This application relates to a surgical apparatus, and more particularly, to a surgical buttress for use with a surgical stapling apparatus during operation of the stapling apparatus to apply a plurality of surgical staples to body tissue.
As medical and hospital costs continue to increase, surgeons are constantly striving to develop advanced surgical techniques. Advances in the surgical field are often related to the development of operative techniques which involve less invasive surgical procedures and reduce overall patient trauma. In this manner, the length of hospital stays can be significantly reduced, and, therefore, the hospital and medical costs can be reduced as well.
Although the present disclosure includes, but is not limited to use with endoscopic surgery, endoscopic surgery is one of the truly great advances in recent years to reduce the invasiveness of surgical procedures. Generally, endoscopic surgery involves incising through body walls for example, viewing and/or operating on the ovaries, uterus, gall bladder, bowels, kidneys, appendix, etc. There are many common endoscopic surgical procedures, including arthroscopy, laparoscopy (pelviscopy), gastroentroscopy and laryngobronchoscopy, just to name a few. Typically, trocars are utilized for creating the incisions through which the endoscopic surgery is performed. Trocar tubes or cannula devices are extended into and left in place in the abdominal wall to provide access for endoscopic surgical tools. A camera or endoscope is inserted through a relatively large diameter trocar tube which is generally located at the naval incision, and permits the visual inspection and magnification of the body cavity. The surgeon can then perform diagnostic and therapeutic procedures at the surgical site with the aid of specialized instrumentation, such as, forceps, cutters, applicators, and the like which are designed to fit through additional cannulas. Thus, instead of a large incision (typically 12 inches or larger) that cuts through major muscles, patients undergoing endoscopic surgery receive more cosmetically appealing incisions, between 5 and 10 millimeters in size. Recovery is, therefore, much quicker and patients require less anesthesia than traditional surgery. In addition, because the surgical field is greatly magnified, surgeons are better able to dissect blood vessels and control blood loss. Heat and water loss are greatly reduced as a result of the smaller incisions. In order to address the specific needs of endoscopic and/or laparoscopic surgical procedures, endoscopic surgical stapling devices have been developed and are disclosed in, for example, U.S. Pat. No. 5,040,715 (Green, et al.); U.S. Pat. No. 5,307,976 (Olson, et al.); U.S. Pat. No. 5,312,023 (Green, et al.); U.S. Pat. No. 5,318,221 (Green, et al.); U.S. Pat. No. 5,326,013 (Green, et al.); and U.S. Pat. No. 5,332,142 (Robinson, et al.).
In many surgical procedures, including those involved in open and endoscopic surgery, it is often necessary to staple tissue. It is especially challenging during endoscopic surgery because of the small openings through which the stapling of tissues must be accomplished. Instruments for this purpose can include two elongated members which are respectively used to capture or clamp tissue. Surgical devices wherein tissue is first grasped or clamped between opposing jaw structure and then joined by surgical fasteners are well known in the art. Typically, one of the members carries a fastener cartridge which houses a plurality of staples arranged in at least two lateral rows while the other member has an anvil that defines a surface for forming the staple legs as the staples are driven from the staple cartridge. The fasteners are typically in the form of surgical staples but two part polymeric fasteners can also be utilized. Generally, the stapling operation is effected by cam bars or wedges that travel longitudinally through the staple cartridge, with the cam bars acting upon staple pushers to sequentially eject the staples from the staple cartridge. A knife can travel between the staple rows to longitudinally cut and/or open the stapled tissue between the rows of staples. Such instruments are disclosed, for example, in U.S. Pat. Nos. 3,079,606 and 3,490,675.
A later stapler disclosed in U.S. Pat. No. 3,499,591 applies a double row of staples on each side of the incision. This is accomplished by providing a disposable loading unit in which a cam member moves through an elongate guide path between two sets of staggered staple carrying grooves. Staple drive members are located within the grooves and are positioned in such a manner so as to be contacted by the longitudinally moving cam member to effect ejection of the staples from the staple cartridge of the disposable loading unit. U.S. Surgical, the assignee of the present application, has manufactured and marketed endoscopic stapling instruments for several years. Examples of such instruments include the Multifire ENDO GIA™ 30 and Multifire ENDO GIA™ 60 instruments. Other examples of such staplers are disclosed in U.S. Pat. Nos. 4,429,695 and 5,065,929.
In staplers of the general type described above, surgical buttress material may be used in combination with these instruments as reinforcement to staple lines to further promote proper staple formation while reducing twisting/malformation caused by any misalignment or unusual or non-uniform tissue. These instruments have provided significant clinical benefits. Nonetheless, improvements are possible, for example, by reducing the complexity of manufacture and/or application.
According to one aspect, the present disclosure relates to an end effector for a surgical stapling apparatus. The end effector includes an anvil assembly and a surgical buttress. The anvil assembly includes an anvil body and an anvil plate that are selectively connectable. The anvil plate includes a bottom surface that defines a plurality of staple forming pockets. The surgical buttress includes a buttress body and a plurality of arms extending from the body. The surgical buttress may be formed of a non-woven material and may be made from a material selected from the group comprising polyglytone 6211, glycolide, caprolactone, trimethylene carbonate, lactide and combinations thereof.
The arms of the surgical buttress may extend from side edges of the buttress body and may be integrally formed with the buttress body. Notably, the arms of the surgical buttress may be foldable over one or both of a top and a bottom surface of the buttress body. As can be appreciated, the arms are disposable between a top surface of the anvil plate and a bottom surface of the anvil body to support the buttress body against the bottom surface of the anvil plate when the anvil plate and the anvil body are connected to one another. The anvil body defines one or more channels in a bottom surface of the anvil body for the reception of one or more of the arms of the surgical buttress.
According to one aspect, a surgical stapling apparatus includes a first jaw assembly, a second jaw assembly, a plurality of fasteners, and a surgical buttress. The first jaw assembly includes an anvil body and an anvil plate. The anvil plate defines a plurality of fastener forming pockets in a bottom surface thereof. The second jaw assembly includes a fastener cartridge defining a plurality of fastener retaining slots. The plurality of fasteners is disposed within the fastener slots and configured and dimensioned to be formed by the fastener pockets of the anvil plate upon a firing of the stapling apparatus. The surgical buttress includes a buttress body and a plurality of arms extending from the buttress body. As appreciated, the surgical buttress may be formed of a non-woven material and may be made from a material selected from the group comprising polyglytone 6211, glycolide, caprolactone, trimethylene carbonate, lactide and combinations thereof.
The arms of the surgical buttress may be integrally formed with the buttress body and may extend from side surfaces of the buttress body. The arms may be foldable over one or both of a top and a bottom surface of the buttress body. The arms may be disposed between a top surface of the anvil plate and a bottom surface of the anvil body to support the buttress body against the bottom surface of the anvil plate. The anvil body of the first jaw assembly may define one or more channels in the bottom surface thereof for the reception of one or more of the arms of the surgical buttress. The one or more arms may be released from the one or more channels upon a firing of the stapling apparatus.
The surgical stapling apparatus may include a knife assembly including a knife that is movable through one or both of the first and second jaw assemblies to cut one or both of the buttress body and the arms of the surgical buttress to facilitate a release of at least the buttress body from against the bottom surface of the anvil plate.
According to yet another aspect, a method of mounting a surgical buttress to an end effector of a surgical stapling apparatus includes providing an end effector for a surgical stapling apparatus. The end effector includes a first jaw assembly and a second jaw assembly. The first jaw assembly includes an anvil body and an anvil plate. The anvil plate defines a plurality of fastener forming pockets in a bottom surface thereof. The second jaw assembly includes a cartridge defining a plurality of fastener retaining slots for retaining a plurality of fasteners that are formed by the fastener forming pockets upon a firing of the stapling apparatus. The method involves providing a surgical buttress including a buttress body and a plurality of arms extending from the body and mounting the arms of the surgical buttress between a top surface of the anvil plate and the bottom surface of the jaw so that the buttress body is disposed adjacent the bottom surface of the anvil plate.
