The teachings provided herein are directed to systems and methods for distributing bone graft material into an intervertebral disc space.
Bone grafts are used in spinal fusion to stabilize the vertebrae, with a goal of creating a solid bridge of bone between two or more vertebrae. The fusion process includes “arthrodesis”, which can be thought of as the mending or welding together of two bones in a spinal joint space. Spinal fusion may be recommended for a variety of conditions that might include, for example, a spondylolisthesis, a degenerative disc disease, a recurrent disc herniation, or perhaps to correct a prior surgery.
A fusion cage can be inserted with bone graft material to help support the disc space during the fusion process. In fact, fusion cages are frequently used in such procedures to support and stabilize the disc space until bone graft unites the bone of the opposing vertebral endplates in the disc space. A transforaminal lumbar interbody fusion (TLIF), for example, involves placement of posterior instrumentation (screws and rods) into the spine, and the fusion cage loaded with bone graft can be inserted into the disc space. Bone graft material can be pre-packed in the disc space or packed after the cage is inserted. TLIF can be used to facilitate stability in the front and back parts of the lumbar spine promoting interbody fusion in the anterior portion of the spine. Fusion in this region can be beneficial, because the anterior interbody space includes an increased area for bone to heal, as well as to handle increased forces that are distributed through this area. Traditionally, surgeons use a metal funnel and tamp to place bone graft, however, and this continues to add problems in the process. Other methods have been developed to address some of the problems, but problems still remain for the surgeon to manage. Ease of operation, procedural time, and safety, are focal points for improvements.
A common problem in spinal fusion is that the intervertebral space needs to be stabilized after the core of the disc is removed. Since the emptied disc space is often larger than the size of the access corridor, and since the fusion implants are typically smaller than the intervertebral disc space, there is a problem with reaching a long-term stability due to the mechanics and forces involved in the intervertebral space.
Existing spinal fusion implants are either made of a polymer such as Polyether Ether Ketone (PEEK), metal such as titanium, or ceramic such as silicon nitride. Some are made by a combination thereof. In any event, these materials are inert with respect to promoting osteogenesis. Some implants are made of PEEK coated with metal particles such as titanium or silver based due to the belief that the metal coatings are more osteogenic. However, the coatings can slough off from shear during implantation, or while in vivo, and can cause adverse reactions. Fusion promoting material can help increase the stability of the implant in the intervertebral space and encourage bone growth or fusion across the affected disc space.
Moreover, introducing biologics to the disc space in a safe, efficient, and reproducible manner is desired. As current methods can include, for example, the use of one or a combination of a bone funnel, syringe, and/or cannula, a manual mixing and packing of a fusion promoting material can be a required part of the process, and this increases the complexity of the process, lowers the ease of operation, and increases the procedural time required. Fusion-promoting material, or “biologics”, by way of example, may include biologic bone, artificial bone matrix, collagen, protein, and the like. These materials can be referred to as an allograft, autograft, xenograft, or synthetic bone graft material, for example. The premixing of graft material can include use of a plasma concentrate, blood, bone marrow, platelet rich plasma, intravenous fluids, and can add significantly to procedural time, as it is done repeatedly during current procedures. Moreover, a bone tamp can be used as a plunger, for example, to repeatedly push the fusion promoting material into an intervertebral space through a cannula. One of skill will understand that it is not always a simple task to move such materials in to the intervertebral space easily, quickly, and safely. As such, with the complexity of the current delivery systems, and the numerous steps involved, the art will benefit from a system that is easy for the surgeon to handle, and that can deliver a desired amount of biologics quickly and safely, requiring less steps, less cumbersome handling of system parts, and less time, in the process.
One of skill in the art will recognize the problems addressed by the teachings herein and, namely, will appreciate having a fast and efficient system and method of introducing fusion promoting material that (i) is easier to operate during administration of a fusion promoting material into a subject; (ii) requires less procedural time to administer a desired amount of the fusion promoting material into the subject; and (iii) is safer to use during the administration procedure.
Many advantages of the present disclosure will be apparent to those skilled in the art with a reading of this specification in conjunction with the attached drawings, wherein like reference numerals are applied to like elements and wherein:
A system and methods for a safe and efficient distributing of bone graft material into an intervertebral disc space are provided. In some embodiments, the teachings are directed to a biologics delivery system, comprising a cannula adapted for receiving a preloaded load cartridge and a cartridge tamp. The teachings are directed to a system for receiving, removing, and replacing of preloaded load cartridges in a rapid and repeating manner. This is further facilitated by a system that can also rapidly deliver the biologics from a single load cartridge. In some embodiments, to even further facilitate a rapid and repeating delivery of biologics, the load cartridge and cartridge tamp can be adapted so that the cartridge tamp can capture and remove the load cartridge after delivery of fusion promoting material in the load cartridge.
All of the systems taught herein provide safer and more efficient removal of load cartridges, faster and safer than any other state-of-the-art system. In some embodiments, the biologics delivery system comprises a cannula having a proximal portion, a proximal end, a distal portion, a distal end, and an engagement feature to engage a spinal implant; the proximal portion having a proximal lumen with a first inner diameter, and the distal portion having a distal lumen with a second inner diameter; wherein, the cannula is adapted for receiving a load cartridge in the proximal lumen of the cannula, the load cartridge having a proximal portion, a first removal component, an elongated shaft, and a lumen. In some embodiments, there is no first removal component.
In some embodiments, the cartridge tamp can have an elongated shaft and a second removal component. In such embodiments, the proximal lumen of the cannula can be configured to open into the distal lumen of the cannula, and the lumen of the load cartridge can be configured to open into the distal lumen of the cannula. The proximal lumen of the cannula can be adapted to receive the elongated shaft of the load cartridge, and the distal lumen of the cannula can be adapted to receive the elongated shaft of the load cartridge. In fact, the proximal portion of the load cartridge can be adapted to receive the elongated shaft of the cartridge tamp; and, the second removal component of the cartridge tamp can be adapted to (i) releasably connect with the first removal component and (ii) capture the load cartridge from the cannula when removing the cartridge tamp from the system. In some embodiments, the biologics system can further comprise the load cartridge. In some embodiments, there is no first removal component or second removal component.
It should be appreciated that, in some embodiments, the first removal component can be adapted to releasably engage with the second removal component using a friction fit connection between the first removal component and the second removal component. In some embodiments, the first removal component can be adapted to releasably engage with the second removal component using a snap fit connection between the first removal component and the second removal component. In some embodiments, the first removal component is adapted to releasably engage with the second removal component using a thread fit connection between the first removal component and the second removal component. And, in some embodiments, the first removal component can be adapted to releasably engage with the second removal component using a key and slot coupling connection between the first removal component and the second removal component. In fact, any connection known to one of skill in the art can be used to connect the first and second components. In some embodiments, for example, the first removal component and second removal component connect using a magnetic connection. The connection between the first and second component provides a safe and efficient way for the surgeon to “capture” a spent load cartridge and replace it with an additional load cartridge, quickly, to deliver a desired amount of fusion promoting material in vivo.
In some embodiments, the proximal end of the cannula can be further adapted to include a first indicator; and, likewise, the proximal portion of the load cartridge can be further adapted to include a second indicator complementary to the first indicator. In such embodiments, an assembly of the cannula and load cartridge can releasably fix the rotational position of the first removal component relative to the rotational position of the cannula to stop undesirable rotation between the cannula and load cartridge while holding the cannula in vivo to make the releasable connection between the first removal component and second removal component.
In some embodiments, the proximal end of the cartridge tamp can be further adapted to include a third indicator that is complementary to the assembly of the first and second indicators, such that the third indicator guides the cartridge tamp into the releasably-fixed assembly of the cannula and the load cartridge while making the releasable connection in vivo between the first removal component and second removal component.
In some embodiments, the first indicator can be configured to include a first prong extending proximally from the proximal end of the cannula and having a flat interior surface; the second indicator, likewise, can be configured with a outer-facing flat surface on the proximal portion of the load cartridge that is at least substantially complementary with the flat interior surface of the first prong; and, the cartridge tamp can further include a proximal cap having a recess as the third indicator, the recess being at least substantially complementary to the first prong.
