Surgical apparatus with conductor strain relief

Information

  • Patent Grant
  • 10085749
  • Patent Number
    10,085,749
  • Date Filed
    Monday, February 15, 2016
    8 years ago
  • Date Issued
    Tuesday, October 2, 2018
    6 years ago
Abstract
A surgical apparatus including an electrical conductor with a strain relief is provided. A tool assembly is supported on a body portion and is articulable relative to the body portion. The tool assembly includes an identification assembly in electrical communication with a powered handle assembly. An electrical conductor extends from a connection assembly in the body portion to the identification assembly. The electrical conductor includes a strain relief portion for accommodating the articulation of the tool assembly relative to the body portion.
Description
BACKGROUND

Technical Field


The present disclosure relates to surgical apparatus having an articulating tool assembly. More particularly, the present disclosure relates to a surgical apparatus including a strain relief for relieving strain on electrical connections between a body of the surgical apparatus and the tool assembly during articulation of the tool assembly.


Background of Related Art


Surgical apparatus for operating on tissue are well known in the art and typically include a powered handle assembly, a body portion extending distally from the handle assembly, and a tool assembly supported on the distal end of the body portion and being articulable relative to the body portion. The tool assembly includes first and second jaws which are movable in relation to each other between unapproximated and approximated positions. In surgical stapling apparatus, the first jaw supports an anvil assembly and the second jaw supports a cartridge assembly. The cartridge assembly may be replaceable to permit reuse of the tool assembly during a surgical procedure. The replaceable cartridge assembly may be provided in a variety of configurations for use on tissue having different properties, i.e., thickness, density. For example, the different cartridge assemblies may have staples of different sizes and/or the staples may be arranged in different configurations.


Many cartridge assemblies include an identification chip that is electrically coupled to the handle assembly by a conductor extending through the body portion of the surgical stapling apparatus to ensure the handle assembly is programmed to operate with the attached cartridge assembly. During articulation of the loading unit, the conductor extending through the body portion to the tool assembly may experience strain. To prevent damage to the conductor connecting the handle assembly to the tool assembly during articulation, it would be beneficial to provide an electrical conductor with a strain relief.


SUMMARY

Accordingly, a surgical apparatus including an electrical conductor with a strain relief is provided. The surgical apparatus includes a body portion having a proximal end and a distal end and includes a connection assembly supported on the proximal end. The surgical apparatus further includes a tool assembly supported on a distal end of the body portion and being articulable relative to the body portion, the tool assembly including an identification assembly. In addition, the surgical apparatus includes an electrical conductor extending from the connection assembly to the identification assembly. The electrical conductor includes a strain relief portion for accommodating the articulation of the tool assembly relative to the body portion.


In embodiments, the strain relief portion includes a plurality of coils. A height of the plurality of coils may decrease from a proximal portion of the plurality of coils to a distal portion of the plurality of coils. Alternatively, the height of the plurality of coils is uniform from a proximal portion of the plurality of coils to a distal portion. The plurality of coils may be equally spaced relative to each other.


In some embodiments, the body portion defines a channel for receiving the electrical conductor. The channel may include a central portion for receiving the strain relief portion of the electrical conductor. The surgical apparatus may include a powered handle assembly and the electrical conductor electrically couples the identification assembly to the handle assembly. The tool assembly may include a stapling assembly. The stapling assembly may include a removable cartridge assembly. The electrical conductor may include a flexible cable. The flexible cable may include a proximal portion and a distal portion. The proximal portion of the flexible cable may be axially affixed to the body portion, for example, using adhesive.


In embodiments, the strain relief portion is configured to permit lengthening of the electrical conductor. Alternatively, or in addition, the strain relief portion is configured to permit shortening of the electrical conductor. The body portion, the tool assembly, and the electrical conductor may form a loading unit which is configured to be releasably coupled to a powered handle assembly.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure are described herein with reference to the drawings, wherein:



FIG. 1 is a side, perspective view of an embodiment of the presently disclosed surgical stapling apparatus including a tool assembly in an approximated position;



FIG. 2 is a side, perspective view of a disposable loading unit of the surgical stapling apparatus shown in FIG. 1;



FIG. 3 is a side, perspective view of the loading unit shown in FIG. 2 with parts separated;



FIG. 4 is an enlarged side, perspective view of a mounting assembly and a firing lockout assembly of the loading unit shown in FIG. 2;



FIG. 5 is a side perspective view of the indicated area of detail shown in FIG. 2, with parts separated;



FIG. 6 is an enlarged perspective view of a proximal end of the loading unit shown in FIG. 2;



FIG. 7 is a side, perspective view of the proximal end of the loading unit shown in FIG. 2 with a upper housing half removed;



FIG. 8 is a side, perspective view of an identification assembly of the loading unit shown in FIG. 2 with parts separated;



FIG. 9 is a side, perspective view of the identification assembly shown in FIG. 8;



FIG. 10 is a perspective view of a connector assembly of the identification assembly shown in FIG. 8 and a proximal end of a channel member of the loading unit shown in FIG. 2 with parts separated;



FIG. 11 is an alternative perspective view of the connector assembly and channel member shown in FIG. 10;



FIG. 12 is an enlarged view of the indicated area of detail shown in FIG. 3;



FIG. 13 is a side, perspective view of a chip assembly of the identification assembly shown in FIG. 8 secured to a cartridge body of the loading unit shown in FIG. 2;



FIG. 14 is perspective end view of a cartridge assembly of the loading unit shown in FIG. 2 including the chip assembly shown in FIG. 13;



FIG. 15 is a side, perspective view of the cartridge assembly shown in FIG. 14 being loaded into the loading unit shown in FIG. 2;



FIG. 16 is a top perspective view of the loading unit shown in FIG. 2 with an anvil assembly removed;



FIG. 17 is an enlarged view of the indicated area of detail shown in FIG. 16;



FIG. 18 is a perspective view of a locking mechanism and a mounting assembly of the loading unit shown in FIG. 2 with parts separated;



FIG. 19 is an enlarged perspective view of a latch member of the locking mechanism shown in FIG. 18;



FIG. 20 is a bottom, perspective view of the locking mechanism and the mounting assembly shown in FIG. 18 and distal end of a drive assembly of the loading unit shown in FIG. 2;



FIG. 21 is a side, cross-sectional view of the distal end of the drive assembly shown in FIG. 20 and the latch member shown in FIG. 19 in a first or unlocked configuration;



FIG. 22 is a cross-sectional side view of the distal end of the drive assembly and the latch member shown in FIG. 21 in a second or locked configuration;



FIG. 23 is a cross-sectional side view taken along line 23-23 shown in FIG. 2;



FIG. 24 is an enlarged view of the indicated area of detail shown in FIG. 23;



FIG. 25 is a side, perspective view of the locking mechanism and the drive assembly shown in FIG. 18;



FIG. 26 is a side, cross-sectional view taken along line 26-26 shown in FIG. 25;



FIG. 27 is a top view of a tool assembly of the loading unit shown in FIG. 2 with the anvil plate removed;



FIG. 28 is an enlarged view of a proximal end of the tool assembly shown in FIG. 27 in a first articulated position;



FIG. 29 is a side, perspective view of a cartridge assembly of the loading unit shown in FIG. 2 and a shipping wedge according to an embodiment of the present disclosure;



FIG. 30 is a bottom, perspective view of the shipping wedge shown in FIG. 29;



FIG. 31 is a side, perspective view of a loading unit according to another embodiment of the present disclosure, including a flexible cable; and



FIG. 32 is a schematic view of the flexible cable of the loading unit shown in FIG. 31.





DETAILED DESCRIPTION OF THE DRAWINGS

Embodiments of the presently disclosed surgical apparatus will now be described in detail with reference to the drawings wherein like reference numerals designate identical or corresponding elements in each of the several views. In this description, the term “proximal” is generally used to refer to the portion of the apparatus that is closer to a clinician, while the term “distal” is generally used to refer to the portion of the apparatus that is farther from the clinician.


As a tool assembly of a surgical apparatus is articulated, any cables extending from the body portion to the tool assembly experience strain, i.e., compression or tension. During articulation of the tool assembly, the strain experienced by the cable or cables may damage the cables or cause the cables to become detached. The embodiments of the present disclosure address providing a strain relief for relieving the strain experienced by the cable or cables during articulation of the tool assembly.



FIG. 1 illustrates an embodiment of the presently disclosed surgical apparatus shown generally as surgical stapler 10. Although illustrated as a surgical stapler, the apparatus may include other types of end effectors including forceps, retractors, clip appliers or the like. The surgical stapler 10 includes a powered handle assembly 12, a body portion 14, and a loading unit 100. Handle assembly 12 and body portion 14 are configured to effect operation of loading unit 100. For a detailed description of the structure and function of handle assembly 12 and body portion 14, please refer to commonly owned U.S. Patent Application Publication No. 2012/0253329 (“the '329 publication”), the content of which is incorporated by reference herein in its entirety. Although loading unit 100 is shown and described as being selectively secured to body portion 14 of surgical stapler 10, it is envisioned that loading unit 100 can be supported directly on the distal end of the body portion 14.