The method may include the step of positioning the arms of the surgical buttress within channels defined in the bottom surface of the anvil body. One step may include forming the surgical buttress from a non-woven material. The method may involve forming the surgical buttress from a material selected from the group comprising polyglytone 6211, glycolide, caprolactone, trimethylene carbonate, lactide and combinations thereof.
The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:
As used herein, the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel. Particular embodiments of the present disclosure will be described herein with reference to the accompanying drawings. As shown in the drawings and as described throughout the following description, and as is traditional when referring to relative positioning on an object, the term “proximal” refers to the end of the apparatus that is closer to the clinician and the term “distal” refers to the end of the apparatus that is farther from the clinician. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
In general, linear staplers, including open and endoscopic devices, can have two elongated members which are respectively used to capture or clamp tissue. Typically, one of the members carries a staple cartridge which houses a plurality of staples arranged in at least two lateral rows while the other member has an anvil that defines a surface for forming the staple legs as the staples are driven from the staple cartridge. Generally, the stapling operation is effected by cam bars that travel longitudinally through the staple cartridge, with the cam bars acting upon staple pushers to sequentially eject the staples from the staple cartridge. A knife can travel between the staple rows to longitudinally cut and/or open the stapled tissue between the rows of staples. Such an instrument is disclosed, for example, in U.S. Pat. No. 6,202,914, the entire content of which is incorporated herein by reference.
Some staplers apply a double row of staples on each side of the incision. This is accomplished by providing a disposable loading unit in which a cam member moves through an elongate guide path between two sets of staggered staple carrying grooves. Staple drive members are located within the grooves and are positioned in such a manner so as to be contacted by the longitudinally moving cam member to effect ejection of the staples from the staple cartridge of the disposable loading unit. An example of such a stapler is disclosed in U.S. Pat. No. 5,065,929, the entire content of which is incorporated herein by reference.
Some of the instruments described above were designed for use in conventional surgical procedures wherein surgeons have direct manual access to the operative site. However, in endoscopic or laparoscopic procedures, surgery is performed through a small incision or through a narrow cannula inserted through small entrance wounds in the skin. In order to address the specific needs of endoscopic and/or laparoscopic surgical procedures, endoscopic surgical stapling devices have been developed and are disclosed in, for example, U.S. Pat. No. 5,865,361, the entire content of which is incorporated herein by reference.
Referring now to the drawings, in which like reference numerals identify identical or substantially similar parts throughout the several views,
With reference to
Referring now to
As depicted in
One or more of the arms 144 may be disposed transverse or substantially transverse (i.e., non-orthogonal) to a longitudinal axis “L” that extends through the body 142 between the proximal and distal ends of the body 142. As can be appreciated, one more of the arms 144 may be disposed at any suitable angle relative to the longitudinal axis of the body 142 and may extend to any suitable distance from the side surfaces 142a, 142b of the body 142. Indeed, one or more of the arms 144 may have any suitable length, width and/or thickness. Any number of the arms 144 may be offset from, and/or aligned with, any number of the other arms 144.
In embodiments, the surgical buttress 140, or portions thereof, may be made from biodegradable materials selected from the following group: natural collagenous materials, cat gut, and synthetic resins including those derived from alkylene carbonates, trimethylene carbonate, tetramethylene carbonate, caprolactone, valerolactone, dioxanone, polyanhydrides, polyesters, polyacrylates, polymethylmethacrylates, polyurethanes, glycolic acid, lactic acid, glycolide, lactide, polyhydroxy butyrates, polyorthoester, polyhydroxy alkanoates, homopolymers thereof, and copolymers thereof. In embodiments, the surgical buttress 110, or portions thereof, may be made from non-biodegradable materials selected from the following group: polyolefins, polyethylene, polydimethylsiloxane, polypropylene, copolymers of polyethylene and polypropylene, blends of polyethylene and polypropylene, ultra high molecular weight polyethylene, polyamides, polyesters, polyethylene terephthalate, polytetrafluoroethylene, polyether-esters, polybutester, polytetramethylene ether glycol, 1,4-butanediol, and polyurethanes. In embodiments, the surgical buttress 140, or portions thereof, may be a non-woven material selected from the group including polyglytone 6211, glycolide, caprolactone, trimethylene carbonate, lactide and combinations thereof.
Turning now to
Anvil body 130 may include an anvil body securement feature 136 that mates with an anvil plate securement feature 122 to secure the anvil body 130 and the anvil plate 120 together when engaged. As can be appreciated, the one or more securement features may include any suitable mechanical or chemical feature. For example, as illustrated in
Notably, surgical buttress 140, or portions thereof, may be operably connected to the anvil assembly 110, or portions thereof, via any suitable chemical or mechanical feature (e.g., adhesive, magnet, hook-and-loop, snap-fit, straps, threads, welding, etc.).
To assemble, the surgical buttress 140 is positioned adjacent the anvil plate 120 such that the body 142 of the surgical buttress 140 is disposed against/adjacent the bottom surface 120b of the anvil plate 120, and such that the arms 144 of the surgical buttress 140 are folded around side surfaces 120c, 120d of the anvil plate 120 to position the arms 144 along the top surface 120a of the anvil plate 120. In this regard, the anvil plate 120 may be secured to the anvil body 130 via the securement features 122, 136 so that the arms 144 of the surgical buttress are disposed within the channels 132, 134 between the bottom surface 130b of the anvil body 130 and the top surface 120a of the anvil plate 120. Suitably, the anvil plate 120 may be secured to the anvil body 130 prior to the attachment of the surgical buttress 140. In this regard, the surgical buttress 140 is positioned adjacent to the anvil plate 120 so that the arms 144 of the surgical buttress 140 may be inserted within the channels 132, 134 to mount the body 142 of the surgical buttress 140 adjacent to the bottom surface 120b of anvil plate 120 so that the body 142 of the surgical buttress 140 is disposed in contact with the bottom surface 120b of the anvil plate 120.
Referring again to
After clamping the first and second jaw members 102, 110 of the surgical stapling apparatus 10 against tissue of a patient, the surgical stapling apparatus 10 may then be fired to deploy the fasteners 70 through the fastener slots 108 of the staple cartridge 104. Upon firing, the fasteners 70 pass through the fastener slots 108 and the legs of the fasteners 70 penetrate through the tissue clamped by the jaw members 102, 110 and the body 142 of the surgical buttress 140. The fasteners 70 are then formed against the fastener forming pockets 124 of the anvil plate 120, thereby affixing the body 142 of the surgical buttress 140 to the clamped tissue. Concomitantly therewith, a knife (not shown) translatably disposed within the end effector 100 cuts through the tissue clamped between the jaw members 102, 110, through at least a portion of the body 142 of the surgical buttress 140. In certain embodiments, the knife can be configured and arranged to cut through the body 142 prior to firing.
The surgical buttress 140 disengages from the cartridge housing 106 of the staple cartridge 104 so that the body 142 and/or the arms 144 of the surgical buttress 140 may remain attached to the tissue via the fasteners 70. Alternatively, the arms 144 and/or body 142 of the surgical buttress 140 can be cut with shears, or can include perforations or frangible features for separating any suitable portion of the surgical buttress 140 (i.e., arms 144) from other portions of the surgical buttress 140 (i.e., body 142).