The alignment between the first and second indicators, and first, second, and third indicators, provides a safe and efficient way for the surgeon to align the system components to quickly capture a spent load cartridge and replace it with an additional load cartridge, quickly, to deliver a desired amount of fusion promoting material in vivo.
As such, an advancement in load cartridges is also provided herein. The preloaded cartridges can be designed to have any bore size, but they are particularly valuable in that they include a large bore size, never before available, to enable one of skill to deliver the biologics into the disc space safely, and faster, than current state-of-the-art systems. As such, the load cartridges are designed as “repeater cartridges”, with a configuration that delivers the fusion promoting material surprisingly quickly, and this is even further enhanced through additional quick-change features. The teachings are also directed to a method of delivering biologics into an intervertebral disc space of a subject. In some embodiments, the methods can include placing a cannula into the intervertebral disc space, the cannula adapted for receiving a preloaded load cartridge, preloaded with fusion promoting material; and, delivering the fusion promoting material by pushing a cartridge tamp into the preloaded cartridge to apply pressure that forces the fusion promoting material into the intervertebral disc space.
In some embodiments, the methods can include placing the cannula into the intervertebral disc space; inserting the load cartridge into the cannula, the load cartridge preloaded with fusion promoting material; and, delivering the fusion promoting material into the intervertebral disc space. In such embodiments, the delivering can include inserting the cartridge tamp into the load cartridge and pushing the fusion promoting material into the intervertebral disc space with the cartridge tamp to create a first empty load cartridge; removing the first empty load cartridge; inserting an additional load cartridge into the cannula, the additional load cartridge preloaded with additional fusion promoting material; pushing the additional fusion promoting material into the intervertebral disc space with the cartridge tamp to create an additional empty load cartridge; removing the additional empty load cartridge; and, repeating the inserting of the additional load cartridge, the pushing of the additional load cartridge, and removing of the additional load cartridge until a desired amount of fusion promoting material has been delivered to the intervertebral space. In some embodiments, the load cartridges are administered in series, where the first cartridge is “load cartridge 1”, and each additional load cartridges, n, is an “n+1”th load cartridge, for example, where n can range from, perhaps, from 1 to 10.
In some embodiments, the methods can further comprise inserting a spinal implant into the intervertebral disc space. And, in some embodiments, the methods can further comprise docking the distal end of the cannula to the spinal implant.
Moreover, in some embodiments, the removing of the first load cartridge and the additional load cartridge can include releasably engaging the first removal component with the second removal component using a friction fit connection between the first removal component and the second removal component. And, in some embodiments, the removing of the first load cartridge and the additional load cartridge can include releasably engaging the first removal component with the second removal component using a snap fit connection between the first removal component and the second removal component. And, in some embodiments, the removing of the first load cartridge and the additional load cartridge can include releasably engaging the first removal component with the second removal component using a thread fit connection between the first removal component and the second removal component. And, in some embodiments, the removing of the first load cartridge and the additional load cartridge can include releasably engaging the first removal component with the second removal component using a key and slot coupling connection between the first removal component and the second removal component.
In some embodiments, the methods further include inserting an expandable shell into the intervertebral disc space. In some embodiments, the methods further include inserting a shim into the intervertebral disc space. In some embodiments, the methods further include inserting an expandable shell into the intervertebral disc space and inserting a shim into the expandable shell. And, in some embodiments, the methods further include expanding the expandable shell laterovertically.
It should be appreciated that, with regard to the systems and methods above that, in some embodiments, the key can be a pin, a bead, or any protuberance known to one of skill in the art, for example; and, the slot can be any configuration that facilitates a rapid and releasable capture with the key, including an open slot, a closed slot, an open dimple, a closed dimple, and the like. For example, a slot may be continuous in dimension or tapered for a friction fit, stepped to narrow for a tightening friction fit, stepped to narrow and then wide for a snap fit, and the like or any combination thereof. A thread connection can be any threaded connection and can include a friction fit, for example.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The surgical biologics delivery system and related methods disclosed herein boasts a variety of inventive features and components that warrant patent protection, both individually and in combination.
In some embodiments, the biologics delivery system can comprise a cannula adapted for receiving a preloaded load cartridge and a cartridge tamp. In some embodiments, to further facilitate a rapid and repeating delivery of biologics, the load cartridge and cartridge tamp can be adapted so that the cartridge tamp can capture and remove the load cartridge after delivery of fusion promoting material in the load cartridge. The systems are designed for receiving, removing, and replacing of preloaded load cartridges in a rapid and repeating manner. This is further facilitated by systems that can also rapidly deliver the biologics from a single load cartridge. In some embodiments, to even further facilitate a rapid and repeating delivery of biologics, the load cartridge and cartridge tamp can be adapted so that the cartridge tamp can capture and remove the load cartridge after delivery of fusion promoting material in the load cartridge. It should be appreciated that the terms “biologics”, “bone graft”, “graft”, “graft material”, and “fusion promoting material” can be used interchangeably, in some embodiments. Materials which may be placed or injected into the intevertebral space include solid or semi-solid grafting materials, bone from removed from patient's facet, an iliac crest harvest from the patient, and bone graft extenders such as hydroxyapatite, demineralized bone matrix, and bone morphogenic protein. Examples of solid or semi-solid grafting material components include solid fibrous collagen or other suitable hard hydrophilic biocompatible material. Some materials may also include swelling for further vertical expansion of the intervertebral disc space.
As such, it should be appreciate that there is an advancement in load cartridges is provided herein, in addition to the advancement in the systems as a whole. The preloaded cartridges can be designed to have any bore size, but they are particularly valuable in that they include a large bore size, never before available, to enable one of skill to deliver the biologics into the disc space safely, and faster, than current state-of-the-art systems. As such, the load cartridges are designed as “repeater cartridges”, with a configuration that delivers the fusion promoting material surprisingly quickly. As with the cannulas taught herein, although the bore size can range from about 1.0 mm to about 10.0 mm in diameter, for example, the bore is no less than 5.0 mm in diameter in some embodiments, and any range therein in increments of 1.0 mm. In some embodiments, however, the bore size can range from about 5.0 mm to about 10.0 mm in diameter, or from about 5.0 mm to about 6.0 mm in diameter, and any range therein in increments of 1.0 mm. In some embodiments, the bore size can be no less in diameter than about 5.0 mm, about 6.0 mm, about 7.0 mm, about 8.0 mm, about 9.0 mm, about 10.0 mm, and any amount therein in increments of 1.0 mm. In some embodiments, the bore size can be asymmetrical in dimensions, such that the height of the bore may not be equal to the width of the bore. For example, in some embodiments, the bore size ranges from 5.0 mm to 6.00 mm in height, and from 9.0 mm to 16.00 mm in width. And in some embodiments, the bore size ranges from 5.0 mm to 15.00 mm in height, and from about 9.0-15.0 mm in width. In some embodiments, “height” can refer to the craniocaudal direction of the bore, and “width” is the transverse direction with respect to the anatomical position. Of course, the outer diameter of the elongated shaft of the cartridge tamp is complementary to these dimensions for delivery of the fusion promoting material. In addition, the combination of the load cartridge and cartridge tamp provide a “capture” mechanism, as set-forth herein, in some embodiments.
Moreover, it should be appreciated that fusion-promoting material, or “biologics”, by way of example, may include biologic bone, artificial bone matrix, collagen, protein, and the like, and these materials can be referred to as an allograft, autograft, xenograft, or synthetic bone graft material, for example. The premixing of graft material can include use of a plasma concentrate, blood, bone marrow, platelet rich plasma, intravenous fluids, and can add significantly to procedural time, as it is done repeatedly during current procedures.
In graft materials that have particles, in some embodiments, the particles can range in size from about 0.5 mm to about 5.0 mm in maximum dimension, about 0.5 mm to 5.0 mm in mean particle dimension, or about 0.5 mm to 5.0 mm in average particle dimension, across the particular population in the load cartridge. In some embodiments, the particles can range in size from about 1.0 mm to about 3.0 mm in maximum dimension, about 1.0 mm to about 3.0 mm in mean particle dimension, or about 1.0 mm to about 3.0 mm in average particle dimension, across the particular population in the load cartridge, and these dimensions can vary in increments of 0.1 mm across the range, in some embodiments.