Referring to FIGS. 1 and 2, the loading unit 100 includes a proximal body portion 102 and a tool assembly 104. A mounting assembly 170 is secured to the tool assembly 104 and is pivotally coupled to the proximal body portion 102 of the loading unit 100 to pivotally secure the tool assembly 104 to the proximal body portion 102. The loading unit 100 is substantially as described in U.S. Patent Application Publication No. 2013/0098965 (“the '965 publication”) except that the firing lockout mechanism has been changed, and components for cooperating with a powered handle assembly, i.e., an identification assembly and a flexible cable, and a shipping wedge have been added. The '965 publication is hereby incorporated by reference herein in its entirety. Accordingly, the components of the loading unit 100 which are common to those which are disclosed in the '965 publication, will only be briefly described herein. In contrast, the components which are newly presented herein, including a connection assembly 190 (FIGS. 5-7), an identification assembly 200 (FIGS. 8-17), a firing lockout assembly 220 (FIGS. 19-28), a shipping wedge 300 (FIGS. 29 and 30), a flexible cable “R2” (FIGS. 31 and 32) and their methods of operation will be described in detail herein.


With reference to FIG. 3, the proximal body portion 102 of the loading unit 100 includes an upper housing half 110a and a lower housing half 110b which are contained within an outer sleeve 112. The upper housing half 110a defines a recess 111a for receiving a first end of a first coupling member 114a and the lower housing half 110b defines a recess 111b for receiving a first end of a second coupling member 114b. When the outer sleeve 112 is positioned about the upper and lower housing halves 110a, 110b, the first and second coupling members 114a and 114b are retained within the respective recesses 111a, 111b by the outer sleeve 112.


The proximal end of the upper housing half 110a includes engagement nubs 116 for releasably engaging the distal end of the body portion 14 (FIG. 1) of the stapling apparatus 10 (FIG. 1) in a bayonet-type coupling arrangement. The upper and lower housing halves 110a, 110b each define a channel 113a, 113b, respectively, for slidably receiving a drive member 182 of a drive assembly 180, as will be described in further detail below. An articulation link 118 is slidably positioned between the upper and lower housing halves 110a, 110b and is adapted to engage an articulation mechanism (not shown) of the surgical stapler 10 (FIG. 1) to facilitate articulation of the tool assembly 104 in relation to the proximal body portion 102. A pair of blow out plate assemblies 120a, 120b are positioned adjacent the distal end of the upper and lower housing halves 110a, 110b to prevent outward buckling and/or bulging of the drive member 182 during articulation and firing of the tool assembly 104.


A channel 117 extends the length of upper housing half 110a for receiving a conductor, e.g., electrical ribbon or cable “R1” or wires. As will be described in further detail below, electrical ribbon “R1” electrically couples a connection assembly 190 disposed in a proximal end of the proximal body portion 102 of the loading unit 100 with an identification assembly 200 (FIG. 8) disposed within the tool assembly 104 of the loading unit 100. A more detailed description of the components of the proximal body portion 102 is provided in commonly owned U.S. Pat. No. 7,143,924 (“the '924 patent”) the content of which is hereby incorporated by reference herein in its entirety.


Still referring to FIG. 3, the tool assembly 104 includes an anvil assembly 130 and a replaceable cartridge assembly 150 which are movable in relation to each other between unapproximated and approximated positions. The anvil assembly 130 includes an anvil body 132 and an anvil plate 134 which is secured to the underside of the anvil body 132 to define a channel 131 (FIG. 24). A proximal end of the anvil body 132 includes a bracket 132a defining a hole 133 for receiving a cylindrical pivot member 172a of an upper mounting portion 172 of a mounting assembly 170. The anvil plate 134 defines a longitudinal slot 135 which is dimensioned to slidably receive a portion of the working end 184 of a drive member 182 as will be discussed in further detail below. A tissue contacting surface 134a of the anvil plate 134 defines a plurality of staple receiving depressions (not shown).


The cartridge assembly 150 includes a support plate 152, cartridge body 154, a plurality of staples “S”, and a staple firing assembly 160 that includes an actuation sled 162 and is further described below. The cartridge assembly 150 is receivable in a jaw member 156. The cartridge body 154 and the support plate 152 are attached to the jaw member 156 by a snap-fit connection as described in the '965 publication which has been incorporated herein by reference. Other forms of connection are contemplated and can be used in place of the snap-fit connection or in addition thereto.


The jaw member 156 is pivotally secured to the anvil body 132 by pivot pins 138 which extend through openings 139 formed in the anvil body 132 and openings 151 formed in the jaw member 156. The cartridge body 154 defines a longitudinal slot 153a and a plurality of laterally spaced staple retention slots 153b which are positioned in alignment with the staple receiving depressions (not shown) in the tissue contacting surface 134a of the anvil plate 134. An actuation sled 162 is configured to translate through the cartridge body 154. The longitudinal slot 153a of the cartridge body 154 receives a projection 162a formed on the actuation sled 162 to guide the actuation sled 162 through the cartridge body 154. The cartridge body 154 includes a detent 154a (FIG. 14) extending within the longitudinal slot 153a which are received in the recesses 163a (FIG. 14) formed on the projection 162a of the actuation sled 162 to secure the actuation sled 162 in place during shipping of the cartridge assembly 150. Each retention slot 153b receives a fastener or staple “S” and a pusher 164. The actuation sled 162 is positioned within the cartridge body 154 to pass longitudinally through the cartridge body 154 into engagement with the pushers 164 to sequentially eject the staples “S” from the cartridge body 154. The cartridge body 154 further includes a pair of tissue stop members 154b (FIG. 14) which prevent tissue (not shown) from being positioned proximally of the staple retention slots 153b. For a more detailed discussion of the cartridge assembly 150 including the support plate 152, see the '965 publication which has been incorporated herein by reference.


Referring to FIGS. 3 and 4, the mounting assembly 170 includes the upper and lower mounting portions 172, 174 and a retention blade 176. As shown, the upper and lower mounting portions 172, 174 are secured together by the posts 178 that extend from the upper mounting portion 172. Each of the upper and lower mounting portions 172, 174 includes a pivot member 172a (FIG. 3) and 174a (FIG. 4), respectively. As described above, the pivot member 172a on the upper mounting portion 172 is received within the hole 133 (FIG. 3) of the bracket 132a of the anvil body 132 to secure the upper mounting portion 172 to the anvil body 132. The first coupling member 114a (FIG. 3) of the proximal body portion 102 has a second end which defines an opening 115a which also receives the pivot member 172a. The pivot member 174a on the lower mounting portion 174 is received in an opening 115b of the second coupling member 114b (FIG. 3) of the proximal body portion 102. The pivot pins 138 which secure the anvil body 132 to the jaw member 156 extend through the openings 139 formed in the anvil body 132 and the openings 151 formed in the jaw member 156 and are received in the openings 173 formed in the lower mounting portion 174 to secure the lower mounting portion 174 to the jaw member 156 (FIG. 3). The lower mounting portion 174 defines a slot 177 for receiving the retention blade 176. As will be described in further detail below, retention blade 176 includes a curved distal facing surface 176a (FIG. 4) and a pair of limiting members 176b (FIG. 4).


The drive assembly 180 includes the drive member 182 having a body and a working end 184. The working end 184 includes an upper flange 186a, a lower flange 186b, a vertical strut 186c interconnecting the upper flange 186a and the lower flange 186b, and a knife 187 supported on or formed into the vertical strut 186c. The upper flange 186a is positioned to be slidably received within the channel 131 (FIG. 24) of the anvil assembly 130 and the lower flange 186b is positioned to be slidably positioned along an outer surface 156a (FIG. 24) of the jaw member 156. In use, distal movement of the drive member 182 initially advances the upper flange 186a into a cam surface 134b formed on the anvil plate 134 and advances the lower flange 186b into engagement with a cam surface 156b formed on the jaw member 156 to pivot the cartridge assembly 150 towards the anvil assembly 130 to the approximated or closed position. Continued advancement of the drive member 182 progressively maintains a minimum tissue gap between the anvil assembly 130 and the cartridge assembly 150 adjacent the working end 184 of the drive assembly 180 as the working end 184 moves through the tool assembly 104.


The distal end of the body of the drive member 182 supports the working end 184 of the drive member 182 and defines a stop surface 184a. The actuation sled 162 (FIG. 3) is disposed within the cartridge assembly 150 (FIG. 3) at a position distal of the working end 184. When the working end 184 is in its proximal-most position and the tool assembly 104 is in the open or unapproximated position (FIG. 24), the sled 162 and the working end 184 are in their initial position. The sled 162 includes a plurality of cam surfaces 166a which are positioned to engage and lift the pushers 164 within the staple retention slots 153b of the cartridge body 154. The pushers 164 (FIG. 3) are positioned within the cartridge assembly 150 to eject the staples “S” from the cartridge body 154 when the sled 162 is advanced through the tool assembly 104. The proximal end of the sled 162 includes one or more fingers 166a which define an opening or slot 163 (FIG. 4) which will be described in further detail below.


In certain embodiments, the body of the drive member 182 is formed from a plurality of stacked sheets 182a-d of material, e.g., stainless steel. A locking member 188 (FIG. 3) is supported about the proximal end of the loading unit 100 to prevent axial movement of the drive member 182 until the loading unit 100 is attached to the stapling apparatus 10 (FIG. 1). A more detailed discussion of the above-identified components of the loading unit 100 is described in the '924 patent which has been incorporated herein by reference in its entirety.


