Surgical buttress attachment assemblies for surgical stapling apparatus

Information

  • Patent Grant
  • 11751875
  • Patent Number
    11,751,875
  • Date Filed
    Wednesday, October 13, 2021
    2 years ago
  • Date Issued
    Tuesday, September 12, 2023
    7 months ago
Abstract
A surgical buttress attachment assembly includes a staple cartridge having a cartridge body and a cartridge tip, and a surgical buttress. The cartridge tip includes a distal buttress attachment assembly including a block body disposed within a cavity defined in the cartridge tip and a distal tongue extending distally from the block body. The block body is movable between an extended position and a retracted position. A proximal end portion of the surgical buttress is releasably secured to the cartridge body and a distal end portion of the surgical buttress is releasably secured to the cartridge tip by engagement of the distal tongue with the distal end portion when the block body is in the extended position.
Description
FIELD

This disclosure generally relates to surgical stapling apparatus, and more particularly, to surgical buttress attachment assemblies for releasably securing surgical buttresses to the surgical stapling apparatus.


BACKGROUND

Surgical stapling apparatus are employed by surgeons to sequentially or simultaneously apply one or more rows of fasteners, e.g., staples or two-part fasteners, to body tissue for the purpose of joining segments of body tissue together. Such apparatus generally include a pair of jaws or finger-like structures between which the body tissue to be joined is placed. When the surgical stapling apparatus is actuated, or “fired”, longitudinally moving firing bars contact staple drive members in one of the jaws. The staple drive members push the surgical staples through the body tissue and into an anvil in the opposite jaw which forms the staples. If body tissue is to be removed or separated, a knife blade can be provided in the jaws of the apparatus to cut the body tissue between the lines of staples.


Surgical supports, e.g., meshes or buttress materials, may be used in combination with surgical stapling apparatus to bridge, repair, and/or reinforce tissue defects within a patient. A clinician may manually attach the buttress materials to the surgical stapling apparatus in the operating room during a surgical procedure, or utilize a surgical stapling apparatus including buttress materials pre-installed thereon. The buttress material reinforces the staple or suture line as well as covers the juncture of the body tissues to reduce leakage prior to healing.


SUMMARY

This disclosure relates to cartridge-side surgical buttress attachment onto a loading unit of a surgical stapling apparatus. Surgical buttress attachment assemblies of the disclosure are designed to make surgical buttress attachment a simple, straightforward, and cost-effective procedure. The surgical buttress attachment assemblies secure a surgical buttress to a staple cartridge of a surgical stapling apparatus and keep the surgical buttress taut until the surgical stapling apparatus is fired and the surgical buttress is released. Further, the surgical buttress attachment assemblies minimize or prevent the surgical buttress from being elongated and/or deformed during assembly, enabling the staple lines to remain flush with the surgical buttress so that staple formation is not adversely affected during use.


In aspects, this disclosure provides a surgical buttress attachment assembly for use with a surgical stapling apparatus that includes a staple cartridge and a surgical buttress. The staple cartridge includes a cartridge body and a cartridge tip extending distally from the cartridge body. The cartridge body has a tissue facing surface including staple pockets defined therein and the cartridge tip includes an inner surface extending distally from the tissue facing surface and defining an opening therethrough that is in communication with a cavity defined in the cartridge tip. The cartridge tip includes a distal buttress attachment assembly having a block body disposed within the cavity and a distal tongue extending distally from the block body. The block body is movable between an extended position in which a distal end of the distal tongue is disposed over the inner surface of the cartridge tip and a retracted position in which the distal end of the distal tongue is aligned with the inner surface. The surgical buttress includes a proximal end portion releasably secured to the cartridge body and a distal end portion releasably secured to the cartridge tip by engagement of the distal tongue with the distal end portion when the block body is in the extended position.


The tissue facing surface of the cartridge body may include a central longitudinal slot defined therein, and the distal tongue may be axially aligned with the central longitudinal slot.


The distal buttress attachment assembly may further include a resilient biasing member biasing the block body in the extended position. In some aspects, the resilient biasing member is a spring. In certain aspects, the spring includes a proximal end portion coupled to a distal-facing wall of the cartridge tip that defines the cavity and a distal end portion coupled to the block body, and the spring is compressible during axial movement of the block body between the extended and retracted positions. In some aspects, the resilient biasing member is a proximal arm extending from the block body. In certain aspects, the proximal arm abuts a distal-facing wall of the cartridge tip that defines the cavity, and the proximal arm is temporarily deformable against the distal-facing wall during rotational movement of the block body between the extended and retracted positions.


The staple cartridge may further include a proximal buttress attachment assembly including proximal posts extending outwardly from the tissue facing surface. The proximal end portion of the surgical buttress may be releasably secured to the cartridge body by engagement of the proximal posts with the proximal end portion. In some aspects, the proximal posts are proximal to the staple pockets. In some aspects, the tissue facing surface of the cartridge body includes a central longitudinal slot defined therein, and the proximal posts are disposed on opposed sides of the central longitudinal slot. The proximal end portion of the surgical buttress may define proximal openings therethrough configured to receive the proximal posts therethrough, and the distal end portion of the surgical buttress may define a distal opening therethrough configured to receive the distal tongue therethrough.


In aspects, this disclosure provides a surgical stapling apparatus including a handle assembly, an elongate body extending distally from the handle assembly, and a loading unit extending distally from the elongate body. The loading unit includes an anvil assembly and a staple cartridge assembly, and the staple cartridge assembly includes a surgical buttress attachment assembly. The surgical buttress attachment assembly includes a staple cartridge and a surgical buttress. The staple cartridge includes a cartridge body and a cartridge tip extending distally from the cartridge body. The cartridge body has a tissue facing surface including staple pockets defined therein and the cartridge tip includes an inner surface extending distally from the tissue facing surface and defining an opening therethrough that is in communication with a cavity defined in the cartridge tip. The cartridge tip includes a distal buttress attachment assembly having a block body disposed within the cavity and a distal tongue extending distally from the block body. The block body is movable between an extended position in which a distal end of the distal tongue is disposed over the inner surface of the cartridge tip and a retracted position in which the distal end of the distal tongue is aligned with the inner surface. The surgical buttress includes a proximal end portion releasably secured to the cartridge body and a distal end portion releasably secured to the cartridge tip by engagement of the distal tongue with the distal end portion when the block body is in the extended position.


The distal buttress attachment assembly may further include a resilient biasing member biasing the block body in the extended position. In some aspects, the resilient biasing member is a spring. In certain aspects, the spring includes a proximal end portion coupled to a distal-facing wall of the cartridge tip that defines the cavity and a distal end portion coupled to the block body, and the spring is compressible during axial movement of the block body between the extended and retracted positions. In some aspects, the resilient biasing member is a proximal arm extending from the block body. In certain aspects, the proximal arm abuts a distal-facing wall of the cartridge tip that defines the cavity, and the proximal arm is temporarily deformable against the distal-facing wall during rotational movement of the block body between the extended and retracted positions.


The staple cartridge may further include a proximal buttress attachment assembly including proximal posts extending outwardly from the tissue facing surface. The proximal end portion of the surgical buttress may be releasably secured to the cartridge body by engagement of the proximal posts with the proximal end portion. In some aspects, the proximal posts are proximal to the staple pockets. The proximal end portion of the surgical buttress may define proximal openings therethrough configured to receive the proximal posts therethrough, and the distal end portion of the surgical buttress may define a distal opening therethrough configured to receive the distal tongue therethrough.


The details of one or more aspects of this disclosure are set forth in the accompanying drawings and the description below. Other aspects, as well as features, objects, and advantages of the aspects described in this disclosure will be apparent from the description and drawings, and from the claims.