The load cartridges can have a variety of volumes. In some embodiments, the load cartridge has a volume capacity for bone graft material in a range from about 0.5 ml to about 20 ml. In some embodiments, the load cartridge has a volume capacity for bone graft material in a range from about 0.75 ml to about 15 ml. In some embodiments, the load cartridge has a volume capacity for bone graft material in a range from about 1.0 ml to about 10 ml. In some embodiments, the load cartridge has a volume capacity for bone graft material in a range from about 1.5 ml to about 5.0 ml. And, in some embodiments, the load cartridge has a volume capacity for bone graft material of about 0.5 ml, about 1.0 ml, about 1.5 ml, about 2.5 ml, about 3.0 ml, about 3.5 ml, about 4.0 ml, about 4.5 ml, about 5.0 ml, about 5.5 ml, about 6.0 ml, about 6.5 ml, about 7.0 ml, about 7.5 ml, about 8.0 ml, about 8.5 ml, about 9.0 ml, about 9.5 ml, about 10.0 ml, about 11.0 ml, about 12.0 ml, about 13.0 ml, about 14.0 ml, about 15.0 ml, or about 20 ml, and amounts or ranges therein in increments of 0.1 ml.
The terms “system” and “kit” can also be used interchangeably, in some embodiments. In some embodiments, for example, a kit can include one or more repeater cartridges and a cartridge tamp. In some embodiments, a kit can include one or more repeater cartridges, a cartridge tamp, and a cannula for delivering biologics. In some embodiments, a kit can include one or more repeater cartridges, a cartridge tamp, a cannula for delivering biologics, and an outer cannula for receiving the cannula for delivering biologics. In some embodiments, a kit can include one or more repeater cartridges, a cartridge tamp, a cannula for delivering biologics, and an outer cannula for delivering a spinal implant and receiving the cannula for delivering biologics. In some embodiments, a kit can include one or more repeater cartridges, a cartridge tamp, a cannula for delivering biologics, an outer cannula for delivering a spinal implant and receiving the cannula for delivering biologics, and a spinal implant. And, in some embodiments, a kit will include a laterovertically expanding spinal implant and shim as described herein by reference in at least PCT Application No. PCT/US18/43517, filed Jul. 24, 2018, which is hereby incorporated by reference herein in its entirety. Instructions for using each kit can be included.
It should be appreciated that the total length of the system is designed to facilitate delivery of the biologics in a surgical setting. For example, the total length of the system can range from about 70.0 mm to about 350.0 mm, from about 80.0 mm to about 300.0 mm, from about 90.0 mm to about 250.0 mm, from about 100.0 mm to about 200.0 mm, or any range or amount therein in increments of 1.0 mm.
The surgical biologics delivery system 10 of the present disclosure is suitable for use with a variety of spinal implants. For the purpose of illustration,
In some embodiments, the surgical implant can include, for example, a laterovertically-expanding shell configured to create an intervertebral scaffolding system in vivo, the shell having a first body portion configured to engage a first vertebral endplate and a second body portion configured to engage a second vertebral endplate, the shell further including a collapsed state and an expanded state; a guide element that slideably engages with the distal region of the shell, and is configured for retaining the shell from lateral movement that exceeds the expanded state; and, a shim configured for in vivo introduction into the shell when the shell is in a collapsed state and thereafter causing expansion of the shell to an expanded state, the expansion occurring in a lateral direction and a vertical direction. In some embodiments, the shell is configured to extend asymmetrically in the lateral direction.
One of skill will appreciate that the terms “lateral”, “vertical”, and “laterovertical” can be used as terms of relative orientation, meaning that the surgical implant can expand in at two directions that are normal to each other. In some embodiments, the term “vertical” can be used herein synonymously with “cephalocaudal”, “craniocaudal”, and the like, meaning that the implant expands at least substantially in the vertical direction of the spine, at least substantially in the directions of the coronal and sagittal planes of the subject, expanding the intervertebral space by applying a force to the two vertebral endplates that define the upper and lower borders of the intervertebral space. In some embodiments, the term “lateral” can be used herein synonymously with the term “transverse”, which encompasses the terms “mediolateral”, “anteromedial”, posteromedial”, and the like, meaning that the implant expands in any direction that is at least substantially in the direction of a transverse plane of the subject. This can include, for example, expanding the implant toward the annular walls of the disc space, in some embodiments, and away from the annular walls in some embodiments. Likewise, the term “laterovertical” can be used, for example, to refer to an expansion that is at least substantially in the “cephalocaudal” or “craniocaudal” direction combined with an expansion that is at least substantially in the direction of a transverse plane, noting that the transverse plane can be used relative to the subject as a whole, or relative to an anatomical position within the subject, which transverse plane relative to the anatomical position can vary a bit in direction due to normal anatomical variation, or perhaps a disease or disorder.
The term “subject” and “patient” can be used interchangeably in some embodiments and refer to an animal such as a mammal including, but not limited to, non-primates such as, for example, a cow, pig, horse, cat, dog; and primates such as, for example, a monkey or a human. As such, the terms “subject” and “patient” can also be applied to non-human biologic applications including, but not limited to, veterinary, companion animals, commercial livestock, and the like.
The term “at least substantially” will be understood by those of skill in the art as a term that provides for some variance from a strict and narrowly construed direction, essentially meaning “generally in that direction” or “generally in that orientation”. This is because, although the orientation of the implant or its movement is intended to be in a particular direction, a pure orientation or direction is often not reasonable to expect in practical application within a subject, and a reasonable amount of deviation in that direction is understood and acceptable by those of skill for the purposes of understanding the scope of, and practicing, the teachings provided herein. In some embodiments, for example, an orientation is at least substantially on a plane or a direction when it's orientation deviates from the plane or direction by no more than 40%, no more than 30%, no more than 20%, no more than 10%, no more than 5%, no more than 1%, or no more than any amount or range therein in increments of 0.1%. In some embodiments, the vertical expansion of the vertebral implant in an intervertebral space can occur, for example, in a direction that is still “craniocaudal” and is understood to be at least substantially parallel to the vertical axis of the intervertebral disc space, for example, such that the vertical axis of the intervertebral disc space is defined by a line connecting the center of the top vertebral endplate and the center of the bottom vertebral endplate defining that intervertebral space when combined with the annulus surrounding the space. Likewise, in some embodiments, the lateral expansion of the vertebral implant in an intervertebral space can occur, for example, in a direction that is at least substantially parallel to any direction of a transverse plane through the intervertebral disc space. In some embodiments, the transverse plane of the intervertebral disc space can be defined by a transverse section of the annulus of the disc rather than a transverse section of the subject, the transverse plane being placed equidistant between the top vertebral endplate and the bottom vertebral endplate, the transverse section of the disc space varying from a transverse section of the subject as a whole, as it is tilted to account for any lordosis, kyphosis, scoliosis, or bone degeneration or disease which can alter the relative position of the intervertebral space within the subject from an otherwise pure interpretation of the orientation intended.
In some embodiments, the biologics delivery system comprises a cannula having a proximal portion, a proximal end, a distal portion, a distal end, and an engagement feature to engage a spinal implant; the proximal portion having a proximal lumen with a first inner diameter, and the distal portion having a distal lumen with a second inner diameter; wherein, the cannula is adapted for receiving a load cartridge in the proximal lumen of the cannula, the load cartridge having a proximal portion, a first removal component, an elongated shaft, and a lumen. Moreover, the cartridge tamp can have an elongated shaft and a second removal component. In such embodiments, the proximal lumen of the cannula can be configured to open into the distal lumen of the cannula, and the lumen of the load cartridge can be configured to open into the distal lumen of the cannula. The proximal lumen of the cannula can be adapted to receive the elongated shaft of the load cartridge, and the distal lumen of the cannula can be adapted to receive the elongated shaft of the load cartridge. In fact, the proximal portion of the load cartridge can be adapted to receive the elongated shaft of the cartridge tamp; and, the second removal component of the cartridge tamp can be adapted to (i) releasably connect with the first removal component and (ii) capture the load cartridge from the cannula when removing the cartridge tamp from the system. In some embodiments, the biologics system can further comprise the load cartridge.