With reference to FIGS. 5-7, a connection assembly 190 is supported on a proximal end of the upper housing half 110a of the proximal body portion 102 of the loading unit 100 and provides an electrical connection between the loading unit 100 and the surgical stapler 10 (FIG. 1). The connection assembly 190 includes a connector housing 192, a contact member 194, and an electronic chip 196. The contact member 194 includes a pair of contact portions 194a that are received within the recesses 193 of the connector 192. The contact portions 194a are positioned to engage corresponding contact portions (not shown) of a contact member (not shown) disposed within the elongate body 14 (FIG. 1) of the surgical stapler 10 (FIG. 1). The contact member 194 includes a connector portion 194b that extends between the contact portions 194a. As described above, a conductor, e.g., electrical ribbon or cable “R1” or wires, extends through the proximal body portion 102 of the loading unit 100 and into the tool assembly 104 to electrically couple the connection assembly 190 with the identification assembly 200 (FIG. 8).


During attachment of the loading unit 100 to the elongate body 14 (FIG. 1) of the surgical stapler 10 (FIG. 1), the contact portions 194a of the contact member 194 of connection assembly 190 are positioned to engage the contact portions (not shown) of a connector assembly (not shown) supported within a distal end of the elongate body 14 (FIG. 1) of the surgical stapler 10 (FIG. 1). Engagement of the contact members 194a of the connection assembly 190 with the contact members of the connector assembly of the surgical stapler 10 connects the identification assembly 200 (FIG. 8) of the loading unit 100 with the handle assembly 12 (FIG. 1) of the surgical stapler 10 (FIG. 1). As noted above, the loading unit 100 may be attached to the elongate body 14 with a bayonet coupling or in any other suitable manner.


With reference now to FIGS. 8-17, the identification assembly 200 of the loading unit 100 includes a connector assembly 202 and a chip assembly 212. The connector assembly 202 includes a connector housing 204. A tab 204b and a protrusion 206b extend outwardly from the connector housing 204. The tab 206a is received within an opening 157a (FIG. 10) in the jaw member 156 of the tool assembly 104 to align the connector housing 204 with the jaw member 156 and the protrusion 206b is received within an opening 157b (FIG. 10) in the jaw member 156 to secure the connector assembly 202 to the jaw member 156. The connector housing 204 receives a distal end of the conductor, e.g., electrical ribbon “R1” (FIG. 11) that extends from the connection assembly 190 (FIG. 6) to electrically communicate the contact member 194 of the connection assembly 190 (FIG. 7) with first and second contact members 206a, 206b. In embodiments, electrical ribbon “R1” is soldered to the first and second contact members 206a, 206b and the connector housing 204 is molded about the distal end of the electrical ribbon “R1” and the first and second contact members 206a, 206b to secure the electrical ribbon “R1” with the first and second contact members 206a, 206b. The contact members 206a, 206b extend distally from the connector housing 204 when the connector housing 204 is secured to the jaw member 156.


The chip assembly 212 includes a chip housing 214 and an identification chip 218. A projection 214a extends from the chip housing 214 and is received within a recess 155 (FIG. 12) formed in a proximal end of the cartridge body 154 (FIG. 12) of the cartridge assembly 150 to secure the chip assembly 212 to the cartridge body 154. The chip assembly 212 further includes first and second contact members 216a, 216b that extend from the chip housing 214 and communicate with the identification chip 218.


The first and second contact members 216a, 216b engage the respective first and second contact members 206a, 206b of the connector assembly 202 when the cartridge body 154 is received within the jaw member 156 (FIG. 16). In embodiments, and as shown, the first and second contact members 206a, 206b of the connector assembly 202 and first and second contact members 216a, 216b of the chip assembly 212 are supported on the connector housing 204 and the chip housing 214, respectively, in a cantilevered fashion to permit a snap engagement between the first contact members 206a, 216a and between the second contact members 206b, 216b. The first and second contact members 206a, 206b of the connector assembly 202 and the first and second contact members 216a, 216b of the chip assembly 212 may include a substantially spherical shape to facilitate engagement between the connector assembly 202 and the chip assembly 212.


The identification chip 218 may include any commercially available chip capable of storing information including specifications of the cartridge assembly 150, e.g., cartridge size, staple arrangement, staple length, clamp-up distance, production date, model number, lot number, expiration date, etc., and transmitting at least some of the information to the handle assembly 12 (FIG. 1). In one embodiment, the identification chip 218 includes an erasable programmable read only memory (“EPROM”) chip. In this manner, the configuration of an attached cartridge assembly 150 may be relayed to the handle assembly 12 such that, for example, the firing forces and/or the length of the firing stroke of the handle assembly 12 may be adjusted to accommodate the particular cartridge assembly 150. It is envisioned that instead of an EPROM, the identification chip 218 may be a read/write memory chip, such as read/write RAM, such that data may be written onto the identification chip 218. For example, usage information may be written onto the identification chip 218 that identifies that the loading unit 100 has been fully or partially fired to prevent reuse of an empty or partially fired loading unit, or for any other purpose.


With particular reference to FIGS. 16-18, as the cartridge assembly 150 is received within the jaw member 156 of the loading unit 100, the first and second contact members 216a, 216b of the chip assembly 212 engage the first and second contact member 206a, 206b of the connector assembly 202. Once the first and second contact members 216a, 216b of the chip assembly 212 are engaged with the respective first and second contact members 206a, 206b of the connector assembly 202, information stored on the identification chip 218 of the chip assembly 212 may be relayed to the handle assembly 12 upon connection of the loading unit 100 to the body portion 14 of the surgical stapler 10. As described above, the identification assembly 200 is connected to the surgical stapler 10 (FIG. 1) via a conductor, e.g., electrical ribbon or cable “R1” (FIGS. 7 and 11) extending through the loading unit 100 and by the connection assembly 190 (FIG. 6) which is disposed within a proximal end of the loading unit 100.


The firing lockout assembly 220 will now be described with reference to FIGS. 18-28. The firing lockout assembly 220 is substantially similar to the firing lockout assembly described in U.S. patent application Ser. No. 14/230,516 (“the '516 application”), filed Mar. 31, 2014, and will only be described in detail with reference to the differences therebetween. Accordingly, the content of the '516 application is incorporated by reference herein in its entirety.


The firing lockout assembly 220 includes a latch member 222 which is pivotally supported on a distal end of the lower mounting portion 174. The latch member 222 includes a U-shaped body (FIG. 19) having a proximal base member 224 and two spaced distally extending legs 226. As shown, the base member 224 is provided with a blocking member 224a which defines a blocking surface and is welded or secured to the base member 224 to provide additional support to the base member 224. Alternatively, the base member 224 and the blocking member 224a are integrally or monolithically formed. The latch member 222 is pivotal from a first position (FIG. 21) to a second position (FIG. 22). In the first position shown in FIG. 21, the blocking member 224a of the latch member 222 is aligned with the stop surface 184a of the drive member 182 to prevent advancement of the drive member 182 within the tool assembly 104. In the second position shown in FIG. 22, the blocking member 224a is misaligned with the stop surface 184a of the drive member 182 to permit advancement of the drive member 182 within the tool assembly 104.


With particular reference to FIGS. 18-20, each of the legs 226 of the latch member 222 has a centrally located pivot member 228 and an abutment surface 230. The pivot members 228 are supported on hooked arms 174b (FIG. 20) of the lower mounting portion 174 of the mounting assembly 170 to pivotally support the latch member 222 on the lower mounting portion 174. A biasing member includes a pair of springs 232 (FIG. 18) which is supported within respective bores 175a (FIG. 18) formed in a distal face of the lower mounting portion 174 to urge the latch member 222 towards the first position. Each of the springs 232 is positioned to engage a nub 230a formed on the respective abutment surfaces 230 of the latch member 222 to bias the latch member 222 in a counter-clockwise direction as viewed in FIG. 24. A distal end of each of the legs 226 includes a downwardly extending projection 234 which is positioned to extend through an opening 163 (FIG. 20) defined in the sled 162 when the sled 162 is in a retracted position, the latch member 222 is in the first position and the anvil assembly 130 and the cartridge assembly 150 are in an approximated position.


A pair of springs 236 is positioned between the inner surface 156b (FIG. 10) of the jaw member 156 and a respective bore 175b (FIG. 20) defined in a bottom surface of the lower mounting portion 174 to urge the tool assembly 104 to the unapproximated position (FIG. 2). The jaw member 156 includes a pair of cylinders 158 (FIGS. 10 and 11) for engaging springs 236.


