Surgical access system and related methods

Information

  • Patent Grant
  • 8556808
  • Patent Number
    8,556,808
  • Date Filed
    Tuesday, January 15, 2013
    12 years ago
  • Date Issued
    Tuesday, October 15, 2013
    11 years ago
Abstract
A surgical access system including a tissue distraction assembly and a tissue refraction assembly, both of which may be equipped with one or more electrodes for use in detecting the existence of (and optionally the distance and/or direction to) neural structures before, during, and after the establishment of an operative corridor to a surgical target site.
Description
BACKGROUND OF THE INVENTION

I. Field of the Invention


The present invention relates generally to systems and methods for performing surgical procedures and, more particularly, for accessing a surgical target site in order to perform surgical procedures.


II. Discussion of the Prior Art


A noteworthy trend in the medical community is the move away from performing surgery via traditional “open” techniques in favor of minimally invasive or minimal access techniques. Open surgical techniques are generally undesirable in that they typically require large incisions and high amounts of tissue displacement to gain access to the surgical target site, which produces concomitantly high amounts of pain, lengthened hospitalization (increasing health care costs), and high morbidity in the patient population. Less-invasive surgical techniques (including so-called “minimal access” and “minimally invasive” techniques) are gaining favor due to the fact that they involve accessing the surgical target site via incisions of substantially smaller size with greatly reduced tissue displacement requirements. This, in turn, reduces the pain, morbidity and cost associated with such procedures. The access systems developed to date, however, fail in various respects to meet all the needs of the surgeon population.


One drawback associated with prior art surgical access systems relates to the ease with which the operative corridor can be created, as well as maintained over time, depending upon the particular surgical target site. For example, when accessing surgical target sites located beneath or behind musculature or other relatively strong tissue (such as, by way of example only, the psoas muscle adjacent to the spine), it has been found that advancing an operative corridor-establishing instrument directly through such tissues can be challenging and/or lead to unwanted or undesirable effects (such as stressing or tearing the tissues). While certain efforts have been undertaken to reduce the trauma to tissue while creating an operative corridor, such as (by way of example only) the sequential dilation system of U.S. Pat. No. 5,792,044 to Foley et al., these attempts are nonetheless limited in their applicability based on the relatively narrow operative corridor. More specifically, based on the generally cylindrical nature of the so-called “working cannula,” the degree to which instruments can be manipulated and/or angled within the cannula can be generally limited or restrictive, particularly if the surgical target site is a relatively deep within the patient.


Efforts have been undertaken to overcome this drawback, such as shown in U.S. Pat. No. 6,524,320 to DiPoto, wherein an expandable portion is provided at the distal end of a cannula for creating a region of increased cross-sectional area adjacent to the surgical target site. While this system may provide for improved instrument manipulation relative to sequential dilation access systems (at least at deep sites within the patient), it is nonetheless flawed in that the deployment of the expandable portion may inadvertently compress or impinge upon sensitive tissues adjacent to the surgical target site. For example, in anatomical regions having neural and/or vasculature structures, such a blind expansion may cause the expandable portion to impinge upon these sensitive tissues and cause neural and/or vasculature compromise, damage and/or pain for the patient.


This highlights yet another drawback with the prior art surgical access systems, namely, the challenges in establishing an operative corridor through or near tissue having major neural structures which, if contacted or impinged, may result in neural impairment for the patient. Due to the threat of contacting such neural structures, efforts thus far have largely restricted to establishing operative corridors through tissue having little or substantially reduced neural structures, which effectively limits the number of ways a given surgical target site can be accessed. This can be seen, by way of example only, in the spinal arts, where the exiting nerve roots and neural plexus structures in the psoas muscle have rendered a lateral or far lateral access path (so-called trans-psoas approach) to the lumbar spine virtually impossible. Instead, spine surgeons are largely restricted to accessing the spine from the posterior (to perform, among other procedures, posterior lumbar interbody fusion (PLIF)) or from the anterior (to perform, among other procedures, anterior lumbar interbody fusion (ALIF)).


Posterior-access procedures involve traversing a shorter distance within the patient to establish the operative corridor, albeit at the price of oftentimes having to reduce or cut away part of the posterior bony structures (i.e. lamina, facets, spinous process) in order to reach the target site (which typically comprises the disc space). Anterior-access procedures are relatively simple for surgeons in that they do not involve reducing or cutting away bony structures to reach the surgical target site. However, they are nonetheless disadvantageous in that they require traversing through a much greater distance within the patient to establish the operative corridor, oftentimes requiring an additional surgeon to assist with moving the various internal organs out of the way to create the operative corridor.


The present invention is directed at eliminating, or at least minimizing the effects of, the above-identified drawbacks in the prior art.


SUMMARY OF THE INVENTION

The present invention accomplishes this goal by providing a novel access system and related methods which involve detecting the existence of (and optionally the distance and/or direction to) neural structures before, during, and after the establishment of an operative corridor through (or near) any of a variety of tissues having such neural structures which, if contacted or impinged, may otherwise result in neural impairment for the patient. It is expressly noted that, although described herein largely in terms of use in spinal surgery, the access system of the present invention is suitable for use in any number of additional surgical procedures wherein tissue having significant neural structures must be passed through (or near) in order to establish an operative corridor.


According to one broad aspect of the present invention, the access system comprises a tissue distraction assembly and a tissue retraction assembly, both of which may be equipped with one or more electrodes for use in detecting the existence of (and optionally the distance and/or direction to) neural structures. The tissue distraction assembly (in conjunction with one or more elements of the tissue retraction assembly) is capable of, as an initial step, distracting a region of tissue between the skin of the patient and the surgical target site. The tissue retraction assembly is capable of, as a secondary step, being introduced into this distracted region to thereby define and establish the operative corridor. Once established, any of a variety of surgical instruments, devices, or implants may be passed through and/or manipulated within the operative corridor depending upon the given surgical procedure. The electrode(s) are capable of, during both tissue distraction and retraction, detecting the existence of (and optionally the distance and/or direction to) neural structures such that the operative corridor may be established through (or near) any of a variety of tissues having such neural structures which, if contacted or impinged, may otherwise result in neural impairment for the patient. In this fashion, the access system of the present invention may be used to traverse tissue that would ordinarily be deemed unsafe or undesirable, thereby broadening the number of manners in which a given surgical target site may be accessed.


The tissue distraction assembly may include any number of components capable of performing the necessary distraction. By way of example only, the tissue distraction assembly may include a K-wire, an initial dilator of split construction, and one or more dilators of traditional (that is, non-split) construction for performing the necessary tissue distraction to receive the remainder of the tissue retractor assembly thereafter. One or more electrodes may be provided on one or more of the K-wire and dilator(s) to detect the presence of (and optionally the distance and/or direction to) neural structures during tissue distraction.


The tissue retraction assembly may include any number of components capable of performing the necessary retraction. By way of example only, the tissue retraction assembly may include one or more retractor blades extending from a handle assembly. The handle assembly may be manipulated to open the retractor assembly; that is, allowing the retractor blades to separate from one another (simultaneously or sequentially) to create an operative corridor to the surgical target site. In a preferred embodiment, this is accomplished by maintaining a posterior retractor blade in a fixed position relative to the surgical target site (so as to avoid having it impinge upon any exiting nerve roots near the posterior elements of the spine) while the additional retractor blades (i.e. cephalad-most and caudal-most blades) are moved or otherwise translated away from the posterior retractor blade (and each other) so as to create the operative corridor in a fashion that doesn't infringe upon the region of the exiting nerve roots.


The retractor blades may be optionally dimensioned to receive and direct a rigid shim element to augment the structural stability of the retractor blades and thereby ensure the operative corridor, once established, will not decrease or become more restricted, such as may result if distal ends of the retractor blades were permitted to “slide” or otherwise move in response to the force exerted by the displaced tissue. In a preferred embodiment, only the posterior retractor blade is equipped with such a rigid shim element. In an optional aspect, this shim element may be advanced into the disc space after the posterior retractor blade is positioned, but before the retractor is opened into the fully retracted position. The rigid shim element is preferably oriented within the disc space such that is distracts the adjacent vertebral bodies, which serves to restore disc height. It also preferably advances a sufficient distance within the disc space (preferably past the midline), which serves the dual purpose of preventing post-operative scoliosis and forming a protective barrier (preventing the migration of tissue (such as nerve roots) into the operative field and the inadvertent advancement of instruments outside the operative field).


The retractor blades may optionally be equipped with a mechanism for transporting or emitting light at or near the surgical target site to aid the surgeon's ability to visualize the surgical target site, instruments and/or implants during the given surgical procedure. According to one embodiment, this mechanism may comprise, but need not be limited to, coupling one or more light sources to the retractor blades such that the terminal ends are capable of emitting light at or near the surgical target site. According to another embodiment, this mechanism may comprise, but need not be limited to, constructing the retractor blades of suitable material (such as clear polycarbonate) and configuration such that light may be transmitted generally distally through the walls of the retractor blade light to shine light at or near the surgical target site. This may be performed by providing the retractor blades having light-transmission characteristics (such as with clear polycarbonate construction) and transmitting the light almost entirely within the walls of the retractor blade (such as by frosting or otherwise rendering opaque portions of the exterior and/or interior) until it exits a portion along the interior (or medially-facing) surface of the retractor blade to shine at or near the surgical target site. The exit portion may be optimally configured such that the light is directed towards the approximate center of the surgical target site and may be provided along the entire inner periphery of the retractor blade or one or more portions therealong.





