The present disclosure relates to a surgical access device. More particularly, the present disclosure relates to a surgical access device having a fixation mechanism to help maintain its position relative to a patient during a surgical procedure and an illumination mechanism to help illuminate a surgical site.
In minimally invasive surgical procedures, including endoscopic and laparoscopic surgeries, a surgical access device permits the introduction of a variety of surgical instruments into a body cavity or opening. A surgical access device (e.g., a cannula) is introduced through an opening in tissue (i.e., a naturally occurring orifice or an incision) to provide access to an underlying surgical site in the body. The incision is typically made using an obturator having a blunt or sharp tip that has been inserted within the passageway of the surgical access device. For example, a cannula has a tube of rigid material with a thin wall construction, through which an obturator may be passed. The obturator is utilized to penetrate a body wall, such as an abdominal wall, or to introduce the surgical access device through the body wall and is then removed to permit introduction of surgical instrumentation through the surgical access device to perform the surgical procedure.
During these procedures, it may be challenging to maintain the position of the surgical access device with respect to the body wall, particularly when exposed to a pressurized environment. To help maintain the position of the surgical access device with respect to the body wall, an expandable anchor or fixation mechanism disposed near a distal end of the surgical access device is occasionally used. Expanding such an anchor while the surgical access device is within the body helps prevent the surgical access device from undesired movement with respect to the body.
Additionally, during such surgical procedures, it may be challenging for a user to see the surgical site even when an endoscope or laparoscope with a camera and light source are being utilized.
Accordingly, it may be helpful to provide a fixation mechanism to help maintain the longitudinal position of the surgical access device with respect to the patient, and it may be helpful to include a light source on a portion of the surgical access device to help illuminate the surgical site.
The present disclosure relates to a surgical access device including a cannula body, a fixation mechanism, and an illumination mechanism. The cannula body includes a housing and an elongated portion extending distally from the housing. The elongated portion defines a longitudinal axis, and defines a channel extending therethrough. The fixation mechanism is disposed in mechanical cooperation with the elongated portion of the cannula body, and includes a collar, a sleeve, an expandable member, and a distal ring. The collar at least partially surrounds a portion of the elongated portion of the cannula body, and is longitudinally translatable relative to the elongated portion of the cannula body. The sleeve extends distally from the collar. The expandable member extends distally from the sleeve and radially surrounds a portion of the elongated portion of the cannula body. The distal ring is engaged with a distal portion of the expandable member and is longitudinally fixed relative to the elongated portion of the cannula body. The illumination mechanism is disposed in mechanical cooperation with the fixation mechanism, and includes at least one light disposed on the expandable member, and a switch in electrical communication with the at least one light. Distal translation of the collar relative to the elongated portion of the cannula body causes the expandable member to move from a first position defining a first gap between a mid-portion of the expandable member and the elongated portion of the cannula body, to a second position defining a second gap between the mid-portion of the expandable member and the elongated portion of the cannula body. The second gap is greater than the first gap.
In aspects, the at least one light of the illumination mechanism may include at least four lights.
In disclosed aspects, the switch may be disposed on the collar of the fixation mechanism.
Further, in aspects, the at least one light may be disposed distally of the mid-portion of the expandable member.
In aspects, the expandable member may define a plurality of diamond-shaped openings. Also, in aspects, the least one light may include a plurality of lights, and each light of the plurality of lights may be disposed distally of a widest portion of one diamond-shaped opening of the plurality of diamond-shaped openings.
In additional aspects, the expandable member may define four diamond-shaped openings, the at least one light may include four lights, and each light may be disposed distally of a widest portion of one diamond-shaped opening.
In aspects, the cannula body may include a pin extending therefrom, and the collar may include a cam surface configured to slidingly engage the pin of the cannula body.
In disclosed aspects, the fixation mechanism may include a biasing element. At least a portion of the biasing element may be disposed proximally of the collar and may be configured to bias the collar distally.