By way of example, the proximal portion 40 extends away from the patient's body and is generally cylindrical in shape. The proximal end 42 includes an engagement recess 46 extending around the periphery of the proximal end 42 configured to facilitate attachment of additional instrumentation and/or accessories. The proximal end 42 further includes a proximal recess 48 formed longitudinally within the proximal end 42 includes a generally planar bottom surface 50 and a cylindrical sidewall 52 extending proximally away from the bottom surface 50. The bottom surface 50 further includes a proximal aperture 54 formed therethrough to provide access to the interior lumen 34. The proximal recess 48 is sized and configured to receive at least a portion of the proximal portion 62 of the inner cannula 16. As will be explained in further detail below, the bottom surface 50 provides a physical barrier to limit the advancement of the inner cannula 16 within the outer cannula 14 to prevent over-insertion. The sidewall 52 engages the inner cannula 16 to prevent unwanted lateral movement of the inner cannula 16 while allowing for rotational movement of the inner cannula 16 within the outer cannula 14 to ensure proper engagement with the implanted spinal implant 12 before delivery of surgical biologics.
In some embodiments, the proximal end of the cannula, for example inner cannula 16, can be further adapted to include a first indicator; and, likewise, the proximal portion of the load cartridge can be further adapted to include a second indicator complementary to the first indicator. In such embodiments, an assembly of the cannula and load cartridge can releasably fix the rotational position of the first removal component relative to the rotational position of the cannula to stop undesirable rotation between the cannula and load cartridge while holding the cannula in vivo to make the releasable connection between the first removal component and second removal component.
The docking means can have any shape, including round, square, rectangular, elliptical, sinusoidal, a combination thereof, and the like, and the docking of course, can include complementary shapes between the cannula and the implant. Such means can include a male/female type connection in some embodiments, for example, a straight tube type connector, a stepped tube type connector, a tapered tube type connector, a funnel type connector, a Luer-lock or Luer-slip type connector, a bayonet type connector, a compression type connector, or a slidably translational connection of any configuration, including prongs, tabs, pins, rods, tubes, etc, in some embodiments. In some embodiments, the connection can be a rotationally releasable tab and slot type connection, for example. Moreover, in some embodiments, a pinch-type or grab-type connection may be used, or perhaps a thread fit connection, or perhaps a clip-type connection, in some embodiments.
The proximal portion 62 includes (by way of example) a pair of opposing arcuate surfaces 70 and a pair of opposing planar surfaces 72. The opposing arcuate surfaces 70 are configured to engage the cylindrical sidewall 52 of the proximal recess 48 of the outer cannula 14 when the inner cannula 16 is inserted into the outer cannula 14. Thus the distance between the opposing arcuate surfaces is approximately equal to the diameter of the proximal recess 48. This creates a flush engagement of the proximal portion 62 of the inner cannula 16 within the proximal recess 48 of the outer cannula 14 which allows for rotational movement (e.g. to ensure proper alignment of the implant engagement feature 68 with the spinal implant 12 as described above) while preventing lateral movement within the proximal recess 48. The proximal portion 62 further includes a distal ledge 74 at the intersection of the distal portion 58 and proximal portion 62, created due to the difference in size between the proximal and distal portions 62, 58, respectively (for example, the generally cylindrical distal portion 58 has a diameter that is smaller than the distance between both the opposing arcuate surfaces 70 and the opposing planar surfaces 72. The distal ledge 74 interacts with the bottom surface 50 of the proximal recess 48 to physically block further advancement of the inner cannula 16 within the outer cannula 14.
The proximal portion 62 further includes a generally cylindrical interior lumen 76 sized and configured to receive the load cartridge 18 therein. The interior lumen 76 is contiguous with the interior lumen 56 of the distal portion 58 and has a diameter that is greater than the diameter of the interior lumen 56 of the distal portion 58.
The proximal end 64 includes a proximal recess 78 formed longitudinally within the proximal end 64 includes a generally planar bottom surface 80 and a cylindrical sidewall 82 extending proximally away from the bottom surface 80. The bottom surface 80 further includes a proximal aperture 84 formed therethrough to provide access to the interior lumen 76. The proximal recess 78 is sized and configured to receive at least a portion of the proximal portion 96 of the load cartridge 18. The bottom surface 80 provides a physical barrier to limit the advancement of the load cartridge 18 within the inner cannula 16. The sidewall 82 engages the load cartridge 18 to securely seat the load cartridge 18 within the proximal recess 78. The proximal end 64 further includes a pair of opposing proximal prongs 86 extending proximally away from the proximal end 64. Each prong 86 includes an outer-facing arcuate surface 88 and an inner-facing planar surface 90. The inner-facing planar surfaces 90 flushly engage the planar portions 118 of the upper outer-facing surface 116 of proximal portion 96 of the load cartridge 18 (described below) to ensure proper alignment and prevent rotation of the load cartridge 18 within the inner cannula 16.
The proximal portion 96 includes a generally cylindrical proximal recess 102 formed longitudinally within the proximal portion 96 includes a generally planar bottom surface 104 and a cylindrical sidewall 106 extending proximally away from the bottom surface 104. The bottom surface 104 further includes a proximal aperture 108 formed therethrough to provide access to the interior lumen 98. The proximal recess 102 is sized and configured to receive at least a portion of the handle portion 130 of the cartridge tamp 110, which is described in further detail below. The sidewall 106 includes an inner-facing surface 112 having a concave curvature to engage and seat the handle portion 130 of the cartridge tamp 110, a lower outer-facing surface 114 having a convex curvature (e.g. as the outside of a cylinder), and an upper outer-facing surface 116 generally having a convex curvature but also including a pair of planar sections 118 on opposite sides of the sidewall 106. The planar sections 118 are sized and configured to flushly engage the inner-facing planar surfaces 90 of the prongs 86 of the inner cannula 16 when the load cartridge 18 is coupled with the inner cannula 16. This interaction between planar surfaces ensures proper rotational alignment of the load cartridge 18 within the inner cannula 16 for full seating. The lower cylindrical outer-facing surface 114 has a smaller diameter than the upper outer-facing surface 116 such that, upon inserting the load cartridge 18 into the inner cannula 16, the lower outer-facing surface 114 is seated within the proximal recess 78 while the upper outer-facing surface 116 remains outside the proximal recess 78.
The load cartridge removal features are optional, in some embodiments, as the systems and methods have other patentable features, but the load cartridge removal features significantly add to the ease of operation, safety, and reduction in procedural time. It should be appreciated that, in some embodiments, the first removal component can be adapted to releasably engage with the second removal component using a friction fit connection between the first removal component and the second removal component. And, in some embodiments, the first removal component can be adapted to releasably engage with the second removal component using a snap fit connection between the first removal component and the second removal component. And, in some embodiments, the first removal component is adapted to releasably engage with the second removal component using a thread fit connection between the first removal component and the second removal component. In fact, in some embodiments, the first removal component can be adapted to releasably engage with the second removal component using a key and slot coupling connection between the first removal component and the second removal component. It should be further appreciated that, with regard to the systems and methods taught herein that, in some embodiments, the key can be a pin, a bead, or any protuberance known to one of skill in the art, for example; and, the slot can be any configuration that facilitates a releasable capture with the key, including an open slot, a closed slot, an open dimple, a closed dimple, and the like. For example, a slot may be continuous in dimension or tapered for a friction fit, stepped to narrow for a tightening friction fit, stepped to narrow and then wide for a snap fit, and the like or any combination thereof. A thread connection can be any threaded connection and can include a friction fit, for example.
