i. Field of the Invention
The present application relates to methods and devices for laparoscopic surgical procedures and, more particularly, to hand-assisted, laparoscopic procedures.
ii. Description of the Related Art
In a minimally invasive, laparoscopic surgical procedure, a surgeon may place a number of small ports into the abdomen to gain access into the abdominal cavity of the patient. A surgeon may use, for example, a port for insufflating the abdominal cavity to create space, a port for introducing a laparoscope for viewing, and a number of other ports for introducing surgical instruments for operating on tissue. The benefits of minimally invasive procedures compared to open surgery procedures for treating certain types of wounds and diseases are now well-known to include faster recovery time and less pain for the patient, better outcomes, and lower overall costs.
In traditional, open surgery, surgeons may use their hands, together with surgical instrumentation, to manipulate tissues, to perform particular steps of the procedure and to obtain tactile feedback through their fingertips to verify the nature of particular tissues. Also in open surgery, the size and shape of instruments that a surgeon may place into the abdominal cavity, as well as the size and shape of tissues that a surgeon may remove, obviously is not nearly as limited as in laparoscopic surgery.
Hand-assisted, laparoscopic surgery (“HALS”) combines some of the benefits of both the open and the laparoscopic methods. In a HALS procedure, a surgeon still places small ports into the abdomen to insufflate, to view and to introduce instruments into the abdominal cavity. In a HALS procedure, however, a surgeon also creates an incision into the abdominal wall large enough to accommodate the surgeon's hand. The incision may be retracted and draped to provide a suitably sized and protected opening. A surgeon may also place a laparoscopic access device, also referred to as a lap disc, into the incision to maintain insufflation in the abdominal cavity while the surgeon's hand is either inserted into the cavity though the device or removed from the cavity. The advent of HALS and the lap disc creates numerous opportunities for creating and/or improving surgical devices and methods.
The foregoing discussion is intended only to illustrate various aspects of the related art in the field of the invention at the time, and should not be taken as a disavowal of claim scope.
Various features of the embodiments described herein are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows.
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments, the scope of which is defined solely by the appended claims.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.
It will be appreciated that the terms “proximal” and “distal” may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.
Upper ring 204, lower ring 206 and first elastic member 208 are also referred to together as a valve subassembly 201. As will become apparent to those skilled in the art, the aspects and features described herein are also applicable to surgical access devices having other types of valve assemblies such as, for example, those including a hydrophilic gel material with a sealable slit opening for surgical access into the body cavity.
A first aspect of a multi-port insert, generally designated 100, relates to an insert for use with a laparoscopic access device 122. Referring now to the figures,
As illustrated in
Referring now to
In one embodiment, each seal assembly 108 is flexibly attached to the base 102 using a floatation system such as bellows 118 located around the periphery of each seal assembly 108. The bellows 118 may be made from a flexible, elastic material and allow the seal assembly 108 to move laterally and pivot within the aperture 104. The movement of the seal assembly 108 allows surgical instruments to be inserted through the apertures 104 at an angle rather than along the axis of the aperture 104. The bellows 118 may be attached to the lip of the aperture 104 by a retaining ring 120 that frictionally fits over each rim 106. The force required to deflect the bellows 118 is much less than the pressure exerted by surgical instrument on the elastic members 114 while the surgical instrument is inserted in the seal assembly 108. This allows the floatation system to deflect within each aperture 104 while the elastic members 114 maintain a sealing condition with the instrument.
The multi-port insert 100 may be attached to a laparoscopic access device 122 as shown in
Once attached to the laparoscopic device, the base 102 of the multi-port insert 100 may form a seal with the laparoscopic access device 122 to prevent the escape of insufflation gas. As shown in
In another embodiment, the base 102 of the multi-port insert may be inserted through the opening in the membrane 128 of the laparoscopic access device 122 and attached to the lower ring 148 of the laparoscopic access device 122. This configuration would provide a greater range of motion within the body cavity for the surgical instruments by lowering the pivot points for the instruments below the surface of the skin.
The multi-port insert 100 may also include one or more instrument supports 130 that are attached to the base 102 to fix the position of one or more surgical instruments inserted through the multi-port insert 100.
The instrument support base 134 attaches the instrument support 130 to the multi-port insert 100. The base 134 may be inserted into a track 132 that extends around the periphery of the multi-port insert 100. The track 132 may include an opening 178 to allow an instrument support base 134 to be inserted into the track 132. The instrument support 130 may be positioned along the track 132 around the circumference of the multi-port insert 100.
The instrument support 130 includes a positional lock 136 for fixing the position of the instrument support base 134 with respect to the multi-port insert 100. The stem 154 may be inserted through an aperture in the positional lock 136. The positional lock 136 may be threadably connected to the instrument support base 134, such that when the positional lock 136 is rotated in a first direction the instrument support base 134 is drawn upward away from the base 102. Frictional forces between the track 132, the instrument support base 134 and the positional lock 136 secure the instrument support base 134 relative to the base 102 of the multi-port insert 100. In an alternative embodiment, a clamp may be used to secure the instrument support 130 to the base 102.
