This is a U.S. National Stage under 35 U.S.C 371 of the International Application PCT/CN2013/082025, filed Aug. 22, 2013, which claims priority under 35 U.S.C. 119(a-d) to CN 201210349356.7, filed Sep. 18, 2012.
Field of Invention
This invention relates to a surgical apparatus, especially a kind of anastomat for surgical operation. More specifically, it relates to an improved surgical apparatus actuator.
Description of Related Arts
The working principle of surgical anastomat is to clamp tissues through the closing of two corresponding jaws (which are normally called nail anvil assembly and nail bin assembly) and then push the metal suturing nails in the anastomat nail bin out for molding and suture tissues together. In some anastomats, a cutter is installed to cut off sutured tissues.
The anastomat with the above functions also includes actuator, intermediate connecting body and controller. The actuator consists of nail anvil assembly, nail bin assembly and drive assembly. The nail anvil assembly includes a nail molding surface which contains multiple rows of nail grooves. The nail groove is used for metal suturing nail molding. The nail bin assembly usually consists of nail bin, suturing nail, nail push block and nail push slide and nail bin seat. The upper surface of the nail bin is the tissue contact surface and the nail bin is installed in the nail bin seat. The nail anvil assembly connects at the near end with the near end of the nail bin assembly in a mobile manner and converts between the opening condition and closing condition. The drive assembly connects with the drive mechanism and is used to convert the triggering operation into actuator closing, triggering and opening operations. Generally, each of the nail anvil assembly and nail bin seat contains also a longitudinal groove. The above longitudinal groove is used to accommodate the drive assembly to allow it to pass. When the drive assembly moves toward the far end of the actuator through the above longitudinal groove, it drives the nail anvil assembly and nail bin assembly to convert from the opening condition to closing condition and drives the nail push slide and nail push block to push out suturing nails for molding in the nail groove of the nail molding surface of the nail anvil assembly. Generally, the drive assembly also includes a cutter, which is used to cut tissues among multiple rows of nail threads after tissues are sutured by suturing nails. The controller is used to control the apparatus operation manually, which usually consists of a fixed handle, a trigger connecting with the fixed handle in a relatively mobile manner and a group of drive mechanisms transmitting the triggering operation to the actuator. The intermediate connecting body connects with the far end of controller in a mobile manner and connects with the near end of the actuator. The intermediate connecting body constitutes a connecting passageway to transmit the triggering operation to the actuator.
The Endo GIA Universal cutting anastomat from Tyco Healthcare in USA (renamed as Covidien later) and the Echelon cutting anastomat from Ethicon Endo-Surgery in USA are the representative products achieving the above functions. The above products have been sold for years and proved by market as having a good clinical application effect. The actuators of the blue nail bins of the above products can compress human body tissues (such as stomach tissues, lung tissues, intestine tissues, etc.) from a natural thickness of 5 mm-8 mm to a closing thickness of 1.5 mm when the nail anvil assembly and nail bin assembly close. In terms of the product function, the tissue closing thickness should be uniform from the near end of the nail anvil to the far end thereof so as to ensure suturing nails to be highly uniform in molding. Suturing effect can be guaranteed only when suturing nails suture tissues with a stable quality. Therefore, the nail anvil assembly needs to have a high bending strength. In nail anvil assembly manufacturing, the nail groove has a substantial material displacement in mould punching molding and this objectively requires that the material of the nail anvil assembly has good flowability and is easy to create a large-scale plastic deformation. The requirements of the nail anvil assembly for material plasticity and bending strength are contradictory. The technical proposals adopted by the Endo GIA Universal cutting anastomat and the Echelon cutting anastomat solve the above contradiction satisfactorily. However, there are still places requiring perfection, for example: the bending strength of the nail anvil assembly of the Endo GIA Universal cutting anastomat is still not high enough in some clinical applications and the processing technology is highly difficult; the bending strength of the Echelon cutting anastomat is enough, however, the processing technology is complicated with a high cost.
For example, in U.S. Pat. No. 5,865,361, Tyco Healthcare described the nail anvil assembly of the Endo GIA Universal cutting anastomat. By referring to the description in U.S. Pat. No. 5,865,361 and combining with the design adopted for the real product being sold on market, the nail anvil assembly is welded from nail anvil plate and back cover plate. The empty cavity formed between the upper surface of the back cover plate and the nail anvil plate is the space for cutter holder pin to slide. The function of the back cover plate is to prevent tissues from being injured as a result of pinching by the cutter holder pin in the process of the nail anvil assembly closing tissues and anastomosing. The back cover plate is punched from 0.2 mm-0.3 mm thick stainless steel sheet. The nail anvil plate is punched from stainless steel sheet around 1 mm thick. Both the two spare parts use 304 stainless steel which can be strengthened through heat treatment and can exhibit a conspicuous machining hardening in the process of machining. On the lower surface of the nail anvil plate, a lot of nail grooves formed from cold punching process are distributed. For the Endo GIA Universal nail anvil plate with a 45 mm nail thread specification, 6 rows×11=66 nail grooves with a depth around 0.5 mm are punched (coldly) on the 45 mm×9 mm plane. The nail groove depth reaches half of the nail anvil plate material thickness. This results in the surface of material that the nail anvil plate and the mould punch top contact having serious machining hardening in nail groove cold punch molding, which prevents nail grooves from further molding and also results in aggravated wearing to the mould punch and mould life reduction and thus results in greater nail groove dimension fluctuation, accuracy reduction and eventual influence on the suturing nail molding quality.