BRIEF DESCRIPTION OF DRAWINGS

Various aspects of this disclosure are described hereinbelow with reference to the drawings, which are incorporated in and constitute a part of this specification, wherein:



FIG. 1 is a perspective view of a surgical stapling apparatus in accordance with aspects of the disclosure;



FIG. 2 is a perspective view of a tool assembly of the surgical stapling apparatus of FIG. 1, shown with a surgical buttress attachment assembly, which includes a staple cartridge and a surgical buttress, separated from first and second jaws of the tool assembly;



FIG. 3 is a perspective view of the surgical buttress attachment assembly of FIG. 2, shown with the surgical buttress separated from the staple cartridge;



FIG. 4 is a close-up view of the area of detail 4 indicated in FIG. 3, showing a proximal end portion of the staple cartridge of the surgical buttress attachment assembly;



FIG. 5 is a close-up view of the area of detail 5 indicated in FIG. 3, showing a distal end portion of the staple cartridge of the surgical buttress attachment assembly;



FIG. 6 is a cross-sectional view of the staple cartridge of FIG. 5, taken along section line 6-6 of FIG. 5, showing a distal buttress attachment assembly of the surgical buttress attachment assembly;



FIG. 7 is a perspective view of a block body of the distal buttress attachment assembly of FIG. 6;



FIG. 8 is a close-up view of the area of detail 8 indicated in FIG. 2, showing a proximal end portion of the surgical buttress secured to a proximal end portion of the staple cartridge via a proximal buttress attachment assembly of the surgical buttress attachment assembly;



FIG. 9 is a perspective view of the surgical buttress attachment assembly of FIG. 3, showing the surgical buttress partially loaded on the staple cartridge;



FIG. 10 is a cross-sectional view of the surgical buttress attachment assembly of FIG. 9, taken along section line 10-10 of FIG. 9, showing the distal buttress attachment assembly in a retracted position;



FIG. 11 is a cross-sectional view of the surgical buttress attachment assembly of FIG. 10, showing the distal buttress attachment assembly in an extended position;



FIG. 12 is a close-up view of the area of detail 12 indicated in FIG. 2, showing a distal end portion of the surgical buttress secured to a distal end portion of the staple cartridge via the distal buttress attachment assembly;



FIG. 13 is a partial, cross-sectional view of a staple cartridge including a distal buttress attachment assembly in accordance with another aspect of the disclosure;



FIG. 14 is a perspective view of a block body of the distal buttress attachment assembly of the staple cartridge of FIG. 13;



FIG. 15 is a partial, cross-sectional view of a surgical buttress attachment assembly including the staple cartridge of FIG. 13 and a surgical buttress, shown with the distal buttress attachment assembly in a retracted position; and



FIG. 16 is a partial, cross-sectional view of the surgical buttress attachment assembly of FIG. 15, shown with the distal buttress attachment assembly in an extended position.





DETAILED DESCRIPTION

Aspects of this disclosure will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. Throughout this description, the term “proximal” refers to a portion of a structure, or component thereof, that is closer to a user, and the term “distal” refers to a portion of the structure, or component thereof, that is farther from the user. Further, it should be understood that various elements of the disclosure, such as those numbered in the 100 series, correspond to elements of the disclosure similarly numbered in the 200 series, such that redundant explanation of similar elements need not be repeated herein.


Turning now to FIG. 1, a surgical device or surgical stapling apparatus 100 is shown in accordance with aspects of the disclosure. The surgical stapling apparatus 100 generally includes a handle assembly 110, an elongate body or adapter assembly 120, and a loading unit 130. The handle assembly 110 is configured for selective connection with the elongate body 120 and, in turn, the elongate body 120 is configured for selective connection with the loading unit 130.


The surgical stapling apparatus 100 will further be described to the extent necessary to disclose aspects of the disclosure. For a detailed description of the structure and function of an exemplary surgical device suitable for use with a surgical buttress attachment assembly of the disclosure, reference may be made to U.S. patent application Ser. No. 17/329,711, the entire contents of which are incorporated herein by reference.


The handle assembly 110 includes a housing 112 that forms a stationary handle portion 112a, an articulation lever 114, and actuation buttons 116. The articulation lever 114 is operatively coupled to the loading unit 130 such that manipulation of the articulation lever 114 causes articulation of a tool assembly 134 of the loading unit 130 relative to the elongate body 120. The actuation buttons 116 control operation of the different functions of the surgical stapling apparatus 100 including, for example, clamping and firing of the surgical stapling apparatus 100.


The elongate body 120 includes a proximal portion 120a that is coupled to the handle assembly 110, and a distal portion 120b that supports the loading unit 130. The elongate body 120 is supported within a rotation knob 118 that is rotatably coupled to the handle assembly 110. The rotation knob 118 is manually rotatable to rotate the elongate body 120 and the loading unit 130 relative to handle assembly 110.


The loading unit 130 includes a proximal housing portion 132 that forms an extension of the elongate body 120 and a tool or j aw assembly 134 including first and second jaws 134a, 134b. The first jaw 134a and/or the second jaw 134b is pivotable with respect to the housing portion 132 such that the tool assembly 134 is movable between an open position in which the first and second jaws 134a, 134b are spaced apart with respect to each other, and a closed position in which the first and second jaws 134a, 134b are substantially adjacent each other.


The loading unit 130 is a disposable loading unit (“DLU”) that is releasably secured to the elongate body 120 and thus, replaceable with a new loading unit 130. The loading unit 130 may be a single use loading unit (“SULU”) that is used one time and then replaced to facilitate multiples uses of the surgical stapling apparatus 100 on a patient. For example, during a surgical procedure, the surgical stapling apparatus 100 can be used to staple and cut tissue, and the entire SULU is replaced after each staple and cut operation of the surgical stapling apparatus 100. The loading unit 130 may be a multi-use loading unit (“MULU”) that is re-useable a predetermined number of times. For example, during a surgical procedure, the surgical stapling apparatus 100 can be used to staple and cut tissue, and a reload (e.g., a staple cartridge 154, as seen in FIG. 2) of the MULU is replaced after each staple and cut operation of the surgical stapling apparatus 100 a pre-determined number of times before the entire MULU needs to be replaced. Alternatively, the loading unit 130 may be permanently affixed (e.g., fixedly coupled) to the elongate body 120.



FIGS. 1 and 2 illustrate the first jaw 134a of the tool assembly 134, which includes an anvil assembly 140, and the second jaw 134b of the tool assembly 134, which includes a staple cartridge assembly 150 having a surgical buttress 180 releasably attached thereto. The anvil assembly 140 includes an anvil plate 142 having a tissue facing surface 144, and a cover plate 146 secured over the anvil plate 142. The staple cartridge assembly 150 includes a cartridge carrier 152 and a staple cartridge 154 selectively received and supported within the cartridge carrier 152. The staple cartridge 154 may be removably and/or replaceably attached to the cartridge carrier 152 by, for example, a snap-fit connection, a detent, a latch, among other types of connectors within the purview of those skilled in the art. Together the staple cartridge 154 and the surgical buttress 180 form a surgical buttress attachment assembly 101.


With reference now to FIG. 3, the staple cartridge 154 includes a cartridge body 156 having an inner or tissue facing surface 158 defining staple pockets or retention slots 155 that support staples (not shown) therein. A central longitudinal slot 157 is also defined in the tissue facing surface 158 and extends along a substantial length of the cartridge body 156 to facilitate passage of a knife (not shown) therethrough. A cartridge tip 160 extends from the cartridge body 156 distal to the staple pockets 155. The cartridge tip 160 includes an inner surface 162 contiguous with and extending distally from the tissue facing surface 158 of the cartridge body 156. The inner surface 162 has an opening 163 defined therein that is in communication with a cavity 161 (FIG. 6) defined in the cartridge tip 160. The inner surface 162 may be angled or taper distally from the cartridge body 156.


A proximal buttress attachment assembly 168 is associated with the cartridge body 156 and a distal buttress attachment assembly 172 is associated with the cartridge tip 160. The proximal buttress attachment assembly 168 is a fixed assembly in which components thereof are rigid and do not move relative to the staple cartridge 154, and the distal buttress attachment assembly 172 is a variable assembly in which one or more components thereof are movable relative to the staple cartridge 154.


As shown in FIGS. 3 and 4, the proximal buttress attachment assembly 168 includes proximal posts 170 disposed on the tissue facing surface 158 of the cartridge body 156 proximal to the staple pockets 155. The proximal posts 170 are disposed on opposed sides of the central longitudinal slot 157 of the cartridge body 156. Each of the proximal posts 170 is axially aligned with an innermost row of staple pockets 155, however, it should be understood that the proximal posts 170 may be otherwise laterally positioned relative to the staple pockets 155. Each of the proximal posts 170 includes an elongate body 170a extending outwardly from the tissue facing surface 158 of the cartridge body 156 towards the anvil assembly 140 (FIG. 2). The elongate bodies 170a may be pins, poles, columns, etc. among other types of projections within the purview of those skilled in the art to which a proximal end portion 180a of the surgical buttress 180 may be secured. Each of the proximal posts 170 further includes a flange or hook 170b extending proximally from the elongate body 170a to aid in retaining the proximal end portion 180a of the surgical buttress 180 on the staple cartridge 154.


While the elongate bodies 170a of the proximal posts 170 are shown as extending along an axis that is substantially orthogonal to an axis defined by the tissue facing surface 158 of the cartridge body 156 and the hooks 170b are shown as extending along an axis substantially parallel to an axis defined by the tissue facing surface 158 of the cartridge body 156, it should be understood that the proximal posts 170, or components thereof, may extend at other orientations relative to the tissue facing surface 158, such as at a proximally extending angle. The proximal posts 170 may be secured to or integrally formed with the tissue facing surface 158 of the cartridge body 156. In some aspects, the proximal posts 170 are components added to the staple cartridge 154 and, in some other aspects, the staple cartridge 154 is molded to include the proximal posts 170.