BRIEF DESCRIPTION OF THE DRAWINGS

Many advantages of the present invention will be apparent to those skilled in the art with a reading of this specification in conjunction with the attached drawings, wherein like reference numerals are applied to like elements and wherein:



FIG. 1 is a perspective view of a tissue retraction assembly (in use) forming part of a surgical access system according to the present invention;



FIGS. 2-3 are perspective views illustrating the front and back of a shim element for use with a posterior retractor blade of the retractor according to the retractor of the present invention;



FIGS. 4-5 are perspective views illustrating the front and back of a narrow retractor extender for use with one of a cephalad and caudal retractor blade according to the retractor of the present invention;



FIGS. 6-7 are perspective views illustrating the front and back of a wide retractor extender for use with one of a cephalad and caudal retractor blade according to the retractor of the present invention;



FIG. 8 is a perspective, partially exploded view of the refractor assembly of the present invention, without the retractor blades;



FIG. 9 is a perspective view illustrating the components and use of an initial distraction assembly (i.e. K-wire, an initial dilating cannula with handle, and a split-dilator housed within the initial dilating cannula) forming part of the surgical access system according to the present invention, for use in distracting to a surgical target site (i.e. annulus);



FIG. 10 is a perspective view illustrating the K-wire and split-dilator of the initial distraction assembly with the initial dilating cannula and handle removed;



FIG. 11 is a posterior view of the vertebral target site illustrating the split-dilator of the present invention in use distracting in a generally cephalad-caudal fashion according to one aspect of the present invention;



FIG. 12 is a side view illustrating the use of a secondary distraction assembly (comprising a plurality of dilating cannulae over the K-wire) to further distract tissue between the skin of the patient and the surgical target site according to the present invention;



FIG. 13 is a side view of a retractor assembly according to the present invention, comprising a handle assembly having three (3) retractor blades extending there from (posterior, cephalad-most, and caudal-most) disposed over the secondary distraction assembly of FIG. 12 (shown in a first, closed position);



FIG. 14 is a side view of a retractor assembly according to the present invention, comprising a handle assembly having three (3) retractor blades extending there from (posterior, cephalad-most, and caudal-most) with the secondary distraction assembly of FIG. 12 removed and shim element introduced;



FIGS. 15-16 are perspective and top views, respectively, of the retractor assembly in a second, opened (i.e. retracted) position to thereby create an operative corridor to a surgical target site according to the present invention;



FIGS. 17-18 are perspective and side views, respectively, of the retractor assembly in the second, opened (i.e. retracted) position (with the secondary distraction assembly removed) and with the retractor extenders of FIGS. 4-5 and 6-7 coupled to the retractor according to the present invention.



FIG. 19 is a perspective view of an exemplary nerve monitoring system capable of performing nerve monitoring before, during and after the creating of an operative corridor to a surgical target site using the surgical access system in accordance with the present invention;



FIG. 20 is a block diagram of the nerve monitoring system shown in FIG. 19; and



FIGS. 21-22 are screen displays illustrating exemplary features and information communicated to a user during the use of the nerve monitoring system of FIG. 19.





DESCRIPTION OF THE PREFERRED EMBODIMENT

Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. It is furthermore to be readily understood that, although discussed below primarily within the context of spinal surgery, the surgical access system of the present invention may be employed in any number of anatomical settings to provide access to any number of different surgical target sites throughout the body. The surgical access system disclosed herein boasts a variety of inventive features and components that warrant patent protection, both individually and in combination.


The present invention involves accessing a surgical target site in a fashion less invasive than traditional “open” surgeries and doing so in a manner that provides access in spite of the neural structures required to be passed through (or near) in order to establish an operative corridor to the surgical target site. Generally speaking, the surgical access system of the present invention accomplishes this by providing a tissue distraction assembly and a tissue retraction assembly, both of which may be equipped with one or more electrodes for use in detecting the existence of (and optionally the distance and/or direction to) neural structures.


These electrodes are preferably provided for use with a nerve surveillance system such as, by way of example, the type shown and described in the co-pending and commonly assigned NeuroVision PCT Applications referenced above, the entire contents of which are expressly incorporated by reference as if set forth herein in their entirety. Generally speaking, this nerve surveillance system is capable of detecting the existence of (and optionally the distance and/or direction to) neural structures during the distraction and retraction of tissue by detecting the presence of nerves by applying a stimulation signal to such instruments and monitoring the evoked EMG signals from the myotomes associated with the nerves being passed by the distraction and retraction systems of the present invention. In so doing, the system as a whole (including the surgical access system of the present invention) may be used to form an operative corridor through (or near) any of a variety of tissues having such neural structures, particularly those which, if contacted or impinged, may otherwise result in neural impairment for the patient. In this fashion, the access system of the present invention may be used to traverse tissue that would ordinarily be deemed unsafe or undesirable, thereby broadening the number of manners in which a given surgical target site may be accessed.


The tissue distraction assembly of the present invention (comprising a K-wire, an initial dilator, and a split-dilator disposed within the initial dilator) is employed to distract the tissues extending between the skin of the patient and a given surgical target site (preferably along the posterior region of the target intervertebral disc). A secondary distraction assembly (i.e. a plurality of sequentially dilating cannulae) may optionally be employed after the initial distraction assembly to further distract the tissue. Once distracted, the resulting void or distracted region within the patient is of sufficient size to accommodate a tissue retraction assembly of the present invention. More specifically, the tissue retraction assembly (comprising a plurality of retractor blades extending from a handle assembly) may be advanced relative to the secondary distraction assembly such that the retractor blades, in a first, closed position, are advanced over the exterior of the secondary distraction assembly. At that point, the handle assembly may be operated to move the retractor blades into a second, open or “retracted” position to create an operative corridor to the surgical target site.


According to one aspect of the invention, following (or before) this retraction, a posterior shim element (which is preferably slideably engaged with the posterior retractor blade) may be advanced such that a distal shim extension in positioned within the posterior region of the disc space. If done before retraction, this helps ensure that the posterior retractor blade will not move posteriorly during the retraction process, even though the other retractor blades (i.e. cephalad-most and caudal-most) are able to move and thereby create an operative corridor. Fixing the posterior retractor blade in this fashion serves several important functions. First, the distal end of the shim element serves to distract the adjacent vertebral bodies, thereby restoring disc height. It also rigidly couples the posterior retractor blade in fixed relation relative to the vertebral bodies. The posterior shim element also helps ensure that surgical instruments employed within the operative corridor are incapable of being advanced outside the operative corridor, preventing inadvertent contact with the exiting nerve roots during the surgery. Once in the appropriate retracted state, the cephalad-most and caudal-most retractor blades may be locked in position and, thereafter, retractor extenders advanced therealong to prevent the ingress or egress of instruments or biological structures (i.e. nerves, vasculature, etc. . . . ) into or out of the operative corridor. Once the operative corridor is established, any of a variety of surgical instruments, devices, or implants may be passed through and/or manipulated within the operative corridor depending upon the given surgical procedure.



FIG. 1 illustrates a tissue retraction assembly 10 forming part of a surgical access system according to the present invention. The retraction assembly 10 includes a plurality of retractor blades extending from a handle assembly 20. By way of example only, the handle assembly 20 is provided with a first retractor blade 12, a second retractor blade 16, and a third retractor blade 18. The retractor assembly 10 is shown in a fully retracted or “open” configuration, with the retractor blades 12, 16, 18 positioned a distance from one another so as to form an operative corridor 15 there between and extending to a surgical target site (e.g. an annulus of an intervertebral disc). Although shown and described below with regard to the three-bladed configuration, it is to be readily appreciated that the number of retractor blades may be increased or decreased without departing from the scope of the present invention. Moreover, although described and shown herein with reference to a generally lateral approach to a spinal surgical target site (with the first blade 12 being the “posterior” blade, the second blade 16 being the “cephalad-most” blade, and the third blade 18 being the “caudal-most” blade), it will be appreciated that the retractor assembly 10 of the present invention may find use in any number of different surgical approaches, including generally posterior, generally postero-lateral, generally anterior and generally antero-lateral.


The retractor blades 12, 16, 18 may be equipped with various additional features or components. By way of example only, posterior retractor blade 12 may be equipped with a shim element 22 (shown more clearly in FIGS. 2-3). Shim element 22 serves to distract the adjacent vertebral bodies (thereby restoring disc height), helps secure the retractor assembly 10 relative to the surgical target site, and forms a protective barrier to prevent the ingress or egress of instruments or biological structures (i.e. nerves, vasculature, etc. . . . ) into or out of the operative corridor. Each of the remaining retractor blades (cephalad-most blade 16 and caudal-most blade 18) may be equipped with a refractor extender, such as the narrow refractor extender 24 shown in FIGS. 4-5 or the wide retractor extender 25 shown in FIGS. 6-7. The retractor extenders 24/25 extend from the cephalad-most and caudal-most retractor blades 16, 18 to form a protective barrier to prevent the ingress or egress of instruments or biological structures (i.e. nerves, vasculature, etc. . . . ) into or out of the operative corridor 15.