Referring to FIGS. 23 and 24, when the drive member 182 is in the fully retracted position and the tool assembly 104 is in the unapproximated or open position, the upper and lower flanges 186a, 186b of the working end 184 of the drive member 182 are spaced proximally of the sled 162 and proximally of cam surfaces 238a, 238b formed on the anvil plate 134 and the jaw member 156, respectively. In the unapproximated position of the tool assembly 104, the latch member 222 is urged towards a counter-clockwise position by springs 232. The lower mounting portion 174 includes a surface 240 which is positioned to engage the base member 224 or blocking member 224a. Engagement between the blocking member 224a and the surface 240 of the lower mounting portion 174 prevents further counter-clockwise rotation of the latch member 222 to retain the latch member 222 in the first position. As shown in FIG. 25, the blocking member 224a engages a gusset 174c of the lower mounting portion 174 to prevent distal movement of the latch member 222 when the firing lockout assembly 220 is in the locked configuration.


The operation of the firing lockout assembly 220 is described in detail in the '516 application. Briefly, during firing of the loading unit 100, the latch member 222 of the firing lockout assembly 220 is pivoted about the pivot members 174b of the lower mounting portion 174. As described above, the retention blade 176 is received within slot 177 in the lower mounting portion 174. As illustrated in FIG. 26, the curved surface 176a of the retention blade 176 accommodates the arcuate motion of the blocking member 224a of the latch member 222 to prevent proximal movement of the latch member 222 during firing of the loading unit 100. Proximal movement of the latch member 222 could cause the pivot members 228 to separate from the hooked arms 174b of the lower mounting portion 174. Separation of the latch member 222 from the lower mounting portion 174 during firing of the loading unit 100 may result in misfiring of the loading unit 100 and/or prevent the firing lockout assembly 220 from functioning properly.


Prior to firing of the loading unit 100, the tool assembly 104 may be articulated relative to the proximal body portion 102. During articulation of the tool assembly 104, limiting member 176b of retention blade 176 engages the second coupling member 114b which extends from the proximal body portion 102 of the loading unit 100 to limit the articulation of the tool assembly 104 relative to the proximal body portion 102.


With reference to FIGS. 29 and 30, the shipping wedge 300 of cartridge assembly 150 is configured to maintain staples “S” (FIG. 3) within staple retention slots 153b of cartridge body 154 and prevent actuation of tool assembly 104 of loading unit 100 prior to removal. The shipping wedge 300 includes an elongate body 302 defining an elongate recess 303 (FIG. 30) along a bottom surface of the elongate body. A flange 304 extends from within the elongated recess 303 and includes a plurality of protrusions 304 for securing flange 304 within elongate slot 153a (FIG. 14) of the cartridge body 154 (FIG. 29). A proximal end of the elongate body 302 includes a raised portion 306 (FIG. 29) configured to prevent approximation of the cartridge assembly 150 (FIG. 2) towards the anvil assembly 130 (FIG. 2) once the cartridge assembly 150 is loaded within the jaw member 156 (FIG. 2) of the tool assembly 104 and prior to removal of the shipping wedge 300. A distal end of the elongate body 302 includes a projection 308 which is positioned and configured to be grasped by a clinician to facilitate separation of the shipping wedge 300 from the cartridge assembly 150. A plurality of tabs 310 extend from the elongate body 302 for engaging the cartridge body 154 of the cartridge assembly 150 to releasable secure the shipping wedge 300 to the cartridge body 154 of the cartridge assembly 150.


With reference now to FIGS. 31 and 32, a loading unit according to another embodiment of the present disclosure is shown generally as loading unit 400. The loading unit 400 is substantially similar to the loading unit 100 described hereinabove and will only be described as relates it to the differences therebetween.


The loading unit 400 includes an electrical conductor, i.e., a flexible cable or ribbon “R2”, for electrical coupling the connection assembly 190, disposed on a proximal end of the proximal body portion 402 of the loading unit 400, with an identification assembly 200 (FIG. 8), disposed within the tool assembly 304 of the loading unit 400. The flexible cable “R2” includes a strain relief portion including a plurality of coils “c”. As shown, the flexible cable “R2” includes seven (7) coils “c” of decreasing height from a proximal portion of the flexible cable “R2” to a distal portion of the flexible cable “R2”. It is envisioned that flexible cable “R2” may include more or less than seven (7) coils “c” and/or that the height of the coils may increase from the proximal portion to the distal portion. Alternatively, the heights of the coils “c” may be uniform or vary in a random or uniform manner. Although shown as having uniform spacing between the coils “c”, it is envisioned that the spacing between the coils “c” may be different.


During articulation of the tool assembly 404 of the loading unit 400 relative to the proximal body portion 402 of the loading unit 400, the flexible cable “R2” experiences strain. The strain experienced by the flexible cable “R2” is a result of the distance between the connection assembly 190 proximal body portion 402 and the identification assembly 200 disposed within the tool assembly 404 changing as the tool assembly 404 articulates relative to the proximal body portion 402. In particular, the distance between the connection assembly 190 and the identification assembly 200 increases as the tool assembly 404 articulates in a first direction, as indicated by arrow “D” in FIG. 31, and the distance between the connection assembly 190 and the identification assembly 200 decreases as the tool assembly 404 articulates in a second direction, as indicated by arrow “E” in FIG. 31.


The coils “c” of the flexible cable “R2” allow the flexible cable “C” to have a variable length by deforming in response to a strain on the flexible cable “C”. In particular, when tension is applied to a distal end of the flexible cable “R2”, as indicated by arrow “A” in FIG. 32, flexion of each coil “c”, as indicated by arrows “a1” in FIG. 32, and/or outward flexion of the coils “c” relative to each other, as indicated by arrows “a2” in FIG. 32, permits the flexible cable “R2” to lengthen, thereby relieving the strain on the flexible cable “R2”. When compression is applied to the flexible cable “C”, as indicted by arrow “B” in FIG. 32, inward flexion of each coil “c”, as indicated by arrows “b1,”, and/or inward flexion of the coils “c” relative to each other, as indicted by arrows “b2” in FIG. 32, permits the flexible cable “R2” to shorten, thereby relieving the strain on the flexible cable “C”.


The proximal body portion 402 of loading unit 400 includes an upper housing half 410a and a lower housing half 410b. A channel 417 extends a length of upper housing half 310a and receives the flexible cable “R2”. The channel 417 includes proximal and distal portions 417a, 417b for receiving the proximal and distal portions of the flexible cable “R2”, and a central portion 417c for receiving the coils “c” of the flexible cable “R2” and accommodating the flexion of the coils “c” when the flexible cable “R2” is experiencing strain.


The flexible cable “R2” extends the length of the proximal body portion 402 of loading unit 400 and into the tool assembly 404 of loading unit 400. The flexible cable “R2” electrically couples the connection assembly 190 disposed with the proximal body portion 402 of the loading unit 400 with the identification assembly 200 (FIG. 8) disposed within the tool assembly 404 of the loading unit 400. The flexible cable “R2” may be loosely received within the channel 417 to permit longitudinal movement of the flexible cable “R2”. In one embodiment, the proximal end of flexible cable “C” is axially fixed within the proximal portion 417a of the channel 417 using, e.g., adhesives, over-molding.


As described above, the flexible cable “R2” extends between a proximal end of the body portion 402 of the loading unit 400 and the tool assembly 404 of the loading unit 400. During articulation of the tool assembly 404 of the loading unit 400 relative to the proximal body portion 402 of the loading unit 300, a strain, i.e., tension or compression, is experienced by the flexible cable “R2”. In particular, articulating of the tool assembly 404 relative to the proximal body portion 402 in a first direction, as indicated by arrow “D” in FIG. 31, creates a pulling force on distal end of the flexible cable “R2”, as indicated by arrow “A” in FIG. 32, and articulating of the tool assembly 404 relative to the proximal body portion 402 in a second direction, as indicted by arrow “E” in FIG. 31, creates a pushing force on the distal end of the flexible cable “R2”, as indicated by arrow “B” in FIG. 32. To accommodate the strain experienced by the flexible cable “R2” during articulation of the tool assembly 404, and thereby prevent breaking and/or buckling of the flexible cable “R2”, as described above, the coils “c” of the flexible cable “R2” are configured to flex individually, and relative to each other. As the coils “c” flex outwardly, the flexible cable “R2” stretches, and as the coils “c” flex inwardly, the flexible cable “R2” compresses. Return of the tool assembly 404 to the non-articulated position causes the coils “c” of the flexible cable “R2” to return to the non-strained configuration.