As shown in FIGS. 5-7, the distal buttress attachment assembly 172 includes a block body 174 and a spring 178 disposed within a cavity 161 defined in the cartridge tip 160. The block body 174 includes a retention slot 175 defined therein that is open at a proximal end 174a of the block body 174 and a distal tongue 176 extending distally from a distal end 174b of the block body 174. A proximal end portion 178a of the spring 178 is disposed around a post 164 that is disposed within the cavity 161 and extends distally from a distal-facing wall 166b of the staple cartridge 154 that defines the cavity 161. A distal end portion 178b of the spring 178 is disposed within the retention slot 175 of the block body 174. The spring 178 biases the block body 174 distally such that the distal end 174b of the block body 174 abuts a proximal-facing wall 166a of the staple cartridge 154 that defines the cavity 161, and the distal tongue 176 extends out of the cavity 161 and over the inner surface 162 of the cartridge tip 160, as seen in FIG. 6. It should be understood that while the distal buttress attachment assembly 172 is shown including a coil spring, other resilient biasing members within the purview of those skilled in the art, such as a diaphragm spring, may be utilized in the distal buttress attachment assembly 172.


The cavity 161 of the cartridge tip 160 is sized and shaped to retain the block body 174 of the distal buttress attachment assembly 172 therein such that the block body 174 is axially movable between an extended or distal position (FIG. 6) and a retracted or proximal position (FIG. 10). When in the extended position, a distal end 176a of the distal tongue 176 extends outwardly over the inner surface 162 of the cartridge tip 160, and when in the retracted position, the distal end 176a of the distal tongue 176 is substantially aligned with the inner surface 162 or may be disposed within the cavity 161 of the cartridge tip 160 so that the distal end 176a does not extend over the inner surface 162 of the cartridge tip 160.


The distal tongue 176 is axially aligned with the central longitudinal slot 157 (FIG. 5) defined in the cartridge body 156 for retaining a distal end portion 180b (FIG. 3) of the surgical buttress 180 on the staple cartridge 154. While the distal tongue 176 is shown as extending along an axis that is substantially parallel to an axis defined by the tissue facing surface 158 of the cartridge body 156, similar to the proximal posts 170, the distal tongue 176 may have other configurations and/or orientations relative to the inner surface 162 of the cartridge tip 160 so long as the distal tongue 176 is configured to engage and retain the distal end portion 180b of the surgical buttress 180 on the staple cartridge 154 when in the extended position.


With reference again to FIG. 3, the surgical buttress 180 includes a body 182 having a generally rectangular shape that is configured for positioning over the staple pockets 155 of the tissue facing surface 158 of the staple cartridge 154. Proximal and distal end portions 180a, 180b of the surgical buttress 180 respectively include proximal and distal tabs 184, 186. The proximal and distal tabs 184, 186 respectively extend proximally and distally from proximal and distal ends 182a, 182b of the body 182. The proximal and distal tabs 184, 186 may be delineated from the body 182 by perforations (not shown) extending transversely through the surgical buttress 180.


The proximal tab 184 is sized and shaped for positioning over a proximal end portion 154a of the staple cartridge 154 that is proximal to the staple pockets 155 and the distal tab 186 is sized and shaped for positioning over the cartridge tip 160. While the proximal tab 184 is shown as having a width that is less than the width of the body 182 and the distal tab 186 is shown as having a width that is substantially the same as the width of the body 172, it should be understood that the proximal and distal tabs 184, 186 may have other sizes and shapes so long as they are configured to engage the proximal posts 170 and the distal tongue 176, respectively, of the staple cartridge 154, as described below.


The proximal tab 184 includes proximal openings 185 defined therethrough that are sized and shaped to engage the proximal posts 170 of the cartridge body 156. The distal tab 186 includes a distal opening 187 defined therethrough that is sized and shaped to engage the distal tongue 176 of the cartridge tip 160. The proximal and distal openings 185, 187 are pre-formed and may be in the form of holes, slots, slits, etc. so long as the proximal and distal tabs 184, 186 can frictionally engage the respective proximal posts 170 and distal tongue 176 via the proximal and distal openings 185, 187. Further, the proximal and distal openings 185, 187 are positioned in the respective proximal and distal tabs 184, 186 such that when the surgical buttress 180 is loaded onto the staple cartridge 154 the surgical buttress 180 is flush with the staple cartridge 154.


The surgical buttress 180 is fabricated from biocompatible materials which are bioabsorbable or non-absorbable, natural or synthetic materials. It should be understood that a single or combination of natural, synthetic, bioabsorbable, and/or non-bioabsorbable materials may be used to form the surgical buttress 180. In aspects, the surgical buttress 180 is a single sheet of material that is formed and cut to shape. In other aspects, the surgical buttress 180 is formed from a plurality of sheets of material, that are fabricated from the same or different materials, and/or the components (e.g., the body, the proximal tab, the distal tab, etc.) of the surgical buttress 180 are formed from the same or different materials that are attached to one another by, for example, welding, using adhesive, tying sutures, etc.


The surgical buttress 180 may be porous, non-porous, or combinations thereof. Suitable porous structures include, for example, fibrous structures (e.g., knitted structures, woven structures, and non-woven structures) and/or foams (e.g., open or closed cell foams). Suitable non-porous structures include, for example, films. The surgical buttress 180 may be a single porous or non-porous layer, or include a plurality of layers including any combination of porous and non-porous layers. For example, the surgical buttress 180 may include multiple porous and non-porous layers that are stacked in an alternating manner. In another example, the surgical buttress 180 may be formed in a “sandwich-like” manner wherein the outer layers are porous and the inner layer(s) are non-porous, or vice versa.


Porous layer(s) in the surgical buttress 180 may enhance the ability of the surgical buttress 180 to absorb fluid, reduce bleeding, and/or seal a wound. Also, the porous layer(s) may allow for tissue ingrowth to fix the surgical buttress 180 in place. Non-porous layer(s) in the surgical buttress 180 may enhance the ability of the surgical buttress 180 to resist tears and perforations during the manufacturing, shipping, handling, and/or stapling processes. Also, non-porous layer(s) may retard or prevent tissue ingrowth from surrounding tissues thereby acting as an adhesion barrier and preventing the formation of unwanted scar tissue.


In a method of loading the surgical buttress 180 onto the staple cartridge 154, as initially seen in FIG. 3, the surgical buttress 180 is positioned over the tissue facing surface 158 of the staple cartridge 154 such that the proximal and distal tabs 184, 186 are respectively aligned with the proximal and distal buttress retention assemblies 168, 172 of the staple cartridge 154. The proximal end portion 180a of the surgical buttress 180 is moved towards the staple cartridge 154 so that the proximal posts 170 of the staple cartridge 154 extend through the proximal openings 185 of the surgical buttress 180 and engage the proximal tab 184 to retain the proximal end portion 180a of the surgical buttress 180 on the staple cartridge 154, as seen in FIGS. 8 and 9. The body 182 is laid upon the tissue facing surface 158 of the staple cartridge 156 and the distal tongue 176 of the distal buttress attachment assembly 172 is pressed distally into the cavity 161 of the cartridge tip 160 to move the block body 174 to the retracted position, as seen in FIGS. 9 and 10. The distal end portion 180b of the surgical buttress 180 is laid upon the inner surface 162 of the cartridge tip 160 so that the body 182 of the surgical buttress 180 lies flush against the tissue facing and inner surfaces 158, 162 of the staple cartridge 154 (without deforming the surgical buttress 180 during the loading process) and the distal opening 187 of the surgical buttress 180 is aligned with the distal tongue 176. The distal tongue 176 is released and the block body 174 returns to its biased, extended position, as shown in FIGS. 11 and 12. Upon movement from the retracted to the extended position, the distal tongue 176 moves through the distal opening 187 and engages the distal tab 186 of the surgical buttress 180 to retain the distal end portion 180b of the surgical buttress 180 on the staple cartridge 154. The staple cartridge 154 is now loaded with the surgical buttress 180. The staple cartridge 154 may be pre-loaded with the surgical buttress 180 (e.g., by the manufacturer) or may be loaded with the surgical buttress 180 (e.g., by an end-user).


The surgical stapling apparatus 1 (FIG. 1), with the staple cartridge assembly 150 including the assembled surgical buttress attachment assembly 101, is ready for use. The surgical stapling apparatus 1 is used in accordance with methods known by those skilled in the art. Once the anvil and staple cartridge assemblies 140, 150 are clamped onto tissue, the surgical stapling apparatus 1 is fired, thereby stapling the surgical buttress 180 to the tissue. During firing, a knife (not shown) travels distally between the anvil and staple cartridge assembly 140, 150 and substantially simultaneously cuts and divides the tissue and the surgical buttress 180 disposed between the rows of formed staples. When firing is complete and the anvil and staple cartridge assemblies 140, 150 are unclamped, the surgical buttress 180, which is now stapled to the tissue, pulls away from the staple cartridge assembly 150, and the tool assembly 134 can be removed from the surgical site. The used staple cartridge 154 may then be removed from the tool assembly 134 and replaced with a new staple cartridge 154. A new surgical buttress 180 may be installed onto the new staple cartridge 154, as needed or desired, as described above.