According to the present invention, any or all of the retractor blades 12, 16, 18, the shim element 22 and/or the retractor extenders 24/25 may be provided with one or more electrodes 39 (preferably at their distal regions) equipped for use with a nerve surveillance system, such as, by way of example, the type shown and described in the NeuroVision PCT Applications. Each of the shim element 22 and/or the retractor extenders 24/25 may also be equipped with a mechanism to selectively and releasably engage with the respective retractor blades 12, 16, 18. By way of example only, this may be accomplished by configuring the shim element 22 and/or the retractor extenders 24/25 with a tab element 27 capable of engaging with corresponding rachet-like grooves (shown at 29 in FIG. 1) along the inner-facing surfaces of the retractor blades 12, 16, 18. Each of the shim element 22 and/or the retractor extenders 24/25 is provided with a pair of engagement elements 37 having, by way of example only, a generally dove-tailed cross-sectional shape. The engagement elements 37 are dimensioned to engage with receiving portions on the respective retractor blades 12, 16, 18. In a preferred embodiment, each of the shim element 22 and/or the retractor extenders 24/25 are provided with an elongate slot 43 for engagement with an insertion tool (not shown). Each tab member 27 is also equipped with an enlarged tooth element 49 which engages within corresponding grooves 29 provided along the inner surface of the retractor blades 12, 16, 18.


The handle assembly 20 may be coupled to any number of mechanisms for rigidly registering the handle assembly 20 in fixed relation to the operative site, such as through the use of an articulating arm mounted to the operating table. The handle assembly 20 includes first and second arm members 26, 28 hingedly coupled via coupling mechanism shown generally at 30. The cephalad-most retractor blade 16 is rigidly coupled (generally perpendicularly) to the end of the first arm member 26. The caudal-most retractor blade 18 is rigidly coupled (generally perpendicularly) to the end of the second arm member 28. The posterior retractor blade 12 is rigidly coupled (generally perpendicularly to) a translating member 17, which is coupled to the handle assembly 20 via a linkage assembly shown generally at 14. The linkage assembly 14 includes a roller member 34 having a pair of manual knob members 36 which, when rotated via manual actuation by a user, causes teeth 35 on the roller member 34 to engage within ratchet-like grooves 37 in the translating member 17. Thus, manual operation of the knobs 36 causes the translating member 17 to move relative to the first and second arm members 26, 28.


Through the use of handle extenders 31, 33 (FIG. 8), the arms 26, 28 may be simultaneously opened such that the cephalad-most and caudal-most retractor blades 16, 18 move away from one another. In this fashion, the dimension and/or shape of the operative corridor 15 may be tailored depending upon the degree to which the translating member 17 is manipulated relative to the arms 26, 28. That is, the operative corridor 15 may be tailored to provide any number of suitable cross-sectional shapes, including but not limited to a generally circular cross-section, a generally ellipsoidal cross-section, and/or an oval cross-section. Optional light emitting devices 39 may be coupled to one or more of the retractor blades 12, 16, 18 to direct light down the operative corridor 15.



FIG. 9 illustrates an initial distraction assembly 40 forming part of the surgical access system according to the present invention. The initial distraction assembly 40 includes a K-wire 42, an initial dilating cannula 44 with handle 46, and a split-dilator 48 housed within the initial dilating cannula 44. In use, the K-wire 42 and split-dilator 48 are disposed within the initial dilating cannula 44 and the entire assembly 40 advanced through the tissue towards the surgical target site (i.e. annulus). Again, this is preferably accomplished while employing the nerve detection and/or direction features described above. After the initial dilating assembly 40 is advanced such that the distal ends of the split-dilator 48 and initial dilator 44 are positioned within the disc space (FIG. 9), the initial dilator 44 and handle 46 are removed (FIG. 10) to thereby leave the split-dilator 48 and K-wire 42 in place. As shown in FIG. 11, the split-dilator 48 is thereafter split such that the respective halves 48a, 48b are separated from one another to distract tissue in a generally cephalad-caudal fashion relative to the target site. The split dilator 48 may thereafter be relaxed (allowing the dilator halves 48a, 48b to come together) and rotated such that the dilator halves 48a, 48b are disposed in the anterior-posterior plane. Once rotated in this manner, the dilator halves 48a, 48b are again separated to distract tissue in a generally anterior-posterior fashion. Each dilator halve 48a, 48b may be, according to the present invention, provided with one or more electrodes (preferably at their distal regions) equipped for use with a nerve surveillance system, such as, by way of example, the type shown and described in the NeuroVision PCT Applications.


Following this initial distraction, a secondary distraction may be optionally undertaken, such as via a sequential dilation system 50 as shown in FIG. 12. According to the present invention, the sequential dilation system 50 may include the K-wire 42, the initial dilator 44, and one or more supplemental dilators 52, 54 for the purpose of further dilating the tissue down to the surgical target site. Once again, each component of the secondary distraction assembly 50 (namely, the K-wire 42, the initial dilator 44, and the supplemental dilators 52, 54 may be, according to the present invention, provided with one or more electrodes (preferably at their distal regions) equipped for use with a nerve surveillance system, such as, by way of example, the type shown and described in the NeuroVision PCT Applications.


As shown in FIG. 13, the retraction assembly 10 of the present invention is thereafter advanced along the exterior of the sequential dilation system 50. This is accomplished by maintaining the retractor blades 12, 16, 18 in a first, closed position (with the retractor blades 12-16 in generally abutting relation to one another). Once advanced to the surgical target site, the sequential dilation assembly 50 may be removed and the shim element 22 engaged with the posterior refractor blade 12 such that the distal end thereof extends into the disc space as shown in FIG. 14. At this point, the handle assembly 20 may be operated to move the retractor blades 16, 18 into a second, open or “retracted” position as shown generally in FIGS. 15-16. As one can see, the posterior retractor blade 12 is allowed to stay in the same general position during this process, such that the cephalad-most and caudal-most refractor blades 14, 16 move away from the posterior retractor blade 12. At this point, the narrow and wide retractor extenders 24, 25 may be engaged with the caudal-most retractor blade 18 and cephalad-most retractor blade 16, respectively, as shown in FIGS. 17-18.


As mentioned above, any number of distraction components and/or retraction components (including but not limited to those described herein) may be equipped to detect the presence of (and optionally the distance and/or direction to) neural structures during the steps tissue distraction and/or retraction. This is accomplished by employing the following steps: (1) one or more stimulation electrodes are provided on the various distraction and/or retraction components; (2) a stimulation source (e.g. voltage or current) is coupled to the stimulation electrodes; (3) a stimulation signal is emitted from the stimulation electrodes as the various components are advanced towards or maintained at or near the surgical target site; and (4) the patient is monitored to determine if the stimulation signal causes muscles associated with nerves or neural structures within the tissue to innervate. If the nerves innervate, this may indicate that neural structures may be in close proximity to the distraction and/or retraction components.


Neural monitoring may be accomplished via any number of suitable fashions, including but not limited to observing visual twitches in muscle groups associated with the neural structures likely to found in the tissue, as well as any number of monitoring systems, including but not limited to any commercially available “traditional” electromyography (EMG) system (that is, typically operated by a neurophysiologist). Such monitoring may also be carried out via the surgeon-driven EMG monitoring system shown and described in the following commonly owned and co-pending NeuroVision PCT Applications referenced above. In any case (visual monitoring, traditional EMG and/or surgeon-driven EMG monitoring), the access system of the present invention may advantageously be used to traverse tissue that would ordinarily be deemed unsafe or undesirable, thereby broadening the number of manners in which a given surgical target site may be accessed.



FIGS. 19-20 illustrate, by way of example only, a monitoring system 120 of the type disclosed in the NeuroVision PCT Applications suitable for use with the surgical access system 10 of the present invention. The monitoring system 120 includes a control unit 122, a patient module 124, and an EMG harness 126 and return electrode 128 coupled to the patient module 124, and a cable 132 for establishing electrical communication between the patient module 124 and the surgical access system of the present invention (retractor assembly 10 of FIG. 1 and distraction assemblies 40, 50 of FIGS. 9-12). More specifically, this electrical communication can be achieved by providing, by way of example only, a hand-held stimulation controller 152 capable of selectively providing a stimulation signal (due to the operation of manually operated buttons on the hand-held stimulation controller 152) to one or more connectors 156a, 156b, 156c. The connectors 156a, 156b, 156c are suitable to establish electrical communication between the hand-held stimulation controller 152 and (by way of example only) the stimulation electrodes on the K-wire 42, the dilators 44, 48, 52, 54, the refractor blades 12, 16, 18 and/or the shim members 22, 24, 25 (collectively “surgical access instruments”).


In order to use the monitoring system 120, then, these surgical access instruments must be connected to the connectors 156a, 156b and/or 156c, at which point the user may selectively initiate a stimulation signal (preferably, a current signal) from the control unit 122 to a particular surgical access instruments. Stimulating the electrode(s) on these surgical access instruments before, during and/or after establishing operative corridor will cause nerves that come into close or relative proximity to the surgical access instruments to depolarize, producing a response in a myotome associated with the innervated nerve.


