1997 A
5656013 Yoon Aug 1997 A
5672168 de la Torre et al. Sep 1997 A
5683378 Christy Nov 1997 A
5685857 Negus et al. Nov 1997 A
5697946 Hopper et al. Dec 1997 A
5709675 Williams Jan 1998 A
5713858 Heruth et al. Feb 1998 A
5713869 Morejon Feb 1998 A
5716329 Dieter Feb 1998 A
5722962 Garcia Mar 1998 A
5728103 Picha et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5735791 Alexander, Jr. et al. Apr 1998 A
5741298 MacLeod Apr 1998 A
5752970 Yoon May 1998 A
5782817 Franzel et al. Jul 1998 A
5795290 Bridges Aug 1998 A
5803921 Bonadio Sep 1998 A
5810712 Dunn Sep 1998 A
5813409 Leahy et al. Sep 1998 A
5830191 Hildwein et al. Nov 1998 A
5836871 Wallace et al. Nov 1998 A
5836913 Orth et al. Nov 1998 A
5840077 Rowden et al. Nov 1998 A
5842971 Yoon Dec 1998 A
5848992 Hart et al. Dec 1998 A
5853417 Fogarty et al. Dec 1998 A
5857461 Levitsky et al. Jan 1999 A
5865817 Moenning et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5876413 Fogarty et al. Mar 1999 A
5894843 Benetti et al. Apr 1999 A
5899208 Bonadio May 1999 A
5899913 Fogarty et al. May 1999 A
5904703 Gilson May 1999 A
5906577 Beane et al. May 1999 A
5914415 Tago Jun 1999 A
5916198 Dillow Jun 1999 A
5941898 Moenning et al. Aug 1999 A
5951588 Moenning Sep 1999 A
5957913 de la Torre et al. Sep 1999 A
5964781 Mollenauer et al. Oct 1999 A
5976174 Ruiz Nov 1999 A
5997515 de la Torre et al. Dec 1999 A
6017355 Hessel et al. Jan 2000 A
6018094 Fox Jan 2000 A
6024736 de la Torre et al. Feb 2000 A
6030402 Thompson et al. Feb 2000 A
6033426 Kaji Mar 2000 A
6033428 Sardella Mar 2000 A
6042573 Lucey Mar 2000 A
6048309 Flom et al. Apr 2000 A
6059816 Moenning May 2000 A
6068639 Fogarty et al. May 2000 A
6077288 Shimomura et al. Jun 2000 A
6086603 Termin et al. Jul 2000 A
6099506 Macoviak et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6142936 Beane et al. Nov 2000 A
6156006 Brosens et al. Dec 2000 A
6162196 Hart et al. Dec 2000 A
6171282 Ragsdale Jan 2001 B1
6197002 Peterson Mar 2001 B1
6217555 Hart et al. Apr 2001 B1
6228063 Aboul-Hosn May 2001 B1
6234958 Snoke et al. May 2001 B1
6238373 de la Torre et al. May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6251119 Addis Jun 2001 B1
6254534 Butler et al. Jul 2001 B1
6264604 Kieturakis et al. Jul 2001 B1
6276661 Laird Aug 2001 B1
6293952 Brosens et al. Sep 2001 B1
6315770 de la Torre et al. Nov 2001 B1
6319246 de la Torre et al. Nov 2001 B1
6328720 McNally et al. Dec 2001 B1
6329637 Hembree et al. Dec 2001 B1
6371968 Kogasaka et al. Apr 2002 B1
6382211 Crook May 2002 B1
6423036 Van Huizen Jul 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440063 Beane et al. Aug 2002 B1
6443957 Addis Sep 2002 B1
6447489 Peterson Sep 2002 B1
6450983 Rambo Sep 2002 B1
6454783 Piskun Sep 2002 B1
6464686 O'Hara et al. Oct 2002 B1
6468292 Mollenauer et al. Oct 2002 B1
6485410 Loy Nov 2002 B1
6488620 Segermark et al. Dec 2002 B1
6488692 Spence et al. Dec 2002 B1
6524283 Hopper et al. Feb 2003 B1
6527787 Fogarty et al. Mar 2003 B1
6544210 Trudel et al. Apr 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6558371 Dorn May 2003 B2
6562022 Hoste et al. May 2003 B2
6572631 McCartney Jun 2003 B1
6578577 Bonadio et al. Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6589167 Shimomura et al. Jul 2003 B1
