Surgical apparatus including surgical buttress

Information

  • Patent Grant
  • 10617419
  • Patent Number
    10,617,419
  • Date Filed
    Tuesday, March 29, 2016
    8 years ago
  • Date Issued
    Tuesday, April 14, 2020
    4 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Tecco; Andrew M
    • Igbokwe; Nicholas E
    Agents
    • Carter, DeLuca & Farrell, LLP
Abstract
A surgical buttress includes a body portion and a band disposed on each of the distal and proximal ends thereof. The surgical buttress is configured to attach to an end effector of a surgical stapling apparatus. The body portion, having perforations disposed thereon, overlies the working surface of one of the first or second jaws of the end effector. A resilient portion extends transversely beyond the side edges of the first or second jaws. Each band remains attached to the end effector following the firing thereof. The proximal band is removably attachable to a hook feature disposed on one of the first or second jaws of the end effector. The surgical buttress can be made from suitable degradable or non-degradable materials. One embodiment contemplates a detachable and disposable single use loading unit. A method of attaching the surgical buttress to a surgical apparatus is also envisioned.
Description
BACKGROUND
Technical Field

This application relates to a surgical apparatus, and more particularly, to a surgical buttress for use with a surgical stapling apparatus during operation of the stapling apparatus to apply a plurality of surgical fasteners to body tissue.


Background of Related Art

As medical and hospital costs continue to increase, surgeons are constantly striving to develop advanced surgical techniques. Advances in the surgical field are often related to the development of operative techniques which involve less invasive surgical procedures and reduce overall patient trauma. In this manner, the length of hospital stays can be significantly reduced, and, therefore, the hospital and medical costs can be reduced as well.


Although the present disclosure includes, but is not limited to use with endoscopic surgery, endoscopic surgery is one of the truly great advances in recent years to reduce the invasiveness of surgical procedures. Generally, endoscopic surgery involves incising through body walls for example, viewing and/or operating on the ovaries, uterus, gall bladder, bowels, kidneys, appendix, etc. There are many common endoscopic surgical procedures, including arthroscopy, laparoscopy (pelviscopy), gastroentroscopy and laryngobronchoscopy, just to name a few. Typically, trocars are utilized for creating the incisions through which the endoscopic surgery is performed. Trocar tubes or cannula devices are extended into and left in place in the abdominal wall to provide access for endoscopic surgical tools. A camera or endoscope is inserted through a relatively large diameter trocar tube which is generally located at the naval incision, and permits the visual inspection and magnification of the body cavity. The surgeon can then perform diagnostic and therapeutic procedures at the surgical site with the aid of specialized instrumentation, such as, forceps, cutters, applicators, and the like which are designed to fit through additional cannulas. Thus, instead of a large incision (typically 12 inches or larger) that cuts through major muscles, patients undergoing endoscopic surgery receive more cosmetically appealing incisions, between 5 and 10 millimeters in size. Recovery is, therefore, much quicker and patients require less anesthesia than traditional surgery. In addition, because the surgical field is greatly magnified, surgeons are better able to dissect blood vessels and control blood loss. Heat and water loss are greatly reduced as a result of the smaller incisions. In order to address the specific needs of endoscopic and/or laparoscopic surgical procedures, endoscopic surgical stapling devices have been developed and are disclosed in, for example, U.S. Pat. No. 5,040,715 (Green, et al.); U.S. Pat. No. 5,307,976 (Olson, et al.); U.S. Pat. No. 5,312,023 (Green, et al.); U.S. Pat. No. 5,318,221 (Green, et al.); U.S. Pat. No. 5,326,013 (Green, et al.); and U.S. Pat. No. 5,332,142 (Robinson, et al.).


In many surgical procedures, including those involved in open and endoscopic surgery, it is often necessary to staple tissue. It is especially challenging during endoscopic surgery because of the small openings through which the stapling of tissues must be accomplished. Instruments for this purpose can include two elongated members which are respectively used to capture or clamp tissue. Surgical devices wherein tissue is first grasped or clamped between opposing jaw structure and then joined by surgical fasteners are well known in the art. Typically, one of the members carries a fastener cartridge which houses a plurality of staples arranged in at least two lateral rows while the other member has an anvil that defines a surface for forming the staple legs as the staples are driven from the staple cartridge. The fasteners are typically in the form of surgical staples but two part polymeric fasteners can also be utilized. Generally, the stapling operation is effected by cam bars or wedges that travel longitudinally through the staple cartridge, with the cam bars acting upon staple pushers to sequentially eject the staples from the staple cartridge. A knife can travel between the staple rows to longitudinally cut and/or open the stapled tissue between the rows of staples. Such instruments are disclosed, for example, in U.S. Pat. Nos. 3,079,606 and 3,490,675.


A later stapler disclosed in U.S. Pat. No. 3,499,591 applies a double row of staples on each side of the incision. This is accomplished by providing a disposable loading unit in which a cam member moves through an elongate guide path between two sets of staggered staple carrying grooves. Staple drive members are located within the grooves and are positioned in such a manner so as to be contacted by the longitudinally moving cam member to effect ejection of the staples from the staple cartridge of the disposable loading unit. U.S. Surgical, the assignee of the present application, has manufactured and marketed endoscopic stapling instruments for several years. Examples of such instruments include the Multifire ENDO GIA* 30 and Multifire ENDO GIA* 60 instruments. Other examples of such staplers are disclosed in U.S. Pat. Nos. 4,429,695 and 5,065,929.


In staplers of the general type described above, it is conventional to provide separate anvil slots at each staple forming location. This makes it necessary to maintain relatively stringent alignment between the staple holding assembly and the anvil to assure that the staples enter the anvil slots correctly for proper clinching. The importance of maintaining good alignment between the relatively movable staple holding assembly and anvil assembly may contribute to the complexity of the instrument and to the cost of manufacturing and maintaining it. It is important that every staple be formed properly since an incompletely or improperly formed staple may leave a gap in a wound closure. Currently, surgical buttress material is also used in combination with these instruments as reinforcement to staple lines to further promote proper staple formation while reducing twisting/malformation caused by misalignment or unusual tissue while minimizing reliance on strict manufacturing tolerances. These instruments have provided significant clinical benefits. Nonetheless, improvements are possible, for example, by reducing the complexity of manufacture and/or application.


SUMMARY

The present invention relates to a surgical buttress for use with a surgical stapling apparatus. The surgical stapling apparatus includes a housing, an end effector having first and second jaws and at least one surgical buttress. A plurality of fasteners are disposed in fastener slots of the first jaw, and fastener pockets are provided on the second jaw. The at least one surgical buttress has a body portion and at least one band connected to a distal end thereof for connection to the end effector. The at least one band encircles a portion of the end effector. The body portion of the at least one surgical buttress is configured and dimensioned to substantially overlie at least some of the fastener slots of the first jaw.


The at least one surgical buttress of the surgical stapling apparatus includes a resilient portion. The resilient portion extends transversely beyond at least one side edge of at least one of the first or second jaws of the end effector. The resilient portion of the surgical stapling apparatus is configured and dimensioned to remain attached to the end effector following the firing of the surgical stapling apparatus.


The surgical stapling apparatus further includes at least one second band connected to a proximal end of the at least one surgical buttress for connection to a proximal end of the end effector. The at least one second band of the surgical stapling apparatus is configured and dimensioned to remain attached to the end effector following the firing of the surgical stapling apparatus.


The surgical stapling apparatus further includes a hook feature disposed on the proximal end of at least one of the first or second jaws of the end effector. The at least one second band is configured and dimensioned to engage the hook feature.


At least the body portion of the at least one surgical buttress of the surgical stapling apparatus includes a plurality of perforations. The perforations are disposed along the perimeter of the body portion of the surgical buttress of the surgical stapling apparatus.


At least the body portion of the at least one surgical buttress of the surgical stapling apparatus can be made from degradable materials selected from the group comprising natural collagenous materials, cat gut, or synthetic resins including those derived from alkylene carbonates including trimethylene carbonate, tetramethylene carbonate; caprolactone, valerolactone, dioxanone, polyanhydrides, polyesters, polyacrylates, polymethylmethacrylates, polyurethanes, glycolic acid, lactic acid, glycolide, lactide, polyhydroxy butyrates, polyorthoester, polyhydroxy alkanoates, homopolymers thereof, and copolymers thereof.


At least the body portion of the at least one surgical buttress of the surgical stapling apparatus can be made from non-degradable materials selected from the group comprising polyolefins, including polyethylene, polydimethylsiloxane, polypropylene, copolymers of polyethylene and polypropylene, and blends of polyethylene and polypropylene; ultra high molecular weight polyethylene, polyamides; polyesters including polyethylene terephthalate; polytetrafluoroethylene; polyether-esters including polybutester; polytetramethylene ether glycol; 1,4-butanediol; polyurethanes; and combinations thereof; silk; cotton, linen, and carbon fibers.