The present disclosure also relates to a surgical access device including a cannula body, a fixation mechanism, and an illumination mechanism. The cannula body includes a housing and an elongated portion extending distally from the housing. The elongated portion defines a longitudinal axis, and defines a channel extending therethrough. The fixation mechanism is disposed in mechanical cooperation with the elongated portion of the cannula body, and includes an expandable member radially surrounding a portion of the elongated portion of the cannula body. The illumination mechanism is disposed in mechanical cooperation with the fixation mechanism and includes at least one light disposed on the expandable member, and a switch in electrical communication with the at least one light. The at least one light of the illumination mechanism is movable from a first position where the at least one light faces a first direction relative to the cannula body, to a second position where the at least one light faces a second direction relative to the cannula body.
In aspects, when the at least one light is in the first position, the at least one light may face perpendicularly to the longitudinal axis. Further, in aspects, when the at least one light is in the second position, the at least one light may face parallel to the longitudinal axis.
In disclosed aspects, the expandable member may be movable from a first position defining a first gap between a mid-portion of the expandable member and the elongated portion of the cannula body, to a second position defining a second gap between the mid-portion of the expandable member and the elongated portion of the cannula body. The second gap is greater than the first gap. Further, in aspects, movement of the expandable member from the first position to the second position may cause the at least one light to move from the first position to the second position.
Also, in aspects, the fixation mechanism may include a collar at least partially surrounding a portion of the elongated portion of the cannula body. The collar may be longitudinally translatable relative to the elongated portion. Distal translation of the collar relative to the elongated portion may cause the expandable member to move from the first position to the second position. The switch of the illumination mechanism may be disposed on the collar.
In aspects, the at least one light may be disposed distally of a longitudinal mid-point of the expandable member.
In disclosed aspects, when the at least one light is in the second position, the at least one light may face distally.
In further aspects, the expandable member may define a plurality of diamond-shaped openings. Also, in aspects, the least one light may include a plurality of lights, and each light of the plurality of lights may be disposed distally of a widest portion of one diamond-shaped opening of the plurality of diamond-shaped openings.
In aspects, the expandable member may define four diamond-shaped openings. The at least one light may include four lights, and each light may be disposed distally of a widest portion of one diamond-shaped opening.
Various aspects of the present disclosure are illustrated herein with reference to the accompanying drawings, wherein:
Aspects of the presently disclosed surgical access device will now be described in detail with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views. As is common in the art, the term “proximal” refers to that part or component closer to the user or operator, i.e. surgeon or physician, while the term “distal” refers to that part or component farther away from the user. As used herein, the terms “parallel” and “perpendicular” are understood to include relative configurations that are substantially parallel and substantially perpendicular up to about + or −10 degrees from true parallel and true perpendicular, respectively, for example.
Generally, the surgical access device or cannula, often part of a trocar assembly, may be employed during surgery (e.g., laparoscopic surgery) and may, in various aspects, provide for the sealed access of laparoscopic surgical instruments into an insufflated body cavity, such as the abdominal cavity. The cannula is usable with an obturator insertable therethrough. The cannula and obturator are separate components but are capable of being selectively connected together. For example, the obturator may be inserted into and through the cannula until the handle of the obturator engages, e.g., selectively locks into, a proximal housing of the cannula. In this initial configuration, the trocar assembly is employed to tunnel through an anatomical structure, e.g., the abdominal wall, either by making a new passage through the structure or by passing through an existing opening through the structure. Once the trocar assembly has tunneled through the anatomical structure, the obturator is removed, leaving the cannula in place in the structure, e.g., in the incision created by the trocar assembly. The proximal housing of the cannula may include seals or valves that prevent the escape of insufflation gases from the body cavity, while also allowing surgical instruments to be inserted into the body cavity.