The proximal portion 96 further includes a pair of opposing slots 120 formed longitudinally into the upper outer-facing surface. The slots 120 enable the load cartridge 18 to mate with tamp 20 to allow for easy removal of the load cartridge 18 from the inner cannula 16 after surgical biologics have been delivered to the target site. Each slot 120 includes a pair of chamfers 122 at the intersection between the slot 120 and the proximal face 124 of the proximal portion 96. The chamfers 122 are angled such that they “lead into” the slot 120. Each side of the slot includes a recessed surface 126 positioned distal of the chamfer 122 and a ridge 128 between the chamfer 122 and the recess 126. The space between the recessed surfaces 126 is sized and configured to snugly receive at least a portion of the pin 142 of the tamp 20 (e.g. the distance between the recessed surfaces 126 is approximately equal to the diameter of the pin 142). The distance between the ridges 128 is smaller than the diameter of the pin 142, and therefore the ridges 128 must be laterally displaced to allow the pin 142 to pass by the ridges 128 and reach the recessed area of the slot 120. The length of the slot 120 enables the required lateral displacement. Once the pin 142 passes by the ridges 128, the ridges 128 return to their original position, creating a barrier preventing egress of the pin 142 from the slot 120 and thereby creating a “snap fit” mating between the load cartridge 18 and the tamp 20 (See e.g.
The cartridge tamp 110 includes a handle portion 130 and a pusher 132. The handle may be any structure that enables operability by a user. The pusher 132 is shown by way of example as an elongated cylindrical shaft sized and configured to mate with the interior lumen 98 of the load cartridge 18. The cartridge tamp 110 is used to pack surgical biologic material into the interior lumen 98 of the load cartridge 18 prior to use of the load cartridge 18 in a surgical procedure.
In some embodiments, the proximal end of the cartridge tamp can be further adapted to include a third indicator that is complementary to the assembly of the first and second indicators, such that the third indicator guides the cartridge tamp into the releasably-fixed assembly of the cannula and the load cartridge while making the releasable connection in vivo between the first removal component and second removal component. In some embodiments, the first indicator can be configured to include a first prong extending proximally from the proximal end of the cannula and having a flat interior surface; the second indicator, likewise, can be configured with a outer-facing flat surface on the proximal portion of the load cartridge that is at least substantially complementary with the flat interior surface of the first prong; and, the cartridge tamp can further include a proximal cap having a recess as the third indicator, the recess being at least substantially complementary to the first prong.
As further illustrated in
Methods of delivering biologics into an intervertebral disc space of a subject can include a variety of steps. In some embodiments, the methods can include placing a cannula into the intervertebral disc space, the cannula adapted for receiving a preloaded load cartridge, preloaded with fusion promoting material; and, delivering the fusion promoting material by pushing a cartridge tamp into the preloaded cartridge to apply pressure that forces the fusion promoting material into the intervertebral disc space.
In some embodiments, the methods can include placing the cannula into the intervertebral disc space; inserting the load cartridge into the cannula, the load cartridge preloaded with fusion promoting material; and, delivering the fusion promoting material into the intervertebral disc space. In such embodiments, the delivering can include inserting the cartridge tamp into the load cartridge and pushing the fusion promoting material into the intervertebral disc space with the cartridge tamp to create a first empty load cartridge; removing the first empty load cartridge; inserting an additional load cartridge into the cannula, the additional load cartridge preloaded with additional fusion promoting material; pushing the additional fusion promoting material into the intervertebral disc space with the cartridge tamp to create an additional empty load cartridge; removing the additional empty load cartridge; and, repeating inserting the additional load cartridge, pushing the additional load cartridge, and removing the additional load cartridge until a desired amount of fusion promoting material has been delivered to the intervertebral space. In some embodiments, the load cartridges are administered in series, where the first cartridge is “load cartridge 1”, and each additional load cartridges, n, is an “n+1”th load cartridge, for example, where n can range from, perhaps, from 1 to 10.
In some embodiments, the methods can further comprise inserting a spinal implant into the intervertebral disc space. And, in some embodiments, the methods can further comprise docking the distal end of the cannula to the spinal implant. The insertion of the spinal implant can be done using a first cannula, which can be referred to as an outer cannula in some embodiments. This first cannula, however, can either be removed for a subsequent insertion of the cannulas taught herein for receiving the load cartridges, or it can remain in place during the biologics delivery procedure as the “outer cannula”, such that it is large enough to accept an insertion of the cannulas taught herein for receiving the load cartridges.
Moreover, in some embodiments, the removing of the first load cartridge and the additional load cartridge can include releasably engaging the first removal component with the second removal component using a friction fit connection between the first removal component and the second removal component. And, in some embodiments, the removing of the first load cartridge and the additional load cartridge can include releasably engaging the first removal component with the second removal component using a snap fit connection between the first removal component and the second removal component. And, in some embodiments, the removing of the first load cartridge and the additional load cartridge can include releasably engaging the first removal component with the second removal component using a thread fit connection between the first removal component and the second removal component. And, in some embodiments, the removing of the first load cartridge and the additional load cartridge can include releasably engaging the first removal component with the second removal component using a key and slot coupling connection between the first removal component and the second removal component. It should be appreciated that any releasably engaging means known to those of skill can be used, such that the cartridge tamp can releasably capture and remove a spent load cartridge. It should be appreciated, for example that such a means for releasably capturing a spent load cartridge may include, for example, a connection of any configuration, including prongs, tabs, pins, rods, tubes, etc, in some embodiments, that can slidably or rotational capture and release a load cartridge from the cannula. In some embodiments, the connection can be a rotationally releasable tab and slot type connection, or perhaps a peg/pin and slot type connection, for example. Moreover, in some embodiments, a pinch-type or grab-type connection may be used, or perhaps a thread fit connection, or perhaps even a clip-type connection, in some embodiments, as a means for releasably capturing the spent load cartridge.
In some embodiments, the methods further include inserting an expandable shell into the intervertebral disc space. In some embodiments, the methods further include inserting a shim into the intervertebral disc space. In some embodiments, the methods further include inserting an expandable shell into the intervertebral disc space and inserting a shim into the expandable shell. And, in some embodiments, the methods further include expanding the expandable shell laterovertically.
The load cartridges can be referred to as “repeater” cartridges, in some embodiments, as they are designed for rapid use and replacement during a surgical procedure, and provide surprising results in advancements of procedural speed, ease of operation, and safety. In some embodiments, a replacement of the load cartridge occurs from the time the cartridge becomes empty and is replaced with a fresh cartridge. The replacement time can range from 5 seconds to 60 seconds, from 10 seconds to 45 seconds, from 20 seconds to 30 seconds, or any range therein in increments of 1 second. In some embodiments, the replacement time of a load cartridge can be about 5 seconds, 10 seconds, 15 seconds, 20 seconds, 25 seconds, 30 seconds, 35 seconds, 40 seconds, 45 seconds, 50 seconds, 55 seconds, 60 seconds, or any amount therein in increments of 1 second. Likewise, as with the load cartridges, the “bore” or lumen of the cannula used to receive the load cartridge and deliver the fusion promoting material is large to facilitate a fast delivery into the intervertebral space. Although the bore size can range from about 1.0 mm to about 10.0 mm in diameter, for example, the bore is no less than 5.0 mm in diameter in some embodiments, and any range therein in increments of 1.0 mm. In some embodiments, however, the bore size can range from about 5.0 mm to about 10.0 mm in diameter, or from about 5.0 mm to about 6.0 mm in diameter, and any range therein in increments of 1.0 mm. In some embodiments, the bore size can be no less in diameter than about 5.0 mm, about 6.0 mm, about 7.0 mm, about 8.0 mm, about 9.0 mm, about 10.0 mm, and any amount therein in increments of 1.0 mm. In some embodiments, the bore size can be asymmetrical in dimensions, such that the height of the bore may not be equal to the width of the bore. For example, in some embodiments, the bore size ranges from 5.0 mm to 6.00 mm in height, and from 9.0 mm to 16.00 mm in width. And in some embodiments, the bore size ranges from 5.0 mm to 15.00 mm in height, and from about 9.0-15.0 mm in width. In some embodiments, “height” is a term that can refer to the craniocaudal direction of the bore, and “width” is a term that can refer to the transverse direction with respect to the anatomical position of the subject.