Although shown and described as being incorporated into the loading unit 400, it is envisioned that the flexible cable “R2” may be incorporated into any device having an articulating tool assembly and requiring electrical coupling of the articulating tool assembly to a handle assembly.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. A surgical apparatus comprising: a body portion having a proximal end and a distal end and including a connection assembly supported on the proximal end;a tool assembly supported on a distal end of the body portion and being articulable relative to the body portion, the tool assembly including an identification assembly; andan electrical conductor extending from the connection assembly to the identification assembly, the electrical conductor including a strain relief portion configured to adjust in length to accommodate articulation of the tool assembly relative to the body portion.
  • 2. The surgical apparatus of claim 1, wherein the strain relief portion includes a plurality of coils.
  • 3. The surgical apparatus of claim 2, wherein a height of the plurality of coils decreases from a proximal portion of the plurality of coils to a distal portion of the plurality of coils.
  • 4. The surgical apparatus of claim 2, wherein a height of the plurality of coils is uniform from a proximal portion of the plurality of coils to a distal portion.
  • 5. The surgical apparatus of claim 2, wherein the plurality of coils are equally spaced relative to each other.
  • 6. The surgical apparatus of claim 1, wherein the body portion defines a channel for receiving the electrical conductor.
  • 7. The surgical apparatus of claim 1, wherein the channel includes a central portion for receiving the strain relief portion of the electrical conductor.
  • 8. The surgical apparatus of claim 1, wherein the surgical apparatus includes a powered handle assembly, the electrical conductor electrically coupling the identification assembly to the handle assembly.
  • 9. The surgical apparatus of claim 1, wherein the tool assembly includes a stapling assembly.
  • 10. The surgical apparatus of claim 9, wherein the stapling assembly includes a removable cartridge assembly.
  • 11. The surgical apparatus of claim 1, wherein the electrical conductor includes a flexible cable.
  • 12. The surgical apparatus of claim 11, wherein the flexible cable includes a proximal portion and a distal portion, the proximal portion being axially affixed to the body portion.
  • 13. The surgical apparatus of claim 1, wherein the electrical conductor is axially affixed to the body portion using adhesive.
  • 14. The surgical apparatus of claim 1, wherein the strain relief portion is configured to permit lengthening of the electrical conductor.
  • 15. The surgical apparatus of claim 1, wherein the strain relief portion is configured to permit shortening of the electrical conductor.
  • 16. The surgical apparatus of claim 1, wherein the body portion, the tool assembly, and the electrical conductor are formed as a loading unit which is configured to be releasably coupled to a powered handle assembly.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/121,049 filed Feb. 26, 2015, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (1350)
Number Name Date Kind
3079606 Bobrov et al. Mar 1963 A
3490675 Green et al. Jan 1970 A
3499591 Green Mar 1970 A
3777538 Weatherly et al. Dec 1973 A
3882854 Hulka et al. May 1975 A
4027510 Hiltebrandt Jun 1977 A
4086926 Green et al. May 1978 A
4241861 Fleischer Dec 1980 A
4244372 Kapitanov et al. Jan 1981 A
4429695 Green Feb 1984 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4589413 Malyshev et al. May 1986 A
4596351 Fedotov et al. Jun 1986 A
4602634 Barkley Jul 1986 A
4605001 Rothfuss et al. Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4633861 Chow et al. Jan 1987 A
4633874 Chow et al. Jan 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4728020 Green et al. Mar 1988 A
4752024 Green et al. Jun 1988 A
4784137 Kulik et al. Nov 1988 A
4863088 Redmond et al. Sep 1989 A
4869415 Fox Sep 1989 A
4892244 Fox et al. Jan 1990 A
4955959 Tompkins et al. Sep 1990 A
4978049 Green Dec 1990 A
4991764 Mericle Feb 1991 A
5014899 Presty et al. May 1991 A
5031814 Tompkins et al. Jul 1991 A
5040715 Green et al. Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5071430 de Salis et al. Dec 1991 A
5074454 Peters Dec 1991 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5106008 Tompkins et al. Apr 1992 A
5111987 Moeinzadeh et al. May 1992 A
5129570 Schulze et al. Jul 1992 A
5141144 Foslien et al. Aug 1992 A
5156315 Green et al. Oct 1992 A
5156614 Green et al. Oct 1992 A
5163943 Mohiuddin et al. Nov 1992 A
5170925 Madden et al. Dec 1992 A
5171247 Hughett et al. Dec 1992 A
5173133 Morin et al. Dec 1992 A
5180092 Crainich Jan 1993 A
5188274 Moeinzadeh et al. Feb 1993 A
5220928 Oddsen et al. Jun 1993 A
5221036 Takase Jun 1993 A
5242457 Akopov et al. Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5253793 Green et al. Oct 1993 A
5263629 Trumbull et al. Nov 1993 A
RE34519 Fox et al. Jan 1994 E
5275323 Schulze et al. Jan 1994 A
5282807 Knoepfler Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5312023 Green et al. May 1994 A
5318221 Green et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5328077 Lou Jul 1994 A
5330486 Wilk Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5336232 Green et al. Aug 1994 A
5344061 Crainich Sep 1994 A
5352238 Green et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5364001 Bryan Nov 1994 A
5364002 Green et al. Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5366133 Geiste Nov 1994 A
5376095 Ortiz Dec 1994 A
5379933 Green et al. Jan 1995 A
5381943 Allen et al. Jan 1995 A
5382255 Castro et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5405072 Zlock et al. Apr 1995 A
5407293 Crainich Apr 1995 A
5413268 Green et al. May 1995 A
5415334 Williamson et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417361 Williamson, IV May 1995 A
5423471 Mastri et al. Jun 1995 A
5425745 Green et al. Jun 1995 A
5431322 Green et al. Jul 1995 A
5431323 Smith et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5441193 Gravener Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5456401 Green et al. Oct 1995 A
5464300 Crainich Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5472132 Savage et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480089 Blewell Jan 1996 A
5482054 Slater et al. Jan 1996 A
5482197 Green et al. Jan 1996 A
5484095 Green et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5486185 Freitas et al. Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5490856 Person et al. Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5501689 Green et al. Mar 1996 A
5505363 Green et al. Apr 1996 A
5507426 Young et al. Apr 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5529235 Boiarski et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5551622 Yoon Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554164 Wilson et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5573169 Green et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5579107 Wright et al. Nov 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5607095 Smith et al. Mar 1997 A
5615820 Viola Apr 1997 A
5618291 Thompson et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5628446 Geiste et al. May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewell May 1997 A
5630541 Williamson, IV et al. May 1997 A
5632432 Schulze et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636780 Green et al. Jun 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657921 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662259 Yoon Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662666 Onuki et al. Sep 1997 A
5665085 Nardella Sep 1997 A
5667517 Hooven Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5690269 Bolanos et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713505 Huitema Feb 1998 A
5715988 Palmer Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5732806 Foshee et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5749893 Vidal et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5769303 Knodel et al. Jun 1998 A
5769892 Kingwell Jun 1998 A
5772099 Gravener Jun 1998 A
5772673 Cuny et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5810811 Yates et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5836147 Schnipke Nov 1998 A
5862972 Green et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5878938 Bittner et al. Mar 1999 A
5893506 Powell Apr 1999 A
5894979 Powell Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5901895 Heaton et al. May 1999 A
5911352 Racenet et al. Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5922001 Yoon Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5980510 Tsonton et al. Nov 1999 A
5988479 Palmer Nov 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6079606 Milliman et al. Jun 2000 A
6099551 Gabbay Aug 2000 A
6109500 Alli et al. Aug 2000 A
6131789 Schulze et al. Oct 2000 A
6131790 Piraka Oct 2000 A
6155473 Tompkins et al. Dec 2000 A
6197017 Brock et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6269977 Moore Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6315183 Piraka Nov 2001 B1
6315184 Whitman Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6391038 Vargas et al. May 2002 B2
6398797 Bombard et al. Jun 2002 B2
6436097 Nardella Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6463623 Ahn et al. Oct 2002 B2
6478804 Vargas et al. Nov 2002 B2
6488196 Fenton, Jr. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6544274 Danitz et al. Apr 2003 B2
6554844 Lee et al. Apr 2003 B2
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6592597 Grant et al. Jul 2003 B2
6594552 Nowlin et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6612053 Liao Sep 2003 B2
6619529 Green et al. Sep 2003 B2
D480808 Wells et al. Oct 2003 S
6644532 Green et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6681978 Geiste et al. Jan 2004 B2