The fixation mechanism 200 is positionable around the elongated portion 140 of the cannula body 100 such that such that the fixation mechanism 200 radially surrounds a portion of the elongated portion 140. More particularly, portions of the fixation mechanism 200 are longitudinally translatable relative to the elongated portion 140 between a first position, where a proximal part 211 of a collar 210 of the fixation mechanism 200 is farther away from a distal tip 141 of the elongated portion 140 and where a mid-portion 222 of an expandable member 220 of the fixation mechanism 200 is closer to the longitudinal axis “A-A” (
The expandable member 220 defines a plurality of diamond-like openings 221 around its perimeter (
In various aspects, the expandable member 220 is made of rubber or plastic. Such a rubber or plastic expandable member 220 is able to retain its shape (in both the first position and the second position) without the need for the expandable member 220 to be filled with fluid (e.g., liquid or gas), for instance.
Referring to
The collar 210, the sleeve 215, and the proximal ring 216 are longitudinally translatable relative to the elongated portion 140 of the cannula body 100 and are rotatable about the longitudinal axis “A-A” relative to the elongated portion 140. The expandable member 220 and the distal ring 225 are also rotatable about the longitudinal axis “A-A” relative to the elongated portion 140. A lip 141a of the distal tip 141 of the elongated portion 140 restricts distal movement of the distal ring 225 relative to the elongated portion 140. As discussed in further detail below, distal movement of the proximal end 224 of the expandable member 220 relative to the elongated portion 140 causes the mid-portion 222 of the expandable member 220 to move away from the longitudinal axis “A-A.”
With reference to
Each cam surface of the pair of cam surfaces 211 of the collar 210 is configured to slidingly engage a respective pin 142 extending radially outward from the elongated portion 140 of the cannula body 100. Each cam surface of the pair of cam surfaces 211 includes a proximal portion 211a, a distal portion 211b, and a connecting portion 211c, which interconnects the proximal portion 211a and the distal portion 211b (
Further, the collar 210 is biased proximally into the first position (
The collar 210 is fixedly engaged with the sleeve 215, such that rotational and longitudinal movement of the collar 210 relative to the elongated portion 140 translates to a corresponding rotational and longitudinal movement of the sleeve 215. Additionally, the proximal ring 216 is fixedly engaged with the sleeve 215 such that rotational and longitudinal movement of the sleeve 215 translates to a corresponding rotational and longitudinal movement of the proximal ring 216.
With particular reference to
Referring to
As shown in
With particular reference to
Referring now to
In use, when the fixation mechanism 200 is in its first position (
To transition the fixation mechanism 200 and the lights 310 to their second position (
The lights 310 may be switched on or off by a user via the switch 320 at any stage during use. It may be helpful to have the lights 310 in the on position when the expandable member 220 is in its second, expanded position (
Next, in aspects where the anchor 400 is longitudinally movable relative the elongated portion 140 of the cannula body 100, the anchor 400 is moved distally such that the anchor 400 contacts a proximal portion of the tissue wall, thereby sandwiching the tissue wall between the anchor 400 and the expandable member 220, and fixing the longitudinal position of the cannula body 100 relative to the tissue wall.
Various aspects of the fixation mechanism 2000 are the same or similar to those of the fixation mechanism 200, discussed above. Accordingly, only the main differences will be discussed in detail herein.
