Surgical apparatus

Information

  • Patent Grant
  • 10292705
  • Patent Number
    10,292,705
  • Date Filed
    Thursday, October 13, 2016
    8 years ago
  • Date Issued
    Tuesday, May 21, 2019
    5 years ago
Abstract
A surgical apparatus includes a handle, an elongate member and a switch actuator. The switch actuator includes an activation link and a switch plunger coupled to the activation link. An electric switch is mounted to the elongate member. A rotatable lock member is mounted to the elongate member and adapted for rotational movement between an unlocked condition and a locked condition. The rotatable lock member includes an actuator stop dimensioned to operatively engage the switch actuator to prevent movement of the switch actuator from a first longitudinal position to a second longitudinal position when in the unlocked condition, and to permit movement of the switch actuator to the second longitudinal position when rotated to the locked condition such that the switch plunger activates the switch. A loading unit is releasably couplable to the rotatable lock member and is secured relative to the elongate member when the rotatable lock member is in the locked condition.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to a surgical fastener apparatus including a handle assembly and a disposable loading unit mountable relative to the handle assembly. More particularly, the present disclosure relates to a fastener apparatus having an activation mechanism to confirm and facilitate proper sequential mounting of multiple loading units relative to the handle assembly.


2. Background of Related Art


Surgical fastener apparatuses for applying fasteners or staples to tissue are well known. These fastener apparatuses include single use devices which are preloaded with one or more staples and are disposable after a single use. Multiple use devices are also available and are preloaded with a plurality of staples. Multiple use devices are disposable after the supply of staples has been exhausted or a surgical procedure has been completed. If the supply of staples is exhausted prior to completion of a surgical procedure, a new device may be required to complete the surgical procedure. The use of additional devices for a single surgical procedure can be expensive.


Covidien, LP, has manufactured and marketed stapling systems having replaceable cartridges, such as the Multifire ENDO GIA™ 30 and Multifire ENDO GIA™ 60 systems, for a number of years. These systems include an electromechanical handle assembly and a surgical loading unit. The loading unit may be a single use loading unit (SULU) or a multiple use loading unit (MULU). The loading unit includes a body and an end effector, and is attached to the handle assembly, and/or an adapter assembly associated with the handle assembly, immediately prior to surgery. The end effector may include a cartridge which houses a plurality of staples. After use, the loading unit can be removed relative to the adapter assembly and replaced with a new loading unit to perform additional stapling and/or cutting operations. A drive assembly is supported within the loading unit and is engagable with an associated drive mechanism of the adapter assembly to control operation of the loading unit.


Although these systems have provided significant clinical benefits, improvements are still possible. For example, since the handle and adapter assemblies are reusable it would be desirable to incorporate a mechanism which facilitates proper and repetitive coupling of the loading units to the adapter assembly without degradation of the mechanical or electrical operating components.


SUMMARY

Accordingly, the present disclosure is directed to a surgical apparatus including a handle, an elongate member coupled to the handle and defining a longitudinal axis, and a switch actuator mounted to the elongate member, and being adapted for longitudinal movement relative to the elongate member between first and second longitudinal positions. The switch actuator includes an activation link and a switch plunger coupled to the activation link. An electric switch is mounted to the elongate member in longitudinal alignment with the switch plunger. A rotatable lock member is mounted to the elongate member and adapted for rotational movement about the longitudinal axis between an unlocked condition and a locked condition. The rotatable lock member includes an actuator stop dimensioned to operatively engage the switch actuator to prevent movement of the switch actuator from the first longitudinal position to the second longitudinal position when the rotatable lock member is in the unlocked condition, and to permit movement of the switch actuator to the second longitudinal position when the rotatable lock member is rotated to the locked condition such that the switch plunger contacts and activates the electric switch. A loading unit is releasably couplable to the rotatable lock member and has an end effector dimensioned to perform a surgical procedure. The loading unit is secured relative to the elongate member when the rotatable lock member is in the locked condition.


In one aspect, the switch plunger is at least partially supported within a correspondingly dimensioned inner recess defined in the elongate member. The switch plunger is dimensioned to longitudinally traverse the recess during longitudinal movement of the switch actuator between the first and second longitudinal positions. The inner recess of the elongate member may be dimensioned to minimize lateral movement of the switch plunger during longitudinal movement of the switch actuator between the first and second longitudinal positions.