6589316 Schultz et al. Jul 2003 B1
6592543 Wortrich et al. Jul 2003 B1
6613952 Rambo Sep 2003 B2
6623426 Bonadio et al. Sep 2003 B2
6669674 Macoviak et al. Dec 2003 B1
6676639 Ternstrom Jan 2004 B1
6684405 Lezdey Feb 2004 B2
6706050 Giannadakis Mar 2004 B1
6716201 Blanco Apr 2004 B2
6723044 Pulford et al. Apr 2004 B2
6723088 Gaskill, III et al. Apr 2004 B2
6725080 Melkent et al. Apr 2004 B2
6800084 Davison et al. Oct 2004 B2
6811546 Callas et al. Nov 2004 B1
6814078 Crook Nov 2004 B2
6830578 O'Heeron et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6840946 Fogarty et al. Jan 2005 B2
6840951 de la Torre et al. Jan 2005 B2
6846287 Bonadio et al. Jan 2005 B2
6863674 Kasahara et al. Mar 2005 B2
6878110 Yang et al. Apr 2005 B2
6884253 McFarlane Apr 2005 B1
6890295 Michels et al. May 2005 B2
6913609 Yencho et al. Jul 2005 B2
6916310 Sommerich Jul 2005 B2
6916331 Mollenauer et al. Jul 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6939296 Ewers et al. Sep 2005 B2
6942633 Odland Sep 2005 B2
6945932 Caldwell et al. Sep 2005 B1
6958037 Ewers et al. Oct 2005 B2
6972026 Caldwell et al. Dec 2005 B1
6986752 McGuckin, Jr. et al. Jan 2006 B2
6991602 Nakazawa et al. Jan 2006 B2
6997909 Goldberg Feb 2006 B2
7001397 Davison et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7011645 McGuckin, Jr. et al. Mar 2006 B2
7014628 Bousquet Mar 2006 B2
7033319 Pulford et al. Apr 2006 B2
7052454 Taylor May 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7077852 Fogarty et al. Jul 2006 B2
7081089 Bonadio et al. Jul 2006 B2
7083626 Hart et al. Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7101353 Lui et al. Sep 2006 B2
7104981 Elkins et al. Sep 2006 B2
7153261 Wenchell Dec 2006 B2
7160309 Voss Jan 2007 B2
7163510 Kahle et al. Jan 2007 B2
7192436 Sing et al. Mar 2007 B2
7195590 Butler et al. Mar 2007 B2
7201725 Cragg et al. Apr 2007 B1
7214185 Rosney et al. May 2007 B1
7217277 Parihar et al. May 2007 B2
7223257 Shubayev et al. May 2007 B2
7223278 Davison et al. May 2007 B2
7235064 Hopper et al. Jun 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7238154 Ewers et al. Jul 2007 B2
7258712 Schultz et al. Aug 2007 B2
7276075 Callas et al. Oct 2007 B1
7294103 Bertolero et al. Nov 2007 B2
7300399 Bonadio et al. Nov 2007 B2
7316699 McFarlane Jan 2008 B2
7331940 Sommerich Feb 2008 B2
7344547 Piskun Mar 2008 B2
7377898 Ewers et al. May 2008 B2
7390322 McGuckin, Jr. et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7412977 Fields et al. Aug 2008 B2
7440661 Kobayashi Oct 2008 B2
7445597 Butler et al. Nov 2008 B2
7452363 Ortiz Nov 2008 B2
7473221 Ewers et al. Jan 2009 B2
7481765 Ewers et al. Jan 2009 B2
7493703 Kim et al. Feb 2009 B2
7513361 Mills, Jr. Apr 2009 B1
7513461 Reutenauer et al. Apr 2009 B2
7520876 Ressemann et al. Apr 2009 B2
7537564 Bonadio et al. May 2009 B2
7540839 Butler et al. Jun 2009 B2
7559893 Bonadio et al. Jul 2009 B2
7608082 Cuevas et al. Oct 2009 B2
7625361 Suzuki et al. Dec 2009 B2
7645232 Shluzas Jan 2010 B2
7650887 Nguyen et al. Jan 2010 B2
7704207 Albrecht et al. Apr 2010 B2
7717846 Zirps et al. May 2010 B2
7717847 Smith May 2010 B2
7721742 Kalloo et al. May 2010 B2
