Surgical cassette manifold, system, and methods thereof

Abstract
Eliminating leaks of molded fluid channels by providing a front housing, rear housing, and a gasket, wherein the front housing has one or more molded fluid channels and one or more seal channels, and wherein at least a portion of the gasket is located between the front and rear housing; molding the gasket onto the rear housing to create a single unit, wherein the gasket has one or more seal lips configured and dimensioned to couple with the one or more seal channels; and assembling the front housing to the rear housing having the gasket, wherein the one or more seal lips couple with the seal channels. A surgical cassette manifold having a front and rear housing, and a gasket therebetween. The front housing having molded fluid channels that mate with the gasket and the gasket having multiple valves and a sensor/diaphragm accessible through the rear housing.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention is generally related to methods, devices, and systems for controlling surgical fluid flows, particularly during treatment of an eye.


BACKGROUND OF THE INVENTION

The optical elements of the eye include both a cornea (at the front of the eye) and a lens within the eye. The lens and cornea work together to focus light onto the retina at the back of the eye. The lens also changes in shape, adjusting the focus of the eye to vary between viewing near objects and far objects. The lens is found just behind the pupil, and within a capsular bag. This capsular bag is a thin, relatively delicate structure which separates the eye into anterior and posterior chambers.


With age, clouding of the lens or cataracts are fairly common. Cataracts may form in the hard central nucleus of the lens, in the softer peripheral cortical portion of the lens, or at the back of the lens near the capsular bag.


Cataracts can be treated by the replacement of the cloudy lens with an artificial lens. Phacoemulsification systems often use ultrasound energy to fragment the lens and aspirate the lens material from within the capsular bag. This may allow the capsular bag to be used for positioning of the artificial lens, and maintains the separation between the anterior portion of the eye and the vitreous humour in the posterior chamber of the eye.


During cataract surgery and other therapies of the eye, accurate control over the volume of fluid within the eye is highly beneficial. For example, while ultrasound energy breaks up the lens and allows it to be drawn into a treatment probe with an aspiration flow, a corresponding irrigation flow may be introduced into the eye so that the total volume of fluid in the eye does not change excessively. If the total volume of fluid in the eye is allowed to get too low at any time during the procedure, the eye may collapse and cause significant tissue damage. Similarly, excessive pressure within the eye may strain and injure tissues of the eye.


While a variety of specific fluid transport mechanisms have been used in phacoemulsification and other treatment systems for the eyes, aspiration flow systems can generally be classified in two categories: 1) volumetric-based aspiration flow systems using positive displacement pumps; and 2) vacuum-based aspiration systems using a vacuum source, typically applied to the aspiration flow through an air-liquid interface. These two categories of aspiration flow systems each have unique characteristics that render one more suitable for some procedures than the other, and vice versa.


Among positive displacement aspiration systems, peristaltic pumps (which use rotating rollers that press against a flexible tubing to induce flow) are commonly employed. Such pumps provide accurate control over the flow volume. The pressure of the flow, however, is less accurately controlled and the variations in vacuum may result in the feel or traction of the handpiece varying during a procedure. Peristaltic and other displacement pump systems may also be somewhat slow.


Vacuum-based aspiration systems provide accurate control over the fluid pressure within the eye, particularly when combined with gravity-fed irrigation systems. While vacuum-based systems can result in excessive fluid flows in some circumstances, they provide advantages, for example, when removing a relatively large quantity of the viscous vitreous humour from the posterior chamber of the eye. However, Venturi pumps and other vacuum-based aspiration flow systems are subject to pressure surges during occlusion of the treatment probe, and such pressure surges may decrease the surgeon's control over the eye treatment procedure.


Different tissues may be aspirated from the anterior chamber of the eye with the two different types of aspiration flow. For example, vacuum-induced aspiration flow may quickly aspirate tissues at a significant distance from a delicate structure of the eye (such as the capsular bag), while tissues that are closer to the capsular bag are aspirated more methodically using displacement-induced flows.


Conventionally, fluid aspiration systems include a console and a fluidic cassette mounted on the console. The fluidic cassette is typically changed for each patient and cooperates with the console to provide fluid aspiration. Generally, a single type of cassette is used by a particular console, regardless of whether the procedure will require positive displacement aspiration, vacuum-based aspiration, or both. U.S. Pat. No. 8,070,712; U.S. Published Application 2008011431; and U.S. Published Application 20080114291 provide examples of cassettes currently used in the marketplace, the contents of each are herewith incorporated by reference in their entirety as if set forth herein. U.S. application Ser. No. 13/776,988 provides examples of cassettes, which is hereby incorporated by reference in its entirety as if set forth herein.


In light of the above, it would be advantageous to provide improved devices, systems, and methods for eye surgery.


SUMMARY OF THE INVENTION

The present invention provides a method of eliminating leaking of molded fluid channels, including: providing a front housing, rear housing, and a gasket, wherein the front housing has one or more molded fluid channels and one or more seal channels, and wherein at least a portion of the gasket is located between the front housing and the rear housing; molding the gasket onto the rear housing to create a single unit, wherein the gasket has one or more seal lips configured and dimensioned to couple with the one or more seal channels; and assembling the front housing to the rear housing having the gasket, wherein the one or more seal lips couple with the seal channels. The seal channels may be located on an outside perimeter of the molded fluid channels and the seal lip may be tapered. In addition, the one or more seal lips may extend substantially perpendicular from a surface of the gasket. The molded fluid channels may also be substantially perpendicular with a surface of the front housing and/or the seal channels may be substantially perpendicular with a surface of the front housing. In addition, the seal lips may be configured and dimensioned as pre-alignment structures enabling proper assembly with corresponding seal channels. The method may further include one or more alignment pins and corresponding pin holes, wherein after molding the gasket onto the rear housing to create a single unit, coupling the alignment pins with the corresponding pin holes. The method may also include, after assembling the front housing to the rear housing having the gasket, ultrasonically welding the front housing to the rear housing. In addition, the method may include, after assembling the front housing to the rear housing having the gasket, press fitting the front housing to the rear housing.


The present invention provides a surgical cassette manifold, having a front housing, a rear housing, and a gasket, wherein the front housing comprises one or more molded fluid channels and one or more seal channels, herein the gasket is coupled with the rear housing and at least a portion of the gasket is located between the front housing and the rear housing, and wherein the gasket has one or more seal lips configured and dimensioned to couple with the one or more seal channels. The surgical cassette manifold may further include a reservoir, wherein the reservoir has a first portion with a first circumferential edge located in the front housing, a second portion with a second circumferential edge located in the rear housing, and wherein at least a portion of the gasket is located between the first and second circumferential edge when the front housing and rear housing are assembled. In addition, upon assembly of the surgical cassette manifold, the gasket creates a mechanical seal between the first portion and the second portion of the reservoir. The seal channels may be located on an outside perimeter of the molded fluid channels and the seal lip is tapered. The one or more seal lips extend substantially perpendicular from a surface of the gasket. The molded fluid channels may be substantially perpendicular with a surface of the front housing and/or the seal channels may be substantially perpendicular with a surface of the front housing. The seal lips may be configured and dimensioned as pre-alignment structures enabling proper assembly with the seal channels. In addition, the rear housing may further include one or more alignment pins and the front housing further includes one or more corresponding pin holes, wherein the one or more alignment pins and one or more pin holes are configured and dimensioned to mate upon assembly of the front housing and rear housing.