6698643 Whitman Mar 2004 B2
6716232 Vidal et al. Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6731473 Li et al. May 2004 B2
6755338 Hahnen et al. Jun 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6808262 Chapoy et al. Oct 2004 B2
6817509 Geiste et al. Nov 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6843403 Whitman Jan 2005 B2
RE38708 Bolanos et al. Mar 2005 E
6877647 Green et al. Apr 2005 B2
6889116 Jinno May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6962594 Thevenet Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6994714 Vargas et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7032799 Viola et al. Apr 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7111769 Wales et al. Sep 2006 B2
7114642 Whitman Oct 2006 B2
7121446 Arad et al. Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7159750 Racenet et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7188758 Viola et al. Mar 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7213736 Wales et al. May 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238195 Viola Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7258262 Mastri et al. Aug 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7287682 Ezzat et al. Oct 2007 B1
7293685 Ehrenfels et al. Nov 2007 B2
7296722 Ivanko Nov 2007 B2
7296724 Green et al. Nov 2007 B2
7296772 Wang Nov 2007 B2
7300444 Nielsen et al. Nov 2007 B1
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7326232 Viola et al. Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7334717 Rethy et al. Feb 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7367485 Shelton, IV et al. May 2008 B2
7377928 Lubik et al. May 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7399310 Edoga et al. Jul 2008 B2
7401720 Durrani Jul 2008 B1
7401721 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7407074 Ortiz et al. Aug 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7419495 Menn et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438208 Larson Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7448525 Shelton, IV et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7458494 Matsutani et al. Dec 2008 B2
7461767 Viola et al. Dec 2008 B2
7462185 Knodel Dec 2008 B1
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464848 Green et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7473258 Clauson et al. Jan 2009 B2
7481347 Roy Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7513408 Shelton, IV et al. Apr 2009 B2
7517356 Heinrich Apr 2009 B2
7537602 Whitman May 2009 B2
7543729 Ivanko Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7543731 Green et al. Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7556185 Viola Jul 2009 B2
7556186 Milliman Jul 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7559453 Heinrich et al. Jul 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7571845 Viola Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7584880 Racenet et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7597230 Racenet et al. Oct 2009 B2
7600663 Green Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7631794 Rethy et al. Dec 2009 B2
7635073 Heinrich Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7635373 Ortiz Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7678121 Knodel Mar 2010 B1
7681772 Green et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7682368 Bombard et al. Mar 2010 B1
7690547 Racenet et al. Apr 2010 B2
7694865 Scirica Apr 2010 B2
7699205 Ivanko Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721935 Racenet et al. May 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7740160 Viola Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744628 Viola Jun 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753248 Viola Jul 2010 B2
7757924 Gerbi et al. Jul 2010 B2
7757925 Viola et al. Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766924 Bombard et al. Aug 2010 B1
7766928 Ezzat et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7789283 Shah Sep 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798385 Boyden et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7810690 Bilotti et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815090 Marczyk Oct 2010 B2
7815091 Marczyk Oct 2010 B2
7815092 Whitman et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819796 Blake et al. Oct 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7823761 Boyden et al. Nov 2010 B2
7824426 Racenet et al. Nov 2010 B2
7828186 Wales Nov 2010 B2
7828187 Green et al. Nov 2010 B2
7828188 Jankowski Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7841503 Sonnenschein et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7850703 Bombard et al. Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7861907 Green et al. Jan 2011 B2
7866524 Krehel Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866526 Green et al. Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7866528 Olson et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7886952 Scirica et al. Feb 2011 B2
7891532 Mastri et al. Feb 2011 B2
7891533 Green et al. Feb 2011 B2
7891534 Wenchell et al. Feb 2011 B2
7896214 Farascioni Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7901416 Nolan et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7909224 Prommersberger Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7913893 Mastri et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918276 Guignard et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7922064 Boyden et al. Apr 2011 B2
7926691 Viola et al. Apr 2011 B2
7926692 Racenet et al. Apr 2011 B2
7934628 Wenchell et al. May 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7934631 Balbierz et al. May 2011 B2
7942300 Rethy et al. May 2011 B2
7942303 Shah May 2011 B2
7950560 Zemlok et al. May 2011 B2
7950561 Aranyi May 2011 B2
7950562 Beardsley et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954683 Knodel et al. Jun 2011 B1
7954684 Boudreaux Jun 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963431 Scirica Jun 2011 B2
7963432 Knodel et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7975894 Boyden et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7988026 Knodel et al. Aug 2011 B2
7988027 Olson et al. Aug 2011 B2
7988028 Farascioni et al. Aug 2011 B2
7992758 Whitman et al. Aug 2011 B2
7997468 Farascioni Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006885 Marczyk Aug 2011 B2
8006887 Marczyk Aug 2011 B2
8007505 Weller et al. Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011552 Ivanko Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8015976 Shah Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028882 Viola Oct 2011 B2
8028883 Stopek Oct 2011 B2
8028884 Sniffin et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8033441 Marczyk Oct 2011 B2
8033442 Racenet et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8038044 Viola Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056791 Whitman Nov 2011 B2
8061577 Racenet et al. Nov 2011 B2
8066166 Demmy et al. Nov 2011 B2
8070033 Milliman et al. Dec 2011 B2
8070034 Knodel Dec 2011 B1
8070035 Holsten et al. Dec 2011 B2
8074858 Marczyk Dec 2011 B2
8074859 Kostrzewski Dec 2011 B2
8074862 Shah Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8083119 Prommersberger Dec 2011 B2
8083120 Shelton, IV et al. Dec 2011 B2
8087563 Milliman et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091754 Ehrenfels et al. Jan 2012 B2
8091756 Viola Jan 2012 B2
8092493 Marczyk Jan 2012 B2
8096457 Manoux et al. Jan 2012 B1
8096459 Ortiz et al. Jan 2012 B2
8096460 Blier et al. Jan 2012 B2
8100309 Marczyk Jan 2012 B2
8100310 Zemlok Jan 2012 B2
8102008 Wells Jan 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113409 Cohen et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8123101 Racenet et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8127976 Scirica et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8132706 Marczyk et al. Mar 2012 B2
8136713 Hathaway et al. Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8152041 Kostrzewski Apr 2012 B2
8157148 Scirica Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8162197 Mastri et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8167186 Racenet et al. May 2012 B2
8172121 Krehel May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8181837 Roy May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186557 Cohen et al. May 2012 B2
8186558 Sapienza May 2012 B2
8186559 Whitman May 2012 B1
8186560 Hess et al. May 2012 B2
8193044 Kenneth Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8205619 Shah et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210412 Marczyk Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8216236 Heinrich et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8235272 Nicholas et al. Aug 2012 B2
8235273 Olson et al. Aug 2012 B2
8235274 Cappola Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8240536 Marczyk Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245897 Tzakis et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245931 Shigeta Aug 2012 B2
8252009 Weller et al. Aug 2012 B2
8256653 Farascioni Sep 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8256656 Milliman et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8272551 Knodel et al. Sep 2012 B2
8272553 Mastri et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8276594 Shah Oct 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8286847 Taylor Oct 2012 B2
8286848 Wenchell et al. Oct 2012 B2
8286850 Viola Oct 2012 B2
8292146 Holsten et al. Oct 2012 B2
8292147 Viola Oct 2012 B2
8292148 Viola Oct 2012 B2
8292149 Ivanko Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292153 Jankowski Oct 2012 B2
8292154 Marczyk Oct 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8292156 Kostrzewski Oct 2012 B2
8292158 Sapienza Oct 2012 B2
8308040 Huang et al. Nov 2012 B2
8308041 Kostrzewski Nov 2012 B2