With regard to the above difficulties in nail groove molding, it is speculated that in manufacturing the nail anvil plate of the Endo GIA Universal cutting anastomat, the nail anvil plate uses 304 stainless steel sheet in annealed state to reduce maximally the initial material hardness, upgrade the nail groove molding accuracy and mould life. However, the bending strength of the nail anvil plate made of 304 stainless steel in annealed state is reduced and that thus results in the bending strength of the nail anvil assembly being low. As a result, when that product is applied to some thick tissue anastomosing and cutting occasions, the nail anvil assembly has a serious bending deformation after the nail anvil assembly and nail bin assembly close. As a result, it is unable to ensure the tissues clamped in the jaw to be consistent in compression thickness. Especially, the tissues at the far end of the jaw have an unsatisfactory closing effect due to incomplete compression. This results in tissues being easy to overflow toward the far end of the jaw in cutting and the tissue width after anastomosing being greater than the original tissue compression length. In some cases, it may result in having to increase the amount of nail bins, which implies the increase in medical cost; when serious, it may result in poor suturing nail molding.
With regard to the defects in the existing technology, the purpose of this invention is to provide an improved surgical apparatus actuator and an anastomat containing the actuator. According to the apparatus (i.e. anastomat) provided by this invention, tissue clamping can be achieved and the molding of at least one row of suturing nails can be achieved; in some application conditions, tissue cutting can also be achieved. Tissues can be cut open between multiple rows of suturing nail threads.
According to one aspect of this invention, an improved surgical apparatus actuator is provided, including a nail bin assembly, a nail anvil assembly connecting with the nail bin assembly, and a drive assembly controlling the nail bin assembly and nail anvil assembly to convert opening and closing conditions. The nail anvil assembly includes a nail anvil plate and a nail anvil seat. The nail anvil plate is provided on an inner side face of the nail anvil seat. The nail anvil plate is cold-punched from stainless steel sheet. A thickness of the stainless steel sheet is lower than a maximum molding depth of nail grooves of the nail anvil plate. The nail anvil plate has a first guide groove provided thereon. The nail anvil seat has a second guide groove provided thereon. The first guide groove and the second guide groove are arranged coaxially. The drive assembly slides under a guide of the first guide groove and the second guide groove.
Preferably, the nail anvil plate is punched and drawn from stainless steel sheet.
Preferably, the thickness of the stainless steel sheet is 0.1-0.4 mm.
Preferably, the thickness of the stainless steel sheet is 0.2-0.3 mm.
Preferably, a tensile strength of a material used by the nail anvil seat is higher than that of the stainless steel sheet.
Preferably, the nail anvil seat is processed by a method selected from a group consisting of thermal forging, powder metallurgical molding, casting and mechanical cutting. In which, the powder metallurgical molding process includes metal injection molding technology (MIM) and metal compression molding technology.
Preferably, a back cover plate is also included, in which, the back cover plate is provided on an outer side face of the nail anvil seat. The outer side face of the nail anvil seat has a guide rail surface. An empty cavity exists between the back cover plate and the guide rail surface of the nail anvil seat. The drive assembly moves along the guide rail surface in the empty cavity.
Preferably, all components of the nail anvil assembly are connected to form an integral structure through welding and/or mechanical riveting.
Preferably, the nail grooves on the nail anvil plate are arranged in multiple rows of parallel straight lines or parallel curves selectively.
Preferably, the nail grooves on the nail anvil plate are arranged into 4 rows or 6 rows.
According to another aspect of this invention, an improved surgical apparatus is also provided, including a controller, an intermediate connecting body and an actuator, in which the actuator, the intermediate connecting body and the controller are connected in sequence.
In comparison with the existing technology, this invention has the following beneficial effects:
1. It mainly uses the nail anvil plate and nail anvil seat made of different materials to constitute the nail anvil assembly. As a result, the requirements of the nail anvil assembly for both material plasticity and bending strength are met. In which, the nail anvil plate uses thin stainless steel sheet for molding through tensile process to improve the difficulty in nail groove molding and provide nail grooves with a high accuracy; the nail anvil seat adopts a structural, material and processing proposal being able to provide a high bending strength to provide a strong bending property to the whole nail anvil assembly;
2. The tensile strength of the material used by the nail anvil seat is higher than that of the material used by the nail anvil plate, which enables the nail anvil seat to provide a higher tensile strength and a higher bending strength that makes the nail anvil plate easier for molding through drawing. As a result, the problem of tissue overflow and poor suturing nail molding due to insufficient bending strength of the nail anvil assembly existing in the exist apparatus is overcome.