The control unit 122 includes a touch screen display 140 and a base 142, which collectively contain the essential processing capabilities (software and/or hardware) for controlling the monitoring system 120. The control unit 122 may include an audio unit 118 that emits sounds according to a location of a surgical element with respect to a nerve. The patient module 124 is connected to the control unit 122 via a data cable 144, which establishes the electrical connections and communications (digital and/or analog) between the control unit 122 and patient module 124. The main functions of the control unit 122 include receiving user commands via the touch screen display 140, activating stimulation electrodes on the surgical access instruments, processing signal data according to defined algorithms, displaying received parameters and processed data, and monitoring system status and report fault conditions. The touch screen display 140 is preferably equipped with a graphical user interface (GUI) capable of communicating information to the user and receiving instructions from the user. The display 140 and/or base 142 may contain patient module interface circuitry (hardware and/or software) that commands the stimulation sources, receives digitized signals and other information from the patient module 124, processes the EMG responses to extract characteristic information for each muscle group, and displays the processed data to the operator via the display 140.


In one embodiment, the monitoring system 120 is capable of determining nerve direction relative to one or more of the K-wire 42, the dilators 44, 48, 52, 54, the retractor blades 12, 16, 18 and/or the shim elements 22, 24, 25 before, during and/or following the creation of an operative corridor to a surgical target site. Monitoring system 120 accomplishes this by having the control unit 122 and patient module 124 cooperate to send electrical stimulation signals to one or more of the stimulation electrodes provided on these instruments. Depending upon the location of the surgical access system 10 within a patient (and more particularly, to any neural structures), the stimulation signals may cause nerves adjacent to or in the general proximity of the surgical access system 10 to depolarize. This causes muscle groups to innervate and generate EMG responses, which can be sensed via the EMG harness 126. The nerve direction feature of the system 120 is based on assessing the evoked response of the various muscle myotomes monitored by the system 120 via the EMG harness 126.


By monitoring the myotomes associated with the nerves (via the EMG harness 126 and recording electrode 127) and assessing the resulting EMG responses (via the control unit 122), the surgical access system 10 is capable of detecting the presence of (and optionally the distant and/or direction to) such nerves. This provides the ability to actively negotiate around or past such nerves to safely and reproducibly form the operative corridor to a particular surgical target site, as well as monitor to ensure that no neural structures migrate into contact with the surgical access system 10 after the operative corridor has been established. In spinal surgery, for example, this is particularly advantageous in that the surgical access system 10 may be particularly suited for establishing an operative corridor to an intervertebral target site in a postero-lateral, trans-psoas fashion so as to avoid the bony posterior elements of the spinal column.



FIGS. 21-22 are exemplary screen displays (to be shown on the display 140) illustrating one embodiment of the nerve direction feature of the monitoring system shown and described with reference to FIGS. 19-20. These screen displays are intended to communicate a variety of information to the surgeon in an easy-to-interpret fashion. This information may include, but is not necessarily limited to, a display of the function 180 (in this case “DIRECTION”), a graphical representation of a patient 181, the myotome levels being monitored 182, the nerve or group associated with a displayed myotome 183, the name of the instrument being used 184 (in this case, a dilator 46, 48), the size of the instrument being used 185, the stimulation threshold current 186, a graphical representation of the instrument being used 187 (in this case, a cross-sectional view of a dilator 44, 48) to provide a reference point from which to illustrate relative direction of the instrument to the nerve, the stimulation current being applied to the stimulation electrodes 188, instructions for the user 189 (in this case, “ADVANCE” and/or “HOLD”), and (in FIG. 22) an arrow 190 indicating the direction from the instrument to a nerve. This information may be communicated in any number of suitable fashions, including but not limited to the use of visual indicia (such as alpha-numeric characters, light-emitting elements, and/or graphics) and audio communications (such as a speaker element). Although shown with specific reference to a dilating cannula (such as at 184), it is to be readily appreciated that the present invention is deemed to include providing similar information on the display 140 during the use of any or all of the various instruments forming the surgical access system 10 of the present invention, including the initial distraction assembly 40 (i.e. the K-wire 42 and dilators 44, 48) and/or the retractor blades 12, 16, 18 and/or the shim elements 22, 24, 25.


As evident from the above discussion and drawings, the present invention accomplishes the goal of gaining access a surgical target site in a fashion less invasive than traditional “open” surgeries and, moreover, does so in a manner that provides the ability to access such a surgical target site regardless of the neural structures required to be passed through (or near) in order to establish an operative corridor to the surgical target site. The present invention furthermore provides the ability to perform neural monitoring in the tissue or regions adjacent the surgical target site during any procedures performed after the operative corridor has been established. The surgical access system of the present invention can be used in any of a wide variety of surgical or medical applications, above and beyond the spinal applications discussed herein. Such spinal applications may include any procedure wherein instruments, devices, implants and/or compounds are to be introduced into or adjacent the surgical target site, including but not limited to discectomy, fusion (including PLIF, ALIF, TLIF and any fusion effectuated via a lateral or far-lateral approach and involving, by way of example, the introduction of bone products (such as allograft or autograft) and/or devices having ceramic, metal and/or plastic construction (such as mesh) and/or compounds such as bone morphogenic protein), total disc replacement, etc. . . . ).


Moreover, the surgical access system of the present invention opens the possibility of accessing an increased number of surgical target sites in a “less invasive” fashion by eliminating or greatly reducing the threat of contacting nerves or neural structures while establishing an operative corridor through or near tissues containing such nerves or neural structures. In so doing, the surgical access system of the present invention represents a significant advancement capable of improving patient care (via reduced pain due to “less-invasive” access and reduced or eliminated risk of neural contact before, during, and after the establishment of the operative corridor) and lowering health care costs (via reduced hospitalization based on “less-invasive” access and increased number of suitable surgical target sites based on neural monitoring). Collectively, these translate into major improvements to the overall standard of care available to the patient population, both domestically and overseas.