In embodiments, the activation link includes a mount tab which is received within a correspondingly dimensioned opening of the switch plunger to mechanically couple the activation link and the switch plunger. The mount tab may be dimensioned to permit lateral movement of the activation link relative to the mount tab when subjected to a lateral force during mounting and removal of the loading unit relative to the rotatable lock member.


In one aspect, the actuator stop includes a rod mounted to an external surface of the rotatable lock member. In an embodiment, the switch plunger includes a plunger extension which is engagable with the electric switch upon movement of the switch actuator to the second longitudinal position.


In embodiments, a controller is in electrical communication with the electric switch. The electric switch sends at least one electric signal to the controller to indicate that the loading unit is secured relative to the elongate member. The switch actuator may be normally biased toward the second longitudinal position. A spring may be engagable with the switch actuator to normally bias the switch actuator toward the second longitudinal position. The switch may include an outer elastic protective membrane.


In another aspect, a surgical apparatus includes a handle assembly and an adapter assembly couplable to the handle assembly. The adapter assembly includes an elongate member defining a longitudinal axis and having an inner recess, and a switch actuator. The switch actuator includes an activation link with a mount tab and a switch plunger with a correspondingly dimensioned opening for receiving the mount tab to mechanically couple the activation link and the switch plunger. The switch plunger is at least partially disposed within the inner recess of the elongate member. The switch actuator is adapted for longitudinal movement relative to the elongate member between first and second longitudinal positions of the switch actuator whereby the switch plunger traverses the inner recess of the elongate member. An electric switch is mounted to the elongate member in longitudinal alignment with the switch plunger. A rotatable lock member is mounted to the elongate member and adapted for rotational movement about the longitudinal axis between an unlocked condition and a locked condition. The rotatable lock member includes an actuator stop dimensioned to operatively engage the switch actuator to prevent movement of the switch actuator from the first longitudinal position to the second longitudinal position when the rotatable lock member is in the unlocked condition, and to permit movement of the switch actuator to the second longitudinal position when the rotatable lock member is rotated to the locked condition such that the switch plunger contacts and activates the electric switch. A loading unit is releasably couplable to the rotatable lock member and has an end effector dimensioned to perform a surgical procedure. A controller including logic is configured to receive a signal from the electric switch when the rotatable lock member is in the locked condition corresponding to a secured condition of the loading unit relative to the rotatable lock member and the adapter assembly.


In embodiments, the mount tab of the switch actuator is dimensioned to permit lateral movement of the activation link relative to the mount tab when subjected to a lateral force during mounting and removal of the loading unit relative to the rotatable lock member. In one aspect, the actuator stop includes a rod mounted to an external surface of the rotatable lock member. The inner recess of the elongate member may be dimensioned to minimize lateral movement of the switch plunger during longitudinal movement of the switch actuator between the first and second longitudinal positions. The switch plunger may include a plunger extension, which is engagable with the electric switch upon movement of the switch actuator to the second longitudinal position.


The activation mechanism of the surgical apparatus facilitates proper and repetitive placement of multiple loading units relative to a handle and/or adapter assembly without degrading the interconnecting components thereby extending life and usability of the assemblies and ensuring proper functioning thereof. Other advantages of the present disclosure will be appreciated from the following description.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure will be readily appreciated by reference to the drawings wherein:



FIG. 1 is an exploded perspective view of a surgical fastener apparatus in accordance with the principles of the present disclosure, illustrating a handle assembly, an adapter assembly and a disposable loading unit;



FIG. 2 is a perspective view of the adapter assembly and the loading unit illustrating the activation mechanism for confirming mounting of the loading unit relative to the adapter assembly and the handle assembly;



FIG. 3 is a perspective view of the switch plunger of the activation mechanism;



FIG. 4 is a perspective view of the activation mechanism illustrating the switch actuator and the rotatable lock member;



FIG. 5 is an exploded perspective view of the activation mechanism illustrating the activation link and the switch plunger of the switch actuator, and the rotatable lock member;



FIG. 6 is a perspective view illustrating the loading unit mounted to the adapter assembly with the rotatable lock member in an unlocked condition and the switch actuator in a first longitudinal position;



FIG. 7 is an enlarged view of the area of isolation depicted in FIG. 2 illustrating the electric switch of the adapter assembly;



FIG. 8 is a perspective view in cross-section along the lines 8-8 of FIG. 6 illustrating the loading unit mounted to the adapter assembly with the rotatable lock member in the unlocked condition;



FIG. 9 is a perspective view similar to the view of FIG. 6 illustrating the rotatable lock member in the locked condition securing the loading unit and the switch actuator in the second longitudinal position in contact with the switch; and



FIG. 10 is a cross-sectional view along the lines 10-10 of FIG. 9 illustrating the rotatable lock member in the locked condition.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed surgical apparatus, and adapter and handle assemblies for the surgical apparatus are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the surgical apparatus, or component thereof, farther from the user, while the term “proximal” refers to that portion of the surgical apparatus, or component thereof, closer to the user.