In one aspect of the present disclosure, a surgical buttress for use with a surgical stapling apparatus including a body portion defining a length and a width is provided. The body portion has distal and proximal ends. The body portion is configured and dimensioned to substantially overlie a portion of at least one of the fastener slots of the first jaw of an end effector of the surgical stapling apparatus or the fastener pockets of the second jaw of the end effector of the surgical stapling apparatus. At least one band is connected to the distal end of the body portion. The at least one band is configured and dimensioned to encircle a portion of the end effector.


The surgical buttress further includes a resilient portion configured and dimensioned to extend transversely beyond at least one side edge of at least one of the first or second jaws of the end effector. The resilient portion of the surgical buttress is configured and dimensioned to remain attached to the end effector following the firing of the surgical stapling apparatus.


At least a portion of the body portion of the surgical buttress includes a plurality of perforations. At least a portion of the perforations of the surgical buttress are disposed along the perimeter of the body portion.


The at least one band of the surgical buttress is configured and dimensioned to remain attached to the end effector following the firing of the surgical stapling apparatus.


At least the body portion of the surgical buttress can be made from degradable materials selected from the group comprising natural collagenous materials, cat gut, or synthetic resins including those derived from alkylene carbonates including trimethylene carbonate, tetramethylene carbonate; caprolactone, valerolactone, dioxanone, polyanhydrides, polyesters, polyacrylates, polymethylmethacrylates, polyurethanes, glycolic acid, lactic acid, glycolide, lactide, polyhydroxy butyrates, polyorthoester, polyhydroxy alkanoates, homopolymers thereof, and copolymers thereof.


At least the body portion of the surgical buttress can be made from non-degradable materials selected from the group comprising polyolefins, including polyethylene, polydimethylsiloxane, polypropylene, copolymers of polyethylene and polypropylene, and blends of polyethylene and polypropylene; ultra high molecular weight polyethylene, polyamides; polyesters including polyethylene terephthalate; polytetrafluoroethylene; polyether-esters including polybutester; polytetramethylene ether glycol; 1,4-butanediol; polyurethanes; and combinations thereof; silk; cotton, linen, and carbon fibers.


According to a further aspect of the present disclosure, a surgical stapling apparatus having a housing, an end effector including first and second jaws, and at least one surgical buttress is provided. A plurality of fasteners are disposed in fastener slots of the first jaw. Fastener pockets are provided on the second jaw. The at least one surgical buttress has a body portion and at least one band connected to a distal end thereof for connection to the end effector. The at least one band encircles a portion of the end effector. The body portion of the at least one surgical buttress is configured and dimensioned to substantially overlie at least some of the fastener pockets of the second jaw.


According to yet another aspect of the present disclosure, a method of attaching a surgical buttress to a jaw of a surgical stapling apparatus is provided. The method includes the step of: providing a surgical buttress. The surgical buttress includes a body portion defining a length and a width; the body portion having distal and proximal ends, wherein the body portion is configured and dimensioned to substantially overlie a portion of at least one of the fastener slots of the first jaw of an end effector of the surgical stapling apparatus or the fastener pockets of the second jaw of the end effector of the surgical stapling apparatus; at least one band connected to the distal end of the body portion, wherein the at least one band is configured and dimensioned to remain attached to the end effector following the firing of the surgical stapling apparatus; and a resilient portion connected to the sides of the body portion. The method further includes the steps of affixing the at least one band to the distal end of at least one of the first or second jaws of the end effector; extending the resilient portion transversely beyond at least one side edge of at least one of the first or second jaws; and selectively affixing at least one second band to the proximal end of at least one of the first or second jaws of the end effector.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:



FIG. 1 is a perspective view of an endoscopic surgical stapler including a surgical buttress according to the present disclosure;



FIG. 2 is a perspective view illustrating an exemplary end effector during a fastener applying operation as fasteners are being sequentially fired;



FIG. 2A is a bottom perspective view of one embodiment of the second jaw of the exemplary end effector of FIG. 2;



FIG. 3 is a perspective view of the end effector illustrating a surgical buttress attached to the first and second jaws thereof in accordance with the present disclosure;



FIG. 4 is a bottom perspective view of the second jaw of FIG. 3;



FIG. 5A is a perspective view of the surgical buttress in accordance with the present disclosure;



FIG. 5B is side elevational view of the surgical buttress of FIG. 5A;



FIG. 5C is a front elevational view of the surgical buttress of FIGS. 5A and 5B; and



FIG. 6 is an exploded perspective view of one embodiment of a surgical stapling apparatus in accordance with the present disclosure including a single use loading unit having a surgical buttress with the single use loading unit separated from the distal end of the surgical stapling apparatus.





DETAILED DESCRIPTION OF EMBODIMENTS

Particular embodiments of the present disclosure will be described herein with reference to the accompanying drawings. As shown in the drawings and as described throughout the following description, and as is traditional when referring to relative positioning on an object, the term “proximal” refers to the end of the apparatus that is closer to the user and the term “distal” refers to the end of the apparatus that is further from the user. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.


Referring now to the drawings, in which like reference numerals identify identical or substantially similar parts throughout the several views, FIG. 1 illustrates a surgical stapling apparatus 10. In accordance with the present disclosure, a surgical stapling apparatus 10 includes a housing 20 and an elongate member 30 extending from the housing 20. An end effector 40 is disposed on one end of the elongate member 30. The end effector 40 includes first and second jaws 50, 60, which include first and second sides 50a, 50b, 60a, 60b, respectively (see FIG. 3). As seen in FIGS. 2 and 2A, a plurality of fasteners 70 are disposed in fastener slots 80 and formed in fastener pockets 90. The fastener slots 80 are disposed on one of the first or second jaws 50, 60. The fastener pockets 90 are disposed on the other of the first or second jaws 50, 60.


As illustrated in FIGS. 3 and 4, a first surgical buttress 100 is shown disposed on or attached to the first jaw 50 and a second surgical buttress 200 is shown disposed on or attached to the second jaw 60. With reference to FIGS. 5A-5C, each surgical buttress 100, 200 includes a respective body portion 110, 210 having at least one distal band 120, 220 disposed at a distal end thereof for removably connecting the surgical buttress 100, 200 to a distal end of respective jaws 50, 60 of the end effector 40. Additionally, each surgical buttress 100, 200 has a proximal band 122, 222 disposed at the proximal end thereof for removably connecting the surgical buttress 100, 200 to a proximal end of respective jaws 50, 60 of the end effector 40. Each band 120, 220, 122, 222 is configured and dimensioned to encircle a portion of the end effector 40.


As used herein, the surgical buttress 100, 200 includes a pledget, gasket, buttress, or staple line reinforcement structure.


Each body portion 110, 210 defines a length and a width and is configured to substantially overlie at least a portion of the working surface of the respective first or a second jaws 50, 60 of the end effector 40 of the surgical stapling apparatus 10. Each surgical buttress 100, 200 may be configured and dimensioned to overlie at least a portion of the fastener slots 80 or the fastener pockets 90 of the respective first and second jaws 50, 60. As such, in use, the body portion 110, 210 of the surgical buttress 100, 200 provides fastener-line reinforcement for the plurality of fasteners 70 following the firing of the surgical stapling apparatus 10.


The distal bands 120, 220 are attached at the distal end of the body portions 110, 210 in such a manner so to remain attached to respective jaws 50, 60 of the end effector 40 following a firing of the stapling apparatus 10. For example, each distal band 120, 220 is configured and dimensioned to wrap around a distal end of a respective jaw 50, 60 of the end effector 40. Conversely, a proximal band 122, 222 is configured and dimensioned to wrap around a proximal end of respective jaws 50, 60. In one embodiment, as seen in FIG. 3, the proximal band 122 of the surgical buttress 100 may be configured to engage a hook feature 55 provided at the proximal end of the first jaw 50. Similarly, proximal band 222 of the surgical buttress 200 may be configured to engage the hook feature 55 provided at the proximal end of the first jaw 50.


As seen in FIG. 5C, each surgical buttress 100, 200 includes a plurality of perforations 114, 214 formed along the respective perimeter of the body portions 110, 210 thereof. In this manner, during use a central area of the body portions 110, 210 may be separated along the perforations 114, 214 following a securing thereof to tissue. It is further contemplated that perforations 114, 214 may be replaced with lines or slots of reduced thickness and may not necessarily penetrate completely through body portions 110, 210.


Referring again to FIGS. 3-4, 5A and 5C, each surgical buttress 100, 200 includes resilient side skirts 130, 230 extending transversely beyond at least one side edge of the respective body portions 110, 210 of each surgical buttress 100, 200 to respective uncaptured free ends 130x, 230x. Resilient side skirt 130 extends to a distal end face 130d that couples to a proximal surface 120x of distal band 120. It is contemplated that side skirts 130, 230 may be affixed or adhered to the sides of respective jaws 50, 60.


It is envisioned that at least body portions 110, 210 of the surgical buttress 100, 200 can be made from degradable, absorbable and/or resorbable materials. Materials such as natural collagenous materials, cat gut, or synthetic resins including those derived from alkylene carbonates including trimethylene carbonate, tetramethylene carbonate; caprolactone, valerolactone, dioxanone, polyanhydrides, polyesters, polyacrylates, polymethylmethacrylates, polyurethanes, glycolic acid, lactic acid, glycolide, lactide, polyhydroxy butyrates, polyorthoester, polyhydroxy alkanoates, homopolymers thereof, and copolymers thereof can be used.