With continued reference to
The collar 2100, the sleeve 2105, and the proximal ring 2160 are longitudinally translatable relative to the elongated portion 140 of the cannula body 100. The lip 141a (
The biasing element 2300 (e.g., a compression spring) radially surrounds the elongated portion 140 of the cannula body 100, and is positioned between a distal portion of the proximal housing 120 and a proximal portion of the collar 2100 of the fixation mechanism 2000. The biasing element 2300 biases the collar 2100 distally relative to the elongated portion 140, in the general direction of arrow “D” in
In use, when the fixation mechanism 2000 is in its first position (
To transition the fixation mechanism 2000 and the lights 310 to their second position (
The lights 310 may be switched on or off by a user via the switch 320 at any stage during use. It may be helpful to have the lights 310 in the on position when the expandable member 2200 is in its second, expanded position and after the distal tip 141 of the elongated portion 140 of the cannula body 100 is with tissue, for instance, to help a user more clearly view the target tissue, as shown in
Next, in aspects where the anchor 400 is longitudinally movable relative the elongated portion 140 of the cannula body 100, the anchor 400 is moved distally such that the anchor 400 contacts a proximal portion of the tissue wall “T,” thereby sandwiching the tissue wall “T” between the anchor 400 and the expandable member 2200, and fixing the longitudinal position of the cannula body 100 relative to the tissue wall “T.”
While the above description contains many specifics, these specifics should not be construed as limitations on the scope of the present disclosure, but merely as illustrations of various aspects thereof. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various aspects. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
The present application is a Continuation of Application of U.S. patent application Ser. No. 17/083,916, filed on Oct. 29, 2020, now U.S. Pat. No. 11,471,189. The entire contents of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
397060 | Knapp | Jan 1889 | A |
512456 | Sadikova | Jan 1894 | A |
1213005 | Pillsbury | Jan 1917 | A |
2912981 | Keough | Nov 1959 | A |
2936760 | Gains | May 1960 | A |
3039468 | Price | Jun 1962 | A |
3050066 | Koehn | Aug 1962 | A |
3253594 | Matthews et al. | May 1966 | A |
3397699 | Kohl | Aug 1968 | A |
3545443 | Ansari et al. | Dec 1970 | A |
3713447 | Adair | Jan 1973 | A |
3774596 | Cook | Nov 1973 | A |
3800788 | White | Apr 1974 | A |
3882852 | Sinnreich | May 1975 | A |
3896816 | Mattler | Jul 1975 | A |
3961632 | Moossun | Jun 1976 | A |
RE29207 | Bolduc et al. | May 1977 | E |
4083369 | Sinnreich | Apr 1978 | A |
4217889 | Radovan et al. | Aug 1980 | A |
4243050 | Littleford | Jan 1981 | A |
4276874 | Wolvek et al. | Jul 1981 | A |
4312353 | Shahbabian | Jan 1982 | A |
4327709 | Hanson et al. | May 1982 | A |
4345606 | Littleford | Aug 1982 | A |
4411654 | Boarini et al. | Oct 1983 | A |
4416267 | Garren et al. | Nov 1983 | A |