The present invention provides a surgical cassette manifold, having a front housing and a rear housing, wherein, the rear housing has a first side and a second side, wherein the first side is configured and dimensioned to make contact with a surgical console, wherein the first side has one or more retainer clips, wherein the retainer clips have a first prong and a second prong, wherein the first and second prong extend substantially perpendicular from a plane of the rear housing and have an opening between the first and second prong configured and dimensioned to accept a flexible tubing and retain the flexible tubing once accepted through the opening. The first prong and the second prong may have a proximal end and a distal end, wherein the opening has a length between the distal ends that is smaller than the length between the proximal ends. The distal end of the first prong may have a first face and the distal end of the second prong has a second face, wherein the first and second face of the opening create an angle. The angle may be an acute angle and the angle may be between 30 degrees and 90 degrees.


The present invention provides a surgical cassette manifold, including a front housing, wherein the front housing has a first side, a second side, a top and a bottom, wherein the first side has a drain port having a connection configured and dimension to couple with a drain bag, wherein the drain port is located approximately equidistance from the top and the bottom of the first side, and wherein the drain port is recessed such that the drain port is substantially flush with a surface of the first side of the front housing, wherein the second side of the front housing has one or more molded fluid channels which are fluidly connected to the drain port and wherein the front housing has one or more seal channels; a rear housing having a gasket coupled thereto, wherein the gasket comprises one or more seal lips configured and dimensioned to couple with the one or more seal channels to seal the one or more molded fluid channels; and wherein the one or more molded fluid channels comprises a vertical molded channel and the gasket has a seal lip that is configured and dimensioned to mate with the vertical seal channel to seal the vertical molded channel, wherein a bottom of the vertical molded channel couples with a lower tube connection that is coupled with a peristaltic pump and a top of the vertical molded channel couples with the drain port. The surgical cassette manifold may also have a handle, wherein the handle is coupled with the first side of the front housing and extends outwardly from the first side, wherein the handle is located substantially in the middle of the front housing between the first and second sides and above a horizontal midline between the top and bottom. In addition, the front housing further may have a first pump ramp and a second pump ramp, wherein the second pump rump is located near the bottom and a curvature profile of the second pump ramp extends outwardly beyond a surface of the first side but not beyond the handle.


The present invention provides a surgical cassette manifold, including a front housing, a rear housing, a gasket, and a tubing segment, wherein the gasket is coupled with the rear housing, and wherein upon assembly of the surgical cassette manifold, at least a portion of the gasket is located between the front housing and the rear housing, wherein the rear housing has a first lower tube connection and a second lower tube connection, wherein the first lower tube connection is configured and dimensioned to couple with a first end of the tubing segment and the second lower tubing segment is configured and dimensioned to couple with a second end of the tubing segment thereby creating a first portion of a peristaltic pump, wherein the first lower tube connection and second lower tube connection have an in flow and out flow path on a same axis. The surgical cassette manifold may further include a reservoir and the peristaltic pump may be configured and dimensioned to drain fluid from the reservoir via the first and second lower tube connections and tubing segment.


The present invention provides a surgical system, including a cassette having a front housing, a rear housing, and a reservoir, wherein the front housing has one or more molded fluid channels, and wherein the front housing, rear housing, and reservoir are made of a transparent material; a console having a cassette receptacle configured and dimensioned to receive the cassette, wherein the cassette receptacle has a light, wherein when in operation, the light is configured to illuminate the cassette enabling visualization of fluid flow through the molded fluid channels and/or into the reservoir. In addition, the system may further include a cassette detector, wherein the cassette detector is configured to determine the pumping functionality of the cassette. The pumping functionality may be selected from the group consisting of peristaltic, Venturi, or both. The cassette detector may be a reflective object sensor, a photo interrupter sensor, ultrasonic, a laser distance sensor, a bar code sensor, or a pattern recognition sensor.


The present invention provides a surgical cassette manifold, including a reservoir, wherein the reservoir has a sump and a baffle, wherein a port for fluid outflow is located within the sump; a front housing, wherein the front housing has a first side and a second side, wherein the first side has one or more fluid channels and a first half of the reservoir; and a rear housing, wherein the rear housing has a first side and a second side, wherein the first side has a second half of the reservoir and a gasket molded to at least a portion of the first side, wherein the first half of the reservoir comprises a baffle located near a top of the reservoir; wherein the sump is configured and dimensioned to draw fluid to the port to reduce turbulence in the reservoir. The cassette may further include a fluid level window, wherein the baffle is configured and dimensioned to limit fluid contact with the fluid level window. The baffle may be angled toward the sump to direct fluid flow from the fluid channels to the port.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is best understood with reference to the following detailed description of the invention and the drawings in which:



FIG. 1 schematically illustrates an eye treatment system in which a cassette couples an eye treatment probe with an eye treatment console;



FIGS. 2A and 2B are exploded views of an exemplary surgical cassette manifold for use in the system of FIG. 1;



FIG. 3A is perspective front view of the front housing of an exemplary surgical cassette manifold;



FIG. 3B is perspective back view of the front housing of an exemplary surgical cassette manifold;



FIG. 4A is a front perspective view of the rear housing of an exemplary surgical cassette manifold;



FIG. 4B is a back perspective view of the rear housing of an exemplary surgical cassette manifold;



FIG. 4C is front perspective view of the rear housing of an exemplary surgical cassette manifold;



FIG. 4D is a back perspective view of the rear housing of an exemplary surgical cassette manifold;



FIG. 4E is front perspective view of the rear housing of an exemplary surgical cassette manifold;



FIG. 4F is a back perspective view of the rear housing of an exemplary surgical cassette manifold;



FIG. 4G is a back perspective view of an assembled exemplary surgical cassette having rear housing shown in FIGS. 4E and 4F;



FIG. 5A is back view of the rear housing of an exemplary surgical cassette manifold;



FIG. 5B is a cross-sectional view of the rear housing along N-N of an exemplary surgical cassette manifold;



FIG. 5C is a cross-sectional view of the rear housing of an exemplary surgical cassette manifold;



FIG. 5D is a larger view of a portion of cross-sectional view of the rear housing of the exemplary surgical cassette manifold shown in FIG. 5C; and



FIG. 6 is a perspective view of an exemplary surgical cassette with attached tubing and drain bag.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the embodiments, it will be understood that they are not intended to limit the invention to those embodiments. On the contrary, the invention is intended to cover alternatives, modifications, and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.