Furthermore, it is also contemplated that at least body portions 110, 210 of the surgical buttress 100, 200 can be made from non-degradable, non-absorbable and/or non-resorbable materials. Materials such as polyolefins, including polyethylene, polydimethylsiloxane, polypropylene, copolymers of polyethylene and polypropylene, and blends of polyethylene and polypropylene; ultra high molecular weight polyethylene, polyamides; polyesters including polyethylene terephthalate; polytetrafluoroethylene; polyether-esters including polybutester; polytetramethylene ether glycol; 1,4-butanediol; polyurethanes; and combinations thereof; silk; cotton, linen, and carbon fibers can be used.


Referring to FIG. 6, one embodiment of the present disclosure envisions a surgical stapling apparatus 10 that includes a single use loading unit 150, which in some manifestations, is disposable. Upon firing of the surgical stapling apparatus 10, each distal band 120, 220, each proximal band 122, 222, and each resilient side skirt 130, 230 are collectively detachable from respective body portions 110, 210 when the respective first or second jaw 50, 60 is removed from the surgical site after firing of the surgical stapling apparatus 10.


A method of attaching a surgical buttress 100, 200 to a jaw 50, 60 of a surgical stapling apparatus 10 is also contemplated. According to the present disclosure, the method includes the steps of providing a surgical buttress 100, 200 in accordance with the present disclosure; affixing at least one distal band 120, 220 to the distal end of a respective jaw 50, 60 of the end effector 40; extending at least a portion of the resilient side skirts 130, 230 of the surgical buttress 100, 200 transversely beyond at least one side edge of at least one of the first or second jaws 50, 60; and selectively affixing a proximal band 122, 222 to a proximal end of the respective first or second jaw 50, 60. It is contemplated that the resilient side skirts 130, 230 may be adhered to the first or second jaws 50, 60.


During operation of a surgical stapling apparatus 10, including at least one surgical buttress 100, 200, the first and second jaws 50, 60 are clamped against tissue of a patient, and the surgical stapling apparatus 10 is fired to deploy the fasteners 70 through the fastener slots 80. Upon firing, the fasteners 70 pass through the fastener slots 80, and the legs of the fasteners 70 penetrate through a first layer of tissue, through body portions 110, 210 of the surgical buttress 100, 200, through a second layer of tissue and are formed against the fastener pockets 90, thereby affixing the body portion 110, 210 of the surgical buttress 100, 200 to the tissue. Concomitantly therewith, a knife (not shown) translatably disposed within the end effector 40 cuts through the tissue clamped between the jaws 50, 60, through at least a portion of the body portion 110, 210 of the surgical buttress 100, 200. In certain embodiments, the knife can be configured and arranged to cut through the proximal bands 122, 222, which are disposed distal of the knife prior to firing. The perforations 114, 214 disposed on the body portion 110, 210 enable a central area of the body portion 110, 210 of the surgical buttress 100, 200 to disengage or release from the end effector 40, while each distal band 120, 220, proximal band 122, 222, and the resilient side skirts 130, 230 remain attached. The central area of the body portion 110, 210 of the surgical buttresses 100, 200 remains attached to the tissue via the fasteners 70. The distal bands 120, 220 and the resilient side skirts 130, 230 remain affixed to the respective jaws 50, 60 of the end effector 40 as the end effector 40 is removed.


While using a single use loading unit 150, the user may remove the single use loading unit 150 or portions thereof from the surgical stapling apparatus 10 and subsequently dispose the single use loading unit 150 in its entirety or portions thereof. If further application is necessary, a user may replace the spent or fired single use loading unit 150 by mounting a new single use loading unit 150 onto the surgical stapling apparatus 10. The user may then repeat a fastening process.


In general, linear staplers, including open and endoscopic devices, can have two elongated members which are respectively used to capture or clamp tissue. Typically, one of the members carries a staple cartridge which houses a plurality of staples arranged in at least two lateral rows while the other member has an anvil that defines a surface for forming the staple legs as the staples are driven from the staple cartridge. Generally, the stapling operation is effected by cam bars that travel longitudinally through the staple cartridge, with the cam bars acting upon staple pushers to sequentially eject the staples from the staple cartridge. A knife can travel between the staple rows to longitudinally cut and/or open the stapled tissue between the rows of staples. Such an instrument is disclosed, for example, in U.S. Pat. No. 6,202,914, the entire content of which is incorporated herein by reference.


Some staplers apply a double row of staples on each side of the incision. This is accomplished by providing a disposable loading unit in which a cam member moves through an elongate guide path between two sets of staggered staple carrying grooves. Staple drive members are located within the grooves and are positioned in such a manner so as to be contacted by the longitudinally moving cam member to effect ejection of the staples from the staple cartridge of the disposable loading unit. An example of such a stapler is disclosed in U.S. Pat. No. 5,065,929, the entire content of which is incorporated herein by reference.


Some of the instruments described above were designed for use in conventional surgical procedures wherein surgeons have direct manual access to the operative site. However, in endoscopic or laparoscopic procedures, surgery is performed through a small incision or through a narrow cannula inserted through small entrance wounds in the skin. In order to address the specific needs of endoscopic and/or laparoscopic surgical procedures, endoscopic surgical stapling devices have been developed and are disclosed in, for example, U.S. Pat. No. 5,865,361, the entire content of which is incorporated herein by reference.


It is further contemplated that the surgical buttress may be configured for use with a circular stapling apparatus, or a semi-circular stapling apparatus. The surgical buttress includes a resilient skirt at the circumferential periphery of the stapling apparatus which is resiliently pulled over the anvil and/or tubular body portion of the stapling apparatus. The surgical buttress is retained on the stapling apparatus through the resilience of the resilient skirt and/or friction. The surgical buttress can be released from the stapling apparatus utilizing perforations around the body portion of the surgical buttress and/or through the operation of the knife of the stapling apparatus.


Surgical stapling devices for applying an annular array of staples or fasteners to tissue are well known in the art. These devices typically include means for controlling the spacing between the fastener assembly and the anvil member at the distal end of the apparatus. The fastener assembly generally includes a circular array of fasteners such as staples, anastomosis rings, and the like, while the anvil member includes means for completing the circular anastomosis, typically an array of bucket members that clinch the staples after the staples are expelled from the fastener assembly, or may include a locking member for the anastomosis ring. The means for advancing or retracting the anvil in relation to the fastener assembly typically includes a wing-nut type mechanism at a proximal end of the instrument or a rotatable knob member, both of which engage a worm gear arrangement in the handle mechanism to slowly, and methodically advance the anvil member towards the fastener assembly.


Surgical stapling devices for applying an annular array of staples, as well as devices for completing a surgical anastomosis through the provision of anastomosis rings, are well known in gastric and esophageal surgery, for example in classic or modified gastric reconstruction typically formed in an end to end, end to side, or side to side manner. In use, the instrument is positioned within the lumen of an organ such as the stomach, esophagus, or intestine in order to perform the anastomosis. The tissue is positioned between the anvil and the fastener assembly and is typically tied off, for example, by a purse string suture. Thereafter, the anvil member is advanced towards the fastener assembly by rotation of the rotatable knob or wing nut assembly at the proximal end of the instrument to hold the tissue between the anvil member and the fastener assembly. As the staples or the fasteners are expelled from the fastener assembly, a circular knife typically follows the application of the staples to excise unwanted tissue at the anastomosis site. The instrument is then removed from the lumen of the organ.


Closing mechanisms associated with these types of stapling or fastening devices typically utilize a complex worm gear arrangement or screw bearing member to open and close the spacing between the anvil and the fastener assembly. These devices generally provide a rotatable knob or wing-like assembly remote from the fastener or staple pusher member, and the worm gear mechanism is provided to translate the rotational movement of the knob into longitudinal movement of the anvil member towards the staple pusher member. In order to effect this movement, the surgeon must grasp the device with one hand while rotating the knob or wing-like assembly with the other hand. Such instruments are disclosed, for example, in U.S. Pat. No. 5,915,616, the entire content of which is incorporated herein by reference.


In another example, it is contemplated that the surgical buttress is configured for use with surgical fastening devices for simultaneously applying an array of surgical fasteners, e.g., staples or other types of fasteners that are known in the art. Such devices are used for joining body tissue such as, for example, intestinal and gastric walls with spaced parallel rows of longitudinally aligned fasteners. These surgical fastening devices reduce the time of wound closure in a surgical procedure.


Typically, these devices include a fastener holder disposed on one side of the tissue to be joined, and an anvil assembly parallel to the fastener holder on the other side of the tissue to be fastened. The fastener holder is moved linearly towards the anvil assembly so that the tissue is clamped between them. The fasteners are driven from the fastener holder so that the ends of the fasteners pass through the tissue and form finished fasteners as they make contact with the anvil assembly, thereby producing an array of finished fasteners in the tissue. The fasteners can be one or two piece and made of metal, non-absorbable polymers, or bioabsorbable polymers such as polyglycolide, polylactide, and copolymers thereof.