If further application or use of a surgical buttress is necessary, a new surgical buttress 140 may be mounted onto the anvil assembly 110, as described above. The user may then repeat a fastening process. It is further contemplated that, if desired, a clinician may remove surgical buttress 140 from anvil assembly 110 prior to a use of surgical stapling apparatus 10.
Alternatively or additionally, any suitable surgical buttress may be positioned on cartridge assembly 102 before or after firing as can be appreciated.
Persons skilled in the art will understand that the structures and methods specifically described herein and illustrated in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely as exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure, and that such modifications and variations are also intended to be included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not to be limited by what has been particularly shown and described.
This is a continuation application of U.S. patent application Ser. No. 13/924,804, filed Jun. 24, 2013, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/672,888, filed Jul. 18, 2012, the entire disclosure of which is incorporated by reference here.
Number | Name | Date | Kind |
---|---|---|---|
3054406 | Usher | Sep 1962 | A |
3079606 | Bobrov et al. | Mar 1963 | A |
3079696 | Bobrov | Mar 1963 | A |
3124136 | Usher | Mar 1964 | A |
3490675 | Green et al. | Jan 1970 | A |
3499591 | Green | Mar 1970 | A |
3797494 | Zaffaroni | Mar 1974 | A |
4347847 | Usher | Sep 1982 | A |
4354628 | Green | Oct 1982 | A |
4429695 | Green | Feb 1984 | A |
4452245 | Usher | Jun 1984 | A |
4605730 | Shalaby et al. | Aug 1986 | A |
4655221 | Devereux | Apr 1987 | A |
4834090 | Moore | May 1989 | A |
4838884 | Dumican et al. | Jun 1989 | A |
4927640 | Dahlinder et al. | May 1990 | A |
4930674 | Barak | Jun 1990 | A |
5002551 | Linsky et al. | Mar 1991 | A |
5014899 | Presty et al. | May 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5263629 | Trumbull et al. | Nov 1993 | A |
5307976 | Olson et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5314471 | Brauker et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5344454 | Clarke et al. | Sep 1994 | A |
5392979 | Green et al. | Feb 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5405072 | Zlock et al. | Apr 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5441193 | Gravener | Aug 1995 | A |
5441507 | Wilk | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5468253 | Bezwada et al. | Nov 1995 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5645915 | Kranzler et al. | Jul 1997 | A |
5653756 | Clarke et al. | Aug 1997 | A |
5683809 | Freeman et al. | Nov 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5752965 | Francis et al. | May 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5769892 | Kingwell | Jun 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5810855 | Raybum et al. | Sep 1998 | A |
5814057 | Oi et al. | Sep 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5843096 | Igaki et al. | Dec 1998 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5871135 | Williamson, IV et al. | Feb 1999 | A |
5895412 | Tucker | Apr 1999 | A |
5895415 | Chow et al. | Apr 1999 | A |
5902312 | Frater | May 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5957363 | Heck | Sep 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5997895 | Narotam et al. | Dec 1999 | A |
6019791 | Wood | Feb 2000 | A |
6030392 | Dakov | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6063097 | Oi et al. | May 2000 | A |
6080169 | Turtel | Jun 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6142933 | Longo et al. | Nov 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6155265 | Hammerslag | Dec 2000 | A |
6202914 | Geiste et al. | Mar 2001 | B1 |
6210439 | Firmin et al. | Apr 2001 | B1 |
6214020 | Mulhauser et al. | Apr 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6270530 | Eldridge et al. | Aug 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6280453 | Kugel et al. | Aug 2001 | B1 |
6299631 | Shalaby | Oct 2001 | B1 |
6312457 | DiMatteo et al. | Nov 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6436030 | Rehil | Aug 2002 | B2 |
6454780 | Wallace | Sep 2002 | B1 |
6461368 | Fogarty et al. | Oct 2002 | B2 |
6503257 | Grant et al. | Jan 2003 | B2 |
6514283 | DiMatteo et al. | Feb 2003 | B2 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6551356 | Rousseau | Apr 2003 | B2 |
6592597 | Grant et al. | Jul 2003 | B2 |
6610006 | Amid et al. | Aug 2003 | B1 |
6638285 | Gabbay | Oct 2003 | B2 |
6652594 | Francis et al. | Nov 2003 | B2 |
6656193 | Grant et al. | Dec 2003 | B2 |
6669735 | Pelissier | Dec 2003 | B1 |
6677258 | Carroll et al. | Jan 2004 | B2 |
6685714 | Rousseau | Feb 2004 | B2 |
6702828 | Whayne | Mar 2004 | B2 |
6704210 | Myers | Mar 2004 | B1 |
6723114 | Shalaby | Apr 2004 | B2 |
6726706 | Dominguez | Apr 2004 | B2 |
6736823 | Darois et al. | May 2004 | B2 |
6736854 | Vadurro et al. | May 2004 | B2 |
6746458 | Cloud | Jun 2004 | B1 |
6773458 | Brauker et al. | Aug 2004 | B1 |
6896684 | Monassevitch et al. | May 2005 | B2 |
6927315 | Heinecke et al. | Aug 2005 | B1 |
6939358 | Palacios et al. | Sep 2005 | B2 |
6946196 | Foss | Sep 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
7025772 | Gellman et al. | Apr 2006 | B2 |
7087065 | Ulmsten et al. | Aug 2006 | B2 |
7108701 | Evens et al. | Sep 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7134438 | Makower et al. | Nov 2006 | B2 |
7141055 | Abrams et al. | Nov 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7210810 | Iversen et al. | May 2007 | B1 |
7232449 | Sharkawy et al. | Jun 2007 | B2 |
7241300 | Sharkawy et al. | Jul 2007 | B2 |
7307031 | Carroll et al. | Dec 2007 | B2 |
7311720 | Mueller et al. | Dec 2007 | B2 |
7377928 | Zubik et al. | May 2008 | B2 |
7431730 | Viola | Oct 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7571845 | Viola | Aug 2009 | B2 |
7594921 | Browning | Sep 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7666198 | Suyker et al. | Feb 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7722642 | Williamson, IV et al. | May 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7789889 | Zubik et al. | Sep 2010 | B2 |
7793813 | Bettuchi | Sep 2010 | B2 |
7799026 | Schechter et al. | Sep 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7824420 | Eldridge et al. | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7846149 | Jankowski | Dec 2010 | B2 |
7892247 | Conston et al. | Feb 2011 | B2 |
7909224 | Prommersberger | Mar 2011 | B2 |
7909837 | Crews et al. | Mar 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7942890 | D'Agostino et al. | May 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7951166 | Orban, III et al. | May 2011 | B2 |
7967179 | Olson et al. | Jun 2011 | B2 |
7988027 | Olson et al. | Aug 2011 | B2 |
