The present disclosure relates to surgical instruments, with some embodiments relating to clamps, articulated clamps, and/or tissue ablating clamps. Surgery and surgical procedures generally refer to the diagnosis or treatment of injury, deformity, or disease. In a variety of surgical procedures, it is desired to ablate tissue and/or cause lesions in tissue. Some examples of such procedures include, without limitation, electrical isolation of the pulmonary veins to treat atrial fibrillation, ablation of uterine tissue associated with endometriosis, ablation of esophageal tissue associated with Barrett's esophagus, ablation of cancerous liver tissue, and the like. The foregoing examples are merely illustrative and not exhaustive. Other aspects of the present disclosure relate to clamping devices and are not limited to tissue ablation applications.
Some exemplary embodiments according to the present disclosure may include surgical clamps including a pair of jaws, which may be used to ablate or create lesions in tissue. In an exemplary embodiment, the jaws may be movable between an articulated position in which the jaws are separated and not parallel to one another, an opened position in which the jaws are separated and substantially parallel to one another, and a closed position in which the jaws are adjacent and substantially parallel to one another.
In an exemplary aspect, a surgical clamp may include an end effector including a first jaw, a second jaw, and a head including an articulating mechanism, the articulating mechanism including a first rotating offset mounted to the head and pivotably coupled to the first jaw, and a second rotating offset mounted to the head distal from the first rotating offset and pivotably and slidably coupled to the first jaw. The articulating mechanism may articulate the first jaw when the first rotating offset and the second rotating offset are rotated.
In a detailed exemplary embodiment, a surgical clamp may include a rack operably coupled to a distally extending linkage, the first rotating offset may include a first gear, and the second rotating offset may include a second gear. The rack may be toothedly engaged with the first gear and the second gear and/or the articulating mechanism may articulate the first jaw when the rack is moved by the linkage.
In a detailed exemplary embodiment, an articulating mechanism may include a third gear rotatably mounted to the head, engaged with the rack, and pivotably coupled to the second jaw, and a fourth gear rotatably mounted to the head, engaged with the rack, and pivotably and slidably coupled to the second jaw. The articulating mechanism may articulate the second jaw when the rack is moved by the linkage and/or the rack may be double-sided.
In a detailed exemplary embodiment, a surgical clamp may include a first cable operably coupled to a distally extending linkage, the first rotating offset may include a first pulley operatively engaged with the cable, and the second rotating offset may include a second pulley operatively engaged with the cable. The articulating mechanism may articulate the first jaw when the cable is moved by the linkage.
In a detailed exemplary embodiment, an articulating mechanism may include a third pulley rotatably mounted to the head, engaged with a second cable, and pivotably coupled to the second jaw, and a fourth pulley rotatably mounted to the head, engaged with the second cable, and pivotably and slidably coupled to the second jaw. The articulating mechanism may articulate the second jaw when the second cable is moved by the linkage.
In a detailed exemplary embodiment, the first cable may extend distally around the second pulley, proximally around the first pulley, and/or distally around the second pulley. The second cable may extend distally around the fourth pulley, proximally around the third pulley, and/or distally around the fourth pulley.
In a detailed exemplary embodiment, the first cable may include a continuous section of cable operatively engaging the first pulley and the second pulley. In a detailed embodiment, the first cable may include wire rope.
In a detailed exemplary embodiment, the first jaw and the second jaw may be articulatable by the articulating mechanism between an articulated position in which the first jaw and the second jaw are spaced apart with respect to each other at the head and are angled outwardly relative to the end effector, an opened position in which the first jaw and the second jaw are spaced apart with respect to each other at the head and are substantially parallel such that target tissue interposes the substantially parallel first jaw and second jaw, and a closed position in which the first jaw and the second jaw close on the target tissue while remaining substantially parallel.
In a detailed exemplary embodiment, in the closed position when empty, the first jaw and the second jaw may be biased inward from parallel and/or, when interposed by the target tissue, the first jaw and the second jaw may be substantially parallel in the closed position. In a detailed embodiment, in the closed position when empty, the first jaw and the second jaw may be biased inward about 0.010-0.040 inches. In a detailed exemplary embodiment, in the articulated position, the first jaw may be angled with respect to the second jaw at about 20 degrees. In a detailed exemplary embodiment, in at least one of the opened position and the closed position, the first jaw may be substantially parallel with the second jaw within about +/−5 degrees. In a detailed exemplary embodiment, in at least one of the opened position and the closed position, the first jaw may be substantially parallel with the second jaw within about +/−3 degrees. In a detailed exemplary embodiment, in at least one of the opened position and the closed position, the first jaw may be substantially parallel with the second jaw within about +/−0.5 degrees.