Referring to FIG. 1, a system 10 for treating an eye E of a patient P generally includes an eye treatment probe handpiece 12 coupled to a console 14 by a cassette 100 mounted on the console. Handpiece 12 may include a handle for manually manipulating and supporting an insertable probe tip. The probe tip has a distal end which is insertable into the eye, with one or more lumens in the probe tip allowing irrigation fluid to flow from the console 14 and/or cassette 100 into the eye. Aspiration fluid may also be withdrawn through a lumen of the probe tip, with the console 14 and cassette 100 generally including a vacuum aspiration source, a positive displacement aspiration pump, or both to help withdraw and control a flow of surgical fluids into and out of eye E. As the surgical fluids may include biological materials that should not be transferred between patients, cassette 100 will often comprise a disposable (or alternatively, re-sterilizable) structure, with the surgical fluids being transmitted through flexible conduits 18 of the cassette that avoid direct contact in between those fluids and the components of console 14.


When a distal end of the probe tip of handpiece 12 is inserted into an eye E, for example, for removal of a lens of a patient with cataracts, an electrical conductor and/or pneumatic line (not shown) may supply energy from console 14 to an ultrasound transmitter of the handpiece, a cutter mechanism, or the like. Alternatively, the handpiece 12 may be configured as an irrigation/aspiration (I/A) or vitrectomy handpiece. Also, the ultrasonic transmitter may be replaced by other means for emulsifying a lens, such as a high energy laser beam. The ultrasound energy from handpiece 12 helps to fragment the tissue of the lens, which can then be drawn into a port of the tip by aspiration flow. So as to balance the volume of material removed by the aspiration flow, an irrigation flow through handpiece 12 (or a separate probe structure) may also be provided, with both the aspiration and irrigations flows being controlled by console 14.


So as to avoid cross-contamination between patients without incurring excessive expenditures for each procedure, cassette 100 and its flexible conduit 18 may be disposable. Alternatively, the flexible conduit or tubing may be disposable, with the cassette body and/or other structures of the cassette being sterilizable. Regardless, the disposable components of the cassette are typically configured for use with a single patient, and may not be suitable for sterilization. The cassette will interface with reusable (and often quite expensive) components of console 14, which may include one or more peristaltic pump rollers, a Venturi or other vacuum source, a controller 40, and the like.


Controller 40 may include an embedded microcontroller and/or many of the components common to a personal computer, such as a processor, data bus, a memory, input and/or output devices (including a touch screen user interface 42), and the like. Controller 40 will often include both hardware and software, with the software typically comprising machine readable code or programming instructions for implementing one, some, or all of the methods described herein. The code may be embodied by a tangible media such as a memory, a magnetic recording media, an optical recording media, or the like. Controller 40 may have (or be coupled to) a recording media reader, or the code may be transmitted to controller 40 by a network connection such as an internet, an intranet, an Ethernet, a wireless network, or the like. Along with programming code, controller 40 may include stored data for implementing the methods described herein, and may generate and/or store data that records perimeters with corresponding to the treatment of one or more patients. Many components of console 14 may be found in or modified from known commercial phacoemulsification systems from Abbott Medical Optics Inc. of Santa Ana, Calif.; Alcon Manufacturing, Ltd. of Ft. Worth, Tex.; Bausch and Lomb of Rochester, N.Y.; and other suppliers.



FIGS. 2A and 2B illustrates a surgical cassette manifold of the present invention, including components of surgical cassette manifold 101. Cassette or surgical cassette 100 is an assembly surgical cassette manifold 101 having fluid pathways and connected tubing configured to manage one or more of the following: fluid inflow, fluid outflow, fluid vacuum level, and fluid pressure in a patient's eye E when coupled with console 14. As shown in FIGS. 2A and 2B, surgical cassette manifold 100 has a front housing 102, a rear housing 104, a first tubing 106, and a second tubing 108. Rear housing 104 may also have gasket 110 co-molded or over-molded with rear housing 104.



FIGS. 3A and 3B show front housing 102 in more detail. FIG. 3A shows a front perspective view of front housing 102, which may have a handle 112 (e.g. finger grip handle), drain port 114, and attachment clip 116. FIG. 3B shows a back perspective view of front housing 102, which may have molded fluid channels 118, a first portion 120a of reservoir 120, a first pump ramp or profile 122 configured and dimensioned for mating with a peristaltic pump, and a second pump ramp or profile 124 configured and dimensioned for mating with a peristaltic pump.


A drain bag 16 (see FIG. 6) may be attached to the front of front housing 102 via the drain port 114 and attachment clip 116 such that when surgical cassette 100 is coupled with console 14 and fluid is aspirated from an eye E of a patient P, the fluid is capable of being collected in the drainage bag 16 via drain port 114. The drain bag 16 may be supported on surgical cassette manifold 101 by attachment clip 116 and/or drain port 114.


Drain port 114 on front housing 102 of surgical cassette manifold 101 may be recessed allowing for a lower or low profile handle 112. Having a low or lower profile drain port 114 allows a drain bag (not shown) to sit flush again front housing 102. In an embodiment, placing drain port 114 substantially in the middle of the surgical cassette manifold from top to bottom moves the location of the center of mass of surgical cassette manifold 101 making the surgical cassette manifold more ergonomic. Moreover, locating drain port 114 closer to the upper/top edge of front housing 102 allows for a more compact assembly of the surgical cassette manifold and allows for better access to components/handles of console 14. See FIG. 6.


In an embodiment, a fluid channel 118 runs in a vertical direction from lower tube connection 136 (that is fluidly connected to the second tubing segment 108 that makes up the second peristaltic pump) to drain port 114 out to the drain bag 16. This molded fluid channel 118 eliminates the need for tubing.


As shown in FIG. 3B, front housing 102 also may have seal channels 125, which are configured and dimensioned to mate with a seal lip 126 (shown in FIGS. 4A, 4C, and 4E) that extends outwardly or perpendicularly from the surface of gasket 110 and is a part of gasket 110 to create a seal or lid over molded fluid channels 118. The seal lip may have any dimension suitable for mating with seal channel 125. In an embodiment, seal lip 126 may be tapered, starting thicker at its proximal end and becoming thinner towards its distal end. In another embodiment, seal lip 126 may be slightly larger than seal channel 125 to create a snug fit. In a further embodiment, co-molding or over-molding gasket 110 onto rear housing 104 eliminates the potential leak path in the direction of rear housing 104. Seal lip 126 provides positioning alignment on front housing 102 and rear housing 104.