4490137 | Moukheibir | Dec 1984 | A |
4496345 | Hasson | Jan 1985 | A |
4574806 | McCarthy | Mar 1986 | A |
4581025 | Timmermans | Apr 1986 | A |
4596554 | Dastgeer | Jun 1986 | A |
4596559 | Fleischhacker | Jun 1986 | A |
4608965 | Anspach, Jr. et al. | Sep 1986 | A |
4644936 | Schiff | Feb 1987 | A |
4654030 | Moll et al. | Mar 1987 | A |
4685447 | Iversen et al. | Aug 1987 | A |
4701163 | Parks | Oct 1987 | A |
4738666 | Fuqua | Apr 1988 | A |
4769038 | Bendavid et al. | Sep 1988 | A |
4772266 | Groshong | Sep 1988 | A |
4779611 | Grooters et al. | Oct 1988 | A |
4784133 | Mackin | Nov 1988 | A |
4793348 | Palmaz | Dec 1988 | A |
4798205 | Bonomo et al. | Jan 1989 | A |
4800901 | Rosenberg | Jan 1989 | A |
4802479 | Haber et al. | Feb 1989 | A |
4813429 | Eshel et al. | Mar 1989 | A |
4840613 | Balbierz | Jun 1989 | A |
4854316 | Davis | Aug 1989 | A |
4861334 | Nawaz | Aug 1989 | A |
4865593 | Ogawa et al. | Sep 1989 | A |
4869717 | Adair | Sep 1989 | A |
4888000 | McQuilkin et al. | Dec 1989 | A |
4899747 | Garren et al. | Feb 1990 | A |
4917668 | Haindl | Apr 1990 | A |
4931042 | Holmes et al. | Jun 1990 | A |
4955895 | Sugiyama et al. | Sep 1990 | A |
5002557 | Hasson | Mar 1991 | A |
5009643 | Reich et al. | Apr 1991 | A |
5030206 | Lander | Jul 1991 | A |
5030227 | Rosenbluth et al. | Jul 1991 | A |
5074871 | Groshong | Dec 1991 | A |
5098392 | Fleischhacker et al. | Mar 1992 | A |
5104383 | Shichman | Apr 1992 | A |
5116318 | Hillstead | May 1992 | A |
5116357 | Eberbach | May 1992 | A |
5122122 | Allgood | Jun 1992 | A |
5122155 | Eberbach | Jun 1992 | A |
5137512 | Burns et al. | Aug 1992 | A |
5141494 | Danforth et al. | Aug 1992 | A |
5141515 | Eberbach | Aug 1992 | A |
5147302 | Euteneuer et al. | Sep 1992 | A |
5147316 | Castillenti | Sep 1992 | A |
5147374 | Fernandez | Sep 1992 | A |
5158545 | Trudell et al. | Oct 1992 | A |
5159925 | Neuwirth et al. | Nov 1992 | A |
5163949 | Bonutti | Nov 1992 | A |
5176692 | Wilk et al. | Jan 1993 | A |
5176697 | Hasson | Jan 1993 | A |
5183463 | Debbas | Feb 1993 | A |
5188596 | Condon et al. | Feb 1993 | A |
5188630 | Christoudias | Feb 1993 | A |
5195507 | Bilweis | Mar 1993 | A |
5201742 | Hasson | Apr 1993 | A |
5201754 | Crittenden et al. | Apr 1993 | A |
5209725 | Roth | May 1993 | A |
5215526 | Deniega et al. | Jun 1993 | A |
5222970 | Reeves | Jun 1993 | A |
5226890 | Ianniruberto et al. | Jul 1993 | A |
5232446 | Arney | Aug 1993 | A |
5232451 | Freitas et al. | Aug 1993 | A |
5234454 | Bangs | Aug 1993 | A |
5250025 | Sosnowski et al. | Oct 1993 | A |
5258026 | Johnson et al. | Nov 1993 | A |
5269753 | Wilk | Dec 1993 | A |
5290249 | Foster et al. | Mar 1994 | A |
5308327 | Heaven et al. | May 1994 | A |
5309896 | Moll et al. | May 1994 | A |
5314443 | Rudnick | May 1994 | A |
5318012 | Wilk | Jun 1994 | A |
5330497 | Freitas et al. | Jul 1994 | A |
5342307 | Euteneuer et al. | Aug 1994 | A |
5346504 | Ortiz et al. | Sep 1994 | A |
5359995 | Sewell, Jr. | Nov 1994 | A |
5361752 | Moll et al. | Nov 1994 | A |
5370134 | Chin et al. | Dec 1994 | A |
5383889 | Warner et al. | Jan 1995 | A |
5397311 | Walker et al. | Mar 1995 | A |