In a detailed exemplary embodiment, a surgical clamp may include at least one electrode associated with at least one of the first jaw and the second jaw. In a detailed exemplary embodiment, the first jaw and the second jaw may extend generally distally from the head generally in a Y-shape or a V-shape.
In a detailed exemplary embodiment, a surgical clamp may include a shaft including a proximal end and a distal end, and the end effector may be mounted approximate the distal end of the shaft. In a detailed exemplary embodiment, a surgical clamp may include a handle at the proximal end of the shaft. In a detailed exemplary embodiment, a surgical clamp may include a linkage extending from the handle, through the shaft, and to the end effector. The handle may include a plunger operatively coupled to the linkage such that actuation of the plunger causes articulation of the first jaw. In a detailed exemplary embodiment, a surgical clamp may include a reversing mechanism interposing the plunger and the linkage such that motion of the plunger in a first direction causes motion of the linkage in a substantially opposite direction. In a detailed exemplary embodiment, a reversing mechanism may include a plunger rack extending distally from the plunger and/or a linkage rack extending proximally from the linkage.
In a detailed exemplary embodiment, the end effector may be mounted to the distal end of the shaft by at least one articulating joint such that the articulating joint allows pivoting of the end effector with respect to the shaft. In a detailed exemplary embodiment, the shaft may be substantially rigid. In a detailed exemplary embodiment, the shaft may be substantially malleable.
In an exemplary aspect, a surgical clamp may include an end effector including a first rotating offset, a second rotating offset, a first jaw mounted to the first rotating offset and the second rotating offset, a third rotating offset, a fourth rotating offset, and a second jaw mounted to the third rotating offset and the fourth rotating offset.
In a detailed exemplary embodiment, the first rotating offset may be pivotably coupled to the first jaw by a first pin, the second rotating offset may be pivotably and/or slidably coupled to the first jaw by a second pin slidable in a first slot, the third rotating offset may be pivotably coupled to the second jaw by a third pin, and/or the fourth rotating offset may be pivotably and/or slidably coupled to the second jaw by fourth pin slidable in a second slot.
In a detailed exemplary embodiment, the end effector may be configured such that rotation of the first rotating offset and the second rotating offset in a clockwise direction moves the first jaw towards the second jaw and/or rotation of the third rotating offset and the fourth rotating offset in a counter-clockwise direction moves the second jaw towards the first jaw.
In a detailed exemplary embodiment, rotation of the first rotating offset and the second rotating offset in the clockwise direction and rotation of the third rotating offset and the fourth rotating offset in the counter-clockwise direction may move the first jaw and the second jaw from an articulated position in which the first jaw and the second jaw are spaced apart with respect to each other and are angled outwardly relative to the end effector, through an opened position in which the first jaw and the second jaw are spaced apart with respect to each other and are substantially parallel, and to a closed position in which the first jaw and the second jaw close while remaining substantially parallel.
In a detailed exemplary embodiment, movement of the first jaw from the articulated position to the closed position may include rotation of the first jaw relative to the first rotating offset about the first pin, rotation of the first jaw relative to the second rotating offset about the second pin, and/or translation of the second pin in the first slot; and/or movement of the second jaw from the articulated position to the closed position may include rotation of the second jaw relative to the third rotating offset about the third pin, rotation of the second jaw relative to the fourth rotating offset about the fourth pin, and/or translation of the fourth pin in the second slot.
In a detailed exemplary embodiment, a surgical clamp may include a double-sided rack including a first side and a second side. The first rotating offset may include a first gear engaged with the first side of the rack, the second rotating offset may include a second gear engaged with the first side of the rack, the third rotating offset may include a third gear engaged with the second side of the rack, and/or the fourth rotating offset may include a fourth gear engaged with the second side of the rack.
In a detailed exemplary embodiment, a surgical clamp may include a first cable and/or a second cable. The first rotating offset may include a first pulley, the second rotating offset may include a second pulley, the third rotating offset may include a third pulley, and/or the fourth rotating offset may include a fourth pulley. The first cable may be operatively engaged with the first pulley and/or the second pulley. The second cable may be operatively engaged with the third pulley and/or the fourth pulley.