Claims
  • 1. A system for forming a trans-psoas operative corridor to a lumbar spine, comprising: a three-bladed psoas retractor tool to create an operative corridor along a lateral, trans-psoas path through bodily tissue toward a targeted intervertebral disc of a lumbar spine, the three-bladed psoas retractor tool including: first, second, and third retractor blades;a blade holder assembly coupled to the first, second, and third retractor blades, wherein the three-bladed psoas retractor tool is adjustable from a first position in which the first, second, and third retractor blades are positioned to simultaneously advance along the lateral, trans-psoas path to a second position in which the first, second, and third retractor blades are spaced further apart from one another relative to the first position, wherein the blade holder assembly comprises: a rotatable actuator that, when rotated, causes movement of the first retractor blade relative to the second and third retractor blades while the second and third retractor blades are fixed in position relative to one another, and arm portions pivotable relative to one another for adjusting the second and third blades from the first position to the second position, andan articulating arm mountable to the blade holder assembly of the three-bladed psoas retractor tool to rigidly register the three-bladed psoas retractor tool in a fixed position relative to an operating table when the first, second, and third retractor blades are positioned in the lateral, trans-psoas path,wherein when the three-bladed psoas retractor tool is maintained in the fixed position by the articulating arm so that the first, second, and third retractor blades form the operative corridor along the lateral, trans-psoas path through the bodily tissue toward the targeted intervertebral disc of the lumbar spine, the operative corridor is dimensioned so as to pass an implant through the operative corridor along the lateral, trans-psoas path toward the targeted intervertebral disc of the lumbar spine.
  • 2. The system of claim 1, wherein the rotatable actuator of the blade holder assembly linearly adjusts a translating arm portion of the blade holder assembly that is coupled to the first retractor blade.
  • 3. The system of claim 2, wherein the rotatable actuator of the blade holder assembly interacts with teeth on a rack of the translating arm portion to linearly adjust the position of the first retractor blade relative to the second and third retractor blades.
  • 4. The system of claim 3, wherein the arm portions that are pivotable relative to one another comprise a first pivotable arm portion to pivotably adjust the third retractor blade relative to the first retractor blade, and a second pivotable arm portion to pivotably adjust the second refractor blade relative to the first retractor blade.
  • 5. The system of claim 4, wherein the translating arm portion is arranged between the first and second pivotable arm portions of the blade holder assembly.
  • 6. The system of claim 1, further comprising a plurality of sequential dilators of increasing diameters to create a tissue distraction corridor along the lateral, trans-psoas path through the bodily tissue toward the targeted intervertebral disc of the lumbar spine, the plurality of dilators comprising: an initial dilator and at least a second dilator that slidably advances over an exterior of the initial dilator and engages the lumbar spine, wherein at least one dilator of the plurality of sequential dilators includes markings indicative of a depth distance between a distal end of the at least one dilator and a skin location.
  • 7. The system of claim 6, further comprising an elongate inner member being positionable in a lumen of the initial dilator of the plurality of sequential dilators, wherein at least one instrument selected from the group consisting of said elongate inner member and said plurality of sequential dilators includes a stimulation electrode that outputs electrical stimulation for nerve monitoring when the instrument is positioned in the lateral, trans-psoas path.
  • 8. The system of claim 7, further comprising a monitoring system that delivers an electrical stimulation sign to the stimulation electrode of the at least one instrument selected from the group consisting of said elongate inner member and said plurality of sequential dilators, monitors electromyographic activity detected by a set of sensor electrodes in leg muscle myotomes associated with nerves in the vicinity of the spinal disc, and displays to a user: a numeric stimulation threshold required to obtain the electromyographic activity in said leg muscle myotomes, a graphical representation of a patient, and myotomes levels being monitored.
  • 9. The system of claim 8, wherein the monitoring system comprises a control unit having a video display device, a patient module connected to the control unit via a data cable, an EMG sensor harness having the set of sensor electrodes connected to the patient module.
  • 10. The system of claim 6, wherein the elongate inner member is advanceable together with the initial dilator along the lateral, trans-psoas path.
  • 11. The system of claim 6, wherein when the three-bladed psoas retractor tool is in the first position, the first, second, and third retractor blades are positioned to simultaneously slide over an outer dilator of the plurality of sequential dilators toward the lumbar spine to enlarge the tissue distraction corridor.
  • 12. The system of claim 1, further comprising one or more light emitting devices to couple with one or more of the first, second, and third retractor blades and emit light toward the targeted intervertebral disc of the lumbar spine when the three-bladed psoas refractor tool forms the operative corridor.
  • 13. The system of claim 1, wherein the three-bladed psoas retractor tool further includes at least one anchor member to releasably engage the first retractor blade so that a distal portion of the anchor member extends distally from the first retractor blade to secure the first retractor blade in fixed relation relative the lumbar spine.
  • 14. The system of claim 1, wherein when the three-bladed psoas retractor tool is in the first position, the first, second, and third retractor blades are positioned generally adjacent to one another.
  • 15. The system of claim 14, wherein when the three-bladed psoas refractor tool is in the first position, the first, second, and third refractor blades are in abutting relation with one another.
  • 16. The system of claim 1, further comprising a plurality of retractor blade extenders that are removably engageable with one or more of the second and third retractor blades.
  • 17. The system of claim 16, wherein when the retractor blade extenders are removably engaged with the one or more of the second and third retractor blades, each retractor blade extender extends from a periphery of a corresponding retractor blade to hinder ingress of bodily tissue into the operative corridor.
  • 18. The system of claim 16, further comprising an introducer tool that releasably attaches to each retractor blade extender during engagement of the retractor blade extender to the corresponding retractor blade of the second and third retractor blades.
  • 19. The system of claim 16, wherein the plurality of retractor blade extenders are removably engageable with receiving tracks formed along inner facings of one or more of the second and third retractor blades.
  • 20. The system of claim 1, wherein when the first, second, and third retractor blades form the operative corridor along the lateral, trans-psoas path, the operative corridor is dimensioned so as to pass the implant through the operative corridor along the lateral, trans-psoas path, the implant comprising a lateral approach fusion implant carrying bone products or bone morphogenic protein.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/623,016, filed on Nov. 20, 2009, which is a division of U.S. patent application Ser. No. 11/789,284 (now U.S. Pat. No. 8,016,767), filed on Apr. 23, 2007, which is a division of U.S. patent application Ser. No. 11/137,169 (now U.S. Pat. No. 7,207,949), filed on May 25, 2005, which is a continuation of PCT Application Serial No. PCT/US04/31768, filed Sep. 27, 2004, which claims the benefit of priority from U.S. Provisional Patent Application Ser. No. 60/506,136, filed Sep. 25, 2003, the entire contents of which are hereby expressly incorporated by reference into this disclosure as if set forth fully herein. The present application also incorporates by reference the following commonly owned patent applications in their entireties: PCT App. Ser. No. PCT/US02/22247, entitled “System and Methods for Determining Nerve Proximity, Direction, and Pathology During Surgery,” filed on Jul. 11, 2002; PCT App. Ser. No. PCT/US02/30617, entitled “System and Methods for Performing Surgical Procedures and Assessments,” filed on Sep. 25, 2002; PCT App. Ser. No. PCT/US02/35047, entitled “System and Methods for Performing Percutaneous Pedicle Integrity Assessments,” filed on Oct. 30, 2002; and PCT App. Ser. No. PCT/US03/02056, entitled “System and Methods for Determining Nerve Direction to a Surgical Instrument,” filed Jan. 15, 2003 (collectively “NeuroVision PCT Applications”).