Referring now to the drawings where like reference numerals indicate similar components throughout the several views, FIG. 1 illustrates the surgical fastener apparatus 10 in accordance with the principles of the present disclosure. The surgical fastener apparatus 10 includes a handle assembly 100, an adapter assembly 200 mountable to the handle assembly 100 and a loading unit 300 which is releasably couplable to the adapter assembly 200. The handle assembly 100 may be any handle assembly (reusable or disposable) having a handle frame 102 and at least one actuator, and in some embodiments, two or more actuators, control and/or safety switches 104, 106, 108 adapted to control operation of the fastener apparatus 10. The handle assembly 100 may be powered, e.g., an electromechanical handle, incorporating a motor 400 and a controller 500 having associated logic, software or circuitry to control operation of the motor 400, and, in turn, control operation of the adapter assembly 200 and the loading unit 300. The actuators 104, 106, 108 may communicate with the controller 500 to control operation of the motor 400 and the various pusher, gears, linkages and/or drive components within the handle frame 102. The handle frame 102 includes a handle mount 110 for mechanically mounting the adapter assembly 200 to the handle assembly 100. The handle mount 110 includes various circuits, contacts etc. to electrically communicate with various corresponding electrical components of the adapter assembly 200. Further details of a suitable handle for use with the fastener apparatus 10 may be ascertained by reference to commonly assigned U.S. Patent Publication No. 2011/0121049 to Malinouskas et al. or U.S. Patent Publication No. 2013/0214025 to Zemlok et al., the entire contents of each document being incorporated by reference herein.


The adapter assembly 200 is adapted to convert movement, e.g., rotation or linear movement, of the mechanical components of the handle assembly 100 to actuate the loading unit 300. The adapter assembly 200 includes an adapter mount 202 and an elongate member 204 extending from the adapter mount 202, and defining a longitudinal axis “k”. The adapter mount 202 includes various contacts, switches or the like which communicate with cooperative components within the handle mount 110 of the handle assembly 100 when the adapter mount 202 is mounted to the handle mount 110 to control operation of the adapter assembly 200 and the loading unit 300. The elongate member 204 includes an outer tube 206 extending between proximal and distal ends 208, 210 of the elongate member 204. The outer tube 206 supports one or more drive mechanisms which control operation of the loading unit 300. Further details of the adapter assembly 200 will be discussed hereinbelow.


With continued reference to FIG. 1, the loading unit 300 may be a single use loading unit (SULU) adapted to perform a surgical procedure on tissue. It is also contemplated that the loading unit 300 may be a multi-use loading unit (MULU) adapted, e.g., for sequential firing of one or more fasteners or staples. In one embodiment, the loading unit 300 may be a SULU adapted to fire a linear array of fasteners in connection, e.g., a linear stapling procedure or anastomosis. In accordance with this embodiment, the loading unit 300 includes an elongated body 302 and an end effector or tool assembly 304 mounted at the end of the elongated body 302. The elongated body 302 is releasably mountable relative to the distal end 210 of the outer tube 206 of the adapter assembly 200. The end effector 304 includes an anvil 306 and a fastener cartridge 308. The fastener cartridge 308 houses at least one row, e.g., preferably a plurality of rows of fasteners or staples (not shown) each arranged in a linear array. The anvil 306 and the fastener cartridge 308 are adapted for relative movement between an open position (FIG. 1) and an approximated position. The fasteners are driven from the fastener cartridge 308 through tissue positioned about or between the components, and crimped by the anvil 306. As best depicted in FIG. 2, in conjunction with FIG. 1, the elongated body 302 further includes a pair of diametrically opposed mounting lugs 310 and a mounting fin 312 which mechanically couple with the adapter assembly 200. In addition, at least one, e.g., two electrical contacts 314 are mounted to the elongated body 302. The contacts 314 may be associated with, or in communication with a memory chip which stores parameters relating to the loading unit 300 such as serial number, type, size, staple or fastener size, length, maximum number of strokes, prior use of the loading unit, etc. Further details of the loading unit 300 may be ascertained by reference to commonly assigned U.S. patent application Ser. No. 14/863,558 to Zergiebel et al., filed Sep. 24, 2015, the entire contents of which are incorporated by reference herein.