In an exemplary aspect, an end effector for a surgical device may include a pair of jaws including a first jaw and a second jaw; and an articulating mechanism configured to articulate the pair of jaws between an articulated position in which the first jaw and the second jaw are spaced apart with respect to each other and are angled outwardly with respect to each other, an opened position in which the first jaw and the second jaw are spaced apart with respect to each other and substantially parallel such that target tissue interposes the substantially parallel first jaw and second jaw, and a closed position in which the first jaw and the second jaw close on the target tissue while remaining substantially parallel, the articulating mechanism including a first rotating offset coupled to the first jaw, and a second rotating offset coupled to the first jaw. The first rotating offset and/or the second rotating offset may be operatively coupled to a linkage extending generally distally from the end effector.
In a detailed exemplary embodiment, the articulating mechanism may include a third rotating offset coupled to the second jaw and/or a fourth rotating offset coupled to the second jaw. The third rotating offset and/or the fourth rotating offset may be operatively coupled to the linkage.
In a detailed exemplary embodiment, the first rotating offset may be pivotably coupled to the first jaw, the second rotating offset may be pivotably and/or slidably coupled to the first jaw, the third rotating offset may be pivotably coupled to the second jaw, and/or the fourth rotating offset may be pivotably and/or slidably coupled to the second jaw.
In a detailed exemplary embodiment, the first rotating offset may include a first gear and/or the second rotating offset may include a second gear, the first gear and/or the second gear may be in toothed engagement with a first side of a rack, and/or the rack may be operatively connected to the linkage. The third rotating offset may include a third gear and/or the fourth rotating offset may include a fourth gear, and/or the third gear and/or the fourth gear may be in toothed engagement with a second side of the rack.
In a detailed exemplary embodiment, the first rotating offset may include a first pulley, the second rotating offset may include a second pulley, the third rotating offset may include a third pulley, and/or the fourth rotating offset may include a fourth pulley. The first pulley and/or the second pulley may be operatively connected to the linkage by a first cable and/or the third pulley and/or the fourth pulley may be operatively connected to the linkage by a second cable.
In an exemplary aspect, a surgical clamp may include a shaft including a proximal end and a distal end; and an end effector mounted at the distal end of the shaft, the end effector including a first jaw, a second jaw, and a head including an articulating mechanism, the articulating mechanism including a first rotating offset mounted to the head and pivotably coupled to the first jaw by a first pin, and a second rotating offset mounted to the head distal from the first rotating offset and pivotably and slidably coupled to the first jaw distal from the first rotating offset by a second pin slidably disposed in a slot in the first jaw, the second rotating offset having a diameter greater than a diameter of the first rotating offset.
In a detailed exemplary embodiment, the first jaw may be articulatable by the articulating mechanism between an articulated position in which the first jaw is spaced apart from a centerline and is angled outwardly relative to the shaft, an opened position in which the first jaw is spaced apart from the centerline at the head and is substantially parallel with the centerline, and a closed position in which the first jaw is substantially parallel to and substantially adjacent to the centerline.
In a detailed exemplary embodiment, in the articulated position, the second pin may be located near a distal end of the slot; in the opened position, the second pin may be located about mid-way between the distal end of the slot and a proximal end of the slot; and/or, in the closed position, the second pin may be located near a proximal end of the slot.
In a detailed exemplary embodiment, in the articulated position, the first pin may be located at approximately a 5 o'clock position on the first rotating offset and/or the second pin may be located at approximately a 6 o'clock position on the second rotating offset; in the opened position, the first pin may be located at approximately a 7 o'clock position on the first rotating offset and/or the second pin may be located at approximately an 8 o'clock position on the second rotating offset; and/or, in the closed position, the first pin may be located at approximately a 10 o'clock position on the first rotating offset and/or the second pin may be located at approximately a 10 o'clock position on the second rotating offset.
In a detailed exemplary embodiment, the first rotating offset may include a first gear; the second rotating offset may include a second gear; and/or the articulating mechanism may include a rack slidably disposed within the head in toothed engagement with the first gear and the second gear such that translation of the rack in proximal and distal directions causes rotation of the first gear and second gear, thereby causing articulation of the first jaw. In a detailed exemplary embodiment, the rack may be slidably disposed substantially along a centerline of the end effector. In a detailed exemplary embodiment, the first gear and/or the second gear may be mounted to the head such that the rack engages each of the first gear and the second gear at about respective 12 o'clock positions.
In a detailed exemplary embodiment, the first rotating offset may include a first pulley; the second rotating offset may include a second pulley; and/or the articulating mechanism may include a cable disposed at least partially within the head and engaged with the first pulley and the second pulley such that translation of the cable in proximal and distal directions causes rotation of the first pulley and second pulley, thereby causing articulation of the first jaw. In a detailed embodiment, the cable may extend distally around the second pulley, proximally around the first pulley, and/or distally around the second pulley.
The detailed description refers to the following figures.