US Referenced Citations (277)
Number Name Date Kind
208227 Dorr Sep 1878 A
972983 Arthur Oct 1910 A
1328624 Graham Jan 1920 A
1548184 Cameron Aug 1925 A
2594086 Smith Apr 1952 A
2704064 Fizzell et al. Jun 1955 A
2736002 Oriel Feb 1956 A
2808826 Reiner et al. Oct 1957 A
3364929 Ide et al. Jan 1968 A
3664329 Naylor May 1972 A
3682162 Colyer Aug 1972 A
3785368 McCarthy et al. Jan 1974 A
3830226 Staub et al. Aug 1974 A
3957036 Normann May 1976 A
4099519 Warren Jul 1978 A
4164214 Stark et al. Aug 1979 A
4207897 Lloyd et al. Jun 1980 A
4224949 Scott et al. Sep 1980 A
4226228 Shin et al. Oct 1980 A
4235242 Howson et al. Nov 1980 A
4285347 Hess Aug 1981 A
4291705 Severinghaus et al. Sep 1981 A
4461300 Christensen Jul 1984 A
4515168 Chester et al. May 1985 A
4519403 Dickhudt May 1985 A
4545374 Jacobson Oct 1985 A
4561445 Berke et al. Dec 1985 A
4562832 Wilder et al. Jan 1986 A
4573448 Kambin Mar 1986 A
4592369 Davis et al. Jun 1986 A
4595018 Rantala Jun 1986 A
4611597 Kraus Sep 1986 A
4633889 Talalla Jan 1987 A
4658835 Pohndorf Apr 1987 A
4744371 Harris May 1988 A
4759377 Dykstra Jul 1988 A
4784150 Voorhies et al. Nov 1988 A
4807642 Brown Feb 1989 A
4892105 Prass Jan 1990 A
4913134 Luque Apr 1990 A
4917704 Frey et al. Apr 1990 A
4926865 Oman May 1990 A
4962766 Herzon Oct 1990 A
4964411 Johnson et al. Oct 1990 A
5007902 Witt Apr 1991 A
5015247 Michelson May 1991 A
5052373 Michelson Oct 1991 A
5058602 Brody Oct 1991 A
5081990 Deletis Jan 1992 A
5092344 Lee Mar 1992 A
5127403 Brownlee Jul 1992 A
5161533 Prass et al. Nov 1992 A
5171279 Mathews Dec 1992 A
5192327 Brantigan Mar 1993 A
5195541 Obenchain Mar 1993 A
5196015 Neubardt Mar 1993 A
RE34390 Culver Sep 1993 E
5255691 Otten Oct 1993 A
5282468 Klepinski Feb 1994 A
5284153 Raymond et al. Feb 1994 A
5284154 Raymond et al. Feb 1994 A
5295994 Bonutti Mar 1994 A
5299563 Seton Apr 1994 A
5312417 Wilk May 1994 A
5313956 Knutsson et al. May 1994 A
5313962 Obenchain May 1994 A
5327902 Lemmen Jul 1994 A
5331975 Bonutti Jul 1994 A
5333618 Lekhtman et al. Aug 1994 A
5342384 Sugarbaker Aug 1994 A
5375067 Berchin Dec 1994 A
5375594 Cueva Dec 1994 A
5383876 Nardella Jan 1995 A
5395317 Kambin Mar 1995 A
5450845 Axelgaard Sep 1995 A
5474057 Makower et al. Dec 1995 A
5474558 Neubardt Dec 1995 A
5480440 Kambin Jan 1996 A
5482038 Ruff Jan 1996 A
5484437 Michelson Jan 1996 A
5509893 Pracas Apr 1996 A
5514153 Bonutti May 1996 A
5540235 Wilson Jul 1996 A
5549656 Reiss Aug 1996 A
5560372 Cory Oct 1996 A
5566678 Cadwell Oct 1996 A
5569290 McAfee Oct 1996 A
5571149 Liss et al. Nov 1996 A
5579781 Cooke Dec 1996 A
5593429 Ruff Jan 1997 A
5599279 Slotman et al. Feb 1997 A
5630813 Kieturakis May 1997 A
5667508 Errico et al. Sep 1997 A
5671752 Sinderby et al. Sep 1997 A
5681265 Maeda et al. Oct 1997 A
5688223 Rosendahl Nov 1997 A
5707359 Bufalini Jan 1998 A
5711307 Smits Jan 1998 A
5728046 Mayer et al. Mar 1998 A
5741253 Michelson Apr 1998 A
5759159 Masreliez Jun 1998 A
5762629 Kambin Jun 1998 A
5772661 Michelson Jun 1998 A
5775331 Raymond et al. Jul 1998 A
5776144 Leysieffer et al. Jul 1998 A
5779642 Nightengale Jul 1998 A
5785658 Benaron Jul 1998 A
5792044 Foley et al. Aug 1998 A
5797854 Hedgecock Aug 1998 A
5814073 Bonutti Sep 1998 A
5830151 Hadzic et al. Nov 1998 A
5851191 Gozani Dec 1998 A
5853373 Griffith et al. Dec 1998 A
5860973 Michelson Jan 1999 A
5862314 Jeddeloh Jan 1999 A
5872314 Clinton Feb 1999 A
5885210 Cox Mar 1999 A
5885219 Nightengale Mar 1999 A
5888196 Bonutti Mar 1999 A
5891147 Moskovitz et al. Apr 1999 A
5902231 Foley et al. May 1999 A
5928139 Koros et al. Jul 1999 A
5928158 Aristides Jul 1999 A
5931777 Sava Aug 1999 A
5935131 Bonutti et al. Aug 1999 A
5938688 Schiff Aug 1999 A
5944658 Koros et al. Aug 1999 A
5976094 Gozani et al. Nov 1999 A
6004262 Putz et al. Dec 1999 A
6004312 Finneran Dec 1999 A
6007487 Foley et al. Dec 1999 A
6024696 Hoftman et al. Feb 2000 A
6027456 Feler et al. Feb 2000 A
6038469 Karlsson et al. Mar 2000 A
6038477 Kayyali Mar 2000 A
6050992 Nichols Apr 2000 A
6074343 Nathanson et al. Jun 2000 A
6083154 Liu et al. Jul 2000 A
6095987 Schmulewitz Aug 2000 A
6104957 Alo et al. Aug 2000 A
6104960 Duysens et al. Aug 2000 A
6120503 Michelson Sep 2000 A
6126660 Dietz Oct 2000 A
6132386 Gozani et al. Oct 2000 A
6132387 Gozani et al. Oct 2000 A
6135965 Tumer et al. Oct 2000 A
6139493 Koros et al. Oct 2000 A
6146335 Gozani Nov 2000 A
6152871 Foley et al. Nov 2000 A
6161047 King et al. Dec 2000 A
6174311 Branch et al. Jan 2001 B1
6181961 Prass Jan 2001 B1
6196969 Bester et al. Mar 2001 B1
6206826 Mathews et al. Mar 2001 B1
6217509 Foley et al. Apr 2001 B1
6224549 Drongelen May 2001 B1
6259945 Epstein et al. Jul 2001 B1
6264651 Underwood et al. Jul 2001 B1
6266558 Gozani et al. Jul 2001 B1
6273905 Streeter Aug 2001 B1
6292701 Prass et al. Sep 2001 B1
6306100 Prass Oct 2001 B1
6308712 Shaw Oct 2001 B1
6312392 Herzon Nov 2001 B1
6325764 Griffith et al. Dec 2001 B1
6334068 Hacker Dec 2001 B1
6348058 Melkent et al. Feb 2002 B1
6360750 Gerber et al. Mar 2002 B1
6371968 Kogasaka et al. Apr 2002 B1
6425859 Foley et al. Jul 2002 B1
6425901 Zhu et al. Jul 2002 B1
6450952 Rioux et al. Sep 2002 B1
6451015 Rittman, III et al. Sep 2002 B1
6466817 Kaula et al. Oct 2002 B1
6468205 Mollenauer et al. Oct 2002 B1
6468207 Fowler, Jr. Oct 2002 B1
6500128 Marino Dec 2002 B2
6520907 Foley et al. Feb 2003 B1
6524320 DiPoto Feb 2003 B2
6535759 Epstein et al. Mar 2003 B1
6564078 Marino et al. May 2003 B1
6579244 Goodwin Jun 2003 B2
6620157 Dabney et al. Sep 2003 B1
6645194 Briscoe et al. Nov 2003 B2
6679833 Smith et al. Jan 2004 B2
6719692 Kleffner et al. Apr 2004 B2
6760616 Hoey et al. Jul 2004 B2
6770074 Michelson Aug 2004 B2
6796985 Bolger et al. Sep 2004 B2
6810281 Brock et al. Oct 2004 B2
6819956 DiLorenzo Nov 2004 B2
6847849 Mamo et al. Jan 2005 B2
6849047 Goodwin Feb 2005 B2
6855105 Jackson, III et al. Feb 2005 B2
6869398 Obenchain Mar 2005 B2
6871099 Whitehurst et al. Mar 2005 B1
6902569 Parmer et al. Jun 2005 B2
6926728 Zucherman et al. Aug 2005 B2
6929606 Ritland Aug 2005 B2
6945933 Branch Sep 2005 B2
6951538 Ritland Oct 2005 B2
7047082 Schrom et al. May 2006 B1
7050848 Hoey et al. May 2006 B2
7079883 Marino et al. Jul 2006 B2
7089059 Pless Aug 2006 B1
7177677 Kaula et al. Feb 2007 B2
7198598 Smith et al. Apr 2007 B2
7207949 Miles et al. Apr 2007 B2
7226451 Shluzas et al. Jun 2007 B2
7261688 Smith et al. Aug 2007 B2
7470236 Kelleher et al. Dec 2008 B1
7473222 Dewey et al. Jan 2009 B2
7481766 Lee et al. Jan 2009 B2
7522953 Kaula et al. Apr 2009 B2
7556601 Branch et al. Jul 2009 B2
7582058 Miles et al. Sep 2009 B1
7643884 Pond et al. Jan 2010 B2
7691057 Miles et al. Apr 2010 B2
7717959 William et al. May 2010 B2
7819801 Miles et al. Oct 2010 B2
7935051 Miles et al. May 2011 B2
8016767 Miles et al. Sep 2011 B2
8021430 Michelson Sep 2011 B2
8251997 Michelson Aug 2012 B2
8303458 Fukano et al. Nov 2012 B2
8343224 Lynn et al. Jan 2013 B2
8355780 Miles et al. Jan 2013 B2
8388527 Miles et al. Mar 2013 B2
20010039949 Loubser Nov 2001 A1
20010056280 Underwood et al. Dec 2001 A1
20020007129 Marino Jan 2002 A1
20020010392 Desai Jan 2002 A1
20020072686 Hoey et al. Jun 2002 A1
20020077632 Tsou Jun 2002 A1
20020123780 Grill et al. Sep 2002 A1
20020161415 Cohen et al. Oct 2002 A1
20020193843 Hill et al. Dec 2002 A1
20030032966 Foley et al. Feb 2003 A1
20030083688 Simonson May 2003 A1
20030105503 Marino Jun 2003 A1
20030139648 Foley et al. Jul 2003 A1
20030149341 Clifton Aug 2003 A1
20030225405 Weiner Dec 2003 A1
20030236544 Lunsford et al. Dec 2003 A1
20040199084 Kelleher et al. Oct 2004 A1
20040225228 Ferree Nov 2004 A1
20050004593 Simonson Jan 2005 A1
20050004623 Miles et al. Jan 2005 A1
20050033380 Tanner et al. Feb 2005 A1
20050075578 Gharib et al. Apr 2005 A1
20050080320 Lee et al. Apr 2005 A1
20050149035 Pimenta et al. Jul 2005 A1
20050182454 Gharib et al. Aug 2005 A1
20050192575 Pacheco Sep 2005 A1
20060025703 Miles et al. Feb 2006 A1
20060052828 Kim et al. Mar 2006 A1
20060069315 Miles et al. Mar 2006 A1
20060224078 Hoey et al. Oct 2006 A1
20070016097 Farquhar et al. Jan 2007 A1
20070198062 Miles et al. Aug 2007 A1
20070293782 Marino Dec 2007 A1
20080058606 Miles et al. Mar 2008 A1
20080064976 Kelleher et al. Mar 2008 A1
20080064977 Kelleher et al. Mar 2008 A1
20080065178 Kelleher et al. Mar 2008 A1
20080071191 Kelleher et al. Mar 2008 A1
20080097164 Miles et al. Apr 2008 A1
20080300465 Feigenwinter et al. Dec 2008 A1
20090124860 Miles et al. May 2009 A1