8011550 | Aranyi et al. | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8033983 | Chu et al. | Oct 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8123766 | Bauman et al. | Feb 2012 | B2 |
8123767 | Bauman et al. | Feb 2012 | B2 |
8127975 | Olson et al. | Mar 2012 | B2 |
8133336 | Kettlewell et al. | Mar 2012 | B2 |
8133559 | Lee et al. | Mar 2012 | B2 |
8146791 | Bettuchi et al. | Apr 2012 | B2 |
8157149 | Olson et al. | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8167895 | D'Agostino et al. | May 2012 | B2 |
8178746 | Hildeberg et al. | May 2012 | B2 |
8192460 | Orban, III et al. | Jun 2012 | B2 |
8210414 | Bettuchi et al. | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225981 | Criscuolo et al. | Jul 2012 | B2 |
8231043 | Tarinelli et al. | Jul 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8256654 | Bettuchi et al. | Sep 2012 | B2 |
8257391 | Orban, III et al. | Sep 2012 | B2 |
8276800 | Bettuchi | Oct 2012 | B2 |
8286849 | Bettuchi | Oct 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8308045 | Bettuchi et al. | Nov 2012 | B2 |
8308046 | Prommersberger | Nov 2012 | B2 |
8312885 | Bettuchi et al. | Nov 2012 | B2 |
8313014 | Bettuchi | Nov 2012 | B2 |
8322590 | Patel et al. | Dec 2012 | B2 |
8348126 | Olson et al. | Jan 2013 | B2 |
8348130 | Shah et al. | Jan 2013 | B2 |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8371491 | Huitema et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8371493 | Aranyi et al. | Feb 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8393517 | Milo | Mar 2013 | B2 |
8408440 | Olson et al. | Apr 2013 | B2 |
8413869 | Heinrich | Apr 2013 | B2 |
8413871 | Racenet et al. | Apr 2013 | B2 |
8424742 | Bettuchi | Apr 2013 | B2 |
8453652 | Stopek | Jun 2013 | B2 |
8453904 | Eskaros et al. | Jun 2013 | B2 |
8453909 | Olson et al. | Jun 2013 | B2 |
8453910 | Bettuchi et al. | Jun 2013 | B2 |
8464925 | Hull et al. | Jun 2013 | B2 |
8474677 | Woodard, Jr. et al. | Jul 2013 | B2 |
8479968 | Hodgkinson et al. | Jul 2013 | B2 |
8485414 | Criscuolo et al. | Jul 2013 | B2 |
8496683 | Prommersberger et al. | Jul 2013 | B2 |
8511533 | Viola et al. | Aug 2013 | B2 |
8512402 | Marczyk et al. | Aug 2013 | B2 |
8529600 | Woodard, Jr. et al. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8551138 | Orban, III et al. | Oct 2013 | B2 |
8556918 | Bauman et al. | Oct 2013 | B2 |
8561873 | Ingmanson et al. | Oct 2013 | B2 |
8579990 | Priewe | Nov 2013 | B2 |
8584920 | Hodgkinson | Nov 2013 | B2 |
8590762 | Hess et al. | Nov 2013 | B2 |
8616430 | Stopek et al. | Dec 2013 | B2 |
8631989 | Aranyi et al. | Jan 2014 | B2 |
8646674 | Schulte et al. | Feb 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8684250 | Bettuchi et al. | Apr 2014 | B2 |
8721703 | Fowler | May 2014 | B2 |
8757466 | Olson et al. | Jun 2014 | B2 |
8789737 | Hodgkinson et al. | Jul 2014 | B2 |
8814888 | Sgro | Aug 2014 | B2 |
8820606 | Hodgkinson | Sep 2014 | B2 |
8857694 | Shelton, IV et al. | Oct 2014 | B2 |
8864009 | Shelton, IV et al. | Oct 2014 | B2 |
8870050 | Hodgkinson | Oct 2014 | B2 |
8920443 | Hiles et al. | Dec 2014 | B2 |
8920444 | Hiles et al. | Dec 2014 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8967448 | Carter et al. | Mar 2015 | B2 |
9005243 | Stopek et al. | Apr 2015 | B2 |
9010606 | Aranyi et al. | Apr 2015 | B2 |
9010608 | Casasanta, Jr. et al. | Apr 2015 | B2 |
9010609 | Carter et al. | Apr 2015 | B2 |
9010610 | Hodgkinson | Apr 2015 | B2 |
9010612 | Stevenson et al. | Apr 2015 | B2 |
9016543 | Stopek et al. | Apr 2015 | B2 |
9016544 | Hodgkinson et al. | Apr 2015 | B2 |
9027817 | Milliman et al. | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9055944 | Hodgkinson et al. | Jun 2015 | B2 |
9084602 | Gleiman | Jul 2015 | B2 |
9107665 | Hodgkinson et al. | Aug 2015 | B2 |
9107667 | Hodgkinson | Aug 2015 | B2 |
9113873 | Marczyk et al. | Aug 2015 | B2 |
9113885 | Hodgkinson et al. | Aug 2015 | B2 |
9113893 | Sorrentino et al. | Aug 2015 | B2 |
9161753 | Prior | Oct 2015 | B2 |
9161757 | Bettuchi | Oct 2015 | B2 |
9186140 | Hiles et al. | Nov 2015 | B2 |
9186144 | Stevenson et al. | Nov 2015 | B2 |
9192378 | Aranyi et al. | Nov 2015 | B2 |
9192379 | Aranyi et al. | Nov 2015 | B2 |
9192380 | Racenet et al. | Nov 2015 | B2 |
9192383 | Milliman | Nov 2015 | B2 |
9192384 | Bettuchi | Nov 2015 | B2 |
9198660 | Hodgkinson | Dec 2015 | B2 |
9198663 | Marczyk et al. | Dec 2015 | B1 |
9204881 | Penna | Dec 2015 | B2 |
9220504 | Viola et al. | Dec 2015 | B2 |
9226754 | D'Agostino et al. | Jan 2016 | B2 |
9237892 | Hodgkinson | Jan 2016 | B2 |
9237893 | Carter et al. | Jan 2016 | B2 |
9277922 | Carter et al. | Mar 2016 | B2 |
9295466 | Hodgkinson et al. | Mar 2016 | B2 |
9326773 | Casasanta, Jr. et al. | May 2016 | B2 |
9328111 | Zhou et al. | May 2016 | B2 |
9345479 | Racenet et al. | May 2016 | B2 |
9351729 | Orban, III et al. | May 2016 | B2 |
9351731 | Carter et al. | May 2016 | B2 |
9351732 | Hodgkinson | May 2016 | B2 |
9358005 | Shelton, IV et al. | Jun 2016 | B2 |
9364229 | D'Agostino et al. | Jun 2016 | B2 |
9364234 | Stopek et al. | Jun 2016 | B2 |
9402627 | Stevenson et al. | Aug 2016 | B2 |
9414839 | Penna | Aug 2016 | B2 |
9433412 | Bettuchi et al. | Sep 2016 | B2 |
9433413 | Stopek | Sep 2016 | B2 |
9433420 | Hodgkinson | Sep 2016 | B2 |
9445812 | Olson et al. | Sep 2016 | B2 |
9445817 | Bettuchi | Sep 2016 | B2 |
9486215 | Olson et al. | Nov 2016 | B2 |
9504470 | Milliman | Nov 2016 | B2 |
9572576 | Hodgkinson | Feb 2017 | B2 |
9597077 | Hodgkinson | Mar 2017 | B2 |
9610080 | Whitfield et al. | Apr 2017 | B2 |
9622745 | Ingmanson et al. | Apr 2017 | B2 |
9629626 | Soltz et al. | Apr 2017 | B2 |
9655620 | Prescott et al. | May 2017 | B2 |
9675351 | Hodgkinson et al. | Jun 2017 | B2 |
9681936 | Hodgkinson et al. | Jun 2017 | B2 |
9693772 | Ingmanson et al. | Jul 2017 | B2 |
9775617 | Carter et al. | Oct 2017 | B2 |
9775618 | Bettuchi et al. | Oct 2017 | B2 |
9782173 | Mozdzierz | Oct 2017 | B2 |
9844378 | Casasanta et al. | Dec 2017 | B2 |
9931116 | Racenet et al. | Apr 2018 | B2 |
10022125 | Stopek et al. | Jul 2018 | B2 |
10098639 | Hodgkinson | Oct 2018 | B2 |
10111659 | Racenet et al. | Oct 2018 | B2 |
10154840 | Viola et al. | Dec 2018 | B2 |
10485540 | Hodgkinson | Nov 2019 | B2 |
20020028243 | Masters | Mar 2002 | A1 |
20020091397 | Chen | Jul 2002 | A1 |
20020151911 | Gabbay | Oct 2002 | A1 |
20020165563 | Grant et al. | Nov 2002 | A1 |
20030065345 | Weadock | Apr 2003 | A1 |
20030083676 | Wallace | May 2003 | A1 |
20030120284 | Palacios et al. | Jun 2003 | A1 |
20030125676 | Swenson et al. | Jul 2003 | A1 |
20030181927 | Wallace | Sep 2003 | A1 |
20030183671 | Mooradian et al. | Oct 2003 | A1 |
20030196668 | Harrison et al. | Oct 2003 | A1 |
20030208231 | Williamson et al. | Nov 2003 | A1 |
20040092912 | Jinno et al. | May 2004 | A1 |
20040107006 | Francis et al. | Jun 2004 | A1 |
20040131418 | Budde et al. | Jul 2004 | A1 |