7727146 Albrecht et al. Jun 2010 B2
7730629 Kim Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7753901 Piskun et al. Jul 2010 B2
7758500 Boyd et al. Jul 2010 B2
7762995 Eversull et al. Jul 2010 B2
7766824 Jensen et al. Aug 2010 B2
7787963 Geistert et al. Aug 2010 B2
7798998 Thompson et al. Sep 2010 B2
7811251 Wenchell et al. Oct 2010 B2
7815567 Albrecht et al. Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
7846123 Vassiliades et al. Dec 2010 B2
7850600 Piskun Dec 2010 B1
7850667 Gresham Dec 2010 B2
7867164 Butler et al. Jan 2011 B2
7896889 Mazzocchi et al. Mar 2011 B2
7905829 Nishimura et al. Mar 2011 B2
7909760 Albrecht et al. Mar 2011 B2
7913697 Nguyen et al. Mar 2011 B2
7951076 Hart et al. May 2011 B2
7955257 Frasier et al. Jun 2011 B2
7955313 Boismier Jun 2011 B2
7998068 Bonadio et al. Aug 2011 B2
8021296 Bonadio et al. Sep 2011 B2
8025670 Sharp et al. Sep 2011 B2
8038652 Morrison et al. Oct 2011 B2
8066673 Hart et al. Nov 2011 B2
8079986 Taylor et al. Dec 2011 B2
8092430 Richard et al. Jan 2012 B2
8105234 Ewers et al. Jan 2012 B2
8109873 Albrecht et al. Feb 2012 B2
8157786 Miller et al. Apr 2012 B2
8157817 Bonadio et al. Apr 2012 B2
8187177 Kahle et al. May 2012 B2
8187178 Bonadio et al. May 2012 B2
8241209 Shelton, IV et al. Aug 2012 B2
8262568 Albrecht et al. Sep 2012 B2
8323184 Spiegal et al. Dec 2012 B2
8335783 Milby Dec 2012 B2
8343047 Albrecht et al. Jan 2013 B2
8353824 Shelton, IV et al. Jan 2013 B2
8403889 Richard Mar 2013 B2
8480683 Fowler et al. Jul 2013 B2
8574153 Richard Nov 2013 B2
8585632 Okoniewski Nov 2013 B2
20010037053 Bonadio et al. Nov 2001 A1
20020055714 Rothschild May 2002 A1
20030014076 Mollenauer et al. Jan 2003 A1
20030093104 Bonner et al. May 2003 A1
20030130559 Morin Jul 2003 A1
20030187376 Rambo Oct 2003 A1
20030233115 Eversull et al. Dec 2003 A1
20030236544 Lunsford et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040059297 Racenet et al. Mar 2004 A1
20040092795 Bonadio et al. May 2004 A1
20040102804 Chin May 2004 A1
20040111061 Curran Jun 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040204734 Wagner et al. Oct 2004 A1
20040267096 Caldwell et al. Dec 2004 A1
20050020884 Hart et al. Jan 2005 A1
20050070935 Ortiz Mar 2005 A1
20050096695 Olich May 2005 A1
20050119525 Takemoto Jun 2005 A1
20050137459 Chin et al. Jun 2005 A1
20050148823 Vaugh et al. Jul 2005 A1
20050192483 Bonadio et al. Sep 2005 A1
20050203346 Bonadio et al. Sep 2005 A1
20050209608 O'Heeron Sep 2005 A1
20050245876 Khosravi et al. Nov 2005 A1
20050251092 Howell et al. Nov 2005 A1
20050277946 Greenhalgh Dec 2005 A1
20060009797 Armstrong Jan 2006 A1
20060071432 Staudner Apr 2006 A1
20060129165 Edoga et al. Jun 2006 A1
20060149137 Pingleton et al. Jul 2006 A1
20060149306 Hart et al. Jul 2006 A1
20060161049 Beane et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060212063 Wilk Sep 2006 A1
20060224161 Bhattacharyya Oct 2006 A1
20060241651 Wilk Oct 2006 A1
20060247498 Bonadio et al. Nov 2006 A1
20060247499 Butler et al. Nov 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247516 Hess et al. Nov 2006 A1
20060247586 Voegele et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060247678 Weisenburgh et al. Nov 2006 A1