The instrument support 130 may also include an extension control 152 and an extension lock 140. The extension control 152 includes a generally conical portion 166 and an aperture shaped to receive the stem 154. The conical portion 166 of the extension control 152 includes one or more slits (not shown). The extension lock 140 includes an aperture shaped to receive the stem 154 and a generally conical shaped opening 156. The extension lock 140 may be threadably connected to the extension control 152 such that the extension lock 140 may be drawn downward over the extension control 152. The pressure exerted by the extension lock 140 on the extension control 152 pushes the conical portion 166 of the extension control 152 down and inward, exerting pressure against the stem 154, preventing the stem 154 from sliding through the apertures in the extension control 152 and thereby locking the stem 154 in place. The surface of the stem 154 may be rough, textured or covered with a coating to increase friction between the stem and the extension control 152 and facilitate locking the stem 154 in place.
The multi-port insert may be utilized during laparoscopic procedures to provide the surgeon with the ability to insert multiple surgical instruments into the body cavity of the patient without substantial loss of insufflation gases and without requiring multiple additional incisions. In one embodiment the lower ring of the laparoscopic access device 122 may be inserted into the body of a patient through an incision in the abdomen of the patient. During laparoscopic surgery, the surgeon may elect to attach a multi-port insert 100 to the upper ring 148 of the laparoscopic access device 122 using the latch mechanisms 124, clamps or the like. Once attached, the multi-port insert 100 forms a seal with the laparoscopic access device 122. The seal between the multi-port insert 100 and the laparoscopic access device 122 and the seal assemblies 108 prevent excessive amounts of the insufflation gases from escaping the body cavity. The surgeon may insert a surgical instrument through any or all of the apertures 104. This allows the surgeon to insert multiple surgical instruments into the body cavity patient at the same time. The seal assemblies 108 automatically reseal upon removal of the surgical instruments allowing the surgeon to insert and remove multiple surgical instruments during surgery.
The multi-port insert 100 may also include one or more instrument supports 130 designed to hold surgical instruments inserted through the multi-port insert. In one embodiment the instrument supports 130 attach to the track 132 in the base 102. The instrument supports 130 may be positioned at an appropriate location on the base 102 and locked into place using the positional lock 136. The surgeon may control the distance the instrument support 130 extends from the base 102 using the extension control 152 and extension lock 140. The instrument support 130 may be attached to a surgical instrument using the gripping portion 138. The surgeon may reposition and readjust the instrument support 130 at any time. At any time during the procedure the surgeon may elect to disconnect the multi-port insert 100 from the laparoscopic access device 122. Various other devices are disclosed in U.S. patent application Ser. No. 11/398,985, entitled MULTI-PORT LAPAROSCOPIC ACCESS DEVICE, which was filed on Apr. 5, 2006, the entire disclosure of which is incorporated by reference herein.
Similar to access device 202, referring now to
In various embodiments, further to the above, an upper ring, or cap, such as upper ring 304, for example, can be positioned against the lower ring 306. In at least one embodiment, the lower ring 306 can comprise a central portion 360 about which the upper ring 304 can be rotated. More particularly, in at least one embodiment, the central portion 360 can comprise an annular, or at least substantially annular, ridge or wall extending upwardly which can be configured to be closely received within, referring to
In various embodiments, further to the above, the upper ring 304 can be removably attachable to the lower ring 306. In at least one embodiment, referring now to
Once the upper ring 304 has been rotated relative to the bottom ring 306 and the feet 373 and 374 have been slid under lip 377, the upper ring 304 can be rotated an entire revolution about axis 349 before the feet 373, 374 become aligned with access slots 368, 369, respectively, once again. In at least one such embodiment, the upper ring 304 cannot be removed from the bottom ring 306 until the foot 373 has become aligned with access slot 368 and the foot 374 has become aligned with the access slot 369. More particularly, in at least one embodiment, the access slots 368, 369 and the feet 373, 374 can be configured such that foot 373 can only be removed from inner track 370 via access slot 368 and such that foot 374 can only be removed from inner track 370 via access slot 369. Referring to
In various embodiments, as described above, the upper ring 304 can be assembled to the lower ring 306 and then rotated relative thereto. In at least one embodiment, similar to the above, the upper ring 304 can comprise one or more apertures, or ports, through which a surgical instrument can be inserted. Referring now to
The embodiments of the devices described herein may be introduced inside a patient using minimally invasive or open surgical techniques. In some instances it may be advantageous to introduce the devices inside the patient using a combination of minimally invasive and open surgical techniques. Minimally invasive techniques may provide more accurate and effective access to the treatment region for diagnostic and treatment procedures. To reach internal treatment regions within the patient, the devices described herein may be inserted through natural openings of the body such as the mouth, anus, and/or vagina, for example. Minimally invasive procedures performed by the introduction of various medical devices into the patient through a natural opening of the patient are known in the art as NOTES™ procedures. Some portions of the devices may be introduced to the tissue treatment region percutaneously or through small—keyhole—incisions.
Endoscopic minimally invasive surgical and diagnostic medical procedures are used to evaluate and treat internal organs by inserting a small tube into the body. The endoscope may have a rigid or a flexible tube. A flexible endoscope may be introduced either through a natural body opening (e.g., mouth, anus, and/or vagina) or via a trocar through a relatively small—keyhole—incision incisions (usually 0.5-1.5 cm). The endoscope can be used to observe surface conditions of internal organs, including abnormal or diseased tissue such as lesions and other surface conditions and capture images for visual inspection and photography. The endoscope may be adapted and configured with working channels for introducing medical instruments to the treatment region for taking biopsies, retrieving foreign objects, and/or performing surgical procedures.
Preferably, the various embodiments of the devices described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. Other sterilization techniques can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, and/or steam.
Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.