20040254590 | Hoffman et al. | Dec 2004 | A1 |
20040260315 | Dell et al. | Dec 2004 | A1 |
20050002981 | Lahtinen et al. | Jan 2005 | A1 |
20050006432 | Racenet | Jan 2005 | A1 |
20050021085 | Abrams et al. | Jan 2005 | A1 |
20050059996 | Bauman et al. | Mar 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050118435 | DeLucia et al. | Jun 2005 | A1 |
20050127131 | Mastri et al. | Jun 2005 | A1 |
20050143756 | Jankowski | Jun 2005 | A1 |
20050149073 | Arani et al. | Jul 2005 | A1 |
20050283256 | Sommerich et al. | Dec 2005 | A1 |
20060004407 | Hiles et al. | Jan 2006 | A1 |
20060025816 | Shelton | Feb 2006 | A1 |
20060085030 | Bettuchi et al. | Apr 2006 | A1 |
20060135992 | Bettuchi et al. | Jun 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060178683 | Shimoji et al. | Aug 2006 | A1 |
20060190027 | Downey | Aug 2006 | A1 |
20060219752 | Arad et al. | Oct 2006 | A1 |
20060271104 | Viola et al. | Nov 2006 | A1 |
20070026031 | Bauman et al. | Feb 2007 | A1 |
20070034669 | de la Torre et al. | Feb 2007 | A1 |
20070049953 | Shimoji et al. | Mar 2007 | A2 |
20070123839 | Rousseau et al. | May 2007 | A1 |
20070179528 | Soltz et al. | Aug 2007 | A1 |
20070203509 | Bettuchi | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070243227 | Gertner | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20080009811 | Cantor | Jan 2008 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080110959 | Orban et al. | May 2008 | A1 |
20080125812 | Zubik et al. | May 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080161831 | Bauman et al. | Jul 2008 | A1 |
20080161832 | Bauman et al. | Jul 2008 | A1 |
20080169327 | Shelton et al. | Jul 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080169330 | Shelton et al. | Jul 2008 | A1 |
20080169331 | Shelton et al. | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080200949 | Hiles et al. | Aug 2008 | A1 |
20080216855 | Nasca | Sep 2008 | A1 |
20080220047 | Sawhney et al. | Sep 2008 | A1 |
20080230583 | Heinrich | Sep 2008 | A1 |
20080290134 | Bettuchi et al. | Nov 2008 | A1 |
20080308608 | Prommersberger | Dec 2008 | A1 |
20080314960 | Marczyk et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001122 | Prommersberger et al. | Jan 2009 | A1 |
20090001123 | Morgan et al. | Jan 2009 | A1 |
20090001124 | Hess et al. | Jan 2009 | A1 |
20090001125 | Hess et al. | Jan 2009 | A1 |
20090001126 | Hess et al. | Jan 2009 | A1 |
20090001128 | Weisenburgh, II et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090005808 | Hess et al. | Jan 2009 | A1 |
20090030452 | Bauman et al. | Jan 2009 | A1 |
20090031842 | Kawai et al. | Feb 2009 | A1 |
20090043334 | Bauman et al. | Feb 2009 | A1 |
20090076510 | Bell et al. | Mar 2009 | A1 |
20090076528 | Sgro | Mar 2009 | A1 |
20090078739 | Viola | Mar 2009 | A1 |
20090095791 | Eskaros et al. | Apr 2009 | A1 |
20090095792 | Bettuchi | Apr 2009 | A1 |
20090120994 | Murray et al. | May 2009 | A1 |
20090134200 | Tarinelli | May 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090206143 | Huitema et al. | Aug 2009 | A1 |
20090218384 | Aranyi | Sep 2009 | A1 |
20090277944 | Dalessandro et al. | Nov 2009 | A9 |
20090277947 | Viola | Nov 2009 | A1 |
20090287230 | D'Agostino et al. | Nov 2009 | A1 |
20100012704 | Racenet et al. | Jan 2010 | A1 |
20100016855 | Ramstein et al. | Jan 2010 | A1 |
20100065606 | Stopek | Mar 2010 | A1 |
20100065607 | Orban, III et al. | Mar 2010 | A1 |
20100072254 | Aranyi et al. | Mar 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100147923 | D'Agostino et al. | Jun 2010 | A1 |
20100174253 | Cline et al. | Jul 2010 | A1 |
20100243707 | Olson et al. | Sep 2010 | A1 |
20100243708 | Aranyi et al. | Sep 2010 | A1 |
20100243711 | Olson et al. | Sep 2010 | A1 |
20100249805 | Olson et al. | Sep 2010 | A1 |
20100264195 | Bettuchi | Oct 2010 | A1 |
20100282815 | Bettuchi et al. | Nov 2010 | A1 |
20100331859 | Omori | Dec 2010 | A1 |
20100331880 | Stopek | Dec 2010 | A1 |
20110024476 | Bettuchi et al. | Feb 2011 | A1 |
20110024481 | Bettuchi et al. | Feb 2011 | A1 |
20110034910 | Ross et al. | Feb 2011 | A1 |
20110036894 | Bettuchi | Feb 2011 | A1 |
20110036895 | Marczyk et al. | Feb 2011 | A1 |
20110042442 | Viola et al. | Feb 2011 | A1 |
20110046650 | Bettuchi | Feb 2011 | A1 |
20110057016 | Bettuchi | Mar 2011 | A1 |
20110087279 | Shah et al. | Apr 2011 | A1 |
20110089220 | Ingmanson et al. | Apr 2011 | A1 |
20110125138 | Malinouskas et al. | May 2011 | A1 |
20110166673 | Patel et al. | Jul 2011 | A1 |
20110215132 | Aranyi et al. | Sep 2011 | A1 |
20110270235 | Olson | Nov 2011 | A1 |
20110278346 | Hull et al. | Nov 2011 | A1 |
20110278347 | Olson | Nov 2011 | A1 |
20120074199 | Olson et al. | Mar 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120083723 | Vitaris et al. | Apr 2012 | A1 |
20120145767 | Shah | Jun 2012 | A1 |
20120187179 | Gleiman | Jul 2012 | A1 |
20120197272 | Oray et al. | Aug 2012 | A1 |
20120241491 | Aldridge et al. | Sep 2012 | A1 |
20120241492 | Shelton, IV et al. | Sep 2012 | A1 |
20120241499 | Baxter, III et al. | Sep 2012 | A1 |
20120253298 | Henderson et al. | Oct 2012 | A1 |
20120273547 | Hodgkinson et al. | Nov 2012 | A1 |
20130037596 | Bear et al. | Feb 2013 | A1 |
20130068816 | Mandakolathur Vasudevan et al. | Mar 2013 | A1 |
20130075450 | Schmid et al. | Mar 2013 | A1 |
20130105548 | Hodgkinson et al. | May 2013 | A1 |
20130105553 | Racenet et al. | May 2013 | A1 |
20130112732 | Aranyi et al. | May 2013 | A1 |
20130112733 | Aranyi et al. | May 2013 | A1 |
20130146641 | Shelton, IV et al. | Jun 2013 | A1 |
20130153633 | Casasanta, Jr. et al. | Jun 2013 | A1 |
20130153634 | Carter et al. | Jun 2013 | A1 |
20130153635 | Hodgkinson | Jun 2013 | A1 |
20130153636 | Shelton, IV et al. | Jun 2013 | A1 |
20130153638 | Carter et al. | Jun 2013 | A1 |
20130153639 | Hodgkinson et al. | Jun 2013 | A1 |
20130153640 | Hodgkinson | Jun 2013 | A1 |
20130153641 | Shelton, IV et al. | Jun 2013 | A1 |
20130161374 | Swayze et al. | Jun 2013 | A1 |
20130181031 | Olson et al. | Jul 2013 | A1 |
20130193186 | Racenet et al. | Aug 2013 | A1 |
20130193190 | Carter et al. | Aug 2013 | A1 |
20130193191 | Stevenson et al. | Aug 2013 | A1 |
20130193192 | Casasanta, Jr. et al. | Aug 2013 | A1 |
20130209659 | Racenet et al. | Aug 2013 | A1 |
20130221062 | Hodgkinson | Aug 2013 | A1 |
20130240600 | Bettuchi | Sep 2013 | A1 |
20130240601 | Bettuchi et al. | Sep 2013 | A1 |
20130240602 | Stopek | Sep 2013 | A1 |
20130256369 | Schmid | Oct 2013 | A1 |
20130256373 | Schmid | Oct 2013 | A1 |
20130256380 | Schmid et al. | Oct 2013 | A1 |
20130277411 | Hodgkinson et al. | Oct 2013 | A1 |
20130306707 | Viola et al. | Nov 2013 | A1 |
20130310873 | Stopek et al. | Nov 2013 | A1 |
20130327807 | Olson et al. | Dec 2013 | A1 |
20140012317 | Orban et al. | Jan 2014 | A1 |
20140027490 | Marczyk et al. | Jan 2014 | A1 |
20140034704 | Ingmanson et al. | Feb 2014 | A1 |
20140048580 | Merchant et al. | Feb 2014 | A1 |