8308042 Aranyi Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8308044 Viola Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8308757 Hillstead et al. Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8317071 Knodel Nov 2012 B1
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328065 Shah Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8336751 Scirica Dec 2012 B2
8336753 Olson et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8342380 Viola Jan 2013 B2
8348123 Scirica et al. Jan 2013 B2
8348124 Scirica Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348126 Olson et al. Jan 2013 B2
8348127 Marczyk Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8356740 Knodel Jan 2013 B1
8357174 Roth et al. Jan 2013 B2
8360294 Scirica Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360298 Farascioni et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8365971 Knodel Feb 2013 B1
8365972 Aranyi et al. Feb 2013 B2
8365973 White et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8381828 Whitman et al. Feb 2013 B2
8381961 Holsten et al. Feb 2013 B2
8387848 Johnson et al. Mar 2013 B2
8387849 Buesseler et al. Mar 2013 B2
8387850 Hathaway et al. Mar 2013 B2
8388652 Viola Mar 2013 B2
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393516 Kostrzewski Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8397972 Kostrzewski Mar 2013 B2
8403195 Beardsley et al. Mar 2013 B2
8403196 Beardsley et al. Mar 2013 B2
8403197 Vidal et al. Mar 2013 B2
8403198 Sorrentino et al. Mar 2013 B2
8403956 Thompson et al. Mar 2013 B1
8408439 Huang et al. Apr 2013 B2
8408440 Olson et al. Apr 2013 B2
8408442 Racenet et al. Apr 2013 B2
8413868 Cappola Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418907 Johnson et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8419768 Marczyk Apr 2013 B2
8424735 Viola et al. Apr 2013 B2
8424736 Scirica et al. Apr 2013 B2
8424737 Soirica Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8439244 Holcomb et al. May 2013 B2
8439245 Knodel et al. May 2013 B2
8439246 Knodel May 2013 B1
8444036 Shelton, IV May 2013 B2
8444037 Nicholas et al. May 2013 B2
8444038 Farascioni et al. May 2013 B2
8448832 Viola et al. May 2013 B2
8453652 Stopek Jun 2013 B2
8453905 Holcomb et al. Jun 2013 B2
8453906 Huang et al. Jun 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453909 Olson et al. Jun 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453913 Milliman Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8454628 Smith et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459521 Zemlok et al. Jun 2013 B2
8459522 Marczyk Jun 2013 B2
8459523 Whitman Jun 2013 B2
8459524 Pribanic et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8469252 Holcomb et al. Jun 2013 B2
8469254 Czemik et al. Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479967 Marczyk Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8479969 Shelton, IV Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8490852 Viola Jul 2013 B2
8496152 Viola Jul 2013 B2
8496154 Marczyk et al. Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8505799 Viola et al. Aug 2013 B2
8505802 Viola et al. Aug 2013 B2
8511575 Cok Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8517240 Mata et al. Aug 2013 B1
8517241 Nicholas et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8523041 Ishitsuki et al. Sep 2013 B2
8523042 Masiakos et al. Sep 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8534528 Shelton, IV Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540733 Whitman et al. Sep 2013 B2
8544711 Ma et al. Oct 2013 B2
8550325 Cohen et al. Oct 2013 B2
8556151 Viola Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573463 Scirica et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579177 Beetel Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8596515 Okoniewski Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8608047 Holsten et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8613384 Pastorelli et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8616430 (Prommersberger) Stopek et al. Dec 2013 B2
8627994 Zemlok et al. Jan 2014 B2
8628544 Farascioni Jan 2014 B2
8631988 Viola Jan 2014 B2
8631989 Aranyi et al. Jan 2014 B2
8631991 Cropper et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636190 Zemlok et al. Jan 2014 B2
8636192 Farascioni et al. Jan 2014 B2
8636762 Whitman et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8662371 Viola Mar 2014 B2
8668129 Olson Mar 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8672209 Crainich Mar 2014 B2
8678263 Viola Mar 2014 B2
8678990 Wazer et al. Mar 2014 B2
8679155 Knodel et al. Mar 2014 B2
8684247 Scirica et al. Apr 2014 B2
8684249 Racenet et al. Apr 2014 B2
8690039 Beardsley et al. Apr 2014 B2
8695865 Smith et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8701959 Shah Apr 2014 B2
8701961 Ivanko Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8714429 Demmy May 2014 B2
8715277 Weizman May 2014 B2
8720766 Hess et al. May 2014 B2
8721630 Ortiz et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727200 Roy May 2014 B2
8733612 Ma May 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740039 Farascioni Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8763877 Schall et al. Jul 2014 B2
8763879 Shelton, IV et al. Jul 2014 B2
8770458 Scirica Jul 2014 B2
8777082 Scirica Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8783542 Riestenberg et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8789738 Knodel et al. Jul 2014 B2
8789739 Swensgard Jul 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8814024 Woodard, Jr. et al. Aug 2014 B2
8814025 Miller et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820605 Shelton, IV Sep 2014 B2
8820607 Marczyk Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8827134 Viola et al. Sep 2014 B2
8833632 Swensgard Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8840603 Shelton, IV et al. Sep 2014 B2
8851355 Aranyi et al. Oct 2014 B2
9016546 Demmy et al. Apr 2015 B2
9027817 Milliman et al. May 2015 B2
20040108357 Milliman et al. Jun 2004 A1
20040199180 Knodel et al. Oct 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050103819 Racenet et al. May 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20060049229 Milliman et al. Mar 2006 A1
20060180634 Shelton et al. Aug 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070073341 Smith et al. Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070106317 Shelton et al. May 2007 A1
20070119901 Ehrenfels et al. May 2007 A1
20070145096 Viola et al. Jun 2007 A1
20070170225 Shelton et al. Jul 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080110961 Voegele et al. May 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080287987 Boyden et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090090766 Knodel Apr 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090272787 Scirica Nov 2009 A1
20090277949 Viola et al. Nov 2009 A1
20090283568 Racenet et al. Nov 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20100012703 Calabrese et al. Jan 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100127041 Morgan et al. May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100155453 Bombard et al. Jun 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100249802 May et al. Sep 2010 A1
20100252611 Ezzat et al. Oct 2010 A1
20100305552 Shelton, IV et al. Dec 2010 A1
20110006099 Hall et al. Jan 2011 A1
20110006101 Hall et al. Jan 2011 A1
20110017801 Zemlok et al. Jan 2011 A1
20110024477 Hall Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110036891 Zemlok et al. Feb 2011 A1
20110068148 Hall et al. Mar 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110101069 Bombard et al. May 2011 A1
20110108603 Racenet et al. May 2011 A1
20110114702 Farascioni May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110132961 Whitman et al. Jun 2011 A1
20110132964 Weisenburgh, II et al. Jun 2011 A1
20110139851 McCuen Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110155781 Swensgard et al. Jun 2011 A1
20110155787 Baxter, III et al. Jun 2011 A1
20110163146 Ortiz et al. Jul 2011 A1
20110163149 Viola Jul 2011 A1
20110192881 Balbierz et al. Aug 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110192883 Whitman et al. Aug 2011 A1
20110204119 McCuen Aug 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110288573 Yates et al. Nov 2011 A1
20110290851 Shelton, IV Dec 2011 A1
20110290853 Shelton, IV et al. Dec 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110290855 Moore et al. Dec 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20120016362 Heinrich et al. Jan 2012 A1
20120037683 Lee Feb 2012 A1
20120053406 Conlon et al. Mar 2012 A1
20120061446 Knodel et al. Mar 2012 A1
20120061450 Kostrzewski Mar 2012 A1
20120074196 Shelton, IV et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120078248 Worrell et al. Mar 2012 A1
20120080474 Farascioni Apr 2012 A1
20120080475 Smith et al. Apr 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080479 Shelton, IV Apr 2012 A1
20120080481 Widenhouse et al. Apr 2012 A1
20120080482 Schall et al. Apr 2012 A1
20120080484 Morgan et al. Apr 2012 A1
20120080485 Woodard, Jr. et al. Apr 2012 A1
20120080486 Woodard, Jr. et al. Apr 2012 A1
20120080488 Shelton, IV et al. Apr 2012 A1
20120080489 Shelton, IV et al. Apr 2012 A1
20120080490 Shelton, IV et al. Apr 2012 A1
20120080491 Shelton, IV et al. Apr 2012 A1
20120080493 Shelton, IV et al. Apr 2012 A1
20120080494 Thompson et al. Apr 2012 A1
20120080495 Holcomb et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120080499 Schall et al. Apr 2012 A1
20120080502 Morgan et al. Apr 2012 A1
20120091183 Manoux et al. Apr 2012 A1
20120100200 Belcheva et al. Apr 2012 A1
20120138659 Marczyk et al. Jun 2012 A1
20120175399 Shelton et al. Jul 2012 A1
20120181322 Whitman et al. Jul 2012 A1
20120187179 Gleiman Jul 2012 A1
20120193394 Holcomb et al. Aug 2012 A1
20120193399 Holcomb et al. Aug 2012 A1
20120199632 Spivey et al. Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120223123 Baxter, III et al. Sep 2012 A1
20120228358 Zemlok et al. Sep 2012 A1