Referring to FIGS. 4A-4F, various exemplary embodiments of rear housing 104 are shown. FIG. 4A is a front perspective view of rear housing 104 and FIG. 4B is a back perspective view of rear housing 104. As shown in FIG. 4A rear housing 104 has a gasket 110 co-molded or over-molded to it. Gasket 110 has seal lip 126 which extends away or protrudes in a substantially perpendicular direction from a plane of gasket 104 and rear housing 104. Gasket 110 may include a pressure/vacuum sensor diaphragm 128, vent valve control dome 130, and/or irrigation valve control dome 132. Vacuum/pressure sensor diaphragm 128 may be a sealed flexible annular membrane with a central magnetic coupling disk which deforms: (1) proportionally outwards under fluid pressure conditions compressing a magnetically-coupled force displacement transducer of console 14 allowing for non-fluid contact measurement of fluid pressure level inside the aspiration fluid pathways of surgical cassette manifold 101; and (2) proportionally inwards under fluid vacuum conditions extending the magnetically-coupled force displacement transducer of console 14 allowing for non-fluid contact measurement of fluid vacuum level inside the aspiration fluid pathways of surgical cassette manifold 101.


In an embodiment, gasket 110 may be molded, co-mold, or two-shot molded onto or with rear housing 104. Molding gasket 110 onto rear housing 104 in such a manner reduces or eliminates a leak path which is possible with molded fluid channels when using two different materials. In an embodiment, a method of eliminating leaking of molded fluid channels by combining two different materials for creating a proper seal is envisioned resulting in an easier manufacturing method by creating a self-aligning gasket 110. In an embodiment, when assembling rear housing 104 to front housing 102 mating of seal lip 126 and seal channel 125 can be achieved using a plurality of alignment pins 127 which mate with their counterpart pin holes 129. Using alignment pins 127 and pin holes 129 as opposed to the flexible seal lip 126 and seal channel 125 allows for an easier and more efficient assembly process. Thus, molding gasket 110 onto or with rear housing 104 results in pre-alignment/pre-keyed/pre-orientation of seal lip 126 for properly sealing molded fluid channels 118 on front housing 102, thus reducing or even eliminating leaking and increasing ease of manufacture.


Rear housing 104 may also include a second portion 120b of reservoir 120, upper tube connections 134, lower tube connection 136, and one or more tubing retainer clips 138. In an embodiment, upper tube connections 134 have a slight taper from bottom toward the top so that the tubing stays on the upper tube connections 134. See FIG. 5D. Lower tube connection 136 may have a tapered head (as shown in FIG. 5A) to secure second tubing 108 to lower tube connections 136.


In an embodiment, second tubing 108 may have a first end and a second end that couple with lower tube connections 136. Once surgical cassette manifold 101 is assembled, second tubing 108 and ramp 124 are configured to couple with a peristaltic rollers located on console 14 (not shown) to create a peristaltic pump. In an embodiment, lower tube connections 136 are on the same axis, i.e. there is axial alignment of the inflow and outflow of the tubing 108, and maintain a specific distance apart resulting in a more accurate peristaltic pump due to the controlled length of second tubing 106, which provides a consistent flow rate and a consistent interface with ramp 124 and peristaltic rollers. Moreover, such aligned and consistent interfaces results in less noise/sound generated by the peristaltic pump during operation.


In an embodiment, reservoir 120 may have a sump 121. Sump 121 is a portion of reservoir 120 that extends below a bottom 120c of reservoir 120 that promotes fluid to flow from the reservoir 120 to sump 121 and out a lower tube connection 136 via the second tubing 108. Sump 121 (1) reduces turbulence of the tank by pulling bubbles away from the level detector housed in the console 14 that couples with window 131 for more accurate detection of the fluid in reservoir 120; and (2) ensures drain inlet port 133a fluidly connected to a lower tube connection 136 is always below fluid, therefore fluid is consistently pumped out and not air, which may cause the drain bag 16 to balloon. In an embodiment, window 131 may be a prism.


In another embodiment, the fluid level detector and window 131 are located on one side of reservoir 120 and sump 121 and baffle 135 is on the other side of reservoir 120. This configuration ensures limited or no interaction between the fluid entering and exiting the reservoir and the fluid level detector and window 131 to allow for a more precise reading of the level of fluid in reservoir 120. Moreover, the combination of baffle 135 and sump 121 provides a guide for the fluid entering reservoir 120 from molded fluid channels 118 and exiting through drain pump inlet port 133a to reduce turbulence in reservoir 120. Fluid may exit reservoir 120 via drain pump inlet port 133a via lower tube connection 136, which may be coupled with a first end of second tubing 108 and a second end of second tubing 108 may be coupled to a second lower tube connection 136 which is coupled to drain pump outlet 133b. Drain pump outlet 133b is coupled with a drain bag 16 to allow fluid to be removed from reservoir 120 via the second peristaltic pump.


Referring to FIGS. 4C and 4D, rear housing 104 is shown in an alternative embodiment with respect to how first tubing 106 couples with rear housing 104. Pump tube inlet 137a and pump tube outlet 137b couple with barbs 136, which in turn are configured and dimensioned to couple with first tubing 106. See FIG. 2b. During assembly rear housing 104 is mated with front housing 102 and first tubing 106 is configured to conform with first pump ramp or profile 122, which is configured and dimensioned for mating with a peristaltic pump located within console 14 (not shown).


Referring to FIGS. 4E and 4F, rear housing 104 is shown in an alternative embodiment with respect to how first tubing 106 couples with rear housing 104. A first end and a second end of first tubing 106 are fed through a gap 139 of tubing catch 140 and pump tube inlet 137a and pump tube outlet 137b couple with the first end and the second end of first tubing 106 via upper tube connections 134 by placing the first end and the second end of the first tubing 106 over the upper tube connection 134, which connect to molded fluid channels 118. Other mechanisms of connecting the first and second ends of first tubing 106 to upper tube connection 134 known in the art are also contemplated. FIG. 4G shows assembled cassette 100 having the rear housing 104 embodiment shown in FIGS. 4E and 4F with first tubing 106 fed through gaps 139 of tubing catch 140 of rear housing 104.


Referring to FIGS. 5A and 5B, tubing retainer clips 138 (shown in FIGS. 4A and 4B) may have a first prong 138a and a second prong 138b creating an opening 140. Tubing retainer clips 138 protrude substantially perpendicularly from a plane of the back side of rear housing 104. In an embodiment, tubing retainer clips 138 may slightly angle towards each other as shown in FIG. 5A. Tubing retainer clips 138 are configured and dimensioned to assist with easy assembly of surgical cassette manifold 101 and maintaining first tubing 106 in a specific orientation after assembly. Tubing retainer clips 138 may be over center clips.