20140061280 | Ingmanson et al. | Mar 2014 | A1 |
20140061281 | Hodgkinson | Mar 2014 | A1 |
20140084042 | Stopek et al. | Mar 2014 | A1 |
20140097224 | Prior | Apr 2014 | A1 |
20140117066 | Aranyi et al. | May 2014 | A1 |
20140130330 | Olson et al. | May 2014 | A1 |
20140131418 | Kostrzewski | May 2014 | A1 |
20140131419 | Bettuchi | May 2014 | A1 |
20140138423 | Whitfield et al. | May 2014 | A1 |
20140151431 | Hodgkinson et al. | Jun 2014 | A1 |
20140155916 | Hodgkinson et al. | Jun 2014 | A1 |
20140158742 | Stopek et al. | Jun 2014 | A1 |
20140166721 | Stevenson et al. | Jun 2014 | A1 |
20140197224 | Penna | Jul 2014 | A1 |
20140203061 | Hodgkinson | Jul 2014 | A1 |
20140217147 | Milliman | Aug 2014 | A1 |
20140217148 | Penna | Aug 2014 | A1 |
20140224686 | Aronhalt et al. | Aug 2014 | A1 |
20140239046 | Milliman | Aug 2014 | A1 |
20140239047 | Hodgkinson et al. | Aug 2014 | A1 |
20140252062 | Mozdzierz | Sep 2014 | A1 |
20150001276 | Hodgkinson et al. | Jan 2015 | A1 |
20150041347 | Hodgkinson | Feb 2015 | A1 |
20150097018 | Hodgkinson | Apr 2015 | A1 |
20150115015 | Prescott et al. | Apr 2015 | A1 |
20150122872 | Olson et al. | May 2015 | A1 |
20150133995 | Shelton, IV et al. | May 2015 | A1 |
20150164503 | Stevenson et al. | Jun 2015 | A1 |
20150164506 | Carter et al. | Jun 2015 | A1 |
20150164507 | Carter et al. | Jun 2015 | A1 |
20150196297 | Stopek et al. | Jul 2015 | A1 |
20150209033 | Hodgkinson | Jul 2015 | A1 |
20150209045 | Hodgkinson et al. | Jul 2015 | A1 |
20150209048 | Carter et al. | Jul 2015 | A1 |
20150231409 | Racenet et al. | Aug 2015 | A1 |
20150305743 | Casasanta et al. | Oct 2015 | A1 |
20150327864 | Hodgkinson et al. | Nov 2015 | A1 |
20160022268 | Prior | Jan 2016 | A1 |
20160045200 | Milliman | Feb 2016 | A1 |
20160058451 | Racenet et al. | Mar 2016 | A1 |
20160100834 | Viola et al. | Apr 2016 | A1 |
20160106430 | Carter et al. | Apr 2016 | A1 |
20160113647 | Hodgkinson | Apr 2016 | A1 |
20160128694 | Baxter, III et al. | May 2016 | A1 |
20160157857 | Hodgkinson et al. | Jun 2016 | A1 |
20160174988 | D'Agostino et al. | Jun 2016 | A1 |
20160206315 | Olson | Jul 2016 | A1 |
20160220257 | Casasanta et al. | Aug 2016 | A1 |
20160249923 | Hodgkinson et al. | Sep 2016 | A1 |
20160256166 | Stopek et al. | Sep 2016 | A1 |
20160270793 | Carter et al. | Sep 2016 | A1 |
20160310143 | Bettuchi | Oct 2016 | A1 |
20160338704 | Penna | Nov 2016 | A1 |
20160367252 | Olson et al. | Dec 2016 | A1 |
20160367253 | Hodgkinson | Dec 2016 | A1 |
20160367257 | Stevenson et al. | Dec 2016 | A1 |
20170042540 | Olson et al. | Feb 2017 | A1 |
20170049452 | Milliman | Feb 2017 | A1 |
20170119390 | Schellin et al. | May 2017 | A1 |
20170150967 | Hodgkinson et al. | Jun 2017 | A1 |
20170172575 | Hodgkinson | Jun 2017 | A1 |
20170231629 | Stopek et al. | Aug 2017 | A1 |
20170238931 | Prescott et al. | Aug 2017 | A1 |
20170281328 | Hodgkinson, Ph.D et al. | Oct 2017 | A1 |
20170296188 | Ingmanson et al. | Oct 2017 | A1 |
20170354415 | Casasanta, Jr. et al. | Dec 2017 | A1 |
20180125491 | Aranyi | May 2018 | A1 |
20180140301 | Milliman | May 2018 | A1 |
20180168654 | Hodgkinson et al. | Jun 2018 | A1 |
20180214147 | Merchant et al. | Aug 2018 | A1 |
20180229054 | Racenet et al. | Aug 2018 | A1 |
20180250000 | Hodgkinson et al. | Sep 2018 | A1 |
20180256164 | Aranyi | Sep 2018 | A1 |
20180296214 | Hodgkinson et al. | Oct 2018 | A1 |
20180310937 | Stopek et al. | Nov 2018 | A1 |
20190021734 | Hodgkinson | Jan 2019 | A1 |
20190059878 | Racenet et al. | Feb 2019 | A1 |
20190083087 | Viola et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
2 667 434 | May 2008 | CA |
101310680 | Nov 2008 | CN |
101332110 | Dec 2008 | CN |
101626731 | Jan 2010 | CN |
1602563 | Mar 1950 | DE |
19924311 | Nov 2000 | DE |
0327022 | Aug 1989 | EP |
0594148 | Apr 1994 | EP |
0667119 | Aug 1995 | EP |
1064883 | Jan 2001 | EP |
1256317 | Nov 2002 | EP |
1256318 | Nov 2002 | EP |
1520525 | Apr 2005 | EP |
1621141 | Feb 2006 | EP |
1702570 | Sep 2006 | EP |
1759640 | Mar 2007 | EP |
1815804 | Aug 2007 | EP |
1825820 | Aug 2007 | EP |
1929958 | Jun 2008 | EP |
1994890 | Nov 2008 | EP |
2005894 | Dec 2008 | EP |
2005895 | Dec 2008 | EP |
2039308 | Mar 2009 | EP |
2090231 | Aug 2009 | EP |
2090244 | Aug 2009 | EP |
2090252 | Aug 2009 | EP |
2163211 | Mar 2010 | EP |
2189121 | May 2010 | EP |
2236098 | Oct 2010 | EP |
2236099 | Oct 2010 | EP |
2258282 | Dec 2010 | EP |
2292276 | Mar 2011 | EP |
2311386 | Apr 2011 | EP |
2436348 | Apr 2012 | EP |
2462880 | Jun 2012 | EP |
2491867 | Aug 2012 | EP |
2497431 | Sep 2012 | EP |
2517637 | Oct 2012 | EP |
2586380 | May 2013 | EP |
2604195 | Jun 2013 | EP |
2604197 | Jun 2013 | EP |
2620105 | Jul 2013 | EP |
2620106 | Jul 2013 | EP |
2630922 | Aug 2013 | EP |
2644125 | Oct 2013 | EP |
2762091 | Aug 2014 | EP |
2008595 | Apr 2016 | EP |
2198787 | Mar 2017 | EP |
2000166933 | Jun 2000 | JP |
2002202213 | Jul 2002 | JP |
2007124166 | May 2007 | JP |
9005489 | May 1990 | WO |
9516221 | Jun 1995 | WO |
9622055 | Jul 1996 | WO |
9701989 | Jan 1997 | WO |
9713463 | Apr 1997 | WO |
9817180 | Apr 1998 | WO |
9838923 | Sep 1998 | WO |
9945849 | Sep 1999 | WO |
03082126 | Oct 2003 | WO |
03088845 | Oct 2003 | WO |
03094743 | Nov 2003 | WO |
03105698 | Dec 2003 | WO |
2005079675 | Sep 2005 | WO |
2006023578 | Mar 2006 | WO |
2006044490 | Apr 2006 | WO |
2006083748 | Aug 2006 | WO |
2007121579 | Nov 2007 | WO |
2008057281 | May 2008 | WO |
2008109125 | Sep 2008 | WO |
2010075298 | Jul 2010 | WO |
2011143183 | Nov 2011 | WO |
2012044848 | Apr 2012 | WO |
Entry |
---|
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013, and dated May 27, 2013; 8 pages. |
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and dated May 31, 2013; 8 pages. |
Extended European Search Report corresponding to Patent Application EP 12196912.5 dated Feb. 1, 2016. |
Chinese Second Office Action corresponding to Patent Application CN 201610279682.3 dated Aug. 8, 2018. |
Chinese Second Office Action corresponding to Patent Application CN 201410588811.8 dated Aug. 27, 2018. |
Extended European Search Report corresponding to Patent Application EP 18160809.2 dated Sep. 18, 2018. |
Extended European Search Report corresponding to Patent Application EP 18192317.8 dated Dec. 20, 2018. |
Extended European Search Report corresponding to Patent Application EP 18190154.7 dated Feb. 4, 2019. |
Canadian Office Action issued in corresponding Canadian Application No. 2,820,466 dated Jul. 9, 2019, 5 pages. |
Canadian Office Action issued in corresponding Canadian Application No. 2,820,466 dated Feb. 5, 2020, 5 pages. |
Japanese Office Action issued in Japanese Application No. 2013-147701 dated Mar. 21, 2017. |
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and dated Sep. 18, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Oct. 13, 2014; (10 pp). |