Turning now to FIG. 13, a staple cartridge 254 in accordance with another aspect of the disclosure is shown. The staple cartridge 254 is substantially the same as the staple cartridge 154, except that the cartridge tip 260 defines a cavity 261 housing a distal buttress attachment assembly 272 including a block body 274 and a pivot pin 279. As shown in FIGS. 13 and 14, the block body 274 includes a retention slot 275 defined therethrough, a distal tongue 276 extending distally from the block body 274, and a proximal arm 277 extending proximally from the block body 274. The pivot pin 279 extends through the retention slot 275 and is engaged with the cartridge tip 260 such that the block body 274 is pivotable about the pivot pin 276. The proximal arm 277 biases the block body 274 towards an extended position by engagement of the proximal arm 277 with a distal-facing wall 266b of the cavity 261 such that the distal tongue 276 abuts an angled segment of a proximal-facing wall 266a and extends out of the cavity 261 and over the inner surface 262 of the cartridge tip 260. The proximal arm 277 is flexible and temporarily deformable upon application of a force thereto, as described below.


The cavity 261 of the cartridge tip 260 is sized and shaped to retain the block body 274 of the distal buttress attachment assembly 272 therein such that the block body 274 is axially movable between an extended or distal position (FIG. 13) and a retracted or proximal position (FIG. 15). When in the extended position, the distal tongue 276 extends outwardly over the inner surface 262 of the cartridge tip 260, and when in the retracted position, a distal end 276a of the distal tongue 276 is substantially aligned with the inner surface 262 or may be disposed within the cavity 261 of the cartridge tip 260.


In a method of loading a surgical buttress 180 (FIG. 15) onto the staple cartridge 254, the surgical buttress 180 is positioned over the tissue facing surface 258 of the staple cartridge 254 and the proximal tab (not shown) of the surgical buttress 180 is engaged with the proximal buttress retention assembly (not shown) of the staple cartridge 254 as described above with regard to FIG. 8. The body 182 of the surgical buttress 180 is laid upon the tissue facing surface 258 of the staple cartridge 254 and the block body 274 is pivoted to the retracted position, as shown in FIG. 15, by pushing the distal tongue 276 of the distal buttress attachment assembly 272 proximally so that the block body 274 rotates within the cavity 261 of the cartridge tip 260. During rotation, the proximal arm 277 is deformed against the distal-facing wall 266b. The distal end portion 180b of the surgical buttress 180 is then laid upon the inner surface 262 of the cartridge tip 260 so that the distal opening 187 is aligned with the opening 263 defined in the inner surface 262. The distal tongue 276 is released and the block body 274 returns to its biased extended position, as shown in FIG. 16, so that the distal tongue 276 extends through the distal opening 187 and engages the distal tab 186 of the surgical buttress 180 to capture and retain the distal end portion 180b of the surgical buttress 180 on the staple cartridge 254. The staple cartridge 254 is now loaded with the surgical buttress 180. The surgical stapling apparatus 1 (FIG. 1), with the assembled surgical buttress attachment assembly 201 (FIG. 16), is used as described above with regard to the surgical buttress attachment assembly 101 of FIG. 2.


It should be understood that the anvil assembly 140 (FIG. 1) may be pre-loaded and/or loaded with a surgical buttress. The surgical buttress may be retained on the anvil assembly by any suitable attachment feature within the purview of those skilled in the art, such as, for example, mechanical attachment features (e.g., a suture), chemical attachment features (e.g., adhesive), and/or attachment methods (e.g., welding). Further, while the surgical buttress attachment assemblies of this disclosure are described and shown for surgical buttress attachment on the second jaw of the tool assembly, it should be understood that surgical buttress attachment assemblies may additionally or alternatively be configured for use on the first jaw of the tool assembly. For example, the anvil assembly may include a proximal or distal buttress attachment assembly similar to those shown on the staple cartridge.


While illustrated as being used on a handheld powered surgical device hereinabove, it is contemplated, and within the scope of the disclosure for the surgical buttress attachment assemblies to be configured for use with other handheld powered or manually-actuated surgical devices, as well as other electrosurgical instruments. For example, the surgical buttress attachment assemblies may be used on handheld powered surgical devices, such as those shown and described in U.S. Pat. No. 10,426,468, and handheld manually actuated surgical devices, such as those shown and described in U.S. Pat. Nos. 4,473,077, 5,915,616, 5,964,394, 6,330,965, 7,128,253, and 7,334,717, the entire contents of each of which are incorporated herein by reference. As another example, the surgical buttress attachment assemblies may be used on robotic surgical systems, such as the robotic surgical system shown and described in U.S. Pat. No. 8,828,023, the entire contents of which are incorporated herein by reference.


While aspects of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. It is to be understood, therefore, that the disclosure is not limited to the precise aspects described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, the elements and features shown and described in connection with certain aspects of the disclosure may be combined with the elements and features of certain other aspects without departing from the scope of the disclosure, and that such modifications and variation are also included within the scope of the disclosure. Therefore, the above description should not be construed as limiting, but merely as exemplifications of aspects of the disclosure. Thus, the scope of the disclosure should be determined by the appended claims and their legal equivalents, rather than by the examples given.