During assembly of surgical cassette manifold 101, a first end and a second end of first tubing 106 are coupled with upper tube connections 134 (see FIG. 4B) via pump tube inlet 137a and pump tube outlet 137b by placing the first end and the second end of the first tubing 106 over the upper tube connection 134, which may connect to molded fluid channels 118. Once the first and second end of the first tubing 106 is coupled with the upper tube connections 134, first tubing 106 may be pushed through opening 140. First tubing 140 may pushed through opening 140 between the first prong 138a and the second prong 138b by an operators hand, using tool or through an automation step with equipment. The nature of the tubing allows for it to deform under pressure and fit between the first prong 138a and second prong 138b. In an embodiment, first tubing 106 may be stretched to minimize the diameter of the tubing to enable insertion between first prong 138a and second prong 138b. Once first tubing 106 is through first prong 138a and second prong 138b, the shape and size of first prong 138a, second prong 138b, and opening 140 prevent first tubing 106 from backing back out through opening 140 after assembly. In an embodiment, each prong has an angle to help with easing first tubing 106 into opening 140 and the angle between the first prong 138a and the second prong 138b is a as shown in FIG. 5B. In an embodiment, the angle between first prong 138a and second prong 138b may be approximately 60 degrees. In another embodiment, the larger the angle the easier to insert tubing 106 into opening 140, however a 0 degree angle would not help much. In an embodiment, the angle between first prong 138a and second prong 138b may be between 30 degrees and 90 degrees.


As discussed above and shown in FIGS. 3B and 4A, reservoir 120 may be comprised of two pieces with an elastomeric seal in between the two pieces. For example, reservoir 120 may include first portion 120a and second portion 120b. In prior art tanks that are composed of multiple pieces, adhesives are used resulting in additional material for assembly. In contrast, in an embodiment of the present invention, when front housing 102 and rear housing 104 are ultrasonically welded together with gasket 110 co-molded to the rear housing, gasket 110 creates a seal around and between the edges of the first portion 120a and the second portion 120b. In the present embodiment, the joining of the first portion 120a and the second portion 120b with the co-molded or over-molded gasket 110 results in a mechanical seal. In another embodiment, the front housing 102 and rear housing 104 may be press fit together with or without the use of adhesives to replacing ultrasonic welding. These techniques may have a cost savings advantage of avoiding extra material from a manufacturing and cost of goods perspective. In another embodiment, other mechanisms of assembly that may be used to combine front housing 102 and rear housing 104 include, but are not limited to, laser welding, a rotating latch, a snap clip latch, or fasteners, such as screws, rivets, and/or pins.


According to an embodiment, having a first portion 102a and a second portion 102b with a gasket 110 decreases the dimensional tolerance requirements for the first and second portions where the gasket portion comes in contact with the reservoir 120 due to the compressive nature of the seal. In an embodiment, gasket 110 has a seal lip 126 that mates with a seal channel 125 on second portion 102b of the reservoir tank 120 of the rear housing 104, thereby creating a seal when the front housing 102 and rear housing 104 are mated. In an embodiment, there is no need to actually displace or squeeze the gasket between the two covers to create a non-leaking seal, although some pressure may be accommodated or desired, or may result from tolerances during manufacturing. See FIG. 3B.


Referring to FIGS. 5A and 5C, in an embodiment, rear housing 104 may have one or more venting/securing holes 142. The functionality of venting/securing holes 142 is two-fold. First, venting/securing holes 142 assist with venting or gas release during the co-molding or over-molding process when gasket 110 is coupled with rear housing 104. Holes 142 assist with the flow of material to minimize or eliminate the back pressure. Second, venting/securing holes 142 may be reversed tapered to help secure or increase adherence of gasket 110 to rear housing 104. For example, should the chemical reaction binding gasket 110 to rear housing 104 not occur or not completely occur, a mechanical adhesion can be achieved with the reversed taper of venting/securing holes 142. FIG. 5C shows a cross-section along J-J showing holes 142. Holes 142 may have any degree of taper suitable for securing gasket 110 to rear housing 104 and/or making molding/manufacturing easier.


In an embodiment, surgical cassette manifold 101 may be made substantially of a plastic material except for gasket 110. The plastic material may be acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), polyethylene, viton, or other rigid plastic or plastic material. In addition, the material may be such that it is transparent enabling a user to visualize various features of surgical cassette manifold 101. For example, all components may be transparent, including reservoir 120. In an embodiment, a lights emitted from console 14 may be shone through surgical cassette manifold 101 to provide a backlight and allow a user to visualize the fluid flow as it flows from handpiece 12 through molded fluid channels 118 into reservoir 120 out to the drain bag 16. In embodiment, the backlight may also be used as a surgical cassette manifold type detector.


All references cited herein are hereby incorporated by reference in their entirety including any references cited therein.


Although the present invention has been described in terms of specific embodiments, changes and modifications can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the claims.

Claims
  • 1. A method of eliminating leaking of molded fluid channels, comprising: providing a front housing, rear housing, and a gasket, wherein the front housing comprises one or more molded fluid channels and one or more seal channels, andwherein at least a portion of the gasket is located between the front housing and the rear housing,molding the gasket onto the rear housing to create a single unit; wherein the gasket comprises one or more seal lips configured and dimensioned to couple with the one or more seal channels; andassembling the front housing to the rear housing having the gasket, wherein the one or more seal lips couple with the seal channels.
  • 2. The method of claim 1, wherein the seal channels are located on an outside perimeter of the molded fluid channels.
  • 3. The method of claim 1, wherein the one or more seal lips extend substantially perpendicular from a surface of the gasket.
  • 4. The method of claim 1, wherein the seal lip is tapered.
  • 5. The method of claim 1, wherein the molded fluid channels are substantially perpendicular with a surface of the front housing.
  • 6. The method of claim 1, wherein the seal channels are substantially perpendicular with a surface of the front housing.
  • 7. The method of claim 1, wherein the seal lips are configured and dimensioned as pre-alignment structures enabling proper assembly with corresponding seal channels.
  • 8. The method of claim 1, further comprising one or more alignment pins and corresponding pin holes, wherein after molding the gasket onto the rear housing to create a single unit; coupling the alignment pins with the corresponding pin holes.
  • 9. The method of claim 8, after assembling the front housing to the rear housing having the gasket, ultrasonically welding the front housing to the rear housing.
  • 10. The method of claim 8, after assembling the front housing to the rear housing having the gasket, press fitting the front housing to the rear housing.
  • 11. A surgical cassette manifold, comprising: a front housing, a rear housing, and a gasket, wherein the front housing comprises one or more molded fluid channels and one or more seal channels,wherein the gasket is coupled with the rear housing and at least a portion of the gasket is located between the front housing and the rear housing, andwherein the gasket comprises one or more seal lips configured and dimensioned to couple with the one or more seal channels.
  • 12. The surgical cassette manifold of claim 11, wherein further comprises a reservoir, wherein the reservoir comprises a first portion with a first circumferential edge located in the front housing, a second portion with a second circumferential edge located in the rear housing, and wherein at least a portion of the gasket is located between the first and second circumferential edge when the front housing and rear housing are assembled.
  • 13. The surgical cassette manifold of claim 12, wherein upon assembly of the surgical cassette manifold, the gasket creates a mechanical seal between the first portion and the second portion of the reservoir.
  • 14. The surgical cassette manifold of claim 11, wherein the seal channels are located on an outside perimeter of the molded fluid channels.
  • 15. The surgical cassette manifold of claim 11, wherein the one or more seal lips extend substantially perpendicular from a surface of the gasket.
  • 16. The surgical cassette manifold of claim 11, wherein the seal lip is tapered.
  • 17. The surgical cassette manifold of claim 11, wherein the molded fluid channels are substantially perpendicular with a surface of the front housing.
  • 18. The surgical cassette manifold of claim 11, wherein the seal channels are substantially perpendicular with a surface of the front housing.
  • 19. The surgical cassette manifold of claim 11, wherein the seal lips are configured and dimensioned as pre-alignment structures enabling proper assembly with the seal channels.
  • 20. The surgical cassette manifold of claim 11, wherein the rear housing further comprises one or more alignment pins and the front housing further comprises one or more corresponding pin holes, wherein the one or more alignment pins and one or more pin holes are configured and dimensioned to mate upon assembly of the front housing and rear housing.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and is a continuation-in-part application of U.S. application Ser. No. 13/776,988 filed on Feb. 26, 2013, which claims priority to U.S. provisional application No. 61/612,307 filed on Mar. 17, 2012, the contents of each are hereby incorporated by reference in their entirety.