U.S. Pat. No. 5,137,198 to Nobis et al. (“Nobis”) discloses a fastener applying device including a cartridge that is advanced towards an anvil assembly by an advancing mechanism. The advancing mechanism includes a first actuator member for advancing the cartridge towards the anvil assembly at an accelerated rate and a second actuator member spaced from the first actuator member for incrementally advancing the cartridge towards the anvil assembly.


Typically, these fastener applying devices include a pusher bar that is advanced over a predetermined stroke to interact with and eject the fasteners from the cartridge. At least one driver is positioned within the cartridge between the distal end of the pusher bar and the fasteners such that the pusher bar advances the drivers into engagement with the fasteners. The length of the drivers may be varied to facilitate ejection of different size fasteners from a fastener applying device having a fixed pusher bar stroke. Such instruments are disclosed, for example, in U.S. Pat. No. 5,964,394, the entire content of which is incorporated herein by reference.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Thus the scope of the embodiments should be determined by the appended claims and their legal equivalents, rather than by the examples given.

Claims
  • 1. An end effector for a surgical stapling apparatus, the end effector comprising: first and second jaws, each of the first and second jaws having a working surface and an outer side surface extending transverse to the working surface, the outer side surface including a first side and a second side with each extending longitudinally along a length of the working surface;a plurality of fasteners supported in the first jaw and formable against the working surface of the second jaw; anda surgical buttress having a body portion including a distal band located at a distal end of the body portion, the body portion defining a first side edge, a second side edge, a first resilient side skirt and a second resilient side skirt, the first and second resilient side skirts extending to distal end faces that couple the first and second resilient side skirts to a proximal surface of the distal band, the first side skirt extending transversely from the first side edge of the body portion to a first uncaptured free end, the second side skirt extending transversely from the second side edge of the body portion to a second uncaptured free end, the first and second uncaptured free ends extending proximally from the distal end faces of the first and second resilient side skirts, the first and second resilient side skirts configured to overlie the working surface of one of the first or second jaws so that the first and second uncaptured free ends of the respective first and second resilient side skirts are in sliding abutment against the outer side surface of the respective first or second jaw.
  • 2. The end effector of claim 1, wherein the distal band extends around one of the first or second jaws to retain the surgical buttress on the first or second jaw.
  • 3. The end effector of claim 2, wherein a proximal band extends from a proximal end portion of the body portion to retain the surgical buttress on a proximal portion of one of the first or second jaws.
  • 4. The end effector of claim 3, further comprising a hook feature disposed on a proximal end portion of at least one of the first or second jaws, wherein the proximal band is configured to engage the hook feature.
  • 5. The end effector of claim 3, wherein at least one of the proximal or distal bands is configured to remain attached to the end effector following a firing of the end effector.
  • 6. The end effector of claim 3, wherein the body portion includes a plurality of perforations configured to separate the body portion from at least one of the proximal or distal bands following a firing of the end effector.
  • 7. The end effector of claim 6, wherein at least some of the plurality of perforations are disposed along a perimeter of the body portion.
  • 8. The end effector of claim 1, wherein the surgical buttress is secured to the first jaw and further comprising a second surgical buttress secured to the second jaw.
  • 9. The end effector of claim 1, wherein the first and second side skirts include material which is sufficiently flexibly resilient to enable the first and second side skirts to be resiliently pulled.
  • 10. A surgical stapling apparatus, comprising: a housing;an elongate member extending from the housing; andan end effector supported on a distal end portion of the elongate member, the end effector including: first and second jaws, each of the first and second jaws having a working surface and extending to an outer side surface, the outer side surface extending transverse to the working surface of a respective one of the first and second jaws;a plurality of fasteners supported in one of the first or second jaws; anda surgical buttress having a body portion including a distal band located at a distal end of the body portion, a first resilient side skirt, and a second resilient side skirt, the body portion extending to a first side edge and a second side edge, the body portion configured to overlie the working surface of one of the first or second jaws, the first side skirt extending transversely from the first side edge of the body portion to a first uncaptured free end, the second side skirt extending transversely from the second side edge of the body portion to a second uncaptured free end, the first and second resilient side skirts extending to distal end faces that couple the first and second resilient side skirts to a proximal surface of the distal band, the first and second uncaptured free ends extending proximally from the distal end faces of the first and second resilient side skirts, the first and second resilient side skirts positioned so that the first and second uncaptured free ends of the respective resilient side skirts are in sliding abutment against the outer side surface of the respective one of the first and second jaws.
  • 11. The surgical stapling apparatus of claim 10, further comprising a proximal band extending from the body portion, wherein at least one of the proximal or distal bands is configured to retain the body portion on the respective one of the first and second jaws.
  • 12. The surgical stapling apparatus of claim 11, wherein the body portion includes a plurality of perforations configured to separate the body portion from the proximal and distal bands following a firing of the surgical stapling apparatus.
  • 13. The surgical stapling apparatus of claim 12, wherein at least some of the plurality of perforations are disposed along a perimeter of the body portion.
  • 14. The surgical stapling apparatus of claim 11, wherein the proximal band retains the body portion on a proximal end portion of one of the first or second jaws and the distal band secures the body portion on a distal end portion of one of the first or second jaws.
  • 15. The surgical stapling apparatus of claim 14, wherein at least one of the proximal or distal bands is configured to remain attached to the end effector following a firing of the surgical stapling apparatus.
  • 16. The surgical stapling apparatus of claim 14, wherein the end effector includes a hook feature, wherein the proximal band is configured to engage the hook feature.
  • 17. The surgical stapling apparatus of claim 10, wherein the surgical buttress is secured to the first jaw and further comprising a second surgical buttress secured to the second jaw.
  • 18. The end effector of claim 10, wherein the first and second side skirts include material which is sufficiently flexibly resilient to enable the first and second side skirts to be resiliently pulled.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/151,340, filed Jun. 2, 2011, now U.S. Pat. No. 8,668,129, which is a continuation of U.S. patent application Ser. No. 12/620,044, filed Nov. 17, 2009, which is a continuation and claims the benefit of and priority to U.S. patent application Ser. No. 12/335,762, filed Dec. 16, 2008, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (679)
Number Name Date Kind
3054406 Usher Sep 1962 A
3079606 Bobrov et al. Mar 1963 A
3124136 Usher Mar 1964 A
3364200 Ashton et al. Jan 1968 A
3490675 Green et al. Jan 1970 A
3499591 Green Mar 1970 A
3797494 Zaffaroni Mar 1974 A
3939068 Wendt et al. Feb 1976 A
3948666 Kitanishi et al. Apr 1976 A
4064062 Yurko Dec 1977 A
4166800 Fong Sep 1979 A
4282236 Broom Aug 1981 A
4347847 Usher Sep 1982 A
4354628 Green Oct 1982 A
4416698 McCorsley, III Nov 1983 A
4429695 Green Feb 1984 A
4452245 Usher Jun 1984 A
4605730 Shalaby et al. Aug 1986 A
4626253 Broadnax, Jr. Dec 1986 A
4655221 Devereux Apr 1987 A
4834090 Moore May 1989 A
4838884 Dumican et al. Jun 1989 A
4927640 Dahlinder et al. May 1990 A
4930674 Barak Jun 1990 A
5002551 Linsky et al. Mar 1991 A
5014899 Presty et al. May 1991 A
5040715 Green et al. Aug 1991 A
5057334 Vail Oct 1991 A
5065929 Schulze et al. Nov 1991 A
5102983 Kennedy Apr 1992 A
5112496 Dhawan et al. May 1992 A
5137198 Nobis et al. Aug 1992 A
5162430 Rhee et al. Nov 1992 A
5205459 Brinkerhoff et al. Apr 1993 A
5263629 Trumbull et al. Nov 1993 A
5281197 Arias et al. Jan 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5314471 Brauker et al. May 1994 A
5318221 Green et al. Jun 1994 A
5324775 Rhee et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5344454 Clarke et al. Sep 1994 A