Claims
  • 1. A surgical buttress attachment assembly for use with a surgical stapling apparatus, the surgical buttress attachment assembly comprising: a staple cartridge including a cartridge body and a cartridge tip extending distally from the cartridge body, the cartridge body having a tissue facing surface including staple pockets defined therein and the cartridge tip including an inner surface extending distally from the tissue facing surface and defining an opening therethrough that is in communication with a cavity defined in the cartridge tip, the cartridge tip including a distal buttress attachment assembly having a block body disposed within the cavity and a distal tongue extending distally from the block body, the block body movable between an extended position in which a distal end of the distal tongue is disposed over the inner surface of the cartridge tip and a retracted position in which the distal end of the distal tongue is aligned with the inner surface; anda surgical buttress having a proximal end portion and a distal end portion, the proximal end portion releasably secured to the cartridge body and the distal end portion releasably secured to the cartridge tip by engagement of the distal tongue with the distal end portion when the block body is in the extended position.
  • 2. The surgical buttress attachment assembly according to claim 1, wherein the tissue facing surface of the cartridge body includes a central longitudinal slot defined therein, and the distal tongue is axially aligned with the central longitudinal slot.
  • 3. The surgical buttress attachment assembly according to claim 1, wherein the distal buttress attachment assembly further includes a resilient biasing member biasing the block body in the extended position.
  • 4. The surgical buttress attachment assembly according to claim 3, wherein the resilient biasing member is a spring.
  • 5. The surgical buttress attachment assembly according to claim 4, wherein the spring includes a proximal end portion coupled to a distal-facing wall of the cartridge tip that defines the cavity and a distal end portion coupled to the block body, the spring compressible during axial movement of the block body between the extended and retracted positions.
  • 6. The surgical buttress attachment assembly according to claim 3, wherein the resilient biasing member is a proximal arm extending from the block body.
  • 7. The surgical buttress attachment assembly according to claim 6, wherein the proximal arm abuts a distal-facing wall of the cartridge tip that defines the cavity, the proximal arm temporarily deformable against the distal-facing wall during rotational movement of the block body between the extended and retracted positions.
  • 8. The surgical buttress attachment assembly according to claim 1, wherein the staple cartridge further includes a proximal buttress attachment assembly including proximal posts extending outwardly from the tissue facing surface, and the proximal end portion of the surgical buttress releasably secured to the cartridge body by engagement of the proximal posts with the proximal end portion.
  • 9. The surgical buttress attachment assembly according to claim 8, wherein the proximal posts are proximal to the staple pockets.
  • 10. The surgical buttress attachment assembly according to claim 8, wherein the tissue facing surface of the cartridge body includes a central longitudinal slot defined therein, and the proximal posts are disposed on opposed sides of the central longitudinal slot.
  • 11. The surgical buttress attachment assembly according to claim 8, wherein the proximal end portion of the surgical buttress defines proximal openings therethrough configured to receive the proximal posts therethrough, and the distal end portion of the surgical buttress defines a distal opening therethrough configured to receive the distal tongue therethrough.
  • 12. A surgical stapling apparatus, comprising: a handle assembly;an elongate body extending distally from the handle assembly; anda loading unit extending distally from the elongate body, the loading unit including an anvil assembly and a staple cartridge assembly, the staple cartridge assembly including a surgical buttress attachment assembly including: a staple cartridge including a cartridge body and a cartridge tip extending distally from the cartridge body, the cartridge body having a tissue facing surface including staple pockets defined therein and the cartridge tip including an inner surface extending distally from the tissue facing surface and defining an opening therethrough that is in communication with a cavity defined in the cartridge tip, the cartridge tip including a distal buttress attachment assembly having a block body disposed within the cavity and a distal tongue extending distally from the block body, the block body movable between an extended position in which a distal end of the distal tongue is disposed over the inner surface of the cartridge tip and a retracted position in which the distal end of the distal tongue is aligned with the inner surface; anda surgical buttress having a proximal end portion and a distal end portion, the proximal end portion releasably secured to the cartridge body and the distal end portion releasably secured to the cartridge tip by engagement of the distal tongue with the distal end portion when the block body is in the extended position.
  • 13. The surgical stapling apparatus according to claim 12, wherein the distal buttress attachment assembly further includes a resilient biasing member biasing the block body in the extended position.
  • 14. The surgical stapling apparatus according to claim 13, wherein the resilient biasing member is a spring.
  • 15. The surgical stapling apparatus according to claim 14, wherein the spring includes a proximal end portion coupled to a distal-facing wall of the cartridge tip that defines the cavity and a distal end portion coupled to the block body, the spring compressible during axial movement of the block body between the extended and retracted positions.
  • 16. The surgical stapling apparatus according to claim 13, wherein the resilient biasing member is a proximal arm extending from the block body.
  • 17. The surgical stapling apparatus according to claim 16, wherein the proximal arm abuts a distal-facing wall of the cartridge tip that defines the cavity, the proximal arm temporarily deformable against the distal-facing wall during rotational movement of the block body between the extended and retracted positions.
  • 18. The surgical stapling apparatus according to claim 12, wherein the staple cartridge further includes a proximal buttress attachment assembly including proximal posts extending outwardly from the tissue facing surface, and the proximal end portion of the surgical buttress releasably secured to the cartridge body by engagement of the proximal posts with the proximal end portion.
  • 19. The surgical stapling apparatus according to claim 18, wherein the proximal posts are proximal to the staple pockets.
  • 20. The surgical stapling apparatus according to claim 18, wherein the proximal end portion of the surgical buttress defines proximal openings therethrough configured to receive the proximal posts therethrough, and the distal end portion of the surgical buttress defines a distal opening therethrough configured to receive the distal tongue therethrough.
US Referenced Citations (549)
Number Name Date Kind
3054406 Usher Sep 1962 A
3124136 Usher Mar 1964 A
3364200 Ashton et al. Jan 1968 A
3499591 Green Mar 1970 A
3797494 Zaffaroni Mar 1974 A
3939068 Wendt et al. Feb 1976 A
3948666 Kitanishi et al. Apr 1976 A
4064062 Yurko Dec 1977 A
4166800 Fong Sep 1979 A
4282236 Broom Aug 1981 A
4347847 Usher Sep 1982 A
4354628 Green Oct 1982 A
4416698 McCorsley, III Nov 1983 A
4429695 Green Feb 1984 A
4452245 Usher Jun 1984 A
4473077 Noiles et al. Sep 1984 A
4605730 Shalaby et al. Aug 1986 A
4626253 Broadnax, Jr. Dec 1986 A
4655221 Devereux Apr 1987 A
4834090 Moore May 1989 A
4838884 Dumican et al. Jun 1989 A
4927640 Dahlinder et al. May 1990 A
4930674 Barak Jun 1990 A
5002551 Linsky et al. Mar 1991 A
5014899 Presty et al. May 1991 A
5040715 Green et al. Aug 1991 A
5057334 Vail Oct 1991 A
5065929 Schulze et al. Nov 1991 A
5112496 Dhawan et al. May 1992 A
5162430 Rhee et al. Nov 1992 A
5205459 Brinkerhoff et al. Apr 1993 A
5263629 Trumbull et al. Nov 1993 A
5281197 Arias et al. Jan 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5314471 Brauker et al. May 1994 A
5318221 Green et al. Jun 1994 A
5324775 Rhee et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5344454 Clarke et al. Sep 1994 A
5392979 Green et al. Feb 1995 A
5397324 Carroll et al. Mar 1995 A
5405072 Zlock et al. Apr 1995 A
5410016 Hubbell et al. Apr 1995 A
5425745 Green et al. Jun 1995 A
5441193 Gravener Aug 1995 A
5441507 Wilk Aug 1995 A
5443198 Viola et al. Aug 1995 A
5468253 Bezwada et al. Nov 1995 A
5484913 Stilwell et al. Jan 1996 A
5503638 Cooper et al. Apr 1996 A
5514379 Weissleder et al. May 1996 A
5542594 McKean et al. Aug 1996 A
5543441 Rhee et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5550187 Rhee et al. Aug 1996 A
5575803 Cooper et al. Nov 1996 A
5645915 Kranzler et al. Jul 1997 A
5653756 Clarke et al. Aug 1997 A
5683809 Freeman et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5702409 Rayburn et al. Dec 1997 A
5752965 Francis et al. May 1998 A
5752974 Rhee et al. May 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5769892 Kingwell Jun 1998 A
5782396 Mastri et al. Jul 1998 A
5799857 Robertson et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5819350 Wang Oct 1998 A
5833695 Yoon Nov 1998 A
5843096 Igaki et al. Dec 1998 A
5871135 Williamson, IV et al. Feb 1999 A
5874500 Rhee et al. Feb 1999 A
5895412 Tucker Apr 1999 A
5895415 Chow et al. Apr 1999 A