20120234893 Schuckmann et al. Sep 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120234899 Scheib et al. Sep 2012 A1
20120239009 Mollere et al. Sep 2012 A1
20120241491 Aldridge et al. Sep 2012 A1
20120241492 Shelton, IV et al. Sep 2012 A1
20120241493 Baxter, III et al. Sep 2012 A1
20120241496 Mandakolathur Vasudevan et al. Sep 2012 A1
20120241497 Mandakolathur Vasudevan et al. Sep 2012 A1
20120241498 Gonzalez et al. Sep 2012 A1
20120241499 Baxter, III et al. Sep 2012 A1
20120241500 Timmer et al. Sep 2012 A1
20120241501 Swayze et al. Sep 2012 A1
20120241502 Aldridge et al. Sep 2012 A1
20120241503 Baxter, III et al. Sep 2012 A1
20120241504 Soltz et al. Sep 2012 A1
20120241505 Alexander, III et al. Sep 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120248170 Marczyk Oct 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120255986 Petty et al. Oct 2012 A1
20120286021 Kostrzewski Nov 2012 A1
20120286022 Olson et al. Nov 2012 A1
20120292369 Munro, III et al. Nov 2012 A1
20120298719 Shelton, IV et al. Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20120312858 Patankar et al. Dec 2012 A1
20120312859 Gupta et al. Dec 2012 A1
20120312860 Ming et al. Dec 2012 A1
20120312861 Gurumurthy et al. Dec 2012 A1
20120318842 Anim et al. Dec 2012 A1
20120318843 Henderson et al. Dec 2012 A1
20120318844 Shelton, IV et al. Dec 2012 A1
20130008937 Viola Jan 2013 A1
20130012983 Kleyman Jan 2013 A1
20130015231 Kostrzewski Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130032626 Smith et al. Feb 2013 A1
20130037594 Dhakad et al. Feb 2013 A1
20130037595 Gupta et al. Feb 2013 A1
20130037596 Bear et al. Feb 2013 A1
20130037597 Katre et al. Feb 2013 A1
20130037598 Marczyk Feb 2013 A1
20130041406 Bear et al. Feb 2013 A1
20130048697 Shelton, IV et al. Feb 2013 A1
20130056518 Swensgard Mar 2013 A1
20130056521 Swensgard Mar 2013 A1
20130062391 Boudreaux et al. Mar 2013 A1
20130062393 Bruewer et al. Mar 2013 A1
20130062394 Smith et al. Mar 2013 A1
20130068815 Bruewer et al. Mar 2013 A1
20130068816 Mandakolathur Vasudevan et al. Mar 2013 A1
20130068818 Kasvikis Mar 2013 A1
20130068821 Huitema et al. Mar 2013 A1
20130075443 Giordano et al. Mar 2013 A1
20130075444 Cappola et al. Mar 2013 A1
20130075445 Balek et al. Mar 2013 A1
20130075446 Wang et al. Mar 2013 A1
20130075447 Weisenburgh, II et al. Mar 2013 A1
20130075448 Schmid et al. Mar 2013 A1
20130075449 Schmid et al. Mar 2013 A1
20130075450 Schmid et al. Mar 2013 A1
20130075451 Balek et al. Mar 2013 A1
20130082086 Hueil et al. Apr 2013 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130087599 Krumanaker et al. Apr 2013 A1
20130087600 Scirica Apr 2013 A1
20130087601 Farascioni Apr 2013 A1
20130087602 Olson et al. Apr 2013 A1
20130087603 Viola Apr 2013 A1
20130092717 Marczyk et al. Apr 2013 A1
20130098964 Smith et al. Apr 2013 A1
20130098965 Kostrzewski et al. Apr 2013 A1
20130098966 Kostrzewski et al. Apr 2013 A1
20130098970 Racenet et al. Apr 2013 A1
20130105545 Burbank May 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105552 Weir et al. May 2013 A1
20130105553 (Tarinelli) Racenet et al. May 2013 A1
20130112730 Whitman et al. May 2013 A1
20130112732 Aranyi et al. May 2013 A1
20130112733 Aranyi et al. May 2013 A1
20130119109 Farascioni et al. May 2013 A1
20130126581 Yates et al. May 2013 A1
20130126582 Shelton, IV et al. May 2013 A1
20130126586 Zhang et al. May 2013 A1
20130140343 Knodel Jun 2013 A1
20130144333 Viola Jun 2013 A1
20130146641 Shelton, IV et al. Jun 2013 A1
20130146642 Shelton, IV et al. Jun 2013 A1
20130146643 Schmid et al. Jun 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130161374 Swayze et al. Jun 2013 A1
20130168431 Zemlok et al. Jul 2013 A1
20130175316 Thompson et al. Jul 2013 A1
20130193188 Shelton, IV et al. Aug 2013 A1
20130237986 Mueller Sep 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130334280 Krehel et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140001232 Cappola et al. Jan 2014 A1
20140001233 Cappola et al. Jan 2014 A1
20140014704 Onukuri et al. Jan 2014 A1
20140014707 Onukuri et al. Jan 2014 A1
20140021242 Hodgkinson et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140027492 Williams Jan 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140061280 Ingmanson et al. Mar 2014 A1
20140076955 Lorenz Mar 2014 A1
20140103092 Kostrzewski et al. Apr 2014 A1
20140110453 Wingardner et al. Apr 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140131418 Kostrzewski May 2014 A1
20140131419 Bettuchi May 2014 A1
20140138423 Whitfield et al. May 2014 A1
20140151431 Hodgkinson et al. Jun 2014 A1
20140166720 Chowaniec et al. Jun 2014 A1
20140166721 Stevenson et al. Jun 2014 A1
20140166724 Schellin et al. Jun 2014 A1
20140166725 Schellin et al. Jun 2014 A1
20140166726 Schellin et al. Jun 2014 A1
20140175146 Knodel Jun 2014 A1
20140175150 Shelton, IV et al. Jun 2014 A1
20140203061 Hodgkinson Jul 2014 A1
20140203062 Viola Jul 2014 A1
20140203063 Hessler et al. Jul 2014 A1
20140239036 Zerkle et al. Aug 2014 A1
20140239037 Boudreaux et al. Aug 2014 A1
20140239038 Leimbach et al. Aug 2014 A1
20140239040 Fanelli et al. Aug 2014 A1
20140239041 Zerkle et al. Aug 2014 A1
20140239042 Simms et al. Aug 2014 A1
20140239043 Simms et al. Aug 2014 A1
20140239044 Hoffman Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20140246471 Jaworek et al. Sep 2014 A1
20140246472 Kimsey et al. Sep 2014 A1
20140246473 Auld Sep 2014 A1
20140246474 Hall et al. Sep 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140246476 Hall et al. Sep 2014 A1
20140246477 Koch, Jr. et al. Sep 2014 A1
20140246478 Baber et al. Sep 2014 A1
20140246479 Baber et al. Sep 2014 A1
20140252062 Mozdzierz Sep 2014 A1
20140252064 Mozdzierz et al. Sep 2014 A1
20140252065 Hessler et al. Sep 2014 A1
20140263537 Leimbach et al. Sep 2014 A1
20140263539 Leimbach et al. Sep 2014 A1
20140263540 Covach et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263542 Leimbach et al. Sep 2014 A1
20140263543 Leimbach et al. Sep 2014 A1
20140263544 Ranucci et al. Sep 2014 A1
20140263546 Aranyi Sep 2014 A1
20140263550 Aranyi et al. Sep 2014 A1
20140263551 Hall et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140263553 Leimbach et al. Sep 2014 A1
20140263554 Leimbach et al. Sep 2014 A1
20140263555 Hufnagel et al. Sep 2014 A1
20140263558 Hausen et al. Sep 2014 A1
20140263562 Patel et al. Sep 2014 A1
20140263564 Leimbach et al. Sep 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140263566 Williams et al. Sep 2014 A1
20140263570 Hopkins et al. Sep 2014 A1
20140276719 Parihar Sep 2014 A1
20140284371 Morgan et al. Sep 2014 A1
20140284372 Kostrzewski Sep 2014 A1
20140291379 Schellin et al. Oct 2014 A1
20140291380 Weaner et al. Oct 2014 A1
20140291383 Spivey et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140309665 Parihar et al. Oct 2014 A1
20140332578 Fernandez et al. Nov 2014 A1
20140339286 Motooka et al. Nov 2014 A1
20140353358 Shelton, IV et al. Dec 2014 A1
20140367445 Ingmanson et al. Dec 2014 A1
20140367446 Ingmanson et al. Dec 2014 A1
20140367448 Cappola Dec 2014 A1
20150048143 Scheib et al. Feb 2015 A1
20150053740 Shelton, IV Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053744 Swayze et al. Feb 2015 A1
20150053749 Shelton, IV et al. Feb 2015 A1
20150054753 Morgan et al. Feb 2015 A1
20150060517 Williams Mar 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150076211 Irka et al. Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150133996 Shelton, IV et al. May 2015 A1
20150134076 Shelton, IV et al. May 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150173744 Shelton, IV et al. Jun 2015 A1
20150173745 Baxter, III et al. Jun 2015 A1
20150173746 Baxter, III et al. Jun 2015 A1
20150173747 Baxter, III et al. Jun 2015 A1
20150173748 Marczyk et al. Jun 2015 A1
20150173749 Shelton, IV et al. Jun 2015 A1
20150173750 Shelton, IV et al. Jun 2015 A1
20150173755 Baxter, III et al. Jun 2015 A1
20150173756 Baxter, III et al. Jun 2015 A1
20150173760 Shelton, IV et al. Jun 2015 A1
20150173761 Shelton, IV et al. Jun 2015 A1
20150173762 Shelton, IV et al. Jun 2015 A1
20150272576 Cappola Oct 2015 A1
20160249928 Cappola Sep 2016 A1
Foreign Referenced Citations (78)
Number Date Country
198654765 Sep 1986 AU
2773414 Nov 2012 CA
2744824 Apr 1978 DE
2903159 Jul 1980 DE
3114135 Oct 1982 DE
4213426 Oct 1992 DE
4300307 Jul 1994 DE
0041022 Dec 1981 EP
0136950 Apr 1985 EP
0140552 May 1985 EP
0156774 Oct 1985 EP
0213817 Mar 1987 EP
0216532 Apr 1987 EP
0220029 Apr 1987 EP
0273468 Jul 1988 EP
0324166 Jul 1989 EP
0324635 Jul 1989 EP
0324637 Jul 1989 EP
0324638 Jul 1989 EP
0365153 Apr 1990 EP
0369324 May 1990 EP
0373762 Jun 1990 EP
0380025 Aug 1990 EP
0399701 Nov 1990 EP
0449394 Oct 1991 EP
0484677 May 1992 EP
0489436 Jun 1992 EP
0503662 Sep 1992 EP
0514139 Nov 1992 EP
0536903 Apr 1993 EP
0537572 Apr 1993 EP
0539762 May 1993 EP
0545029 Jun 1993 EP
0552050 Jul 1993 EP
0552423 Jul 1993 EP
0579038 Jan 1994 EP
0589306 Mar 1994 EP
0591946 Apr 1994 EP
0592243 Apr 1994 EP
0593920 Apr 1994 EP
0598202 May 1994 EP
0598579 May 1994 EP
0600182 Jun 1994 EP
0621006 Oct 1994 EP
0621009 Oct 1994 EP
0656188 Jun 1995 EP
0666057 Aug 1995 EP
0705571 Apr 1996 EP
0760230 Mar 1997 EP
1952769 Aug 2008 EP
2090253 Aug 2009 EP
2090254 Aug 2009 EP
2583630 Apr 2013 EP
2586382 May 2013 EP
391239 Oct 1908 FR
2542188 Sep 1984 FR
2660851 Oct 1991 FR
2681775 Apr 1993 FR
1352554 May 1974 GB
1452185 Oct 1976 GB
1555455 Nov 1979 GB
2048685 Dec 1980 GB
2070499 Sep 1981 GB
2141066 Dec 1984 GB
2165559 Apr 1986 GB
51-149985 Dec 1976 JP
2001-87272 Apr 2001 JP
659146 Apr 1979 SU
728848 Apr 1980 SU
980703 Dec 1982 SU
990220 Jan 1983 SU
08302247 Jul 1983 WO
8910094 Nov 1989 WO
9210976 Jul 1992 WO
9308754 May 1993 WO
9314706 Aug 1993 WO
2004032760 Apr 2004 WO
2009071070 Jun 2009 WO
Non-Patent Literature Citations (1)
Entry
International Search Report dated Jun. 7, 2016, issued in PCT/US2016/019482.
Related Publications (1)
Number Date Country
20160249921 A1 Sep 2016 US
Provisional Applications (1)
Number Date Country
62121049 Feb 2015 US