5392979 Green et al. Feb 1995 A
5397324 Carroll et al. Mar 1995 A
5405072 Zlock et al. Apr 1995 A
5410016 Hubbell et al. Apr 1995 A
5425745 Green et al. Jun 1995 A
5441193 Gravener Aug 1995 A
5441507 Wilk Aug 1995 A
5443198 Viola et al. Aug 1995 A
5468253 Bezwada et al. Nov 1995 A
5484913 Stilwell et al. Jan 1996 A
5503638 Cooper Apr 1996 A
5514379 Weissleder et al. May 1996 A
5542594 McKean Aug 1996 A
5543441 Rhee et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5550187 Rhee et al. Aug 1996 A
5575803 Cooper et al. Nov 1996 A
5645915 Kranzler et al. Jul 1997 A
5653756 Clarke et al. Aug 1997 A
5683809 Freeman et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5702409 Rayburn et al. Dec 1997 A
5752965 Francis May 1998 A
5752974 Rhee et al. May 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5769892 Kingwell Jun 1998 A
5782396 Mastri et al. Jul 1998 A
5799857 Robertson et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814057 Oi Sep 1998 A
5819350 Wang Oct 1998 A
5833695 Yoon Nov 1998 A
5843096 Igaki et al. Dec 1998 A
5865361 Milliman et al. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5874500 Rhee et al. Feb 1999 A
5895412 Tucker Apr 1999 A
5895415 Chow et al. Apr 1999 A
5902312 Frater et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5931847 Bittner et al. Aug 1999 A
5957363 Heck Sep 1999 A
5964394 Robertson Oct 1999 A
5964774 McKean et al. Oct 1999 A
5997895 Narotam et al. Dec 1999 A
6019791 Wood Feb 2000 A
6030392 Dakov Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6080169 Turtel Jun 2000 A
6093557 Pui et al. Jul 2000 A
6099551 Gabbay Aug 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6152943 Sawhney Nov 2000 A
6155265 Hammerslag Dec 2000 A
6156677 Brown Reed et al. Dec 2000 A
6165201 Sawhney et al. Dec 2000 A
6179862 Sawhney Jan 2001 B1
6210439 Firmin et al. Apr 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6241139 Milliman et al. Jun 2001 B1
6258107 Balazs et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6270530 Eldridge et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6299631 Shalaby Oct 2001 B1
6309569 Farrar et al. Oct 2001 B1
6312457 DiMatteo et al. Nov 2001 B1
6312474 Francis et al. Nov 2001 B1
6325810 Hamilton Dec 2001 B1
6399362 Pui et al. Jun 2002 B1
6436030 Rehil Aug 2002 B2
6454780 Wallace Sep 2002 B1
6461368 Fogarty et al. Oct 2002 B2
6500777 Wiseman et al. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6514283 DiMatteo et al. Feb 2003 B2
6514534 Sawhney Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6551356 Rousseau Apr 2003 B2
6566406 Pathak et al. May 2003 B1
6568398 Cohen May 2003 B2
6590095 Schleicher et al. Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6605294 Sawhney Aug 2003 B2
6610006 Amid et al. Aug 2003 B1
6627749 Kumar Sep 2003 B1
6638285 Gabbay Oct 2003 B2
6652594 Francis et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6656200 Li et al. Dec 2003 B2
6669735 Pelissier Dec 2003 B1
6673093 Sawhney Jan 2004 B1
6677258 Carroll et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6702828 Whayne Mar 2004 B2
6703047 Sawhney et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6723114 Shalaby Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6746458 Cloud Jun 2004 B1
6746869 Pui et al. Jun 2004 B2
6764720 Pui et al. Jul 2004 B2
6773458 Brauker et al. Aug 2004 B1
6818018 Sawhney Nov 2004 B1
6896684 Monassevitch et al. May 2005 B2
6927315 Heinecke et al. Aug 2005 B1
6939358 Palacios et al. Sep 2005 B2
6946196 Foss Sep 2005 B2
6953139 Milliman et al. Oct 2005 B2
6959851 Heinrich Nov 2005 B2
7009034 Pathak et al. Mar 2006 B2
7025772 Gellman et al. Apr 2006 B2
7060087 DiMatteo et al. Jun 2006 B2
7087065 Ulmsten et al. Aug 2006 B2
7108701 Evens et al. Sep 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7147138 Shelton, IV Dec 2006 B2
7160299 Baily Jan 2007 B2
7179268 Roy et al. Feb 2007 B2
7210810 Iversen et al. May 2007 B1
7232449 Sharkawy et al. Jun 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7247338 Pui et al. Jul 2007 B2
7279322 Pui et al. Oct 2007 B2
7307031 Carroll et al. Dec 2007 B2
7311720 Mueller et al. Dec 2007 B2
7347850 Sawhney Mar 2008 B2
7377928 Zubik et al. May 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7498063 Pui et al. Mar 2009 B2
7547312 Bauman et al. Jun 2009 B2
7559937 de la Torre Jul 2009 B2
7571845 Viola Aug 2009 B2
7592418 Pathak et al. Sep 2009 B2
7594921 Browning Sep 2009 B2
7595392 Kumar et al. Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7611494 Campbell et al. Nov 2009 B2
7635073 Heinrich Dec 2009 B2
7649089 Kumar et al. Jan 2010 B2
7662801 Kumar et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7666198 Suyker et al. Feb 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7717313 Criscuolo et al. May 2010 B2
7722642 Williamson, IV et al. May 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793813 Bettuchi Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7824420 Eldridge et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7892247 Conston et al. Feb 2011 B2
7909224 Prommersberger Mar 2011 B2
7909837 Crews et al. Mar 2011 B2
7938307 Bettuchi May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951166 Orban, III et al. May 2011 B2
7951248 Fallis et al. May 2011 B1
7967179 Olson et al. Jun 2011 B2
7988027 Olson et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028883 Stopek Oct 2011 B2
8033483 Fortier et al. Oct 2011 B2
8033983 Chu et al. Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8062673 Figuly et al. Nov 2011 B2
8083119 Prommersberger Dec 2011 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8133336 Kettlewell et al. Mar 2012 B2
8133559 Lee et al. Mar 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8152777 Campbell et al. Apr 2012 B2
8157149 Olson et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8167895 D'Agostino et al. May 2012 B2
8178746 Hildeberg et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8210453 Hull et al. Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8245901 Stopek Aug 2012 B2
8252339 Figuly et al. Aug 2012 B2
8252921 Vignon et al. Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8276800 Bettuchi Oct 2012 B2
8286849 Bettuchi Oct 2012 B2
8308042 Aranyi Nov 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8348126 Olson et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8367089 Wan et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8408440 Olson et al. Apr 2013 B2
8408480 Hull et al. Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424742 Bettuchi Apr 2013 B2
8453652 Stopek Jun 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453909 Olson et al. Jun 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8470360 McKay Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8518440 Blaskovich et al. Aug 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8579990 Priewe Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8616430 (Prommersberger) Stopek et al. Dec 2013 B2
8617132 Golzarian et al. Dec 2013 B2
8631989 Aranyi et al. Jan 2014 B2
8646674 Schulte et al. Feb 2014 B2
8668129 Olson Mar 2014 B2
8678263 Viola Mar 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8721703 Fowler May 2014 B2
8757466 Olson et al. Jun 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8814888 Sgro Aug 2014 B2
8820606 Hodgkinson Sep 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8870050 Hodgkinson Oct 2014 B2
8920443 Hiles et al. Dec 2014 B2
8920444 Hiles et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8967448 Carter et al. Mar 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010609 Carter et al. Apr 2015 B2
9010610 Hodgkinson Apr 2015 B2
9010612 Stevenson et al. Apr 2015 B2
9016543 (Prommersberger) Stopek et al. Apr 2015 B2
9016544 Hodgkinson et al. Apr 2015 B2
9027817 Milliman et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9084602 Gleiman Jul 2015 B2
9107665 Hodgkinson et al. Aug 2015 B2
9107667 Hodgkinson Aug 2015 B2
9113871 Milliman et al. Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113885 Hodgkinson et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9161753 Prior Oct 2015 B2
9161757 Bettuchi Oct 2015 B2
9186140 Hiles et al. Nov 2015 B2
9186144 Stevenson et al. Nov 2015 B2
9192378 Aranyi et al. Nov 2015 B2
9192379 Aranyi et al. Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192383 Milliman Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9198660 Hodgkinson Dec 2015 B2
9198663 Marczyk et al. Dec 2015 B1
9204881 Penna Dec 2015 B2
9220504 Viola et al. Dec 2015 B2
9226754 D'Agostino et al. Jan 2016 B2
9237892 Hodgkinson Jan 2016 B2
9237893 Carter et al. Jan 2016 B2
9277922 Carter et al. Mar 2016 B2
9295466 Hodgkinson et al. Mar 2016 B2
9326773 Casasanta, Jr. et al. May 2016 B2
9328111 Zhou et al. May 2016 B2
9345479 (Tarinelli) Racenet et al. May 2016 B2
9351729 Orban, III et al. May 2016 B2
9351731 Carter et al. May 2016 B2
9351732 Hodgkinson May 2016 B2
9358005 Shelton, IV et al. Jun 2016 B2
9364229 D'Agostino et al. Jun 2016 B2
9364234 (Prommersberger) Stopek et al. Jun 2016 B2
9402627 Stevenson et al. Aug 2016 B2
9414839 Penna Aug 2016 B2
9433412 Bettuchi et al. Sep 2016 B2
9433413 Stopek Sep 2016 B2
9433420 Hodgkinson Sep 2016 B2
9445812 Olson et al. Sep 2016 B2
9445817 Bettuchi Sep 2016 B2
9486215 Olson et al. Nov 2016 B2
9504470 Milliman Nov 2016 B2
9572576 Hodgkinson et al. Feb 2017 B2
9597077 Hodgkinson Mar 2017 B2
9610080 Whitfield et al. Apr 2017 B2
9622745 Ingmanson et al. Apr 2017 B2
9629626 Soltz et al. Apr 2017 B2
9655620 Prescott et al. May 2017 B2