US Referenced Citations (310)
Number Name Date Kind
1848024 Owen Mar 1932 A
2123781 Huber Jul 1938 A
2990616 Balamuth Jul 1961 A
3076904 Claus et al. Feb 1963 A
3116697 Bilichniansky Jan 1964 A
3439680 Thomas, Jr. Apr 1969 A
3526219 Lewis Sep 1970 A
3781142 Zweig Dec 1973 A
3857387 Shock Dec 1974 A
4017828 Watanabe et al. Apr 1977 A
4037491 Newbold Jul 1977 A
4189286 Murry et al. Feb 1980 A
4193004 Lobdell et al. Mar 1980 A
4247784 Henry Jan 1981 A
4276023 Phillips et al. Jun 1981 A
4286464 Tauber et al. Sep 1981 A
4537561 Xanthopoulos Aug 1985 A
4564342 Weber et al. Jan 1986 A
4590934 Malis et al. May 1986 A
4662829 Nehring May 1987 A
4665621 Ackerman et al. May 1987 A
4706687 Rogers et al. Nov 1987 A
4713051 Steppe et al. Dec 1987 A
4757814 Wang et al. Jul 1988 A
4758220 Sundblom et al. Jul 1988 A
4758238 Sundblom Jul 1988 A
4772263 Dorman et al. Sep 1988 A
4773897 Scheller et al. Sep 1988 A
4818186 Pastrone et al. Apr 1989 A
4819317 Bauer et al. Apr 1989 A
4837857 Scheller et al. Jun 1989 A
4920336 Meijer Apr 1990 A
4921477 Davis May 1990 A
4925444 Orkin et al. May 1990 A
4933843 Scheller et al. Jun 1990 A
4941518 Williams et al. Jul 1990 A
4954960 Lo et al. Sep 1990 A
4961424 Kubota et al. Oct 1990 A
4965417 Massie Oct 1990 A
4983901 Lehmer Jan 1991 A
4998972 Chin et al. Mar 1991 A
5006110 Garrison et al. Apr 1991 A
5020535 Parker et al. Jun 1991 A
5026387 Thomas Jun 1991 A
5032939 Mihara et al. Jul 1991 A
5039973 Carballo Aug 1991 A
5091656 Gahn Feb 1992 A
5108367 Epstein et al. Apr 1992 A
5110270 Morrick May 1992 A
5125891 Hossain et al. Jun 1992 A
5160317 Costin Nov 1992 A
5195960 Hossain et al. Mar 1993 A
5195961 Takahashi et al. Mar 1993 A
5195971 Sirhan Mar 1993 A
5230614 Zanger et al. Jul 1993 A
5242404 Conley et al. Sep 1993 A
5249121 Baum et al. Sep 1993 A
5267956 Beuchat Dec 1993 A
5268624 Zanger Dec 1993 A
5271379 Phan et al. Dec 1993 A
5282787 Wortrich Feb 1994 A
5323543 Steen et al. Jun 1994 A
5342293 Zanger Aug 1994 A
5350357 Kamen et al. Sep 1994 A
5351676 Putman Oct 1994 A
5378126 Abrahamson Jan 1995 A
5388569 Kepley Feb 1995 A
5429601 Conley et al. Jul 1995 A
5454783 Grieshaber et al. Oct 1995 A
5464391 Devale Nov 1995 A
5470211 Knott et al. Nov 1995 A
5470312 Zanger et al. Nov 1995 A
5499969 Beuchat et al. Mar 1996 A
5520652 Peterson May 1996 A
5533976 Zaleski et al. Jul 1996 A
5549461 Newland Aug 1996 A
5554894 Sepielli Sep 1996 A
5561575 Eways Oct 1996 A
5569188 Mackool Oct 1996 A
5580347 Reimels Dec 1996 A
5591127 Barwick et al. Jan 1997 A
5653887 Wahl et al. Aug 1997 A
5657000 Ellingboe Aug 1997 A
5676530 Nazarifar Oct 1997 A
5676649 Boukhny et al. Oct 1997 A
5676650 Grieshaber et al. Oct 1997 A
5693020 Rauh Dec 1997 A
5697898 Devine Dec 1997 A
5697910 Cole et al. Dec 1997 A
5700240 Barwick, Jr. et al. Dec 1997 A
5724264 Rosenberg et al. Mar 1998 A
5728130 Ishikawa et al. Mar 1998 A
5733256 Costin Mar 1998 A
5733263 Wheatman Mar 1998 A
5745647 Krause Apr 1998 A
5746713 Hood et al. May 1998 A
5747824 Jung et al. May 1998 A
5777602 Schaller et al. Jul 1998 A
5805998 Kodama Sep 1998 A
5807075 Jacobsen et al. Sep 1998 A
5810765 Oda Sep 1998 A
5810766 Barnitz et al. Sep 1998 A
5830176 Mackool Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5859642 Jones Jan 1999 A
5871492 Sorensen Feb 1999 A
5879298 Drobnitzky et al. Mar 1999 A
5883615 Fago et al. Mar 1999 A
5899674 Jung et al. May 1999 A
5928257 Kablik et al. Jul 1999 A
5938655 Bisch et al. Aug 1999 A
5983749 Holtorf Nov 1999 A
6002484 Rozema et al. Dec 1999 A
6024428 Uchikata Feb 2000 A
6028387 Boukhny Feb 2000 A
6062829 Ognier May 2000 A
6077285 Boukhny Jun 2000 A
6086598 Appelbaum et al. Jul 2000 A
6109895 Ray et al. Aug 2000 A
6117126 Appelbaum et al. Sep 2000 A
6139320 Hahn Oct 2000 A
6150623 Chen Nov 2000 A
6159175 Strukel et al. Dec 2000 A
6179829 Bisch et al. Jan 2001 B1
6200287 Keller et al. Mar 2001 B1
6219032 Rosenberg et al. Apr 2001 B1
6251113 Appelbaum et al. Jun 2001 B1
6260434 Holtorf Jul 2001 B1
6360630 Holtorf Mar 2002 B2
6368269 Lane Apr 2002 B1
6411062 Baranowski et al. Jun 2002 B1
6424124 Ichihara et al. Jul 2002 B2
6436072 Kullas et al. Aug 2002 B1
6452120 Chen Sep 2002 B1
6452123 Chen Sep 2002 B1
6491661 Boukhny et al. Dec 2002 B1
6511454 Nakao et al. Jan 2003 B1
6537445 Muller Mar 2003 B2
6561999 Nazarifar et al. May 2003 B1
6595948 Suzuki et al. Jul 2003 B2
6632214 Morgan et al. Oct 2003 B2
6674030 Chen et al. Jan 2004 B2