Referring now to FIGS. 2-6, the activation mechanism of the adapter assembly 200 will now be discussed. The activation mechanism 212 provides positive feedback to the clinician that the loading unit 300 has been properly mounted to the adapter assembly 200, and in conjunction with memory or logic associated within the loading unit 300, provides information to the clinician regarding particulars (including, type, use, etc.) of the loading unit 300. The activation mechanism 212 also permits repetitive mounting of multiple loading units 300 without experiencing any degradation of its mechanical and/or electrical components within the adapter assembly 200 thereby enhancing usability and ensuring proper functioning of the adapter assembly 200 over an extended number of uses.


The activation mechanism 212 includes a switch actuator 214 which is mounted within the outer tube 206 (shown partially removed in FIG. 2) of the elongate member 204. In one embodiment, the switch actuator 214 is mounted relative to an inner housing 216 of the elongate member 204 and is adapted for longitudinal movement relative to the inner housing 216 between first and second longitudinal positions. FIG. 2 depicts the first or initial position of the switch actuator 214. The switch actuator 214 includes an activation link 218 and a switch plunger 220 coupled to the activation link 218. The activation link 218 includes a proximal mount segment 222 having a longitudinal slot 224 and a distal arm segment 226 depending from the proximal mount segment 222. The distal arm segment 226 has a generally elongated arm tip 230 depending therefrom. The distal arm segment 226 also defines a stop surface 232 (FIG. 5) adjacent the intersection of the arm tip 230 with the distal arm segment 226. A mount tab 234 projects radially outwardly from an intermediate segment of the activation link 218. The mount tab 234 defines a general rectangular cross-section and has a slightly curved or bowed profile.


With continued reference to FIGS. 2-6, the switch plunger 220 includes a plunger frame 236 defining a general rectangular opening 238 (FIGS. 3 and 5) therethrough for reception of the mount tab 234 of the activation link 218. In particular, the rectangular opening 238 of the switch plunger 220 and the rectangular cross-section of the mount tab 234 are correspondingly dimensioned whereby the mount tab 234 may be inserted within the rectangular opening 238 to couple the two components. The tolerance between the mount tab 234 and the opening 238 is selected such that the mount tab 234 may be capable of limited sliding movement in a direction transverse to the longitudinal axis “k” when mounted within the elongate member 204, e.g., in one embodiment, the mount tab 234 is not directly secured to the plunger frame 236 of the switch plunger 220. The switch plunger 220 includes a plunger extension or tab 240. The plunger frame 236 of the switch plunger 220 is at least partially received within a recess 242 (FIGS. 2 and 6) of the inner housing 216, and is adapted to traverse the recess 242 during longitudinal movement of the switch actuator 214 between first and second longitudinal positions. The recess 242 is correspondingly dimensioned to restrict lateral movement of the switch plunger 220. Specifically, the width “m” of the recess 242 (FIG. 6) generally corresponds to, e.g., is slightly greater than the width “b” of the plunger frame 236. (FIG. 3) With this dimensioning, the plunger frame 236 moves in a substantially direct linear manner while traversing the recess 242 with effectively no lateral movement.


As best depicted in FIGS. 2 and 6, the switch actuator 214 is normally biased in a distal direction, e.g., toward the second longitudinal position, by a resilient member or spring 244. The spring 244 engages, at its proximal end, a spring support wall 246 of the inner housing 216 of the elongate member 204 and, at its distal end, a spring bearing surface 248 of the activation link 218. The spring support wall 246 also extends within the longitudinal slot 224 of the activation link 218 and serves as a guide rail by traversing the longitudinal slot 224 thereby minimizing lateral movement of the switch actuator 214 during longitudinal movement between the first and second longitudinal positions.


Referring now to FIGS. 4-5, in conjunction with FIG. 2, the activation mechanism 212 of the adapter assembly 200 further includes a rotatable lock member 250 at least partially mounted within a cap segment 252 (FIG. 2) disposed at the distal end 210 of the elongate member 204. The rotatable lock member 250 is adapted to rotate about the longitudinal axis “k” between two angular positions corresponding to the unlocked condition (FIG. 2) and the locked condition of the loading unit 300 relative to the adapter assembly 200. The rotatable lock member 250 includes first and second ring segments 254, 256 interconnected by a connecting arm 258. The first ring segment 254 includes at least one or more electrical contacts 260 which may communicate with the controller 500 to transfer data associated with the loading unit 300 when the loading unit 300 is mounted to the adapter assembly 200. The second ring segment 256 defines diametrically opposed recesses 262, 264 which couple with the loading unit 300. The recess 262 is defined between a pair of legs 266 depending outwardly from the second ring segment 256.