9675351 Hodgkinson et al. Jun 2017 B2
9681936 Hodgkinson et al. Jun 2017 B2
9693772 Ingmanson et al. Jul 2017 B2
9775617 Carter et al. Oct 2017 B2
9775618 Bettuchi et al. Oct 2017 B2
9782173 Mozdzierz Oct 2017 B2
9844378 Casasanta et al. Dec 2017 B2
9931116 Racenet et al. Apr 2018 B2
10022125 (Prommersberger) Stopek et al. Jul 2018 B2
10098639 Hodgkinson Oct 2018 B2
10111659 Racenet et al. Oct 2018 B2
10154840 Viola et al. Dec 2018 B2
20020016626 DiMatteo et al. Feb 2002 A1
20020019187 Carroll et al. Feb 2002 A1
20020028243 Masters Mar 2002 A1
20020052622 Rousseau May 2002 A1
20020086990 Kumar et al. Jul 2002 A1
20020091397 Chen Jul 2002 A1
20020133236 Rousseau Sep 2002 A1
20020138152 Francis et al. Sep 2002 A1
20020151911 Gabbay Oct 2002 A1
20020165559 Grant et al. Nov 2002 A1
20020165562 Grant et al. Nov 2002 A1
20020165563 Grant et al. Nov 2002 A1
20020177859 Monassevitch et al. Nov 2002 A1
20030065345 Weadock Apr 2003 A1
20030065346 Evens et al. Apr 2003 A1
20030078209 Schmidt Apr 2003 A1
20030083676 Wallace May 2003 A1
20030088256 Conston et al. May 2003 A1
20030105510 DiMatteo et al. Jun 2003 A1
20030114866 Ulmsten et al. Jun 2003 A1
20030120284 Palacios et al. Jun 2003 A1
20030125676 Swenson et al. Jul 2003 A1
20030167064 Whayne Sep 2003 A1
20030181927 Wallace Sep 2003 A1
20030183671 Mooradian et al. Oct 2003 A1
20030196668 Harrison et al. Oct 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20040034377 Sharkawy et al. Feb 2004 A1
20040092912 Jinno et al. May 2004 A1
20040092960 Abrams et al. May 2004 A1
20040093029 Zubik et al. May 2004 A1
20040107006 Francis et al. Jun 2004 A1
20040116945 Sharkawy et al. Jun 2004 A1
20040131418 Budde et al. Jul 2004 A1
20040142621 Carroll et al. Jul 2004 A1
20040172048 Browning Sep 2004 A1
20040209059 Foss Oct 2004 A1
20040215214 Crews et al. Oct 2004 A1
20040215219 Eldridge et al. Oct 2004 A1
20040215221 Suyker et al. Oct 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20050002981 Lahtinen et al. Jan 2005 A1
20050021026 Baily Jan 2005 A1
20050021053 Heinrich Jan 2005 A1
20050021085 Abrams et al. Jan 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050059997 Bauman Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050118435 DeLucia et al. Jun 2005 A1
20050131225 Kumar et al. Jun 2005 A1
20050143756 Jankowski Jun 2005 A1
20050149073 Arani et al. Jul 2005 A1
20050154093 Kwon et al. Jul 2005 A1
20050228446 Mooradian et al. Oct 2005 A1
20050245965 Orban, III et al. Nov 2005 A1
20050283256 Sommerich et al. Dec 2005 A1
20060004407 Hiles et al. Jan 2006 A1
20060008505 Brandon Jan 2006 A1
20060025816 Shelton Feb 2006 A1
20060085030 Bettuchi et al. Apr 2006 A1
20060085034 Bettuchi Apr 2006 A1
20060093672 Kumar et al. May 2006 A1
20060121266 Fandel et al. Jun 2006 A1
20060135992 Bettuchi et al. Jun 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060178683 Shimoji et al. Aug 2006 A1
20060190027 Downey Aug 2006 A1
20060212050 D'Agostino et al. Sep 2006 A1
20060219752 Arad et al. Oct 2006 A1
20060271104 Viola et al. Nov 2006 A1
20070026031 Bauman et al. Feb 2007 A1
20070027472 Hiles et al. Feb 2007 A1
20070034669 de la Torre et al. Feb 2007 A1
20070049953 Shimoji et al. Mar 2007 A2
20070054880 Saferstein et al. Mar 2007 A1
20070114262 Mastri et al. May 2007 A1
20070123839 Rousseau et al. May 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070203509 Bettuchi Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070213522 Harris et al. Sep 2007 A1
20070243227 Gertner Oct 2007 A1
20070246505 Pace-Floridia Oct 2007 A1
20080009811 Cantor Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080110959 Orban et al. May 2008 A1
20080125812 Zubik et al. May 2008 A1
20080140115 Stopek Jun 2008 A1
20080161831 Bauman et al. Jul 2008 A1
20080161832 Bauman et al. Jul 2008 A1
20080164440 Maase et al. Jul 2008 A1
20080169327 Shelton et al. Jul 2008 A1
20080169328 Shelton Jul 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080169330 Shelton et al. Jul 2008 A1
20080169331 Shelton et al. Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080200949 Hiles et al. Aug 2008 A1
20080216855 Nasca Sep 2008 A1
20080220047 Sawhney et al. Sep 2008 A1
20080230583 Heinrich Sep 2008 A1
20080290134 Bettuchi Nov 2008 A1
20080308608 Prommersberger Dec 2008 A1
20080314960 Marczyk Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090001123 Morgan et al. Jan 2009 A1
20090001124 Hess et al. Jan 2009 A1
20090001125 Hess et al. Jan 2009 A1
20090001126 Hess et al. Jan 2009 A1
20090001128 Weisenburgh, II et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090005808 Hess et al. Jan 2009 A1
20090030452 Bauman et al. Jan 2009 A1
20090031842 Kawai et al. Feb 2009 A1
20090043334 Bauman et al. Feb 2009 A1
20090076510 Bell et al. Mar 2009 A1
20090076528 Sgro Mar 2009 A1
20090078739 Viola Mar 2009 A1
20090095791 Eskaros et al. Apr 2009 A1
20090095792 Bettuchi Apr 2009 A1
20090120994 Murray et al. May 2009 A1
20090134200 Tarinelli et al. May 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090206143 Huitema et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090277944 Dalessandro et al. Nov 2009 A9
20090277947 Viola Nov 2009 A1
20090287230 D'Agostino et al. Nov 2009 A1
20100012704 Tarinelli Racenet et al. Jan 2010 A1
20100016855 Ramstein et al. Jan 2010 A1
20100016888 Calabrese et al. Jan 2010 A1
20100065606 Stopek Mar 2010 A1
20100065607 Orban, III et al. Mar 2010 A1
20100072254 Aranyi et al. Mar 2010 A1
20100087840 Ebersole et al. Apr 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100174253 Cline et al. Jul 2010 A1
20100203151 Hiraoka Aug 2010 A1
20100243707 Olson et al. Sep 2010 A1
20100243708 Aranyi et al. Sep 2010 A1
20100243711 Olson et al. Sep 2010 A1
20100249622 Olson Sep 2010 A1
20100249805 Olson et al. Sep 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100282815 Bettuchi et al. Nov 2010 A1
20100331859 Omori Dec 2010 A1
20100331880 Stopek Dec 2010 A1
20110024476 Bettuchi et al. Feb 2011 A1
20110024481 Bettuchi et al. Feb 2011 A1
20110034910 Ross et al. Feb 2011 A1
20110036894 Bettuchi Feb 2011 A1
20110042442 Viola et al. Feb 2011 A1
20110046650 Bettuchi Feb 2011 A1
20110057016 Bettuchi Mar 2011 A1
20110087279 Shah et al. Apr 2011 A1
20110089220 Ingmanson et al. Apr 2011 A1
20110089375 Chan et al. Apr 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110166673 Patel et al. Jul 2011 A1
20110215132 Aranyi et al. Sep 2011 A1
20110278346 Hull et al. Nov 2011 A1
20110278347 Olson et al. Nov 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20120074199 Olson et al. Mar 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120083723 Vitaris et al. Apr 2012 A1
20120145767 Shah et al. Jun 2012 A1
20120187179 Gleiman Jul 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120241491 Aldridge et al. Sep 2012 A1
20120241499 Baxter, III et al. Sep 2012 A1
20120253298 Henderson et al. Oct 2012 A1
20120273547 Hodgkinson et al. Nov 2012 A1
20130037596 Bear et al. Feb 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105553 (Tarinelli) Racenet et al. May 2013 A1
20130112732 Aranyi et al. May 2013 A1
20130112733 Aranyi et al. May 2013 A1
20130146641 Shelton, IV et al. Jun 2013 A1
20130153635 Hodgkinson Jun 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153639 Hodgkinson et al. Jun 2013 A1
20130153640 Hodgkinson Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130161374 Swayze et al. Jun 2013 A1
20130193186 (Tarinelli) Racenet et al. Aug 2013 A1
20130193192 Casasanta, Jr. et al. Aug 2013 A1
20130209659 Racenet et al. Aug 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130240601 Bettuchi et al. Sep 2013 A1
20130240602 Stopek Sep 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130277411 Hodgkinson et al. Oct 2013 A1
20130306707 Viola et al. Nov 2013 A1
20130310873 Stopek (nee Prommersberger) et al. Nov 2013 A1
20130327807 Olson et al. Dec 2013 A1
20140012317 Orban et al. Jan 2014 A1
20140021242 Hodgkinson et al. Jan 2014 A1
20140027490 Marczyk et al. Jan 2014 A1
20140034704 Ingmanson et al. Feb 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140061280 Ingmanson et al. Mar 2014 A1
20140097224 Prior Apr 2014 A1
20140131418 Kostrzewski May 2014 A1
20140131419 Bettuchi May 2014 A1
20140138423 Whitfield et al. May 2014 A1
20140151431 Hodgkinson et al. Jun 2014 A1
20140155916 Hodgkinson et al. Jun 2014 A1
20140158742 Stopek (nee Prommersberger) et al. Jun 2014 A1
20140166721 Stevenson et al. Jun 2014 A1
20140197224 Penna Jul 2014 A1
20140203061 Hodgkinson Jul 2014 A1
20140217147 Milliman Aug 2014 A1
20140217148 Penna Aug 2014 A1
20140224686 Aronhalt et al. Aug 2014 A1
20140239046 Milliman Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20140252062 Mozdzierz Sep 2014 A1
20150001276 Hodgkinson et al. Jan 2015 A1
20150041347 Hodgkinson Feb 2015 A1
20150097018 Hodgkinson Apr 2015 A1
20150115015 Prescott et al. Apr 2015 A1
20150122872 Olson et al. May 2015 A1
20150133995 Shelton, IV et al. May 2015 A1
20150164503 Stevenson et al. Jun 2015 A1
20150164506 Carter et al. Jun 2015 A1
20150164507 Carter et al. Jun 2015 A1
20150196297 (Prommersberger) Stopek et al. Jul 2015 A1
20150209033 Hodgkinson Jul 2015 A1
20150209045 Hodgkinson et al. Jul 2015 A1
20150209048 Carter et al. Jul 2015 A1
20150231409 Racenet et al. Aug 2015 A1
20150305743 Casasanta et al. Oct 2015 A1
20150327864 Hodgkinson et al. Nov 2015 A1
20160022268 Prior Jan 2016 A1
20160045200 Milliman Feb 2016 A1
20160058451 (Tarinelli) Racenet et al. Mar 2016 A1
20160100834 Viola et al. Apr 2016 A1
20160106430 Carter et al. Apr 2016 A1