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and dated Oct. 20, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and dated Oct. 24, 2014; (7 pp). |
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and dated Nov. 10, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and dated Mar. 30, 2015; (6 pp). |
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and dated Jun. 13, 20131; 7 pages. |
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and dated Aug. 28, 2013; 6 pages. |
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and dated Aug. 29, 2013; 7 pages. |
European Office Action corresponding to counterpart Int'l Appln No. EP 12 198 776.2 dated Apr. 7, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 13 156 297.7 dated Apr. 10, 2015. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2011250822 dated May 18, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 12 186 175.1 dated Jun. 1, 2015. |
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201010517292.8 dated Jun. 2, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 17 48145 dated Jun. 9, 2015. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2014200584 dated Jun. 15, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 13 180 881.8 dated Jun. 19, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 14 157 195.0 dated Jul. 2, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 12 19 6902.6 dated Aug. 6, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 15 2060.1 dated Aug. 14, 2015. |
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210129787.2 dated Aug. 24, 2015. |
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and dated Dec. 12, 2013; 5 pages. |
European Examination Report issued in corresponding EP Application No. 13176895.4 dated Nov. 12, 2015. |
Chinese First Office Acton for CN 2013103036903 dated Jun. 30, 2016. |
Chinese Notification of Reexamination corresponding to counterpart Int'l Appln. No. CN 201010517292.8 dated Jun. 2, 2015. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-216989 dated Sep. 11, 2015. |
Canadian First Office Action corresponding to counterpart Int'l Appln. No. CA 2,686,105 dated Sep. 17, 2015. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-040188 dated Oct. 21, 2015. |
European Communication corresponding to counterpart Int'l Appln. No. EP 13 17 6895.4 dated Nov. 5, 2015. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210544552 dated Nov. 23, 2015. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201210545228 dated Nov. 30, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 0491.1 dated Dec. 9, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 18 3819.0 dated Dec. 11, 2015. |
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,697,819 dated Jan. 6, 2016. |
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,696,419 dated Jan. 14, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 19 8776.2 dated Jan. 19, 2016. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 15 17 4146.9 dated Jan. 20, 2016. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201310353628.5 dated Jan. 25, 2016. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 6912.5 dated Feb. 1, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-098903 dated Feb. 22, 2016. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 8753.1 dated Feb. 24, 2016. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410449019A dated Mar. 30, 2016. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16150232.3, dated Apr. 12, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 11 18 3256.4 dated Apr. 20, 2016. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244169 dated May 10, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 10 25 0715.9 dated May 12, 2016. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410778512.0 dated May 13, 2016. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012227358 dated May 16, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-040188 dated May 17, 2016. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No AU 2012244380 dated May 20, 2016. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No AU 2014227480 dated May 21, 2016. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No AU 2012254977 dated May 30, 2016. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 15 3647.9 dated Jun. 3, 2016. |
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and dated Aug. 29, 2014; (7 pp). |
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and dated Sep. 17, 2014; (8 pp). |
Chinese First Office Action corresponding to Patent Application CN 201410588811.8 dated Dec. 5, 2017. |
European Office Action corresponding to Patent Application EP 16 16 6367.9 dated Dec. 11, 2017. |
Chinese First Office Action corresponding to Patent Application CN 201610279682.3 dated Jan. 10, 2018. |
Japanese Office Action corresponding to Patent Application JP 2013-154561 dated Jan. 15, 2018. |
Australian Examination Report No. 1 corresponding to Patent Application AU 2017225037 dated Jan. 23, 2018. |
Japanese Office Action corresponding to Patent Application JP 2013-229471 dated May 1, 2018. |
Canadian Office Action corresponding to Patent Application CA 2,790,743 dated May 14, 2018. |
European Office Action corresponding to Patent Application EP 14 15 7195.0 dated Jun. 12, 2018. |
European Office Action corresponding to counterpart European Appln. No. EP 15 17 4146.9 dated May 15, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-154561 dated May 23, 2017. |
European Office Action corresponding to counterpart European Appln. No. EP 12 19 4784.0 dated May 29, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appin. No. JP 2013-169083 dated May 31, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013213767 dated Jun. 29, 2017. |
Australian Examination Report No. 2 corresponding to counterpart Australian Appln. No. AU 2012261752 dated Jul. 7, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013266989 dated Jul. 10, 2017. |
Extended European Search Report corresponding to counterpart European Appln. No. EP 14 15 3609.4 dated Jul. 14, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013234418 dated Jul. 14, 2017. |
Extended European Search Report corresponding to counterpart European Appln. No. EP 14 15 3610.2 dated Jul. 17, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2014200109 dated Jul. 20, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2014200074 dated Jul. 20, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-250857 dated Aug. 17, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-229471 dated Aug. 17, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2014200793 dated Sep. 2, 2017. |
Extended European Search Report corresponding to counterpart European Appln. No. EP 17 17 8528.0 dated Oct. 13, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013234420 dated Oct. 24, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-175379 dated Oct. 20, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-147701 dated Oct. 27, 2017. |