The second ring segment 256 further has an actuator stop 268 mounted to its external surface. The actuator stop 268 may be a cylindrical rod disposed in general longitudinal alignment with the switch actuator 214, particularly, the stop surface 232 of the activation link 218 when the rotatable lock member 250 is in the unlocked condition of FIG. 2. In this position, the stop surface 232 of the activation link 218 engages the actuator stop 268 to thereby prevent the switch actuator 214 from moving in a distal direction (in response to the spring bias of the spring 244) toward its second longitudinal position.


With reference again to FIGS. 2 and 6, further details of the adapter assembly 200 will be described. The adapter assembly 200 also includes an electric switch 270 which is mounted to the inner housing 216 of the elongate member 204 in general longitudinal alignment with the plunger extension 240 of the switch plunger 220. The switch 270 is configured to toggle, e.g., a toggle switch, in response to movement of the switch actuator 214, including the switch plunger 220, to the second longitudinal position, which occurs upon coupling of the loading unit 300 to the adapter assembly 200. The switch 270 is in electrical communication with the controller 500, and may include logic, circuitry or software to send one or more electrical signals to the controller 500 upon its activation and deactivation. As best depicted in FIG. 7, a switch seal or outer membrane 272 (portion of which is shown removed) may enclose the switch 270 to protect its components. The outer membrane 272 may be an elastomeric cover or the like. The switch 270 and the plunger extension 240 of the switch plunger 220 may have substantially the same cross-sectional areas “a1”, “a2” (FIGS. 3 and 7) to ensure proper direct contact and activation of the plunger extension 240 with the switch 270.


The adapter assembly 200 further includes a drive member 274 extending through the outer tube 206 and beyond the cap segment 252. The drive member 274 is mechanically couplable to drive components of the handle assembly 100 upon coupling of the handle assembly 100 and the adapter assembly 200. A connector 276 is incorporated in the drive member 274, and is configured and dimensioned for selective engagement with associated drive mechanism(s) of the loading unit 300 to control operation of the loading unit 300.


The operation of the activation mechanism 212 now will be discussed. The handle assembly 100 and the adapter assembly 200 are coupled by insertion of the adapter mount 202 of the adapter assembly 200 within the handle mount 110 of the handle assembly 100 (FIG. 1). Thereafter, the loading unit 300 is aligned with the cap segment 252 of the elongate member 204 of the adapter assembly 200 such that the mounting lugs 310 of the loading unit 300 are in alignment with the mounting recesses 262, 264 of the second ring segment 256 of the rotatable lock member 250 as depicted in FIG. 2. The loading unit 300 is introduced within the cap segment 252 whereby the mounting lugs 310 are received within the mounting recesses 262, 264 of the rotatable lock member 250 and the drive member 274 of the adapter assembly 200 is positioned within the loading unit 300 as depicted in FIGS. 6 and 8. The mounting fin 312 of the loading unit 300 is also accommodated within the underlying recess defined by the connecting arm 258. In this position, the actuator stop 268 of the rotatable lock member 250 engages the stop surface 232 of the activation link 218 in a manner to prevent the switch actuator 214 from moving in a distal direction toward the second longitudinal position. In one embodiment, the switch actuator 214 may be in the second longitudinal position such that during insertion of the loading unit 300 within the rotatable lock member 250 the actuator stop 268 may engage the stop surface 232 of the activation link 218 to move the switch actuator 214 to the first longitudinal position.


At this point in the procedure, the rotatable lock member 250 is in the unlocked condition relative to the mounting lugs 310 of the loading unit 300. The electrical contacts 314 of the loading unit 300 are in engagement with the electrical contacts 260 of the first ring segment 254 of the rotatable lock member 250. (FIG. 6)