6830555 Rockley et al. Dec 2004 B2
6852092 Kadziauskas et al. Feb 2005 B2
6862951 Peterson et al. Mar 2005 B2
6908451 Brody et al. Jun 2005 B2
6962488 Davis et al. Nov 2005 B2
6962581 Thoe Nov 2005 B2
6986753 Bui Jan 2006 B2
7011761 Muller Mar 2006 B2
7012203 Hanson et al. Mar 2006 B2
7070578 Leukanech et al. Jul 2006 B2
7073083 Litwin, Jr. et al. Jul 2006 B2
7087049 Nowlin et al. Aug 2006 B2
7103344 Menard Sep 2006 B2
7167723 Zhang Jan 2007 B2
7169123 Kadziauskas et al. Jan 2007 B2
7236766 Freeburg Jun 2007 B2
7236809 Fischedick et al. Jun 2007 B2
7242765 Hairston Jul 2007 B2
7244240 Nazarifar et al. Jul 2007 B2
7289825 Fors et al. Oct 2007 B2
7300264 Souza Nov 2007 B2
7316664 Kadziauskas et al. Jan 2008 B2
7336976 Ito Feb 2008 B2
7381917 Dacquay et al. Jun 2008 B2
7439463 Brenner et al. Oct 2008 B2
7465285 Hutchinson et al. Dec 2008 B2
7470277 Finlay et al. Dec 2008 B2
7526038 McNamara Apr 2009 B2
7591639 Kent Sep 2009 B2
7731484 Yamamoto et al. Jun 2010 B2
7776006 Childers et al. Aug 2010 B2
7785316 Claus et al. Aug 2010 B2
7811255 Boukhny et al. Oct 2010 B2
7883521 Rockley et al. Feb 2011 B2
7921017 Claus et al. Apr 2011 B2
7967777 Edwards et al. Jun 2011 B2
8070712 Muri et al. Dec 2011 B2
8075468 Min et al. Dec 2011 B2
9033940 Muri et al. May 2015 B2
9658468 Dai May 2017 B2
20010023331 Kanda et al. Sep 2001 A1
20010047166 Wuchinich Nov 2001 A1
20010051788 Paukovits et al. Dec 2001 A1
20020004657 Morgan et al. Jan 2002 A1
20020007671 Lavi et al. Jan 2002 A1
20020019215 Romans Feb 2002 A1
20020045887 Dehoogh et al. Apr 2002 A1
20020070840 Fischer et al. Jun 2002 A1
20020098859 Murata Jul 2002 A1
20020137007 Beerstecher Sep 2002 A1
20020179462 Silvers Dec 2002 A1
20020183693 Peterson et al. Dec 2002 A1
20030028091 Simon et al. Feb 2003 A1
20030050619 Mooijman et al. Mar 2003 A1
20030083016 Evans et al. May 2003 A1
20030108429 Angelini et al. Jun 2003 A1
20030125717 Whitman Jul 2003 A1
20030224729 Arnold Dec 2003 A1
20030226091 Platenberg et al. Dec 2003 A1
20040019313 Childers et al. Jan 2004 A1
20040037724 Haser et al. Feb 2004 A1
20040097868 Kadziauskas et al. May 2004 A1
20040127840 Gara et al. Jul 2004 A1
20040193182 Yaguchi et al. Sep 2004 A1
20040212344 Tamura et al. Oct 2004 A1
20040215127 Kadziauskas et al. Oct 2004 A1
20040224641 Sinn Nov 2004 A1
20040253129 Sorensen et al. Dec 2004 A1
20050039567 Peterson et al. Feb 2005 A1
20050054971 Steen et al. Mar 2005 A1
20050069419 Cull et al. Mar 2005 A1
20050070859 Cull et al. Mar 2005 A1
20050070871 Lawton et al. Mar 2005 A1
20050095153 Demers et al. May 2005 A1
20050103607 Mezhinsky May 2005 A1
20050109595 Mezhinsky et al. May 2005 A1
20050118048 Traxinger Jun 2005 A1
20050119679 Rabiner et al. Jun 2005 A1
20050130098 Warner Jun 2005 A1
20050187513 Rabiner et al. Aug 2005 A1
20050197131 Ikegami Sep 2005 A1
20050209552 Beck et al. Sep 2005 A1
20050228266 McCombs Oct 2005 A1
20050236936 Shiv et al. Oct 2005 A1
20050245888 Cull Nov 2005 A1
20050261628 Boukhny et al. Nov 2005 A1
20050267504 Boukhny et al. Dec 2005 A1
20060035585 Washiro Feb 2006 A1
20060036180 Boukhny et al. Feb 2006 A1
20060041220 Boukhny et al. Feb 2006 A1
20060046659 Haartsen et al. Mar 2006 A1
20060074405 Malackowski et al. Apr 2006 A1
20060078448 Holden Apr 2006 A1
20060114175 Boukhny Jun 2006 A1
20060145540 Mezhinsky Jul 2006 A1
20060219049 Horvath et al. Oct 2006 A1
20060219962 Dancs et al. Oct 2006 A1
20060224107 Claus et al. Oct 2006 A1
20060236242 Boukhny et al. Oct 2006 A1
20070016174 Millman et al. Jan 2007 A1
20070049898 Hopkins et al. Mar 2007 A1
20070060926 Escaf Mar 2007 A1
20070073214 Dacquay et al. Mar 2007 A1
20070073309 Kadziauskas et al. Mar 2007 A1
20070078379 Boukhny et al. Apr 2007 A1
20070085611 Gerry et al. Apr 2007 A1
20070107490 Artsyukhovich et al. May 2007 A1
20070231205 Williams et al. Oct 2007 A1
20070249942 Salehi et al. Oct 2007 A1
20070287959 Walter et al. Dec 2007 A1
20080033342 Staggs Feb 2008 A1
20080066542 Gao Mar 2008 A1
20080082040 Kubler et al. Apr 2008 A1
20080112828 Muri et al. May 2008 A1
20080114290 King et al. May 2008 A1
20080114291 Muri et al. May 2008 A1
20080114300 Muri et al. May 2008 A1
20080114311 Muri et al. May 2008 A1
20080114312 Muri et al. May 2008 A1
20080114387 Hertweck et al. May 2008 A1
20080125695 Hopkins et al. May 2008 A1
20080125697 Gao May 2008 A1
20080125698 Gerg et al. May 2008 A1
20080129695 Li Jun 2008 A1