5902312 Frater et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5931847 Bittner et al. Aug 1999 A
5957363 Heck Sep 1999 A
5964394 Robertson Oct 1999 A
5964774 McKean et al. Oct 1999 A
5997895 Narotam et al. Dec 1999 A
6019791 Wood Feb 2000 A
6030392 Dakov Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6080169 Turtel Jun 2000 A
6093557 Pui et al. Jul 2000 A
6099551 Gabbay Aug 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6152943 Sawhney Nov 2000 A
6155265 Hammerslag Dec 2000 A
6156677 Brown Reed et al. Dec 2000 A
6165201 Sawhney et al. Dec 2000 A
6179862 Sawhney Jan 2001 B1
6210439 Firmin et al. Apr 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6241139 Milliman et al. Jun 2001 B1
6258107 Balazs et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6270530 Eldridge et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6299631 Shalaby Oct 2001 B1
6309569 Farrar et al. Oct 2001 B1
6312457 DiMatteo et al. Nov 2001 B1
6312474 Francis et al. Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6399362 Pui et al. Jun 2002 B1
6436030 Rehil Aug 2002 B2
6454780 Wallace Sep 2002 B1
6461368 Fogarty et al. Oct 2002 B2
6500777 Wiseman et al. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6514283 DiMatteo et al. Feb 2003 B2
6514534 Sawhney Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6551356 Rousseau Apr 2003 B2
6566406 Pathak et al. May 2003 B1
6568398 Cohen May 2003 B2
6590095 Schleicher et al. Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6605294 Sawhney Aug 2003 B2
6610006 Amid et al. Aug 2003 B1
6627749 Kumar Sep 2003 B1
6638285 Gabbay Oct 2003 B2
6652594 Francis et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6656200 Li et al. Dec 2003 B2
6669735 Pelissier Dec 2003 B1
6673093 Sawhney Jan 2004 B1
6677258 Carroll et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6702828 Whayne Mar 2004 B2
6703047 Sawhney et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6723114 Shalaby Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6746458 Cloud Jun 2004 B1
6746869 Pui et al. Jun 2004 B2
6764720 Pui et al. Jul 2004 B2
6773458 Brauker et al. Aug 2004 B1
6818018 Sawhney Nov 2004 B1
6843252 Harrison et al. Jan 2005 B2
6896684 Monassevitch et al. May 2005 B2
6927315 Heinecke et al. Aug 2005 B1
6939358 Palacios et al. Sep 2005 B2
6946196 Foss Sep 2005 B2
6953139 Milliman et al. Oct 2005 B2
6959851 Heinrich Nov 2005 B2
7009034 Pathak et al. Mar 2006 B2
7025772 Gellman et al. Apr 2006 B2
7060087 DiMatteo et al. Jun 2006 B2
7087065 Ulmsten et al. Aug 2006 B2
7108701 Evens et al. Sep 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7147138 Shelton, IV Dec 2006 B2
7160299 Baily Jan 2007 B2
7179268 Roy et al. Feb 2007 B2
7210810 Iversen et al. May 2007 B1
7214727 Kwon et al. May 2007 B2
7232449 Sharkawy et al. Jun 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7247338 Pui et al. Jul 2007 B2
7279322 Pui et al. Oct 2007 B2
7307031 Carroll et al. Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7311720 Mueller et al. Dec 2007 B2
7328829 Arad et al. Feb 2008 B2
7334717 Rethy et al. Feb 2008 B2
7347850 Sawhney Mar 2008 B2
7377928 Zubik et al. May 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7464849 Shelton, IV et al. Dec 2008 B2
7498063 Pui et al. Mar 2009 B2
7547312 Bauman et al. Jun 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7571845 Viola Aug 2009 B2
7592418 Pathak et al. Sep 2009 B2
7594921 Browning Sep 2009 B2
7595392 Kumar et al. Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7611494 Campbell et al. Nov 2009 B2
7635073 Heinrich Dec 2009 B2
7645874 Saferstein et al. Jan 2010 B2
7649089 Kumar et al. Jan 2010 B2
7655288 Bauman et al. Feb 2010 B2
7662409 Masters Feb 2010 B2
7662801 Kumar et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7666198 Suyker et al. Feb 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7708180 Murray et al. May 2010 B2
7709631 Harris et al. May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7722642 Williamson, IV et al. May 2010 B2
7735703 Morgan et al. Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7754002 Maase et al. Jul 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793813 Bettuchi Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7819896 Racenet Oct 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7824420 Eldridge et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7892247 Conston et al. Feb 2011 B2
7909224 Prommersberger Mar 2011 B2
7909837 Crews et al. Mar 2011 B2
7938307 Bettuchi May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951166 Orban, III et al. May 2011 B2
7951248 Fallis et al. May 2011 B1
7967179 Olson et al. Jun 2011 B2
7988027 Olson et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028883 Stopek Oct 2011 B2
8033483 Fortier et al. Oct 2011 B2
8033983 Chu et al. Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8062673 Figuly et al. Nov 2011 B2
8083119 Prommersberger Dec 2011 B2
8091756 Viola Jan 2012 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8133336 Kettlewell et al. Mar 2012 B2
8133559 Lee et al. Mar 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8152777 Campbell et al. Apr 2012 B2
8157149 Olson et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8167895 D'Agostino et al. May 2012 B2
8177797 Shimoji et al. May 2012 B2
8178746 Hildeberg et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8210453 Hull et al. Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8245901 Stopek Aug 2012 B2
8252339 Figuly et al. Aug 2012 B2
8252921 Vignon et al. Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8276800 Bettuchi Oct 2012 B2
8286849 Bettuchi Oct 2012 B2
8308042 Aranyi Nov 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8317790 Bell et al. Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8348126 Olson et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8367089 Wan et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8372094 Bettuchi et al. Feb 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8408440 Olson et al. Apr 2013 B2
8408480 Hull et al. Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424742 Bettuchi Apr 2013 B2
8453652 Stopek Jun 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453909 Olson et al. Jun 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8470360 McKay Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8518440 Blaskovich et al. Aug 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8579990 Priewe Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8616430 (Prommersberger) Stopek et al. Dec 2013 B2
8617132 Golzarian et al. Dec 2013 B2
8631989 Aranyi et al. Jan 2014 B2
8646674 Schulte et al. Feb 2014 B2
8668129 Olson Mar 2014 B2
8678263 Viola Mar 2014 B2
8679137 Bauman et al. Mar 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8721703 Fowler May 2014 B2
8727197 Hess et al. May 2014 B2
8757466 Olson et al. Jun 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8814888 Sgro Aug 2014 B2
8820606 Hodgkinson Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8828023 Neff et al. Sep 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8870050 Hodgkinson Oct 2014 B2
8920443 Hiles et al. Dec 2014 B2
8920444 Hiles et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8956390 Shah et al. Feb 2015 B2
8967448 Carter et al. Mar 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010609 Carter et al. Apr 2015 B2
9010610 Hodgkinson Apr 2015 B2
9010612 Stevenson et al. Apr 2015 B2
9016543 (Prommersberger) Stopek et al. Apr 2015 B2
9016544 Hodgkinson et al. Apr 2015 B2
9027817 Milliman et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9084602 Gleiman Jul 2015 B2
9107665 Hodgkinson et al. Aug 2015 B2
9107667 Hodgkinson Aug 2015 B2
9113871 Milliman et al. Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113885 Hodgkinson et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9161753 Prior Oct 2015 B2
9161757 Bettuchi Oct 2015 B2
9186140 Hiles et al. Nov 2015 B2
9186144 Stevenson et al. Nov 2015 B2
9192378 Aranyi et al. Nov 2015 B2
9192379 Aranyi et al. Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192383 Milliman Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9198660 Hodgkinson Dec 2015 B2
9198663 Marczyk et al. Dec 2015 B1
9204881 Penna Dec 2015 B2
9220504 Viola et al. Dec 2015 B2
9226754 D'Agostino et al. Jan 2016 B2
9237892 Hodgkinson Jan 2016 B2
9237893 Carter et al. Jan 2016 B2
9277922 Carter et al. Mar 2016 B2
9295466 Hodgkinson et al. Mar 2016 B2
9326768 Shelton, IV May 2016 B2
9326773 Casasanta, Jr. et al. May 2016 B2
9328111 Zhou et al. May 2016 B2
9345479 (Tarinelli) Racenet et al. May 2016 B2
9351729 Orban, III et al. May 2016 B2
9351731 Carter et al. May 2016 B2
9351732 Hodgkinson May 2016 B2
9358005 Shelton, IV et al. Jun 2016 B2
9364229 D'Agostino et al. Jun 2016 B2
9364234 (Prommersberger) Stopek et al. Jun 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9402627 Stevenson et al. Aug 2016 B2
9414839 Penna Aug 2016 B2
9433412 Bettuchi et al. Sep 2016 B2
9433413 Stopek Sep 2016 B2
9433420 Hodgkinson Sep 2016 B2
9445812 Olson et al. Sep 2016 B2
9445817 Bettuchi Sep 2016 B2
9463260 Stopek Oct 2016 B2
9486215 Olson et al. Nov 2016 B2
9492170 Bear et al. Nov 2016 B2
9504470 Milliman Nov 2016 B2
9517164 Vitaris et al. Dec 2016 B2
9572576 Hodgkinson et al. Feb 2017 B2
9585657 Shelton, IV et al. Mar 2017 B2
9597077 Hodgkinson Mar 2017 B2
9610080 Whitfield et al. Apr 2017 B2
9622745 Ingmanson et al. Apr 2017 B2
9629626 Soltz et al. Apr 2017 B2
9636850 Stopek (nee Prommersberger) et al. May 2017 B2
9655620 Prescott et al. May 2017 B2
9675351 Hodgkinson et al. Jun 2017 B2
9681936 Hodgkinson et al. Jun 2017 B2
9687262 Rousseau et al. Jun 2017 B2
9693772 Ingmanson et al. Jul 2017 B2
9708184 Chan et al. Jul 2017 B2
9770245 Swayze et al. Sep 2017 B2
9775617 Carter et al. Oct 2017 B2
9775618 Bettuchi et al. Oct 2017 B2
9782173 Mozdzierz Oct 2017 B2
9844378 Casasanta et al. Dec 2017 B2
9918713 Zergiebel et al. Mar 2018 B2