With reference to FIGS. 9 and 10, the loading unit 300 is rotated (in the angular direction of directional arrow “p”) about the longitudinal axis “k” to the locked condition, which causes the rotatable lock member 250 to correspondingly rotate due to engagement of the mounting lugs 310 of the loading unit 300 with the mounting recesses 262, 264 of the rotatable lock member 250 (e.g., with the legs 266 defining recess 262 and/or with the surfaces of the first ring segment 254 defining the recess 264). Upon rotation to the locked condition, the actuator stop 268 is displaced or moved out of longitudinal alignment with the activation link 218 thereby permitting the switch actuator 214 including the switch plunger 220 to advance in a distal longitudinal direction (directional arrow “w”) to the second longitudinal position of FIG. 9 under the influence of spring 244. During this movement, the plunger frame 236 of the switch plunger 220 traverses the recess 242 of the inner housing 216 in direct linear manner such that the plunger extension 240 maintains longitudinal alignment with the switch 270. Due to the cooperative dimensioning of the recess 242 and the plunger frame 236, the switch 270 is not subjected to any off-axis forces which may affect the integrity of the switch seal or the outer membrane 272 and/or the switch components. In addition, during rotation, the activation link 218 of the switch actuator 214 may be permitted to move slightly laterally or outwardly due to the free coupling of the mount tab 234 of the activation link 218 within the opening 238 of the plunger frame 236, i.e., the mount tab 234 may slide to accommodate any radial outward or torque force to which the activation link 218 may be subjected during rotation of the rotatable lock member 250. This minimizes any off-axis or angular movement of the switch plunger 220 before and/or during traversing movement of the switch plunger 220 to maintain the integrity of the operative components and ensure direct contact of the plunger extension 240 with the switch 270. In the second longitudinal position, the plunger extension 240 of the switch actuator 214 engages and activates the switch 270 whereby the switch 270 sends a signal “s1” (shown schematically in FIG. 9) to the controller 500 that the loading unit 300 is engaged with the adapter assembly 200. The electrical contacts 314, 260 of the loading unit 300 and the rotatable lock member 250 send at least one signal “s2” (also shown schematically in FIG. 1) to transfer data associated with the loading unit 300 to the controller 500 for review by the clinician.