5402772 | Moll et al. | Apr 1995 | A |
5407433 | Loomas | Apr 1995 | A |
5431173 | Chin et al. | Jul 1995 | A |
5445615 | Yoon | Aug 1995 | A |
5468248 | Chin et al. | Nov 1995 | A |
5514091 | Yoon | May 1996 | A |
5514153 | Bonutti | May 1996 | A |
5540658 | Evans et al. | Jul 1996 | A |
5540711 | Kieturakis et al. | Jul 1996 | A |
5607441 | Sierocuk et al. | Mar 1997 | A |
5607443 | Kieturakis et al. | Mar 1997 | A |
5632761 | Smith et al. | May 1997 | A |
5656013 | Yoon | Aug 1997 | A |
5667479 | Kieturakis | Sep 1997 | A |
5667520 | Bonutti | Sep 1997 | A |
5704372 | Moll et al. | Jan 1998 | A |
5707382 | Sierocuk et al. | Jan 1998 | A |
5713869 | Morejon | Feb 1998 | A |
5722986 | Smith et al. | Mar 1998 | A |
5728119 | Smith et al. | Mar 1998 | A |
5730748 | Fogarty et al. | Mar 1998 | A |
5730756 | Kieturakis et al. | Mar 1998 | A |
5738628 | Sierocuk et al. | Apr 1998 | A |
5755693 | Walker et al. | May 1998 | A |
5762604 | Kieturakis | Jun 1998 | A |
5772680 | Kieturakis et al. | Jun 1998 | A |
5779728 | Lunsford et al. | Jul 1998 | A |
5797947 | Mollenauer | Aug 1998 | A |
5803901 | Chin et al. | Sep 1998 | A |
5810867 | Zarbatany et al. | Sep 1998 | A |
5814060 | Fogarty et al. | Sep 1998 | A |
5836913 | Orth et al. | Nov 1998 | A |
5836961 | Kieturakis et al. | Nov 1998 | A |
5865802 | Yoon et al. | Feb 1999 | A |
5893866 | Hermann et al. | Apr 1999 | A |
5925058 | Smith et al. | Jul 1999 | A |
6361543 | Chin et al. | Mar 2002 | B1 |
6368337 | Kieturakis et al. | Apr 2002 | B1 |
6375665 | Nash et al. | Apr 2002 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6432121 | Jervis | Aug 2002 | B1 |
6447529 | Fogarty et al. | Sep 2002 | B2 |
6468205 | Mollenauer et al. | Oct 2002 | B1 |
6506200 | Chin | Jan 2003 | B1 |
6514272 | Kieturakis et al. | Feb 2003 | B1 |
6517514 | Campbell | Feb 2003 | B1 |
6527787 | Fogarty et al. | Mar 2003 | B1 |
6540764 | Kieturakis et al. | Apr 2003 | B1 |
6796960 | Cioanta et al. | Sep 2004 | B2 |
8454645 | Criscuolo et al. | Jun 2013 | B2 |
10751086 | Shipp et al. | Aug 2020 | B2 |
11471189 | Desjardin | Oct 2022 | B2 |
20060079925 | Kerr | Apr 2006 | A1 |
20080287740 | Weitzner et al. | Nov 2008 | A1 |
20110144440 | Cropper | Jun 2011 | A1 |
20110144447 | Schleitweiler et al. | Jun 2011 | A1 |
20130053782 | Shelton, IV | Feb 2013 | A1 |
20150297260 | Kreuz et al. | Oct 2015 | A1 |
20150366583 | Druma | Dec 2015 | A1 |
20160038018 | Wilson et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
0480653 | Apr 1992 | EP |
0610099 | Aug 1994 | EP |
0880939 | Dec 1998 | EP |
9206638 | Apr 1992 | WO |
9218056 | Oct 1992 | WO |
9221293 | Dec 1992 | WO |
9221295 | Dec 1992 | WO |
9309722 | May 1993 | WO |
9721461 | Jun 1997 | WO |
9912602 | Mar 1999 | WO |
0126724 | Apr 2001 | WO |
02096307 | Dec 2002 | WO |
2004032756 | Apr 2004 | WO |
Entry |
---|
Extended European Search Report dated Mar. 31, 2022 issued in corresponding EP Appln. No. 21209207.6. |
Number | Date | Country | |
---|---|---|---|
20230043529 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17083916 | Oct 2020 | US |
Child | 17968660 | US |