Once the biologics material 9 has been fully deposited into the implant 12, the user may remove the tamp 20 by gripping the handle element 154 and exerting a proximal force to pull the tamp 20 out of the inner cannula 16. By virtue of the snap-fit coupling engagement between the tamp 20 and load cartridge 18 (by way of the pin 142 and slot 120), the load cartridge 18 is removed from the inner cannula 16 with the tamp 20. The inner cannula 16 may then be removed from the target site by exerting a proximal force on the inner cannula 16 to disengage from the implant 12 and remove the inner cannula 16 from the outer cannula 14. The outer cannula 12 my then be removed in a similar fashion, and the surgical wound may then be closed.
This application claims the benefit of U.S. Provisional Application No. 62/550,557, filed Aug. 25, 2017, which is hereby incorporated by reference herein in it's entirety.
Number | Name | Date | Kind |
---|---|---|---|
4309777 | Patil | Jan 1982 | A |
4733665 | Palmaz | Mar 1988 | A |
4759766 | Buettner-Janz et al. | Jul 1988 | A |
4820305 | Harms et al. | Apr 1989 | A |
4997432 | Keller | Mar 1991 | A |
5192327 | Brantigan | Mar 1993 | A |
5221261 | Termin et al. | Jun 1993 | A |
5609635 | Michelson | Mar 1997 | A |
5658336 | Pisharodi | Aug 1997 | A |
5976187 | Richelsoph | Nov 1999 | A |
5980522 | Koros | Nov 1999 | A |
5980552 | Pinchasik et al. | Nov 1999 | A |
6039761 | Li et al. | Mar 2000 | A |
6102950 | Vaccaro | Aug 2000 | A |
6176882 | Biedermann | Jan 2001 | B1 |
6193757 | Foley et al. | Feb 2001 | B1 |
6368351 | Glenn et al. | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6395031 | Foley et al. | May 2002 | B1 |
6409766 | Brett | Jun 2002 | B1 |
6419705 | Erickson | Jul 2002 | B1 |
6432107 | Ferree | Aug 2002 | B1 |
6436119 | Erb et al. | Aug 2002 | B1 |
6443989 | Jackson | Sep 2002 | B1 |
6482235 | Lambrecht et al. | Nov 2002 | B1 |
6488710 | Besselink | Dec 2002 | B2 |
6575899 | Foley et al. | Jun 2003 | B1 |
6582439 | Sproul | Jun 2003 | B1 |
6582441 | He et al. | Jun 2003 | B1 |
6582467 | Teitelbaum | Jun 2003 | B1 |
6595998 | Johnson et al. | Jul 2003 | B2 |
6620169 | Peterson | Sep 2003 | B1 |
6666891 | Boehm, Jr. et al. | Dec 2003 | B2 |
6821276 | Lambrecht et al. | Nov 2004 | B2 |
6821298 | Jackson | Nov 2004 | B1 |
6893464 | Kiester | May 2005 | B2 |
7018415 | McKay | Mar 2006 | B1 |
7083650 | Moskowitz et al. | Aug 2006 | B2 |
7087055 | Lim et al. | Aug 2006 | B2 |
7204853 | Gordon et al. | Apr 2007 | B2 |
7214243 | Taylor | May 2007 | B2 |
7217293 | Branch | May 2007 | B2 |
7544208 | Mueller et al. | Jun 2009 | B1 |
7621950 | Globerman et al. | Nov 2009 | B1 |
7643884 | Pond et al. | Jan 2010 | B2 |
7655046 | Dryer et al. | Feb 2010 | B2 |
7678148 | Peterman | Mar 2010 | B2 |
7731751 | Butler et al. | Jun 2010 | B2 |
7771473 | Thramann | Aug 2010 | B2 |
7819921 | Grotz | Oct 2010 | B2 |
7828845 | Estes et al. | Nov 2010 | B2 |
7828849 | Lim | Nov 2010 | B2 |
7846206 | Oglaza et al. | Dec 2010 | B2 |
7850733 | Baynham et al. | Dec 2010 | B2 |
7862618 | White et al. | Jan 2011 | B2 |
7879098 | Simmons, Jr. | Feb 2011 | B1 |
7909872 | Zipnick | Mar 2011 | B2 |
7918888 | Hamada | Apr 2011 | B2 |
8062375 | Glerum et al. | Nov 2011 | B2 |
8070754 | Fabian et al. | Dec 2011 | B2 |
8070813 | Grotz et al. | Dec 2011 | B2 |
8083744 | Dorchak | Dec 2011 | B2 |
8088163 | Kleiner | Jan 2012 | B1 |
8105382 | Olmos et al. | Jan 2012 | B2 |
8110004 | Valdevit et al. | Feb 2012 | B2 |
8118813 | Perez-Cruet et al. | Feb 2012 | B2 |
8118870 | Gordon et al. | Feb 2012 | B2 |
8123810 | Gordon et al. | Feb 2012 | B2 |
8167950 | Aferzon et al. | May 2012 | B2 |
8182538 | O'Neil et al. | May 2012 | B2 |
8187332 | McLuen | May 2012 | B2 |
8236058 | Fabian et al. | Aug 2012 | B2 |
8241363 | Sommerich et al. | Aug 2012 | B2 |
8246572 | Cantor et al. | Aug 2012 | B2 |
8267939 | Cipoletti et al. | Sep 2012 | B2 |
8353961 | McClintock | Jan 2013 | B2 |
8353963 | Glerum | Jan 2013 | B2 |
8425612 | Perez-Cruet | Apr 2013 | B2 |
8491659 | Weiman et al. | Jul 2013 | B2 |
8551173 | Lechmann et al. | Oct 2013 | B2 |
8628578 | Miller et al. | Jan 2014 | B2 |
8632595 | Weiman | Jan 2014 | B2 |
8663332 | To | Mar 2014 | B1 |
8845731 | Weiman | Sep 2014 | B2 |
8852279 | Weiman et al. | Oct 2014 | B2 |
8926704 | Glerum et al. | Jan 2015 | B2 |
8936641 | Cain | Jan 2015 | B2 |
8940048 | Butler et al. | Jan 2015 | B2 |
8940052 | Lechmann et al. | Jan 2015 | B2 |
8986387 | To | Mar 2015 | B1 |
9034041 | Wolters | May 2015 | B2 |
9039771 | Glerum et al. | May 2015 | B2 |
9060876 | To | Jun 2015 | B1 |
9138328 | Butler et al. | Sep 2015 | B2 |
9186193 | Kleiner | Nov 2015 | B2 |
9186259 | To | Nov 2015 | B2 |
9216095 | Glerum et al. | Dec 2015 | B2 |
9278008 | Perloff et al. | Mar 2016 | B2 |
9320610 | Alheidt et al. | Apr 2016 | B2 |
9333092 | To | May 2016 | B2 |
9351848 | Glerum et al. | May 2016 | B2 |
9402733 | To | Aug 2016 | B1 |
9402739 | Weiman et al. | Aug 2016 | B2 |
9445918 | Lin et al. | Sep 2016 | B1 |
9463052 | Geist | Oct 2016 | B2 |
9474625 | Weiman | Oct 2016 | B2 |
9480574 | Lee et al. | Nov 2016 | B2 |
9545316 | Ashley et al. | Jan 2017 | B2 |
9561116 | Weiman et al. | Feb 2017 | B2 |
9566168 | Glerum et al. | Feb 2017 | B2 |
9655744 | Pimenta | May 2017 | B1 |
9675469 | Landry et al. | Jun 2017 | B2 |
9717601 | Miller | Aug 2017 | B2 |
9737411 | Loebl et al. | Aug 2017 | B2 |
9795493 | Bannigan | Oct 2017 | B1 |
9801640 | O'Neil et al. | Oct 2017 | B2 |
9801733 | Wolters et al. | Oct 2017 | B2 |
9801734 | Stein et al. | Oct 2017 | B1 |
9883953 | To | Feb 2018 | B1 |
9889019 | Rogers et al. | Feb 2018 | B2 |
9907673 | Weiman et al. | Mar 2018 | B2 |
9913727 | Thommen et al. | Mar 2018 | B2 |
9913736 | To | Mar 2018 | B2 |
9987143 | Robinson et al. | Jun 2018 | B2 |
9999517 | To | Jun 2018 | B2 |
10022243 | Emery | Jul 2018 | B2 |
10058350 | Geist | Aug 2018 | B2 |