The above description and the drawings are provided for the purpose of describing embodiments of the present disclosure and are not intended to limit the scope of the disclosure in any way. It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the disclosure. Thus, it is intended that the present disclosure cover the modifications and variations of this disclosure provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. A surgical apparatus, which comprises: a handle;an elongate member coupled to the handle and defining a longitudinal axis, and having proximal and distal ends;a switch actuator mounted to the elongate member, the switch actuator adapted for longitudinal movement relative to the elongate member between first and second longitudinal positions, the switch actuator including an activation link and a switch plunger coupled to the activation link;an electric switch mounted to the elongate member in longitudinal alignment with the switch plunger;a rotatable lock member mounted to the elongate member and adapted for rotational movement about the longitudinal axis between an unlocked condition and a locked condition, the rotatable lock member including an actuator stop dimensioned to operatively engage the switch actuator to prevent movement of the switch actuator from the first longitudinal position to the second longitudinal position when the rotatable lock member is in the unlocked condition, and to permit movement of the switch actuator to the second longitudinal position when the rotatable lock member is rotated to the locked condition such that the switch plunger contacts and activates the electric switch; anda loading unit releasably couplable to the rotatable lock member and having an end effector dimensioned to perform a surgical procedure, the loading unit being secured relative to the elongate member when the rotatable lock member is in the locked condition.
  • 2. The surgical apparatus according to claim 1 wherein the switch plunger is at least partially supported within a correspondingly dimensioned inner recess defined in the elongate member, the switch plunger dimensioned to longitudinally traverse the recess during longitudinal movement of the switch actuator between the first and second longitudinal positions.
  • 3. The surgical apparatus according to claim 2 wherein the inner recess of the elongate member is dimensioned to minimize lateral movement of the switch plunger during longitudinal movement of the switch actuator between the first and second longitudinal positions.
  • 4. The surgical apparatus according to claim 1 wherein the activation link includes a mount tab, the mount tab received within a correspondingly dimensioned opening of the switch plunger to mechanically couple the activation link and the switch plunger.
  • 5. The surgical apparatus according to claim 4 wherein the mount tab is dimensioned to permit lateral movement of the activation link relative to the mount tab when subjected to a lateral force during mounting and removal of the loading unit relative to the rotatable lock member.
  • 6. The surgical apparatus according to claim 1 wherein the actuator stop includes a rod mounted to an external surface of the rotatable lock member.
  • 7. The surgical apparatus according to claim 1 wherein the switch plunger including a plunger extension, the plunger extension engagable with the electric switch upon movement of the switch actuator to the second longitudinal position.
  • 8. The surgical apparatus according to claim 7 including a controller in electrical communication with the electric switch, the electric switch sending at least one electric signal to the controller to indicate that the loading unit is secured relative to the elongate member.
  • 9. The surgical apparatus according to claim 1 wherein the switch actuator is normally biased toward the second longitudinal position.
  • 10. The surgical apparatus according to claim 9 including a spring engagable with the switch actuator to normally bias the switch actuator toward the second longitudinal position.
  • 11. The surgical apparatus according to claim 1 wherein the switch includes an outer elastic protective membrane.
  • 12. A surgical apparatus, which comprises: a handle assembly;an adapter assembly couplable to the handle assembly, the adapter assembly including: an elongate member defining a longitudinal axis, and having proximal and distal ends, and defining an inner recess;a switch actuator including an activation link having a mount tab and a switch plunger having a correspondingly dimensioned opening for receiving the mount tab to mechanically couple the activation link and the switch plunger, the switch plunger at least partially disposed within the inner recess of the elongate member, the switch actuator adapted for longitudinal movement relative to the elongate member between first and second longitudinal positions of the switch actuator whereby the switch plunger traverses the inner recess of the elongate member;an electric switch mounted to the elongate member in longitudinal alignment with the switch plunger; anda rotatable lock member mounted to the elongate member and adapted for rotational movement about the longitudinal axis between an unlocked condition and a locked condition, the rotatable lock member including an actuator stop dimensioned to operatively engage the switch actuator to prevent movement of the switch actuator from the first longitudinal position to the second longitudinal position when the rotatable lock member is in the unlocked condition, and to permit movement of the switch actuator to the second longitudinal position when the rotatable lock member is rotated to the locked condition such that the switch plunger contacts and activates the electric switch;a loading unit releasably couplable to the rotatable lock member and having an end effector dimensioned to perform a surgical procedure; anda controller including logic configured to receive a signal from the electric switch when the rotatable lock member is in the locked condition corresponding to a secured condition of the loading unit relative to the rotatable lock member and the adapter assembly.
  • 13. The surgical apparatus according to claim 12 wherein the mount tab is dimensioned to permit lateral movement of the activation link relative to the mount tab when subjected to a lateral force during mounting and removal of the loading unit relative to the rotatable lock member.
  • 14. The surgical apparatus according to claim 13 wherein the actuator stop includes a rod mounted to an external surface of the rotatable lock member.
  • 15. The surgical apparatus according to claim 12 wherein the inner recess of the elongate member is dimensioned to minimize lateral movement of the switch plunger during longitudinal movement of the switch actuator between the first and second longitudinal positions.
  • 16. The surgical apparatus according to claim 12 wherein the switch plunger including a plunger extension, the plunger extension engagable with the electric switch upon movement of the switch actuator to the second longitudinal position.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/251,737, filed Nov. 6, 2015, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (452)
Number Name Date Kind
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4722685 de Estrada et al. Feb 1988 A
4823807 Russell et al. Apr 1989 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350355 Sklar Sep 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5427087 Ito et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5609560 Ichikawa et al. Mar 1997 A