9931116 Racenet et al. Apr 2018 B2
10022125 (Prommersberger) Stopek et al. Jul 2018 B2
10098639 Hodgkinson Oct 2018 B2
10111659 Racenet et al. Oct 2018 B2
10154840 Viola et al. Dec 2018 B2
10426468 Contini et al. Oct 2019 B2
20020091397 Chen Jul 2002 A1
20020151911 Gabbay Oct 2002 A1
20030065345 Weadock Apr 2003 A1
20030078209 Schmidt Apr 2003 A1
20030083676 Wallace May 2003 A1
20030125676 Swenson et al. Jul 2003 A1
20030181927 Wallace Sep 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20040092912 Jinno et al. May 2004 A1
20040107006 Francis et al. Jun 2004 A1
20040131418 Budde et al. Jul 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20050002981 Lahtinen et al. Jan 2005 A1
20050006429 Wales et al. Jan 2005 A1
20050021085 Abrams et al. Jan 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050118435 DeLucia et al. Jun 2005 A1
20050149073 Arani et al. Jul 2005 A1
20050283256 Sommerich et al. Dec 2005 A1
20060008505 Brandon Jan 2006 A1
20060121266 Fandel et al. Jun 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060190027 Downey Aug 2006 A1
20070034669 de la Torre et al. Feb 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070243227 Gertner Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20080009811 Cantor Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080140115 Stopek Jun 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080216855 Nasca Sep 2008 A1
20080220047 Sawhney et al. Sep 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090031842 Kawai et al. Feb 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090277944 Dalessandro et al. Nov 2009 A9
20100016855 Ramstein et al. Jan 2010 A1
20100016888 Calabrese et al. Jan 2010 A1
20100087840 Ebersole et al. Apr 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100174253 Cline et al. Jul 2010 A1
20100203151 Hiraoka Aug 2010 A1
20100243707 Olson et al. Sep 2010 A1
20100331859 Omori Dec 2010 A1
20110034910 Ross et al. Feb 2011 A1
20110089220 Ingmanson et al. Apr 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110166673 Patel et al. Jul 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120241491 Aldridge et al. Sep 2012 A1
20120241493 Baxter, III et al. Sep 2012 A1
20120253298 Henderson et al. Oct 2012 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20140048580 Merchant et al. Feb 2014 A1
20140131418 Kostrzewski May 2014 A1
20140224686 Aronhalt et al. Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20150041347 Hodgkinson Feb 2015 A1
20150133995 Shelton, IV et al. May 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150209045 Hodgkinson et al. Jul 2015 A1
20150231409 Racenet et al. Aug 2015 A1
20150327864 Hodgkinson et al. Nov 2015 A1
20160022268 Prior Jan 2016 A1
20160045200 Milliman Feb 2016 A1
20160100834 Viola et al. Apr 2016 A1
20160106430 Carter et al. Apr 2016 A1
20160128694 Baxter, III et al. May 2016 A1
20160157857 Hodgkinson et al. Jun 2016 A1
20160174988 D'Agostino et al. Jun 2016 A1
20160206315 Olson Jul 2016 A1
20160220257 Casasanta et al. Aug 2016 A1
20160249923 Hodgkinson et al. Sep 2016 A1
20160270793 Carter et al. Sep 2016 A1
20160310143 Bettuchi Oct 2016 A1
20160338704 Penna Nov 2016 A1
20160367252 Olson et al. Dec 2016 A1
20160367253 Hodgkinson Dec 2016 A1
20160367257 Stevenson et al. Dec 2016 A1
20170042540 Olson et al. Feb 2017 A1
20170049452 Milliman Feb 2017 A1
20170119390 Schellin et al. May 2017 A1
20170150967 Hodgkinson et al. Jun 2017 A1
20170172575 Hodgkinson Jun 2017 A1
20170231629 Stopek et al. Aug 2017 A1
20170238931 Prescott et al. Aug 2017 A1
20170281328 Hodgkinson et al. Oct 2017 A1
20170296188 Ingmanson et al. Oct 2017 A1
20170354415 Casasanta, Jr. et al. Dec 2017 A1
20180125491 Aranyi May 2018 A1
20180140301 Milliman May 2018 A1
20180168654 Hodgkinson et al. Jun 2018 A1
20180214147 Merchant et al. Aug 2018 A1
20180229054 Racenet et al. Aug 2018 A1
20180250000 Hodgkinson et al. Sep 2018 A1
20180256164 Aranyi Sep 2018 A1
20180296214 Hodgkinson et al. Oct 2018 A1
20180310937 (Prommersberger) Stopek et al. Nov 2018 A1
20190021734 Hodgkinson Jan 2019 A1
20190059878 (Tarinelli) Racenet et al. Feb 2019 A1
20190083087 Viola et al. Mar 2019 A1
20210290230 Fernandes et al. Sep 2021 A1
Foreign Referenced Citations (19)
Number Date Country
2282761 Sep 1998 CA
1602563 Mar 1950 DE
19924311 Nov 2000 DE
0327022 Aug 1989 EP
0594148 Apr 1994 EP
2491867 Aug 2012 EP
3135215 Mar 2017 EP
3441011 Feb 2019 EP
2000166933 Jun 2000 JP
2002202213 Jul 2002 JP
2007124166 May 2007 JP
2010214132 Sep 2010 JP
9005489 May 1990 WO
9516221 Jun 1995 WO
9838923 Sep 1998 WO
9926826 Jun 1999 WO
0010456 Mar 2000 WO
0016684 Mar 2000 WO
2010075298 Jul 2010 WO
Non-Patent Literature Citations (175)
Entry
European Office Action corresponding to EP 14 17 2681.0 dated May 13, 2016.
Extended European Search Report corresponding to EP 16 15 3647.9 dated Jun. 3, 2016.
Chinese Office Action corresponding to CN 201210545228 dated Jun. 29, 2016.
Japanese Office Action corresponding to JP 2012-250058 dated Jun. 29, 2016.
European Office Action corresponding to EP 14 15 7997.9 dated Jun. 29, 2016.
Canadian Office Action corresponding to CA 2,712,617 dated Jun. 30, 2016.
Chinese First Office Action corresponding to CN 2013103036903 dated Jun. 30, 2016.
Australian Patent Examination Report No. 1 corresponding to AU 2012250278 dated Jul. 10, 2016.
Australian Patent Examination Report No. 1 corresponding to AU 2012244382 dated Jul. 10, 2016.
Japanese Office Action corresponding to 2012-255242 dated Jul. 26, 2016.
Japanese Office Action corresponding to JP 2012-268668 dated Jul. 27, 2016.
European Office Action corresponding to EP 14 15 2060.1 dated Aug. 4, 2016.
European Office Action corresponding to EP 12 16 5609.4 dated Aug. 5, 2016.
European Office Action corresponding to EP 15 15 2392.5 dated Aug. 8, 2016.
Japanese Office Action corresponding to JP 2013-003624 dated Aug. 25, 2016.
Australian Patent Examination Report No. 1 corresponding to AU 2012261752 dated Sep. 6, 2016.
Japanese Office Action corresponding to JP 2014-252703 dated Sep. 26, 2016.
European Office Action corresponding to EP 12 19 8776.2 dated Sep. 12, 2016.
Japanese Office Action corresponding to JP 2013-000321 dated Sep. 13, 2016.
Chinese Second Office Action corresponding to CN 201310353628.5 dated Sep. 26, 2016.
European Office Action corresponding to EP 12 15 2541.4 dated Sep. 27, 2016.
Australian Patent Examination Report No. 1 corresponding to AU 2012268923 dated Sep. 28, 2016.
Chinese First Office Action corresponding to CN 2013107068710 dated Dec. 16, 2016.
Chinese First Office Action corresponding to CN 201310646606.8 dated Dec. 23, 2016.
Japanese Office Action corresponding to JP 2013-000321 dated Jan. 4, 2017.
Extended European Search Report corresponding to EP 16 16 6367.9 dated Jan. 16, 2017.
Australian Examination Report No. 1 corresponding to AU 2013206777 dated Feb. 1, 2017.
Chinese Second Office Action corresponding to CN 2013103036903 dated Feb. 23, 2017.
Japanese Office Action corresponding to JP 2013-175379 dated Mar. 1, 2017.
Chinese First Office Action corresponding to CN 201410028462.4 dated Mar. 2, 2017.
Chinese First Office Action corresponding to CN 201410084070 dated Mar. 13, 2017.
Extended European Search Report corresponding to EP 16 19 6549.6 dated Mar. 17, 2017.
Japanese Office Action corresponding to JP 2013-147701 dated Mar. 21, 2017.
Australian Examination Report No. 1 corresponding to AU 2013206804 dated Mar. 21, 2017.
Australian Examination Report No. 1 corresponding to AU 2013211499 dated May 4, 2017.
Australian Examination Report No. 1 corresponding to AU 2014201008 dated May 23, 2017.
European Office Action corresponding to EP 15 17 4146.9 dated May 15, 2017.
Japanese Office Action corresponding to JP 2013-154561 dated May 23, 2017.
European Office Action corresponding to EP 12 19 4784.0 dated May 29, 2017.
Japanese Office Action corresponding to JP 2013-169083 dated May 31, 2017.
Australian Examination Report No. 1 corresponding to AU 2013213767 dated Jun. 29, 2017.
Australian Examination Report No. 2 corresponding to AU 2012261752 dated Jul. 7, 2017.
Australian Examination Report No. 1 corresponding to AU 2013266989 dated Jul. 10, 2017.
Extended European Search Report corresponding to EP 14 15 3609.4 dated Jul. 14, 2017.
Australian Examination Report No. 1 corresponding to AU 2013234418 dated Jul. 14, 2017.
Extended European Search Report corresponding to EP 14 15 3610.2 dated Jul. 17, 2017.
Australian Examination Report No. 1 corresponding to AU 2014200109 dated Jul. 20, 2017.
Australian Examination Report No. 1 corresponding to AU 2014200074 dated Jul. 20, 2017.
Japanese Office Action corresponding to JP 2013-250857 dated Aug. 17, 2017.
Japanese Office Action corresponding to JP 2013-229471 dated Aug. 17, 2017.
Australian Examination Report No. 1 corresponding to AU 2014200793 dated Sep. 2, 2017.
Extended European Search Report corresponding to EP 17 17 8528.0 dated Oct. 13, 2017.
Australian Examination Report No. 1 corresponding to AU 2013234420 dated Oct. 24, 2017.
Japanese Office Action corresponding to JP 2013-175379 dated Oct. 20, 2017.
Japanese Office Action corresponding to JP 2013-147701 dated Oct. 27, 2017.
Extended European Search Report corresponding to EP 17 17 5656.2 dated Nov. 7, 2017.
Japanese Office Action corresponding to JP 2014-009738 dated Nov. 14, 2017.
European Office Action corresponding to EP 13 17 3986.4 dated Nov. 29, 2017.
Japanese Office Action corresponding to JP 2017-075975 dated Dec. 4, 2017.
European Office Action corresponding to EP 13 19 7958.5 dated Dec. 11, 2017.
Chinese First Office Action corresponding to Patent Application CN 201410588811.8 dated Dec. 5, 2017.
European Office Action corresponding to Patent Application EP 16 16 6367.9 dated Dec. 11, 2017.
Chinese First Office Action corresponding to Patent Application CN 201610279682.3 dated Jan. 10, 2018.
Japanese Office Action corresponding to Patent Application JP 2013-154561 dated Jan. 15, 2018.