Extended European Search Report corresponding to counterpart European Appln. No. EP 17 17 5656.2 dated Nov. 7, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2014-009738 dated Nov. 14, 2017. |
European Office Action corresponding to counterpart European Appln. No. EP 13 17 3986.4 dated Nov. 29, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2017-075975 dated Dec. 4, 2017. |
European Office Action corresponding to counterpart European Appln. No. EP 13 19 79585 dated Dec. 11, 2017. |
Japanese Office Action issued in corresponding Japanese Application No. 2013-147701 dated Oct. 27, 2017. |
Chinese Office Action issued in corresponding Chinese Application No. 2013103036903 dated Feb. 23, 2017. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2013107068710 dated Dec. 16, 2016. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201310646606.8 dated Dec. 23, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-000321 dated Jan. 4, 2017. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 16 6367.9 dated Jan. 16, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013206777 dated Feb. 1, 2017. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-175379 dated Mar. 1, 2017. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410028462.4 dated Mar. 2, 2017. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410084070 dated Mar. 13, 2017. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 19 6549.6 dated Mar. 17, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013206804 dated Mar. 21, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013211499 dated May 4, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2014201008 dated May 23, 2017. |
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and dated Sep. 19, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and dated Sep. 19, 2013; (6 pp). |
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and dated Sep. 30, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and dated Oct. 24, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and dated Nov. 7, 2013; (8 pp). |
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and dated Nov. 13, 2013; (7 pp). |
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and dated Nov. 14, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and dated Dec. 16, 2013; (8 pp). |
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and dated Dec. 20, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and dated Jan. 31, 2014; (8 pp). |
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and dated Mar. 3, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and dated Mar. 3, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 2123.1, completed Jan. 30, 2014 and dated Feb. 10, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and dated Apr. 9, 2014; (9 pp). |
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Jun. 16, 2014; (5 pp). |
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and dated Mar. 24, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and dated Feb. 27, 2014; (10 pp). |
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and dated Apr. 15, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and dated Jul. 29, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and dated Jun. 18, 2014; (9 pp). |
European Search Report corresponding to EP 05 02 2585.3, completed Jan. 25, 2006 and dated Feb. 3, 2006; 4 pages. |
European Search Report corresponding to EP 06 00 4598, dated Jun. 22, 2006; 2 pages. |
European Search Report corresponding to EP 06 01 6962.0, completed Jan. 3, 2007 and dated Jan. 11, 2007; 10 pages. |
International Search Report corresponding to International Application No. PCT/US2005/036740, completed Feb. 20, 2007 and dated Mar. 23, 2007; 8 pages. |
International Search Report corresponding to International Application No. PCT/US2007/022713, completed Apr. 21, 2008 and dated May 15, 2008; 1 page. |
International Search Report corresponding to International Application No. PCT/US2008/002981, completed Jun. 9, 2008 and dated Jun. 26, 2008; 2 pages. |
European Search Report corresponding to EP 08 25 1779, completed Jul. 14, 2008 and dated Jul. 23, 2008; 5 pages. |
European Search Report corresponding to EP 08 25 1989.3, completed Mar. 11, 2010 and dated Mar. 24, 2010; 6 pages. |
European Search Report corresponding to EP 10 25 0639.1, completed Jun. 2010 and dated Jun. 28, 2010; 7 pages. |
European Search Report corresponding to EP 10 25 0715.9, completed Jun. 30, 2010 and dated Jul. 20, 2010; 3 pages. |
European Search Report corresponding to EP 05 80 4382.9, completed Oct. 5, 2010 and dated Oct. 12, 2010; 3 pages. |
European Search Report corresponding to EP 10 25 1437.9, completed Nov. 22, 2010 and dated Dec. 16, 2010; 3 pages. |
European Search Report corresponding to EP 09 25 2897.5, completed Feb. 7, 2011 and dated Feb. 15, 2011; 3 pages. |
European Search Report corresponding to EP 10 25 0642.5, completed Mar. 25, 2011 and dated Apr. 4, 2011; 4 pages. |
European Search Report corresponding to EP 11 18 8309.6, completed Dec. 15, 2011 and dated Jan. 12, 2012; 3 pages. |
European Search Report corresponding to EP 12 15 2229.6, completed Feb. 23, 2012 and dated Mar. 1, 2012; 4 pages. |
European Search Report corresponding to EP 12 15 0511.9, completed Apr. 2012 and dated Apr. 24, 2012; 7 pages. |
European Search Report corresponding to EP 12 15 2541.4, completed Apr. 23, 2012 and dated May 3, 2012; 10 pages. |
European Search Report corresponding to EP 12 16 5609.4, completed Jul. 5, 2012 and dated Jul. 13, 2012; 8 pages. |
European Search Report corresponding to EP 12 15 8861.0, completed Jul. 17, 2012 and dated Jul. 24, 2012; 9 pages. |
European Search Report corresponding to EP 12 16 5878.5, completed Jul. 24, 2012 and dated Aug. 6, 2012; 8 pages. |
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and dated Jan. 18, 2013; 7 pages. |
Extended European Search Report corresponding to EP 12 18 6175.1, completed Jan. 15, 2013 and dated Jan. 23, 2013; 7 pages. |
Extended European Search Report corresponding to EP 12 19 1114.3, completed Jan. 23, 2013 and dated Jan. 31, 2013; 10 pages. |
Extended European Search Report corresponding to EP 12 19 2224.9, completed Mar. 14, 2013 and dated Mar. 26, 2013; 8 pages. |
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and dated Jul. 26, 2013; 8 pages. |
Extended European Search Report corresponding to EP 12 19 6911.7, completed Apr. 18, 2013 and dated Apr. 24, 2013; 8 pages. |
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and dated May 29, 2013; 7 pages. |
Number | Date | Country | |
---|---|---|---|
20200085430 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
61672888 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15428743 | Feb 2017 | US |
Child | 16694369 | US | |
Parent | 13924804 | Jun 2013 | US |
Child | 15428743 | US |