20090138050 Ferree May 2009 A1
20090192403 Gharib et al. Jul 2009 A1
20090204016 Gharib et al. Aug 2009 A1
20100069783 Miles et al. Mar 2010 A1
20100130827 Pimenta et al. May 2010 A1
20100152603 Miles et al. Jun 2010 A1
20100160738 Miles et al. Jun 2010 A1
20100174148 Miles et al. Jul 2010 A1
Foreign Referenced Citations (17)
Number Date Country
299 08 259 Jul 1999 DE
0 567 424 Oct 1993 EP
0 972 538 Jan 2000 EP
2 795 624 Jan 2001 FR
9428824 Dec 1994 WO
0038574 Jul 2000 WO
0066217 Nov 2000 WO
0067645 Nov 2000 WO
0137728 May 2001 WO
02054960 Jul 2002 WO
03005887 Jan 2003 WO
03026482 Apr 2003 WO
03037170 May 2003 WO
2005013805 Feb 2005 WO
2005030318 Apr 2005 WO
2006042241 Apr 2006 WO
2006066217 Jun 2006 WO
Non-Patent Literature Citations (114)
Entry
Anatomy of the Lumbar Spine in MED TM McroEndoscopic Discectomy (1997 Lucann Gand Rapids MI), 14 pgs.
Dirksmeier et al., “Microendoscopic and Open Laminotomy and Discectomy in Lumbar Disc Disease” Seminars in Spine Surgery, l999, 11(2): 138-146.
METRx Delivered Order Form, 1999, 13 pages.
Medtronic Sofamor Danek “METRx™ MicroDisectomy System,” Medtronic Sofamor Danek USA, 2000, 21 pgs.
Medtronic Sofamor Danek “METRx System Surgical Technique,” 2004, 22 pages.
“MetRx System MicroEndoscopic Discectomy: An Evolution in Minimally Invasive Spine Surgery,” Sofamor Danek, 1999, 6 pages.
Smith and Foley “MetRx System MicroEndoscopic Discectomy: Surgical Technique” Medtronic Sofamor Danek, 2000, 24 pages.
“Sofamor Danck MED Microendoscopic Discectomy System Brochure” including Rapp “New endoscopic lumbar technique improves access preserves tissue” Reprinted with permission from: Orthopedics Today, 1998, 18(1): 2 pages.
Japanese Patent Office JP Patent Application No. 2006-528306 Office Action with English Translation, Jun. 10, 2009, 4 pages.
Plaintiffs' Preliminary Invalidity Contentions re US Patents 7207949; 7470236 and 758205 , Sep. 18, 2009, 19 pages.
Plaintiffs' Preliminary Invalidity Contentions-Appendices, Sep. 18, 2009, 191 pages.
Plaintiffs' Supplemental Preliminary Invalidity Contentions re US Patcnts 7207949, 7470236, and 7582058 , Sep. 29, 2009, 21 pages.
Plaintiffs' Supplemental Prelimmary Invalidity Contentions-Appendices, Sep. 29, 2009, 294 pages.
Axon 501(k) Notification: Epoch 2000 Neurological Workstation, Dec. 3, 1997, 464 pages.
Foley and Smith, “Microendoscopic Discectomy,” Techniques in Neurosurgery, 1997, 3(4):301-307.
Medtronic Sofamor Danek “UNION™ / UNION-L™ Anterior & Lateral Impacted Fusion Devices: Clear choice of stabilization,” Medtronic Solamor Danek, 2000, 4 pages.
NuVasive Vector™ Cannulae, 2000, 1 page.
NuVasive Triad™ Tri-Columnar Spinal EndoArthrodesis™ via Minimally Invasive Guidance, 2000, 1 page (prior to Sep. 25, 2003).
NuVasive Triad™ Cortical Bone Allograft, 2000, 1 page (prior to Sep. 25, 2003).
NuVasive Vertebral Body Access System, 2000, 1 page.
Marina, “New Technology for Guided Navigation with Real Time Nerve Surveillance for Minimally Invasive Spine Discectomy & Arthrodesis,” Spineline, 2000, p. 39.
NuVasive “INS-1 Screw Test,” 2001, 10 pages.
NuVasive letter re 510k Neuro Vision JJB System, Oct. 16, 2001, 5 pages.
NuVasive letter re 510k Guided Arthroscopy System, Oct. 5, 1999, 6 pages.
NuVasive letter 510k INS-1 Intraoperative Nerve Surveillance System, Nov. l3, 2000, 7 pages.
“NuVasiveTM Receives Clearance to Market Two Key Elem Minimally Invasive Spine Surgery System,” Nov. 27, 2001, 20 pages.
Schick et al., “Microendoscopic lumbar discectomy versus open surgery: an intraoperative EMG study,” Eur Spine J, 2002, 11: 20-26.
NuVasive letter re: 510(k) for Neurovision JJB System (Summary), Sep. 25, 2001, 28 pages.
NuVasive letter re: Special 510(k) Premarket Notification: Neurovision JJB System (Device Description), Jul. 3, 2003, 18 pages.
NuVasive letter re: Special 510(k) Premarket Notification : Neurovision JJB System (Device Description), Mar. 1, 2004, 16 pages.
NuVasive letter re: Special 510(k) Premarket Notification: Neurovision JJB System (Device Description), May 26, 2005, 17 pages.
NuVasive letter re: 510(k) Premarket Notification: Neurovision JJB System (Device Description), Jun. 24, 2005, 16 pages.
NuVasive letter re: Special 510(k) Premarket Notification: Neurovision JJB System (Device Description), Sep. 14, 2006, 17 pages.
NuVasive 510(k) Premarket Notification: Neurovision JJB (Device Desciption) Aug. 20, 2007, 8 pages.
NuVasive letter re: 510(k) Premarket Notification: Guided Spinal Arthroscopy System (Device Description), Feb. 1, 1999, 40 pages.
NuVasive 510(k) Prernarket Notification: Spinal System (Summary), Apr. 12, 2004, 10 pages.
NuVasive 510(k) Summary NIM Monitor, Sep. 4, 1998, 4 pages.
NuVasive con-espondcnce re 510(k) Prernarket Notification INS-1 Intraoperative Nerve Surveillance System: Section IV Device Description, pp. 12-51 (prior to Sep. 25, 2003).
Isley et al., “Recent Advances in Intraoperative Neuromonitoring of Spinal Cord Function: Pedicle Screw Stimulation Techniques,” American Journal of Electroneurodiagnostic Technology, Jun. 1997, 37(2):93-126.
Mathews et al., “Laparoscopic Discectomy with Anterior Lumbar Interbody Fusion,” Spine, 1995, 20(16): 1797-1802.
Rose et al., “Persistently Electrified Pedicle Stimulation Instruments in Spinal Instrumentation Techniques and Protocol Development,” Spine, 1997, 22(3):334-343.
“Electromyography System,” International Search Report from International Application No. PCT/US00/32329, Apr. 27, 2001, 9 pages.
“Nerve Proximity and Status Detection System and Method,” International Search Report from International Search Report from International Application No. PCT/US01/18606, Oct. 18, 2001, 6 pages.
“Relative Nerve Movement and Status Detection System and Method,” International Search Report from International Application No. PCT/US01/18579, Jan. 15, 2002, 6 pages.
“System and Method for Determining Nerve Proximity Direction and Pathology During Surgery,” International Search Report from International Application No. PCT/US02/22247, Mar. 27, 2003, 4 pages.
“System and Methods for Determining Nerve Direction to a Surgical Instrument,” International Search Report from International Application No. PCT/US03/02056, Aug. 12, 2003, 5 pages.
“Systems and Methods for Performing Percutaneous Pedicle Integrity Assessments,” International Search Report from International Application No. PCT/US02/35047, Aug. 11, 2003, 5 pages.
“Systems and Methods for Performing Surgery Procedures and Assessments,” International Search Report from International Application No. PCT/US02/30617, Jun. 5, 2003, 4 pages.
Lenke et al., “Triggered Electromyographic Threshold or Accuracy of Pedicle Screw Placement,” Spine, 1995, 20(4): 1585-1591.
“Brackmann II EMG System,” Medical Electronics, 1999, 4 pages.
“Neurovision SE Nerve Locator/Monitor”, RLN Systems Inc. Operators Manual, 1999, 22 pages.
“The Brackmann II EMG Monitoring System,” Medical Electronics Co. Operator's Manual Version 1.1, 1995, 50 pages.
“The Nicolet Viking IV,” Nicolet Biomedical Products, 1999, 6 pages.
Anderson et al., “Pedicle screws with high electrical resistance: a potential source of error with stimulus-evoked EMG,” Spine, Department of Orthopaedic Surgery University of Virginia, Jul. 15, 2002, 27(14): 1577-1581.
Bose et al., “Neurophysiologic Monitoring of Spinal Nerve Root Function During nstrumented Posterior umber Spine Surgery,” Spine, 2002, 27(13): 1444-1450.
Calancie et al., “Stimulus-Evoked EMG Monitoring During Transpedicular Lumbosacral Spine Instrumentation” Spine, 1994, 19(24): 2780-2786
Clements et al., “Evoked and Spontaneous Electromyography to Evaluate Lumbosacral Pedicle Screw placement,” Spine, 1996, 21(5): 600-604.
Danesh-Clough et al. ,“The Use of Evoked EMG in Detecting Misplaced Thoracolumbar Pedicle Screws,” Spine, Orthopaedic Department Dunedin Hospital, Jun. 15, 2001, 26(12): 1313-1316.
Darden et al., “A Comparison of Impedance and Electromyogram Measurements in Detecting the Presence of Pedicle Wall Breakthrough,” Spine, Charlotte Spine Center North Carolina, Jan. 15, 1998, 23(2):256-262.
Ebraheim et al., “Anatomic Relations Between the Lumbar Pedicle and the Adjacent Neural Structures,” Spine, Department of Orthopaedic Surgery Medical College of Ohio, Oct. 15, 1997, 22(20): 2338-2341.
Ford et al. “Electrical Characteristics of Peripheral Nerve Stimulators Implications for Nerve Localization,” Regional Anesthesia, 1984, 9: 73-77.