10080592 | Geist | Sep 2018 | B2 |
10085849 | Weiman et al. | Oct 2018 | B2 |
10098757 | Logan et al. | Oct 2018 | B2 |
10105238 | Koch et al. | Oct 2018 | B2 |
10143569 | Weiman et al. | Dec 2018 | B2 |
10149773 | To | Dec 2018 | B2 |
10154911 | Predick et al. | Dec 2018 | B2 |
10322014 | To | Jun 2019 | B2 |
10383743 | To | Aug 2019 | B2 |
10492925 | Hollister | Dec 2019 | B2 |
20020040243 | Attali | Apr 2002 | A1 |
20030074075 | Thomas et al. | Apr 2003 | A1 |
20030083746 | Kuslich | May 2003 | A1 |
20040010315 | Song | Jan 2004 | A1 |
20040024463 | Thomas et al. | Feb 2004 | A1 |
20050256576 | Moskowitz et al. | Nov 2005 | A1 |
20060100706 | Shadduck | May 2006 | A1 |
20060122701 | Kiester | Jun 2006 | A1 |
20060167547 | Suddaby | Jul 2006 | A1 |
20060287729 | Segal et al. | Dec 2006 | A1 |
20070118222 | Lang | May 2007 | A1 |
20070173939 | Kim et al. | Jul 2007 | A1 |
20070219634 | Greenhalgh | Sep 2007 | A1 |
20080009876 | Sankaran et al. | Jan 2008 | A1 |
20080021556 | Edie | Jan 2008 | A1 |
20080021559 | Thramann | Jan 2008 | A1 |
20080147193 | Matthis | Jun 2008 | A1 |
20080234687 | Schaller | Sep 2008 | A1 |
20080281346 | Greenhalgh | Nov 2008 | A1 |
20080281424 | Parry et al. | Nov 2008 | A1 |
20090018524 | Greenhalgh | Jan 2009 | A1 |
20090076607 | Aalsma et al. | Mar 2009 | A1 |
20090138083 | Biyani | May 2009 | A1 |
20090281551 | Frey | May 2009 | A1 |
20090222043 | Altarac | Sep 2009 | A1 |
20090234389 | Chuang | Sep 2009 | A1 |
20100010542 | Jackson | Jan 2010 | A1 |
20100010633 | Kohm | Jan 2010 | A1 |
20100042218 | Nebosky et al. | Feb 2010 | A1 |
20100198352 | Edie | Aug 2010 | A1 |
20100217325 | Hochschuler | Aug 2010 | A1 |
20100222884 | Greenhalgh | Sep 2010 | A1 |
20100234956 | Attia | Sep 2010 | A1 |
20100286783 | Lechmann et al. | Nov 2010 | A1 |
20100292796 | Greenhalgh | Nov 2010 | A1 |
20110022090 | Gordon | Jan 2011 | A1 |
20110029082 | Hall | Feb 2011 | A1 |
20110046748 | Martin | Feb 2011 | A1 |
20110130835 | Ashley | Jun 2011 | A1 |
20110172774 | Varela | Jul 2011 | A1 |
20110190816 | Sheffer | Aug 2011 | A1 |
20110282453 | Greenhalgh | Nov 2011 | A1 |
20110301712 | Palmatier | Dec 2011 | A1 |
20110319997 | Glerum | Dec 2011 | A1 |
20120029636 | Ragab | Feb 2012 | A1 |
20120035729 | Glerum et al. | Feb 2012 | A1 |
20120046748 | Weiman | Feb 2012 | A1 |
20120083889 | Purcell | Apr 2012 | A1 |
20120089185 | Gabelberger | Apr 2012 | A1 |
20120109319 | Perisic | May 2012 | A1 |
20140039625 | To | Jul 2012 | A1 |
20120209386 | Triplett et al. | Aug 2012 | A1 |
20120271396 | Zheng | Oct 2012 | A1 |
20120290090 | Glerum et al. | Nov 2012 | A1 |
20120303126 | Kirschman | Nov 2012 | A1 |
20130006365 | Pepper | Jan 2013 | A1 |
20130023996 | McCormack | Jan 2013 | A1 |
20130184822 | Kleiner | Jul 2013 | A1 |
20140243981 | Davenport et al. | Aug 2014 | A1 |
20150100128 | Glerum et al. | Apr 2015 | A1 |
20150190242 | Blain et al. | Jul 2015 | A1 |
20150374508 | Sandul | Dec 2015 | A1 |
20160015530 | To | Jan 2016 | A1 |
20160256291 | Miller | Sep 2016 | A1 |
20160317315 | Weiman | Nov 2016 | A1 |
20160338854 | Serhan et al. | Nov 2016 | A1 |
20170119540 | Greenhalgh | May 2017 | A1 |
20170209282 | Aghayev et al. | Jul 2017 | A1 |
20170224504 | Butler et al. | Aug 2017 | A1 |
20170224505 | Butler et al. | Aug 2017 | A1 |
20170231780 | D'urso | Aug 2017 | A1 |
20170239063 | Predick | Aug 2017 | A1 |
20170281358 | Wagner et al. | Oct 2017 | A1 |
20170333198 | Robinson | Nov 2017 | A1 |
20170333203 | Glerum | Nov 2017 | A1 |
20170354512 | Weiman et al. | Dec 2017 | A1 |
20180042735 | Schell et al. | Feb 2018 | A1 |
20180193164 | Shoshtaev | Jul 2018 | A1 |
20180256357 | To | Sep 2018 | A1 |
20180296361 | Butler et al. | Oct 2018 | A1 |
20180360489 | Geist | Dec 2018 | A1 |
20190053913 | To | Feb 2019 | A1 |
20190117409 | Shoshtaev | Apr 2019 | A1 |
20190209339 | To | Jul 2019 | A1 |
20190254841 | To | Aug 2019 | A1 |
20190269521 | Shoshtaev | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
101909548 | Jul 2014 | CN |
1011503 | Feb 1998 | EP |
1233732 | Feb 2001 | EP |
2327377 | Mar 2002 | EP |
1532949 | Nov 2003 | EP |
2237748 | Jan 2009 | EP |
13862126 | Dec 2013 | EP |
19162909.6 | Dec 2013 | EP |
14842880 | Jun 2016 | EP |
16740662 | Nov 2017 | EP |
2009505686 | Jul 2005 | JP |
WO 1996040015 | Jun 1996 | WO |
WO 2000044319 | Jan 2000 | WO |
WO 2001066047 | Jul 2001 | WO |
WO 2008005627 | May 2007 | WO |
WO 2007076374 | Jul 2007 | WO |
WO 2008035849 | Jul 2007 | WO |
WO 2008033457 | Mar 2008 | WO |
WO 2008089252 | Jul 2008 | WO |
WO 2008121162 | Oct 2008 | WO |
WO 2010077359 | Jul 2010 | WO |
WO 2012135764 | Oct 2012 | WO |
Entry |
---|
U.S. Appl. No. 16/444,888, To—owned by applicant, filed Dec. 13, 2012. |
U.S. Appl. No. 16/527,294, To—owned by applicant, filed Dec. 13, 2012. |
U.S. Appl. No. 16/682,828, Shoshtaev—owned by applicant, filed Jan. 10, 2017. |
U.S. Appl. No. 60/666,945, Bulter, et al., filed Mar. 31, 2005. |
U.S. Appl. No. 61/585,724, Geist—owned by Applicant, filed Jan. 12, 2012. |
U.S. Appl. No. 61/737,054, To—owned by Applicant, filed Dec. 15, 2013. |
U.S. Appl. No. 61/875,688, To—owned by Applicant, filed Oct. 4, 2013. |
U.S. Appl. No. 62/232,021 (priority for U.S. Pat. No. 10,058,350, cited herein), Geist—owned by Applicant, filed Sep. 24, 2015. |
U.S. Appl. No. 62/444,663 (priority for U.S. 2018/0193164, cited herein), Shoshtaev—owned by Applicant, filed Jan. 10, 2017. |
U.S. Appl. No. 62/471,206 (priority for U.S. 2018/0193164, cited herein), Shoshtaev—owned by Applicant, filed Jan. 10, 2017. |
U.S. Appl. No. 62/481,565 (priority for U.S. 2018/0193164, cited herein), Shoshtaev—owned by Applicant, filed Jan. 10, 2017. |
U.S. Appl. No. 62/536,335 (priority for PCT/US2018/43517, cited herein), To—owned by Applicant, filed Jul. 24, 2017. |
U.S. Appl. No. 62/550,557 (priority for U.S. Appl. No. 16/113,040, cited herein), Geist—owned by Applicant, filed Aug. 25, 2017. |