20060270911 Voegele et al. Nov 2006 A1
20070093695 Bonadio et al. Apr 2007 A1
20070118175 Butler et al. May 2007 A1
20070151566 Kahle et al. Jul 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070208312 Norton et al. Sep 2007 A1
20070225650 Hart et al. Sep 2007 A1
20070270654 Pignato et al. Nov 2007 A1
20070270882 Hjelle et al. Nov 2007 A1
20080009826 Miller et al. Jan 2008 A1
20080021360 Fihe et al. Jan 2008 A1
20080027476 Piskun Jan 2008 A1
20080048011 Weller Feb 2008 A1
20080091143 Taylor et al. Apr 2008 A1
20080097162 Bonadio et al. Apr 2008 A1
20080097332 Greenhalgh et al. Apr 2008 A1
20080119868 Sharp et al. May 2008 A1
20080161826 Guiraudon Jul 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080194973 Imam Aug 2008 A1
20080200767 Ewers et al. Aug 2008 A1
20080255519 Piskun et al. Oct 2008 A1
20080319261 Lucini et al. Dec 2008 A1
20090005647 Bozdag Jan 2009 A1
20090012477 Norton et al. Jan 2009 A1
20090036738 Cuschieri et al. Feb 2009 A1
20090036745 Bonadio et al. Feb 2009 A1
20090062872 Chin Mar 2009 A1
20090093752 Richard et al. Apr 2009 A1
20090093850 Richard Apr 2009 A1
20090105635 Bettuchi et al. Apr 2009 A1
20090131751 Spivey et al. May 2009 A1
20090137879 Ewers et al. May 2009 A1
20090182279 Wenchell et al. Jul 2009 A1
20090182288 Spenciner Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090204067 Abu-Halawa Aug 2009 A1
20090221968 Morrison et al. Sep 2009 A1
20090227843 Smith et al. Sep 2009 A1
20090326330 Bonadio et al. Dec 2009 A1
20090326332 Carter Dec 2009 A1
20100063452 Edelman et al. Mar 2010 A1
20100080523 Lesvigne et al. Apr 2010 A1
20100100043 Racenet Apr 2010 A1
20100113886 Piskun et al. May 2010 A1
20100228094 Ortiz et al. Sep 2010 A1
20100240960 Richard Sep 2010 A1
20100249516 Shelton, IV et al. Sep 2010 A1
20100249523 Spiegal et al. Sep 2010 A1
20100249524 Ransden et al. Sep 2010 A1
20100262080 Shelton, IV et al. Oct 2010 A1
20100280326 Hess et al. Nov 2010 A1
20100286484 Stellon et al. Nov 2010 A1
20100286506 Ransden et al. Nov 2010 A1
20100298646 Stellon et al. Nov 2010 A1
20100312063 Hess et al. Dec 2010 A1
20110009704 Marczyk et al. Jan 2011 A1
20110021877 Fortier et al. Jan 2011 A1
20110028891 Okoniewski Feb 2011 A1
20110034778 Kleyman Feb 2011 A1
20110040324 McCarthy et al. Feb 2011 A1
20110054257 Stopek Mar 2011 A1
20110054258 O'Keefe et al. Mar 2011 A1
20110054260 Albrecht et al. Mar 2011 A1
20110082341 Kleyman et al. Apr 2011 A1
20110082343 Okoniewski Apr 2011 A1
20110082346 Stopek Apr 2011 A1
20110087075 Wenchell et al. Apr 2011 A1
20110118553 Stopek May 2011 A1
20110124968 Kleyman May 2011 A1
20110124969 Stopek May 2011 A1
20110124970 Kleyman May 2011 A1
20110125186 Fowler et al. May 2011 A1
20110166423 Farascioni et al. Jul 2011 A1
20110251463 Kleyman Oct 2011 A1
20110251464 Kleyman Oct 2011 A1
20110251465 Kleyman Oct 2011 A1
20110251466 Kleyman et al. Oct 2011 A1
20110313250 Kleyman Dec 2011 A1
20120059640 Roy et al. Mar 2012 A1
20120116303 Marx May 2012 A1
20120130177 Davis May 2012 A1
20120130181 Davis May 2012 A1
20120130182 Rodrigues, Jr. et al. May 2012 A1
20120130183 Barnes May 2012 A1
20120130184 Richard May 2012 A1
20120130185 Pribanic May 2012 A1
20120130186 Stopek et al. May 2012 A1