Glassman et al., “A Prospective Analysis of Intraoperative Electromyographic Monitoring of Pedicle Screw Placement With Computed Tomographic Scan Confirmation,” Spine, 1995, 20(12): 1375-1379.
Greenblatt et al., “Needle Nerve Stimulator-Locator: Nerve Blocks with a New Instrument for Locating Nerves,” Anesthesia& Analgesia, 1962,41(5):599-602.
Haig, “Point of view,” Spine, 2002, 27(24): 2819.
Haig et al., “The Relation Among Spinal Geometry on MRI, Paraspinal Electromyographic Abnormalities, and Age in Persons Referred for Electrodiagnostic Testing of Low Back Symptoms,” Spine, Department of Physical Medicine and Rehabilitation University of Michigan, Sep. 1, 2002, Z7(17): 1918-1925.
Holland et al., “Higher Electrical Stimulus Intensities are Required to Activate Chronically Compressed Nerve Roots: Implications for Intraoperative Electromyographic Pedicle Screw Testing,” Spine, Department of Neurology, Johns Hopkins University School of Medicine, Jan. 15, 1998, 23(2): 224-227.
Holland, “Intraoperative Electromyography During Thoraeolumbar Spinal Surgery,” Spine, 1998, 23(17): 1915-1922.
Journee et al., “System for Intra-Operative Monitoring of the Cortical Integrity of the Pedicle During Pedicle Screw Placement in Low-Back Surgery: Design and Clinical Results,” Sensory and Neuromuscular Diagnostic Instrumentation and Data Analysis I, 18th Annual International Conference on Engineering in Medicine and Biology Society, Amsterdam, 1996, pp. 144-145.
Maguire et al., “Evaluation of Intrapedicular Screw Position Using Intraoperative Evoked Electromyography,” Spine, 1995, 20(9): 1068-1074.
Martin et al. “Initiation of Erection and Semen Release by Rectal Probe Electrostimulation (RPE),” The Journal of Urology, The Williams& Wilkins Co., 1983, 129: 637-642.
Minahan et al., “The Effect of Neuromuscular Blockade on Pedicle Screw Stimulation Thresholds” Spine, Department of Neurology, Johns Hopkins University School of Medicine, Oct. 1, 2000, 25(19): 2526-2530.
Pither et al., “The Use of Peripheral Nerve Stimulators for Regional Anesthesia: Review of Experimental Characteristics Technique and Clinical Applications,” Regional Anesthesia, 1985, 10:49-58.
Raj et al., “Infraclavicular Brachial Plexus Block—A Ncw Approach” Anesthesia and Analgesia, 1973, (52)6: 897-904.
Raj et al., “The Use of Peripheral Nerve Stimulators fo Regional Anesthesia,” Clinical Issues in Regional Anesthesia, 1985, 1(4):1-6.
Raj et al., “Use of the Nerve Stimulator for Peripheral Blocks,” Regional Anesthesia, Apr.-Jun. 1980, pp. 14-21.
Raymond et al., “The Nerve Seeker: A System for Automated Nerve Localization,” Regional Anesthesia, 1992, 17(3): 151-162.
Shafik, “Cavernous Nerve Stimulation through and Extrapelvic Subpubic Approach: Role in Penile Erection,” Eur. Urol, 1994, 26: 98-102.
Toleikis et al., “The Usefulness of Electrical Stimulation for Assessing Pedicle Screw Replacements,” Journal of Spinal Disorder, 2000, 13(4): 283-289.
Medtronic Sofamor Danek “UNION™ / UNION-L™ Anterior & Lateral Impacted Fusion Devices: Surgical Technique” Medtronic Sofamor Danek, 2001, 20 pages.
Defendant's Disclosure of Asserted Claims and Preliminary Infringement Contentions Regarding USP 7207949; 7470236 and 7582058, Aug. 31, 2009, 21 pages.
Bergey et al., “Endoscopic Lateral Transpsoas Approach to the Lumbar Spine,” Spine, 2004, 29(15): 1681-1688.
Dezawa et al., “Retoperitoneal Laparoscopic Lateral Approach to the Lumbar Spine: A New Approach, Technique, and Clinical Trial,” Journal of Spinal Disorders, 2000, 13(2): 138-143.
Gardocki, “Tubular diskectomy minimizes collateral damage: A logical progression moves spine surgery forward,” AAOS Now, 2009, 5 pages.
Hovorka et al., “Five years' experience of retroperitoneal lumbar and thoracolumbar surgery,” Eur Spine J., 2000, 9(1): S30-S34.
Kossmann et al., “The use of a retractor system (SynFrame) for open, minimal invasive reconstruction of the anterior column of the thoracic and lumbar spine,” Eur Spine J., 2001, 10: 396-402.
Mayer, “A New Microsurgical Technique for Minimally Invasive Anterior Lumbar Interbody Fusion,” Spine, 1997, 22(6): 691-699.
Mayer, “The ALIF Concept,” Eur Spine J., 2000, 9(1): S35-S43.
Mayer and Wiechert, “Microsurgical Anterior Approaches to the Lumbar Spine for Interbody Fusion and Total Disc Replacement”, Neurosurgery, 2002, 51(2): 159-165.
McAfee et al., “Minimally Invasive Anterior Retroperitoneal Approach to the Lumbar Spine: Emphasis on the Lateral BAK,” Spine, 1998, 23(13): 1476-1484.
Rao, et al. “Dynamic retraction of the psoas muscle to expose the lumbar spine using the retroperitoneal approach,” J. Neurosurg Spine, 2006, 5: 468-470.
Wolfla et al., “Retroperitoneal lateral lumbar interbody fusion with titanium threaded fusion cages,” J. Neurosurg (Spine 1), 2002, 96: 50-55.
Larson and Maiman, “Surgery of the Lumbar Spine,” Thieme Medical Publishers, Inc., 1999, pp. 305-319.
Medtronix XOMED Surgical Products, Inc., NIM-Response Nerve Integrity Monitor Intraoperative EMG Monitor User's Guide, Revision B, 2000, 47 pages.
“NuVasive's spine surgery system cleared in the US,” Pharm & Medical Industry Week, Dec. 10, 2001, 1 page.
Pimenta, “Initial Clinical Results of Direct Lateral, Minimally Invasive Access to the Lumbar Spine for Disc Nucleus Replacement Using a Novel Neurophysiological Monitoring System.” The 9th IMAST, May, 2002, 1 page.
Pimenta et al., “The Lateral Endoscopic Transpsoas Retroperitoneal Approach (Letra) for Implants in the Lumbar Spine,” World Spine II—Second Interdisciplinaty Congress on Spine Care, Aug. 2003, 2 pages.
Crock, H.V. Md., “Anterior Lumbar Interbody Fusion,” Clinical Orthopaedics and Related Research, Number One Hundred Sixty Five, 1982, pp. 157-163, 13 pages.
Mayer and Brock, “Percutaneous endoscopic discectomy: surgical technique and preliminary results compared to microsurgical discectomy,” J. Neurosurg, 1993, 78: 216-225.
Schaffer and Kambin, “Percutaneous Posterolateral Lumbar Discectomy and Decompression with a 6.9-Millimeter Cannula,” The Journal of Bone and Joint Surgery, 1991, 73A(6): 822-831.
Friedman, “Percutaneous discectomy: An alternative to chemonucleolysis,” Neurosurgery, 1983, 13(5): 542-547.
Brau, “Chapter 22: Anterior Retroperitoneal Muscle-Sparing approach to L2-S1 of the Lumbar Spine,” Surgical Approaches to the Spine, Robert G. Watkins, MD. (ed) 2003. pp. 165-181.
Kossmann et al., “Minimally Invasive Vertebral Replacement with Cages in Thoracic and Lumbar Spine,” European Journal of Trauma, 2001, 27: 292-300.
Mayer H. M. (ed.) Minimally Invasive Spine Surgery: A Surgical Manual. 2000. 51 pages.
Pimenta et al., “Implante de protese de nucleo pulpost: analise inicial,” Journal Brasileiro de Neurocirurgia2001, 12(2): 93-96.
Traynelis, “Spinal Arthroplasty,” Neurological Focus, 2002, 13(2): 12 pages.
Zdeblick, Thomas A. (ed.). Anterior Approaches to the Spine. 1999. 43 pages.
Kossman et al., “The use of a retractor system (SynFrame) for open, minimal invasive reconstruction of the anterior column of the thoracic and lumbar spine,” Eur Spine J, 2001, 10: 396-402.
de Peretti et al., “New possibilities in L2-L5 lumbar arthrodesis using a lateral retroperitoneal approach assisted by laparoscopy: preliminary results,” Eur Spine J, 1996, 5: 210-216.
Litwin et al., “Hand-assisted laparoscopic sugery (HALS) with the handport system” Annals of Surgery, 2000, 231(5): 715-723.
Acland's Video Atlas of Human Anatomy, Section 3.1.7: Paravertebral Muscles. Available online: http://aclandanatomy.com/abstract/4010463. Accessed Jul. 11, 2012.
MedlinePlus, a Service of the U.S. Natonal Library of Medicine and National Institutes of Health. Available online: http://www.nlm.nih.gov/medlineplus/. Accessed Jul. 11, 2012.
Baulot et al., Adjuvant Anterior Spinal Fusion Via Thorascopy. Lyon Chirurgical, 1994, 90(5): 347-351 including English Translation and Certificate of Translation.
Leu et al., “Percutaneous Fusion of the Lumbar Spine,” Spine, 1992, 6(3): 593-604.
Rosenthal et al., “Removal of a Protruded Thoracic Disc Using Microsurgical Endoscopy,” Spine, 1994, 19(9): 1087-1091.
Related Publications (1)
Number Date Country
20130131456 A1 May 2013 US
Provisional Applications (1)
Number Date Country
60506136 Sep 2003 US
Divisions (1)
Number Date Country
Parent 11789284 Apr 2007 US
Child 12623016 US
Continuations (3)
Number Date Country
Parent 12623016 Nov 2009 US
Child 13742268 US
Parent 11137169 US
Child 11789284 US
Parent PCT/US2004/031768 Sep 2004 US
Child 11137169 US