5626587 Bishop et al. May 1997 A
5632432 Schulze et al. May 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5792573 Pitzen et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Lasko Jan 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6090123 Culp et al. Jul 2000 A
6126651 Mayer Oct 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger et al. Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6783533 Green et al. Aug 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6860892 Tanaka et al. Mar 2005 B1
6899538 Matoba May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7111769 Wales et al. Sep 2006 B2
7122029 Koop et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7141049 Stern et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7172104 Scirica et al. Feb 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238021 Johnson Jul 2007 B1
7246734 Shelton, IV Jul 2007 B2
7252660 Kunz Aug 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7822458 Webster, III et al. Oct 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7887530 Zemlok Feb 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8342379 Whitman et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8397971 Yates Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8454585 Whitman Jun 2013 B2
8505802 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8551076 Duval et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8602287 Yates et al. Dec 2013 B2
8623000 Humayun et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652121 Quick et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8715306 Faller et al. May 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8888762 Whitman Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8905289 Patel et al. Dec 2014 B2
8919630 Milliman Dec 2014 B2
8931680 Milliman Jan 2015 B2
8939344 Olson et al. Jan 2015 B2
8950646 Viola Feb 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9023014 Chowaniec et al. May 2015 B2
9033868 Whitman et al. May 2015 B2
9055943 Zemlok et al. Jun 2015 B2
9064653 Prest et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9113847 Whitman et al. Aug 2015 B2
9113875 Viola et al. Aug 2015 B2
9113876 Zemlok et al. Aug 2015 B2
9113899 Garrison et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9241712 Zemlok et al. Jan 2016 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
9706674 Collins Jul 2017 B2
20010031975 Whitman et al. Oct 2001 A1
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030165794 Matoba Sep 2003 A1
20040034369 Sauer et al. Feb 2004 A1
20040111012 Whitman Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040153124 Whitman Aug 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20050125027 Knodel et al. Jun 2005 A1
20050131442 Yachia et al. Jun 2005 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070027469 Smith et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175947 Ortiz et al. Aug 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070175961 Shelton et al. Aug 2007 A1
20070270784 Smith et al. Nov 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080147089 Loh et al. Jun 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090012533 Barbagli et al. Jan 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209946 Swayze et al. Aug 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20090299141 Downey et al. Dec 2009 A1
20100023022 Zeiner et al. Jan 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174009 Iizuka et al. Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110184245 Xia et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120211542 Racenet Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130093149 Saur et al. Apr 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140207185 Goble et al. Jul 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140299647 Scirica et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140365235 DeBoer et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150014392 Williams et al. Jan 2015 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150112381 Richard Apr 2015 A1
20150122870 Zemlok et al. May 2015 A1
20150133224 Whitman et al. May 2015 A1
20150150547 Ingmanson et al. Jun 2015 A1
20150150574 Richard et al. Jun 2015 A1
20150157320 Zergiebel et al. Jun 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150201931 Zergiebel et al. Jul 2015 A1
20150216525 Collins et al. Aug 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
Foreign Referenced Citations (16)
Number Date Country
2451558 Jan 2003 CA
1547454 Nov 2004 CN
1957854 May 2007 CN
101495046 Jul 2009 CN
102247182 Nov 2011 CN
102008053842 May 2010 DE
0705571 Apr 1996 EP
1563793 Aug 2005 EP
1769754 Apr 2007 EP
2316345 May 2011 EP
2668910 Dec 2013 EP
2333509 Feb 2010 ES
2005-125075 May 2005 JP
20120022521 Mar 2012 KR
2011108840 Sep 2011 WO
2012040984 Apr 2012 WO
Non-Patent Literature Citations (43)
Entry
Extended European Search Report corresponding to counterpart International Application No. EP 14 18 4882.0 dated May 12, 2015.
Canadian Office Action corresponding to counterpart International Application No. CA 2640399 dated May 7, 2015.
Japanese Office Action corresponding to counterpart International Application No. JP 2011-197365 dated Mar. 23, 2015.
Japanese Office Action corresponding to counterpart International Application No. JP 2011-084092 dated May 20, 2015.
Japanese Office Action corresponding to counterpart International Application No. JP 2014-148482 dated Jun. 2, 2015.
Extended European Search Report corresponding to counterpart International Application No. EP 14 18 9358.6 dated Jul. 8, 2015.
Extended European Search Report corresponding to counterpart International Application No. EP 14 19 6148.2 dated Apr. 23, 2015.
Partial European Search Report corresponding to counterpart International Application No. EP 14 19 6704.2 dated May 11, 2015.
Australian Office Action corresponding to counterpart International Application No. AU 2010241367 dated Aug. 20, 2015.
Partial European Search Report corresponding to counterpart International Application No. EP 14 19 9783.3 dated Sep. 3, 2015.
Extended European Search Report corresponding to counterpart International Application No. EP 15 16 9962.6 dated Sep. 14, 2015.
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016.
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016.
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015.
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016.
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016.
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015.
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, dated Dec. 21, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015.
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015.
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016.
Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201310369318.2 dated Jun. 28, 2016.
Chinese Office Action (with English translation), dated Jul. 4, 2016, corresponding to Chinese Patent Application No. 2015101559718; 23 total pages.
European Search Report EP 15 156 035.6 dated Aug. 10, 2016.
Australian Examination Report No. 1 corresponding to International Application No. AU 2013205872 dated Oct. 19, 2016.
Australian Examination Report from Appl. No. AU 2013205840 dated Nov. 3, 2016.
European Search Report corresponding to EP 15 184 915.5-1654 dated Sep. 16, 2016.
Partial European Search Report in corresponding Application No. EP16197391, dated Apr. 4, 2017, 9 pages.
Related Publications (1)
Number Date Country
20170128067 A1 May 2017 US
Provisional Applications (1)
Number Date Country
62251737 Nov 2015 US