20080146989 Zacharias Jun 2008 A1
20080200878 Davis et al. Aug 2008 A1
20080243105 Horvath Oct 2008 A1
20080262476 Krause et al. Oct 2008 A1
20080281253 Injev et al. Nov 2008 A1
20080294087 Steen et al. Nov 2008 A1
20080312594 Urich et al. Dec 2008 A1
20090005712 Raney Jan 2009 A1
20090005789 Charles Jan 2009 A1
20090048607 Rockley Feb 2009 A1
20090087327 Voltenburg, Jr. et al. Apr 2009 A1
20090124974 Crank et al. May 2009 A1
20090163853 Cull et al. Jun 2009 A1
20100036256 Boukhny et al. Feb 2010 A1
20100069825 Raney Mar 2010 A1
20100069828 Steen et al. Mar 2010 A1
20100140149 Fulkerson et al. Jun 2010 A1
20100152685 Goh Jun 2010 A1
20100185150 Zacharias Jul 2010 A1
20100249693 Links Sep 2010 A1
20100280435 Raney et al. Nov 2010 A1
20110092887 Wong et al. Apr 2011 A1
20110092924 Wong et al. Apr 2011 A1
20110092962 Ma et al. Apr 2011 A1
20110098721 Tran et al. Apr 2011 A1
20110160646 Kadziauskas et al. Jun 2011 A1
20110208047 Fago Aug 2011 A1
20110251569 Turner et al. Oct 2011 A1
20120065580 Gerg et al. Mar 2012 A1
20120078181 Smith et al. Mar 2012 A1
20120083735 Pfouts Apr 2012 A1
20120083736 Pfouts et al. Apr 2012 A1
20120083800 Andersohn Apr 2012 A1
20130072853 Wong et al. Mar 2013 A1
20130169412 Roth Jul 2013 A1
20130184676 Kamen et al. Jul 2013 A1
20130245543 Gerg et al. Sep 2013 A1
20130289475 Muri et al. Oct 2013 A1
20130303978 Ross Nov 2013 A1
20130336814 Kamen et al. Dec 2013 A1
20140178215 Baxter et al. Jun 2014 A1
20140188076 Kamen et al. Jul 2014 A1
20140276424 Davis et al. Sep 2014 A1
20160151564 Magers et al. Jun 2016 A1
Foreign Referenced Citations (69)
Number Date Country
2006235983 May 2007 AU
3826414 Feb 1989 DE
56019 Jul 1982 EP
424687 May 1991 EP
619993 Oct 1994 EP
1010437 Jun 2000 EP
1072285 Jan 2001 EP
1113562 Jul 2001 EP
1464310 Oct 2004 EP
1469440 Oct 2004 EP
1550406 Jul 2005 EP
1704839 Sep 2006 EP
1779879 May 2007 EP
1787606 May 2007 EP
1849443 Oct 2007 EP
1849444 Oct 2007 EP
1857128 Nov 2007 EP
1310267 Jan 2008 EP
1873501 Jan 2008 EP
1900347 Mar 2008 EP
1925274 May 2008 EP
1867349 Nov 2008 EP
2264369 Dec 2006 ES
2230301 Oct 1990 GB
2352887 Feb 2001 GB
2438679 Dec 2007 GB
S5724482 Feb 1982 JP
S58167333 Oct 1983 JP
S62204463 Sep 1987 JP
2005195653 Jul 2005 JP
2008188110 Aug 2008 JP
9220310 Nov 1992 WO
9315777 Aug 1993 WO
9317729 Sep 1993 WO
9324082 Dec 1993 WO
9405346 Mar 1994 WO
9632144 Oct 1996 WO
9737700 Oct 1997 WO
9818507 May 1998 WO
9917818 Apr 1999 WO
0000096 Jan 2000 WO
0070225 Nov 2000 WO
0122696 Mar 2001 WO
0226286 Apr 2002 WO
0228449 Apr 2002 WO
0234314 May 2002 WO
03102878 Dec 2003 WO
04096360 Nov 2004 WO
2004114180 Dec 2004 WO
05084728 Sep 2005 WO
05092023 Oct 2005 WO
05092047 Oct 2005 WO
06101908 Sep 2006 WO
06125280 Nov 2006 WO
2007121144 Oct 2007 WO
2007143677 Dec 2007 WO
2007143797 Dec 2007 WO
2007149637 Dec 2007 WO
2008030872 Mar 2008 WO
2008060859 May 2008 WO
2008060902 May 2008 WO
2008060995 May 2008 WO
2009123547 Oct 2009 WO
2010054146 May 2010 WO
2010054225 May 2010 WO
2010151704 Dec 2010 WO
2012151062 Nov 2012 WO
2013142009 Sep 2013 WO
2015009945 Jan 2015 WO
Non-Patent Literature Citations (11)
Entry
International Search Report and Written Opinion for Application No. PCT/US2015/066036, dated Jul. 4, 2016, 20 pages.
International Search Report and Written Opinion for Application No. PCT/US2016/049970, dated Dec. 5, 2016, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2016/061648, dated Feb. 7, 2017, 12 pages.
Boyd, “Preparing for the Transition” in: The Art and the Science of Cataract Surgery, Chapter 7, 2001, pp. 93-133.
Definition of “Parameter”, Retrieved from the Internet:.
English Human Translation of JP57024482 from Feb. 9, 1982.
European Search Report for Application No. EP10164058, dated Jun. 25, 2010, 2 pages.
European Search Report for Application No. EP13184138.9, dated Oct. 24, 2013, 7 pages.
Examination Report dated Mar. 28, 2012 for European Application No. EP09791072 filed Jul. 31, 2009, 3 pages.
Merritt R., et al., Wireless Nets Starting to link Medical Gear [online] 2004 [retrieved on Feb. 12, 2007]. Retrieved from the Internet:.
Phacoemulsification, [online] [retrieved on Jul. 1, 2009]. Retrieved from the Internet: , 2 pages.
Related Publications (1)
Number Date Country
20150282985 A1 Oct 2015 US
Provisional Applications (1)
Number Date Country
61612307 Mar 2012 US
Continuation in Parts (1)
Number Date Country
Parent 13776988 Feb 2013 US
Child 14686582 US