20160113647 Hodgkinson Apr 2016 A1
20160128694 Baxter, III et al. May 2016 A1
20160157857 Hodgkinson et al. Jun 2016 A1
20160174988 D'Agostino et al. Jun 2016 A1
20160206315 Olson Jul 2016 A1
20160220257 Casasanta et al. Aug 2016 A1
20160249923 Hodgkinson et al. Sep 2016 A1
20160256166 (Prommersberger) Stopek et al. Sep 2016 A1
20160270793 Carter et al. Sep 2016 A1
20160310143 Bettuchi Oct 2016 A1
20160338704 Penna Nov 2016 A1
20160367252 Olson et al. Dec 2016 A1
20160367253 Hodgkinson Dec 2016 A1
20160367257 Stevenson et al. Dec 2016 A1
20170042540 Olson et al. Feb 2017 A1
20170049452 Milliman Feb 2017 A1
20170119390 Schellin et al. May 2017 A1
20170150967 Hodgkinson et al. Jun 2017 A1
20170172575 Hodgkinson Jun 2017 A1
20170231629 Stopek et al. Aug 2017 A1
20170238931 Prescott et al. Aug 2017 A1
20170281328 Hodgkinson et al. Oct 2017 A1
20170296188 Ingmanson et al. Oct 2017 A1
20170354415 Casasanta, Jr. et al. Dec 2017 A1
20180125491 Aranyi May 2018 A1
20180140301 Milliman May 2018 A1
20180168654 Hodgkinson et al. Jun 2018 A1
20180214147 Merchant et al. Aug 2018 A1
20180229054 Racenet et al. Aug 2018 A1
20180250000 Hodgkinson et al. Sep 2018 A1
20180256164 Aranyi Sep 2018 A1
20180296214 Hodgkinson et al. Oct 2018 A1
20180310937 (Prommersberger) Stopek et al. Nov 2018 A1
20190021734 Hodgkinson Jan 2019 A1
20190059878 (Tarinelli) Racenet et al. Feb 2019 A1
20190083087 Viola et al. Mar 2019 A1
Foreign Referenced Citations (51)
Number Date Country
2282761 Sep 1998 CA
1602563 Mar 1950 DE
19924311 Nov 2000 DE
0 327 022 Aug 1989 EP
0 594 148 Apr 1994 EP
0 667 119 Aug 1995 EP
1 064 883 Jan 2001 EP
1 256 317 Nov 2002 EP
1 520 525 Apr 2005 EP
1621141 Feb 2006 EP
1 702 570 Sep 2006 EP
1 759 640 Mar 2007 EP
1 815 804 Aug 2007 EP
1 825 820 Aug 2007 EP
1 929 958 Jun 2008 EP
1 994 890 Nov 2008 EP
2 005 894 Dec 2008 EP
2 005 895 Dec 2008 EP
2 008 595 Dec 2008 EP
2 090 231 Aug 2009 EP
2 090 244 Aug 2009 EP
2 198 787 Jun 2010 EP
2 236 098 Oct 2010 EP
2 311 386 Apr 2011 EP
2491867 Aug 2012 EP
07-124166 May 1995 JP
2000-166933 Jun 2000 JP
2002-202213 Jul 2002 JP
2007-124166 May 2007 JP
9005489 May 1990 WO
9516221 Jun 1995 WO
9622055 Jul 1996 WO
9701989 Jan 1997 WO
9713463 Apr 1997 WO
9817180 Apr 1998 WO
9838923 Sep 1998 WO
9902090 Jan 1999 WO
9945849 Sep 1999 WO
03082126 Oct 2003 WO
03088845 Oct 2003 WO
03094743 Nov 2003 WO
03105698 Dec 2003 WO
2006023578 Mar 2006 WO
2006044490 Apr 2006 WO
2006083748 Aug 2006 WO
2007121579 Nov 2007 WO
2008057281 May 2008 WO
2008109125 Sep 2008 WO
2010075298 Jul 2010 WO
2011143183 Nov 2011 WO
2012044848 Apr 2012 WO
Non-Patent Literature Citations (179)
Entry
Chinese Notification of Reexamination corresponding to counterpart Int'l Appln. No. CN 201010517292.8 dated Jun. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 14 15 2060.1 dated Aug. 14, 2015.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-216989 dated Sep. 11, 2015.
Canadian First Office Action corresponding to counterpart Int'l Appln. No. CA 2,686,105 dated Sep. 17, 2015.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-040188 dated Oct. 21, 2015.
European Communication corresponding to counterpart Int'l Appln. No. EP 13 17 6895.4 dated Nov. 5, 2015.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210544552 dated Nov. 23, 2015.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210545228 dated Nov. 30, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 0491.1 dated Dec. 9, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 3819.0 dated Dec. 11, 2015.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,697,819 dated Jan. 6, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,696,419 dated Jan. 14, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 19 8776.2 dated Jan. 19, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 17 4146.9 dated Jan. 20, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201310353628.5 dated Jan. 25, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 6912.5 dated Feb. 1, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-098903 dated Feb. 22, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 8753.1 dated Feb. 24, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410449019.4 dated Mar. 30, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 0232.3 dated Apr. 12, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 11 18 3256.4 dated Apr. 20, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244169 dated May 10, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 10 25 0715.9 dated May 12, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appin. No. CN 201410778512.0 dated May 13, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012227358 dated May 16, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-040188 dated May 17, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244380 dated May 20, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2014227480 dated May 21, 2016.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012254977 dated May 30, 2016.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 3647.9 dated Jun. 3, 2016.
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and dated Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and dated Mar. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and dated Apr. 9, 2014; (9 pp).
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and dated Apr. 15, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Jun. 16, 2014; (5 pp).
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and dated Jun. 18, 2014; (9 pp).
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and dated Jul. 29, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and Aug. 29, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and dated Sep. 17, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and dated Sep. 18, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Oct. 13, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and dated Oct. 20, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and dated Oct. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and dated Nov. 10, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and dated Mar. 30, 2015; (6 pp).
European Office Action corresponding to counterpart Int'l Appln No. EP 12 198 776.2 dated Apr. 7, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 156 297.7 dated Apr. 10, 2015.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2011250822 dated May 18, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 12 186 175.1 dated Jun. 1, 2015.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201010517292.8 dated Jun. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 17 48145 dated Jun. 9, 2015.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2014200584 dated Jun. 15, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 180 881.8 dated Jun. 19, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 14 157 195.0 dated Jul. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 12 19 6902.6 dated Aug. 6, 2015.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210129787.2 dated Aug. 24, 2015.
European Office Action corresponding to counterpart European Appln. No. EP 15 17 4146.9 dated May 15, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-154561 dated May 23, 2017.
European Office Action corresponding to counterpart European Appln. No. EP 12 19 4784.0 dated May 29, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-169083 dated May 31, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013213767 dated Jun. 29, 2017.
Australian Examination Report No. 2 corresponding to counterpart Australian Appln. No. AU 2012261752 dated Jul. 7, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013266989 dated Jul. 10, 2017.
Extended European Search Report corresponding to counterpart European Appln. No. EP 14 15 3609.4 dated Jul. 14, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013234418 dated Jul. 14, 2017.
Extended European Search Report corresponding to counterpart European Appln. No. EP 14 15 3610.2 dated Jul. 17, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2014200109 dated Jul. 20, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2014200074 dated Jul. 20, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-250857 dated Aug. 17, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-229471 dated Aug. 17, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2014200793 dated Sep. 2, 2017.
Extended European Search Report corresponding to counterpart European Appln. No. EP 17 17 8528.0 dated Oct. 13, 2017.
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013234420 dated Oct. 24, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-175379 dated Oct. 20, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-147701 dated Oct. 27, 2017.
Extended European Search Report corresponding to counterpart European Appln. No. EP 17 17 5656.2 dated Nov. 7, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2014-009738 dated Nov. 14, 2017.
European Office Action corresponding to counterpart European Appln. No. EP 13 17 3986.4 dated Nov. 29, 2017.
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2017-075975 dated Dec. 4, 2017.
European Office Action corresponding to counterpart European Appln. No. EP 13 19 7958.5 dated Dec. 11, 2017.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2013107068710 dated Dec. 16, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201310646606.8 dated Dec. 23, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-000321 dated Jan. 4, 2017.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 16 6367.9 dated Jan. 16, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013206777 dated Feb. 1, 2017.