Australian Examination Report No. 1 corresponding to Patent Application AU 2017225037 dated Jan. 23, 2018.
Japanese Office Action corresponding to Patent Application JP 2013-229471 dated May 1, 2018.
Canadian Office Action corresponding to Patent Application CA 2,790,743 dated May 14, 2018.
European Office Action corresponding to Patent Application EP 14 15 7195.0 dated Jun. 12, 2018.
Extended European Search Report corresponding to Patent Application EP 12196912.5 dated Feb. 1, 2016.
Chinese Second Office Action corresponding to Patent Application CN 201610279682.3 dated Aug. 8, 2018.
Chinese Second Office Action corresponding to Patent Application CN 201410588811.8 dated Aug. 27, 2018.
Extended European Search Report corresponding to Patent Application EP 18160809.2 dated Sep. 18, 2018.
Extended European Search Report corresponding to Patent Application EP 18192317.8 dated Dec. 20, 2018.
Extended European Search Report corresponding to Patent Application EP 18190154.7 dated Feb. 4, 2019.
U.S. Appl. No. 17/329,711, filed May 25, 2021, entitled “Powered Stapling Device With Manual Retraction”.
International Search Report and Written Opinion issued in corresponding International Application No. PCT/IB2022/059464 dated Dec. 21, 2022, 12 pages.
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and dated Aug. 29, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and dated Sep. 17, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and dated Sep. 18, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Oct. 13, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and dated Oct. 20, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and dated Oct. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and dated Nov. 10, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and dated Mar. 30, 2015; (6 pp).
European Office Action corresponding to EP 12 198 776.2 dated Apr. 7, 2015.
European Office Action corresponding to EP 13 156 297.7 dated Apr. 10, 2015.
Australian Examination Report No. 1 corresponding to AU 2011250822 dated May 18, 2015.
European Office Action corresponding to EP 12 186 175.1 dated Jun. 1, 2015.
Chinese Office Action corresponding to CN 201010517292.8 dated Jun. 2, 2015.
Extended European Search Report corresponding to EP 14 17 4814.5 dated Jun. 9, 2015.
Australian Examination Report No. 1 corresponding to AU 2014200584 dated Jun. 15, 2015.
European Office Action corresponding to EP 13 180 881.8 dated Jun. 19, 2015.
European Office Action corresponding to EP 14 157 195.0 dated Jul. 2, 2015.
Extended European Search Report corresponding to EP 12 19 6902.6 dated Aug. 6, 2015.
Extended European Search Report corresponding to EP 14 15 2060.1 dated Aug. 14, 2015.
Chinese Office Action corresponding to CN 201210129787.2 dated Aug. 24, 2015.
Canadian Office Action corresponding to CA 2,665,206 dated Nov. 19, 2013.
Chinese Notification of Reexamination corresponding to CN 201010517292.8 dated Jun. 2, 2015.
Japanese Office Action corresponding to JP 2014-216989 dated Sep. 11, 2015.
Canadian First Office Action corresponding to CA 2,686,105 dated Sep. 17, 2015.
Japanese Office Action corresponding to JP 2012-040188 dated Oct. 21, 2015.
European Communication corresponding to EP 13 17 6895.4 dated Nov. 5, 2015.
Chinese First Office Action corresponding to CN 201210544552 dated Nov. 23, 2015.
Chinese First Office Action corresponding to CN 201210545228 dated Nov. 30, 2015.
Extended European Search Report corresponding to EP 15 18 0491.1 dated Dec. 9, 2015.
Extended European Search Report corresponding to EP 15 18 3819.0 dated Dec. 11, 2015.
Canadian Office Action corresponding to CA 2,697,819 dated Jan. 6, 2016.
Canadian Office Action corresponding to CA 2,696,419 dated Jan. 14, 2016.
European Office Action corresponding to EP 12 19 8776.2 dated Jan. 19, 2016.
Extended European Search Report corresponding to EP 15 17 4146.9 dated Jan. 20, 2016.
Chinese First Office Action corresponding to CN 201310353628.5 dated Jan. 25, 2016.
Extended European Search Report corresponding to EP 12 19 6912.5 dated Feb. 1, 2016.
Japanese Office Action corresponding to JP 2012-098903 dated Feb. 22, 2016.
Extended European Search Report corresponding to EP 12 19 8753.1 dated Feb. 24, 2016.
Chinese First Office Action corresponding to CN 201410449019.4 dated Mar. 30, 2016.
Extended European Search Report corresponding to EP 16 15 0232.3 dated Apr. 12, 2016.
European Office Action corresponding to EP 11 18 3256.4 dated Apr. 20, 2016.
Australian Examination Report No. 1 corresponding to AU 2012244169 dated May 10, 2016.
European Office Action corresponding to EP 10 25 0715.9 dated May 12, 2016.
Chinese First Office Action corresponding to CN 201410778512.0 dated May 13, 2016.
Australian Examination Report No. 1 corresponding to AU 2012227358 dated May 16, 2016.
Japanese Office Action corresponding to JP 2012-040188 dated May 17, 2016.
Australian Examination Report No. 1 corresponding to AU 2012244380 dated May 20, 2016.
Australian Examination Report No. 1 corresponding to AU 2014227480 dated May 21, 2016.
Australian Examination Report No. 1 corresponding to AU 2012254977 dated May 30, 2016.
European Search Report corresponding to EP 06 00 4598, completed Jun. 22, 2006; (2 pp).
European Search Report corresponding to EP 06 01 6962.0, completed Jan. 3, 2007 and dated Jan. 11, 2007; (10 pp).
International Search Report corresponding to International Application No. PCT/US2005/036740, completed Feb. 20, 2007 and dated Mar. 23, 2007; (8 pp).
International Search Report corresponding to International Application No. PCT/US2007/022713, completed Apr. 21, 2008 and dated May 15, 2008; (1 p).
International Search Report corresponding to International Application No. PCT/US2008/002981, completed Jun. 9, 2008 and dated Jun. 26, 2008; (2 pp).
European Search Report corresponding to EP 08 25 1779, completed Jul. 14, 2008 and dated Jul. 23, 2008; (5 pp).
European Search Report corresponding to EP 08 25 1989.3, completed Mar. 11, 2010 and dated Mar. 24, 2010; (6 pp).
European Search Report corresponding to EP 10 25 0639.1, completed Jun. 17, 2010 and dated Jun. 28, 2010; (7 pp).
European Search Report corresponding to EP 10 25 0715.9, completed Jun. 30, 2010 and dated Jul. 20, 2010; (3 pp).
European Search Report corresponding to EP 05 80 4382.9, completed Oct. 5, 2010 and dated Oct. 12, 2010; (3 pp).
European Search Report corresponding to EP 09 25 2897.5, completed Feb. 7, 2011 and dated Feb. 15, 2011; (3 pp).
European Search Report corresponding to EP 10 25 0642.5, completed Mar. 25, 2011 and dated Apr. 4, 2011; (4 pp).
European Search Report corresponding to EP 12 15 2229.6, completed Feb. 23, 2012 and dated Mar. 1, 2012; (4 pp).
European Search Report corresponding to EP 12 15 0511.9, completed Apr. 16, 2012 and dated Apr. 24, 2012; (7 pp).
European Search Report corresponding to EP 12 15 2541.4, completed Apr. 23, 2012 and dated May 3, 2012; (10 pp).
European Search Report corresponding to EP 12 16 5609.4, completed Jul. 5, 2012 and dated Jul. 13, 2012; (8 pp).
European Search Report corresponding to EP 12 15 8861.0, completed Jul. 17, 2012 and dated Jul. 24, 2012; (9 pp).
European Search Report corresponding to EP 12 16 5878.5, completed Jul. 24, 2012 and dated Aug. 6, 2012; (8 pp).
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and dated Jan. 18, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 18 6175.1, completed Jan. 15, 2013 and dated Jan. 23, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 19 1114.3, completed Jan. 23, 2013 and dated Jan. 31, 2013; (10 pp).
Extended European Search Report corresponding to EP 12 19 2224.9, completed Mar. 14, 2013 and dated Mar. 26, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and dated Jul. 26, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 6911.7, completed Apr. 18, 2013 and dated Apr. 24, 2013; (8 pp).
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and dated May 29, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and dated May 27, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and dated May 31, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and dated Jun. 13, 2013; (7 pp).
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and dated Aug. 28, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and dated Aug. 29, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and dated Sep. 19, 2013; 6 pages.
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and dated Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and dated Sep. 30, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and dated Oct. 24, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and dated Nov. 7, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and dated Nov. 13, 2013; (7 pp).
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and dated Nov. 14, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and dated Dec. 12, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and dated Dec. 16, 2013; (8 pp).
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and dated Dec. 20, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and dated Jan. 31, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and dated Feb. 27, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and dated Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and dated Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and dated Mar. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and dated Apr. 9, 2014; (9 pp).
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and dated Apr. 15, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Jun. 16, 2014; (5 pp).
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and dated Jun. 18, 2014; (9 pp).
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and dated Jul. 29, 2014; (8 pp).
Related Publications (1)
Number Date Country
20230111108 A1 Apr 2023 US