PCT/US2013/052799, To—owned by Applicant, Jul. 31, 2012. |
Written opinion and search report for PCT/US2013/052799, To—owned by Applicant, Dec. 2, 2012. |
PCT/US2013/073435 Published as WO 2014/093136, To—owned by Applicant, Dec. 5, 2013. |
Written opinion and search report for PCT/US2013/073435, To—owned by Applicant, Apr. 30, 2012. |
PCT/US2014/054437, To—owned by Applicant, Feb. 26, 2014. |
Written opinion and search report for PCT/US2014/054437, To—owned by Applicant, Jan. 6, 2015. |
PCT/US2016/014100, To—owned by Applicant, Dec. 17, 2015. |
Written opinion and search report for PCT/US2016/014100, To—owned by Applicant, Jan. 6, 2015. |
PCT/US2017/52708, To—owned by Applicant, Sep. 21, 2017. |
Written opinion and search report for PCT/US2017/52708, To—owned by Applicant, Sep. 21, 2017. |
PCT/US2016/053467 Published as WO 2017/053813, Geist—owned by Applicant, Sep. 24, 2015. |
Written opinion and search report for PCT/US2016/053467, Geist—owned by Applicant, Sep. 24, 2015. |
PCT/US2018/13207 Published as WO 2018/132502, Shoshtaev—owned by Applicant, Jan. 10, 2018. |
Written opinion and search report for PCT/US2018/13207, Shoshtaev—owned by Applicant, Jan. 10, 2018. |
PCT/US2018/43517, To—owned by Applicant, Jul. 24, 2018. |
Written opinion and search report for PCT/US2018/43517, To—owned by Applicant, Jul. 24, 2018. |
PCT/US2019/20354, Shoshtaev—owned by Applicant, Mar. 1, 2018. |
Written opinion and search report for PCT/US2019/20354, Shoshtaev—owned by Applicant, Mar. 1, 2018. |
Basho, R. et al. Lateral interbody fusion: Indications and techniques. Operative techniques in orthopaedics 21(3): 204-207 (Sep. 2011). |
Caliber. www.globusmedical.com [online] URL: http://www.globusmedical.com/mis/166-caliber [retrieved on Jul. 27, 2012]. |
Cole, D. et al. Comparison of low back fusion techniques: transforaminal lumbar interbody fusio (TLIF) or posterior lumbar interbody fusion (PLIF) approaches. Curr rev Musculoskelet med 2(2): 118-126 published online Apr. 29, 2009 Doi: 1007/s12178-009-9053-B10 [retrieved Jun. 2009]. |
CAPSTONE® PEEK spinal system PLIF anf TLIF surgical technique. Medtronic Sofamor Danek 1-36 (2009). |
COALIGN. Introducing AccuLIF expandable lumbar interbody fusion technology. [online] URL: http://www.coalign.com [retrieved on Jul. 27, 2012]. |
Chapman, C. A. Design of an expandable intervertebral cage utilizing shape memory alloys. University of Toledo and OhioLINK, 2011. [online] URL: http://etd.ohiolink.edu/view.cgi?acc_num=toledo1302226375 [retrieved Feb. 13, 2013]. |
Dorso-Lumbar Vertebral Body Cages DSC, Sintea Plustek. [online] URL: http://www.sinteaplustek.com/spine_dsc_eng.html [retrieved on Feb. 13, 2013]. |
“Integrity Implants” (Integrity Implants) URL: http://www.integrityimplants.com/ [retrieved from internet Sep. 17, 2018]. |
“Integrity Implants v3” (Integrity Implants) URL: https://vimeo.com/232697959 ; [retrieved from the internet Nov. 16, 2017]. |
Interbody Fusion Cage (Neo IC) Source, www.tradekorea.com [online] URL: http://www.tradekorea.com/product-detail/P00015150/Interbody_Fusion_Cage__Neo_IC_.html [retrieved Feb. 13, 2013]. |
Kaech, D.L. et al. Spinal restabilization procedures, diagnostic and therapeutic aspects of intervertebral fusion cages, artificial discs and mobile implants. Elsevier Science B.V. Part II: 121-204(2002). |
Kiapour, A. et al. A biomechanical finite element study of subsidence and migration tendencies in stand-alone fusion procedures—comparison of an in situ expandable device with a rigid device. J Spine 1(4): 5 pages (2012). |
Le Huec, J.C. et al. Endoscope surgery of the spine, a review of 4 years? Practice, maltrise orthopaedique. Jan. 1999 [online] URL: http://www.maitrise-orthop.com/viewPage_us.do?id=435 [retrieved on Feb. 5, 2013]. |
Powerbuilt. Powerbuilt 940378 medium tailpipe expander set. [online] URL: http://www.amazon.com/Powerbuilt-940377-Tailpipi-Expander-Series/dp/B004KED6A [retrieved on Feb. 17, 2013]. |
PR Newswire. Benvenue Medical starts enrolling patients in the post-market lift study on the luna interbody spacer system for degenerative disc disease. Mar. 20, 2012, [online] URL: http://www.prnewswire.com/news-releases/benvenue-medical-starts-enrolling-patients-in-the-post-market-lift-study-on-the-luna-interbody-spacer-system-for-degenerative-disc-disease-143441246.html [retrieved on Jan. 27, 2013]. |
Sasani, M. et al. Single-stage posterior corpectomy and expandable cage placement for treatment of thoracic or lumbar burst fractures. Spine 34(1): E33-E40 (Jan. 1, 2009). |
Spineology. OptiMesh 1500E deploying grafting system. [online] URL: http://www.spineology.com/fb/intl/products/products/optimesh 1500e.html (retrieved Jun. 3, 2013). |
STAXX XD, www.spinewave.com. [online] URL: http://www.spinewave.com/products/xd_us.html [retrieved on Jan. 27, 2013]. |
SynFix-LR System. Instruments and implants for stand-alone anterior lumbar interbody fusion (ALIF). Synthes SynFix-LR system technique guide 52 pages (2010). |
Transforaminal Lumbar Interbody Fusion (TLIF). Virgina spine institute, Reston Virgina. [online] URL: http://www.spinemd.com/operative-treatments/tlif- transforaminal-lumbat-interbody-fusion.com 1-6 (2013). [retrieved on Jun. 16, 2013]. |
Uchida, K. et al. Anterior expandable strut cage replacement for osteoporotic thoracolumbar vertebral collapse. J Neurosurg Spine 4(6): 454-462 (Jun. 2006). |
Xenos. Cage mesh system for spine. Biotek Chetan Meditech Pvt. Ltd. [online] URL: http://www.biotekortho.net/spine-treatment.html [retrieved on Feb. 13, 2013]. |
Zeus-O, [online] URL: http://www.amendia.com/zeuso.html [retrieved on Jan. 27, 2013]. |
PCT/US2011/049377 Published as WO 2012/027685, Saunders, et al., filed Aug. 26, 2011. |
Number | Date | Country | |
---|---|---|---|
20190060085 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62550557 | Aug 2017 | US |