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 2013103036903 dated Feb. 23, 2017.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-175379 dated Mar. 1, 2017.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410028462.4 dated Mar. 2, 2017.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410084070 dated Mar. 13, 2017.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 19 6549.6 dated Mar. 17, 2017.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-147701 dated Mar. 21, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013206804 dated Mar. 21, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013211499 dated May 4, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2014201008 dated May 23, 2017.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 17 2681.0 dated May 13, 2016.
Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201210545228 dated Jun. 29, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-250058 dated Jun. 29, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 7997.9 dated Jun. 29, 2016.
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,712,617 dated Jun. 30, 2016.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2013103036903 dated Jun. 30, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012250278 dated Jul. 10, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244382 dated Jul. 10, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-255242 dated Jul. 26, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-268668 dated Jul. 27, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 2060.1 dated Aug. 4, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 16 5609.4 dated Aug. 5, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 15 15 2392.5 dated Aug. 8, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-003624 dated Aug. 25, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012261752 dated Sep. 6, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-252703 dated Sep. 26, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 19 8776.2 dated Sep. 12, 2016.
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-000321 dated Sep. 13, 2016.
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 201310353628.5 dated Sep. 26, 2016.
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 15 2541.4 dated Sep. 27, 2016.
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012268923 dated Sep. 28, 2016.
Chinese First Office Action corresponding to Patent Application CN 201410588811.8 dated Dec. 5, 2017.
European Office Action corresponding to Patent Application EP 16 16 6367.9 dated Dec. 11, 2017.
Chinese First Office Action corresponding to Patent Application CN 201610279682.3 dated Jan. 10, 2018.
Japanese Office Action corresponding to Patent Application JP 2013-154561 dated Jan. 15, 2018.
Australian Examination Report No. 1 corresponding to Patent Application AU 2017225037 dated Jan. 23, 2018.
Japanese Office Action corresponding to Patent Application JP 2013-229471 dated May 1, 2018.
Canadian Office Action corresponding to Patent Application CA 2,790,743 dated May 14, 2018.
European Office Action corresponding to Patent Application EP 14 15 7195.0 dated Jun. 12, 2018.
Extended European Search Report corresponding to Patent Application EP 12196912.5 dated Feb. 1, 2016.
Chinese Second Office Action corresponding to Patent Application CN 201610279682.3 dated Aug. 8, 2018.
Chinese Second Office Action corresponding to Patent Application CN 201410588811.8 dated Aug. 27, 2018.
Extended European Search Report corresponding to Patent Application EP 18160809.2 dated Sep. 18, 2018.
Extended European Search Report corresponding to Patent Application EP 18192317.8 dated Dec. 20, 2018.
Extended European Search Report corresponding to Patent Application EP 18190154.7 dated Feb. 4, 2019.
International Search Report corresponding to European Application No. EP 06 00 4598, completed on Jun. 22, 2006; 2 pages.
International Search Report corresponding to European Application No. EP 06 01 6962.0, completed on Jan. 3, 2007 and dated Jan. 11, 2007; 10 pages.
International Search Report corresponding to International Application No. PCT/US05/36740, completed on Feb. 20, 2007 and dated Mar. 23, 2007; 8 pages.
International Search Report corresponding to International Application No. PCT/US2008/002981, completed on Jun. 9, 2008 and dated Jun. 26, 2008; 2 pages.
International Search Report corresponding to European Application No. EP 08 25 1779, completed on Jul. 14, 2008 and dated Jul. 23, 2008; 5 pages.
International Search Report corresponding to European Application No. EP 08 25 1989.3, completed on Mar. 11, 2010 and dated Mar. 24, 2010; 3 pages.
International Search Report corresponding to European Application No. EP 05 80 4382.9, completed on Oct. 5, 2010 and dated Oct. 12, 2010; 3 pages.
International Search Report corresponding to European Application No. EP 10 25 1437.9, completed on Nov. 22, 2010 and dated Dec. 16, 2010; 3 pages.
International Search Report corresponding to European Application No. EP 09 25 2897.5, completed on Feb. 7, 2011 and dated Feb. 15, 2011; 3 pages.
European Search Report for EP 09252794.4-1269 date of completion is Mar. 25, 2010 (3 pages).
International Search Report corresponding to European Application No. EP 10 25 0715.9, completed on Jun. 30, 2010 and dated Jul. 20, 2010; 3 pages.
International Search Report corresponding to European Application No. EP 10 25 0642.5, completed on Mar. 25, 2011 and dated Apr. 4, 2011; 4 pages.
International Search Report corresponding to European Application No. EP 12 15 0511.9, completed on Apr. 16, 2012 and dated Apr. 24, 2012; 7 pages.
International Search Report corresponding to European Application No. EP 12 15 2541.4, completed on Apr. 23, 2012 and dated May 3, 2012; 10 pages.
International Search Report corresponding to European Application No. EP 12 16 5609.4, completed on Jul. 5, 2012 and dated Jul. 13, 2012; 8 pages.
International Search Report corresponding to European Application No. EP 12 15 8861.0, completed on Jul. 17, 2012 and dated Jul. 24, 2012; 9 pages.
International Search Report corresponding to European Application No. EP 12 16 5878.5, completed on Jul. 24, 2012 and dated Aug. 6, 2012; 8 pages.
International Search Report corresponding to European Application No. EP 11 18 8309.6, completed on Dec. 15, 2011 and dated Jan. 12, 2012; 3 pages.
European Search Report for EP 12152229.6-1269 date of completion is Feb. 23, 2012 (4 pages).
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and dated Jul. 26, 2013; 8 pages.
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and dated May 31, 2013; 8 pages.
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and dated May 29, 2013; 7 pages.
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and dated May 27, 2013; 8 pages.
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and dated Jun. 13, 2013; 7 pages.
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and dated Aug. 28, 2013; 6 pages.
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and dated Aug. 29, 2013; 7 pages.
Extended European Search Report corresponding to EP No. 12 19 1035.0, completed Jan. 11, 2013 and dated Jan. 18, 2013; 7 pages.
Extended European Search Report corresponding to EP No. 12 18 6175.1, completed Jan. 15, 2013 and dated Jan. 23, 2013; 7 pages.
Extended European Search Report corresponding to EP No. 12 19 1114.3, completed Jan. 23, 2013 and dated Jan. 31, 2013; 10 pages.
Extended European Search Report corresponding to EP No. 12 19 2224.9, completed Mar. 14, 2013 and dated Mar. 26, 2013; 8 pages.
Extended European Search Report corresponding to EP No. 12 19 6911.7, completed Apr. 18, 2013 and dated Apr. 24, 2013; 8 pages.
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and dated May 29, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and dated May 27, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and dated May 31, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and dated Jun. 13, 2013l; (7 pp).
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and dated Aug. 28, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and dated Aug. 29, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and dated Sep. 19, 2013; 6 pages.
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and dated Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and dated Sep. 30, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and dated Oct. 24, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and dated Nov. 7, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and dated Nov. 13, 2013; (7 pp).
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and dated Nov. 14, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and dated Dec. 12, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and dated Dec. 16, 2013; (8 pp).
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and dated Dec. 20, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and dated Jan. 31, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and dated Feb. 27, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and dated Mar. 3, 2014; (7 pp).
Related Publications (1)
Number Date Country
20160206315 A1 Jul 2016 US
Continuations (3)
Number Date Country
Parent 13151340 Jun 2011 US
Child 15083737 US
Parent 12620044 Nov 2009 US
Child 13151340 US
Parent 12335762 Dec 2008 US
Child 12620044 US