20120130187 Okoniewski May 2012 A1
20120130188 Okoniewski May 2012 A1
20120130190 Kasvikis May 2012 A1
20120130191 Pribanic May 2012 A1
20120149987 Richard et al. Jun 2012 A1
20120157777 Okoniewski Jun 2012 A1
20120157779 Fischvogt Jun 2012 A1
20120157780 Okoniewski et al. Jun 2012 A1
20120157781 Kleyman Jun 2012 A1
20120157782 Alfieri Jun 2012 A1
20120157783 Okoniewski et al. Jun 2012 A1
20120157784 Kleyman et al. Jun 2012 A1
20120157785 Kleyman Jun 2012 A1
20120157786 Pribanic Jun 2012 A1
20120190931 Stopek Jul 2012 A1
20120190932 Okoniewski Jul 2012 A1
20120190933 Kleyman Jul 2012 A1
20120209077 Racenet Aug 2012 A1
20120209078 Pribanic et al. Aug 2012 A1
20120245427 Kleyman Sep 2012 A1
20120245429 Smith Sep 2012 A1
20120245430 Kleyman et al. Sep 2012 A1
20120283520 Kleyman Nov 2012 A1
20130225930 Smith Aug 2013 A1
20130225931 Cruz et al. Aug 2013 A1
20130245373 Okoniewski Sep 2013 A1
20130274559 Fowler et al. Oct 2013 A1
20130310651 Alfieri Nov 2013 A1
20140018632 Kleyman Jan 2014 A1
20150038793 Prior et al. Feb 2015 A1
20150335320 Keating et al. Nov 2015 A1
20180271557 Buyda et al. Sep 2018 A1
20190223905 Zeller Jul 2019 A1
Foreign Referenced Citations (78)
Number Date Country
2702419 Nov 2010 CA
0226026 Jun 1987 EP
0538060 Apr 1993 EP
0577400 Jan 1994 EP
0630660 Dec 1994 EP
0807416 Nov 1997 EP
0950376 Oct 1999 EP
1188415 Mar 2002 EP
1312318 May 2003 EP
1774918 Apr 2007 EP
1932485 Jun 2008 EP
2044889 Apr 2009 EP
2044897 Apr 2009 EP
2080494 Jul 2009 EP
2095781 Sep 2009 EP
2098182 Sep 2009 EP
2138117 Dec 2009 EP
2138118 Dec 2009 EP
2181657 May 2010 EP
2226025 Sep 2010 EP
2229900 Sep 2010 EP
2238924 Oct 2010 EP
2238925 Oct 2010 EP
2238926 Oct 2010 EP
2238933 Oct 2010 EP
2248478 Nov 2010 EP
2248482 Nov 2010 EP
2253283 Nov 2010 EP
2272450 Jan 2011 EP
2277464 Jan 2011 EP
2289438 Mar 2011 EP
2292165 Mar 2011 EP
2343019 Jul 2011 EP
3225202 Oct 2017 EP
2469083 Apr 2009 GB
8401512 Apr 1984 WO
9314801 Aug 1993 WO
9404067 Mar 1994 WO
9610963 Apr 1996 WO
9636283 Nov 1996 WO
9733520 Sep 1997 WO
9742889 Nov 1997 WO
9916368 Apr 1999 WO
9922804 May 1999 WO
9929250 Jun 1999 WO
0032116 Jun 2000 WO
0032120 Jun 2000 WO
0054675 Sep 2000 WO
0108581 Feb 2001 WO
0149363 Jul 2001 WO
0207611 Jan 2002 WO
03034908 May 2003 WO
03071926 Sep 2003 WO
03077726 Sep 2003 WO
2004043275 May 2004 WO
2004054456 Jul 2004 WO
2004075741 Sep 2004 WO
2004075930 Sep 2004 WO
2005058409 Jun 2005 WO
2006019723 Feb 2006 WO
2006100658 Sep 2006 WO
2006110733 Oct 2006 WO
2007018458 Feb 2007 WO
2007095703 Aug 2007 WO
2007143200 Dec 2007 WO
2008015566 Feb 2008 WO
2008042005 Apr 2008 WO
2008077080 Jun 2008 WO
2008093313 Aug 2008 WO
2008103151 Aug 2008 WO
2008112364 Sep 2008 WO
2008121294 Oct 2008 WO
2008147644 Dec 2008 WO
2009036343 Mar 2009 WO
2010000047 Jan 2010 WO
2010141409 Dec 2010 WO
2010141673 Dec 2010 WO
2013105993 Jul 2013 WO
Non-Patent Literature Citations (1)
Entry
Extended European Search Report dated Nov. 20, 2019 issued in corresponding EP Appln. No. 19200769.8.
Related Publications (1)
Number Date Country
20220346835 A1 Nov 2022 US
Provisional Applications (1)
Number Date Country
62739909 Oct 2018 US
Continuations (1)
Number Date Country
Parent 16550470 Aug 2019 US
Child 17862899 US