3. The nail anvil assembly is combined by multiple components with different functions, which enhances the uniformity of the clamped tissues in thickness when the actuator closes tissues. In comparison with the existing product design proposals, the closing effect of the actuator is better, the manufacturing cost is lower and the clinical risk is smaller.
4. When the thickness t of the stainless steel sheet for processing the nail anvil plate is less than the maximum molding depth h of nail groove, the cold punching process for processing the nail anvil plate can use punch drawing process in place of the impressing process used in nail groove molding on thick sheet. As a result, the nail groove dimension accuracy is increased.
By reading and referring to the detailed descriptions made by following figures to the unlimited embodiment, other characteristics, purposes and advantages of this invention will become more conspicuous:
A detailed description to this invention is to be made in combination with embodiments below. The following embodiment will help the technical people in this field to further understand this invention. However, it does not limit this invention in any form. What should be pointed out is that the ordinary technical people in this field can make a number of variations and improvements under the prerequisite not being divorced from the conception of this invention. All these belong to the protection scope of this invention.
This invention applies to the actuator of surgical apparatus, uses a special spare part combination proposal, material combination proposal and processing technique proposal to manufacture the actuator to obtain a nail anvil assembly with a better comprehensive bending strength.
The controller 300 usually includes a first fixed handle 301, a second fixed handle 302, a mobile trigger 303, a trigger reset spring 310 and a drive and motion transfer mechanism transmitting a rotary motion of the trigger 303 to a drive rod 204 of the intermediate connecting body 200 and driving the drive rod 204 to make a straight line motion longitudinally. As shown in
The intermediate connecting body 200 is connected at a far end of the controller 300. In the surgical anastomat embodiment as shown in
In the surgical anastomat embodiments as shown in
Refer to
As shown in
In this embodiment, the nail anvil plate 103 is cold-punched from stainless steel sheet. A thickness t of the stainless steel sheet is lower than a maximum molding depth h of the nail groove 1032 of the nail anvil plate 103, i.e. t<h. In practical applications, for the suturing nail 105 with a diameter of 0.2 mm-0.25 mm, the maximum molding depth h of the nail groove 1032 is usually in a range of 0.4 mm-0.6 mm to ensure that sufficient guide property is provided during molding of the suturing nail 105; for the suturing nail 105 with a diameter of 0.25 mm-0.35 mm, the maximum molding depth h of nail groove 1032 is usually in a range of 0.45 mm-0.7 mm to ensure that sufficient guide property is provided during molding of the suturing nail 105. When the thickness t of the stainless steel sheet for processing the nail anvil plate 103 is smaller than the maximum molding depth h of the nail groove 1032, preferably, the cold punch process for processing the nail anvil plate 103 can use punch drawing process in place of the impressing process used in molding of the nail groove 1032 on a thick plate.
Refer to
As shown in
To ensure that the nail anvil plate 103 and the nail anvil seat 102 are accurately positioned, as shown in
The nail anvil seat 102 is processed through a thermal forging process. In the variation of this embodiment, the nail anvil seat 102 can also be processed through a powder metallurgical molding process or a mechanical cutting process.
The nail anvil assembly 1001 also includes a back cover plate 101, which is arranged on an outer side face of the nail anvil seat 102.
In an optimum example of this embodiment, the assemblies of the nail anvil assembly can be connected into a whole through welding, mechanical riveting and a combination of both. In which, welding includes laser welding, resistance welding, fusion welding, etc.
In another optimum example of this embodiment, the nail anvil plate 103 uses 304 stainless steel and nail anvil seat 102 uses 420 stainless steel. The 420 stainless steel can achieve a tensile strength not lower than 1300 MPa after an appropriate heat treatment process. Usually, the tensile strength of 304 stainless steel is not higher than that of 1050 MPa after H1/2 heat treatment.
The above describes the embodiments of this invention. What need to understand is that this invention is not limited to the above specific embodiments. The technical people in this field can make different variations or modification within the scope of claims and this does not influence the essential contents of this invention.
Number | Date | Country | Kind |
---|---|---|---|
2012 1 0349356 | Sep 2012 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2013/082025 | 8/22/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/044108 | 3/27/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5173133 | Morin | Dec 1992 | A |
5308576 | Green | May 1994 | A |
5865361 | Milliman | Feb 1999 | A |
20050145671 | Viola | Jul 2005 | A1 |
20080078801 | Shelton | Apr 2008 | A1 |
20090206131 | Weisenburgh, II | Aug 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20150230795 A1 | Aug 2015 | US |