The following description of exemplary embodiments should not be used to limit the scope of the present disclosure. Other examples, features, aspects, embodiments, and advantages may become apparent to those skilled in the art from the following description. As will be realized, exemplary embodiments may include optional aspects that are not required to fall within the scope of claimed invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
In a variety of surgical procedures, it is desirable to ablate tissue and/or cause lesions in tissue. Tissue ablation can be effected through a variety of different mechanisms known to those of skill in the art, such as mono-polar radiofrequency (“RF”) energy, bi-polar RF energy, cryogenic techniques, and the like. In clamping arrangements, tissue ablation can be effected through a single jaw of a clamp or through both jaws of a clamp. Tissue ablation may be performed once the target tissue is clamped between the closed jaws. One with ordinary skill in the art will recognize that one or more of the foregoing tissue ablation techniques may be employed with the various clamp embodiments described below. One with ordinary skill in the art will also recognize advantages of the surgical clamps regardless of any tissue ablation functionality. Accordingly, the foregoing examples may or may not include ablation functionality.
The articulation of the jaws 120, 130 can be passive. For instance, the articulated jaw can be “limp” and readily moveable in response to external forces, such as when pressed against tissue, or resisted by a spring, damper, friction, or other biasing mechanism. Alternatively, the articulation of the jaws 120, 130 could be active in which the articulation is remotely activated through an actuator (not shown), such as one located on the proximal end of the shaft 110. With active articulation, the jaws 120, 130 are generally rigid and immobile in response to external forces. The jaws can move to a closed position where the jaws are adjacent and substantially parallel to one another. As shown in this example, one or both of the jaws 120, 130 are repositionable axially relative to the shaft 110 so that the jaws remain parallel to one another between the opened and closed positions.
As shown in
In this exemplary embodiment, the distal jaw 320 and/or proximal jaw 330 articulate relative to the shaft 310, either in cooperation with or independent of one another. For instance,
Note that the distal jaw 320 and/or proximal jaw 330 need not be axially aligned with the shaft 310 in the articulated positions. Likewise, the distal jaw 320 and proximal jaw 330 need not extend normal to the shaft 310 in the opened or closed positions. Instead, angular variations are contemplated, and in many cases may be advantageous based on the predicted anatomy or contemplated surgical procedure.
One advantage of articulated clamps (such as embodiments 100, 200, and 300) over an embodiment having relatively fixed orientation jaws is the ability to position the jaws of the articulated clamp more precisely proximate the target tissue. This ability is often desirable when operating on or near complicated or sensitive anatomical features and in minimally invasive surgical procedures. As a non-limiting example, the articulated clamp 300 may be used for open or minimally invasive surgery to treat atrial fibrillation by electrically isolating the left or right pair of pulmonary veins adjacent the left atrium. The articulated jaw positions facilitate positioning the device near the target tissue. The distal and/or proximal jaws may then be articulated to the opened position such that the tissue being treated is interposed between the jaws. The jaws may then be closed and the tissue ablated.
One advantage of this embodiment 400 is the ability to clamp tissue while maintaining a substantially consistent clamping force along the lengths of the jaws. This is especially useful when clamping thicker tissue. The transverse degree of freedom prevents a disproportionate clamping force toward the pivot point of the joint 422. In addition, the spring 434 provides a maximum clamping force, which may be useful in certain procedures or to avoid traumatizing sensitive tissues.
Alternatively, however, the distal jaw 520 could be repositionable to move longitudinally along the shaft 510 to a closed position where the jaws 520, 530 are adjacent and substantially parallel to one another. Preferably, in this alternate exemplary embodiment, the distal jaw 520 locks in position parallel to the proximal jaw 530 when the jaws are adjacent and in the closed position or while the distal jaw 520 is being moved toward the proximal jaw 530.
In one exemplary variation, the distal jaw 520 able to be articulated (e.g., pivoted) and is “limp” when articulating. Accordingly, in such a circumstance, the distal jaw 520 articulates passively in response to minimal external forces. Optionally, the tip of the distal jaw 520 includes a fastener 522, shown here as a female member, dimensioned to interface with a male fastener counterpart of an instrument guide (not shown). For instance, the instrument guide can be an elongate flexible member. When the instrument guide is anchored to the fastener 522, the distal jaw 520 may be positioned to a desired location in the surgical field by pulling the instrument guide. Preferably, the distal jaw 520 will be in its articulated “limp” position so as to reduce interference with surrounding or adjacent anatomical features. The distal and proximal jaws may then be adjusted so that the tissue being treated is interposed between the jaws 520, 530. The jaws may then be closed and the tissue ablated. After treatment is concluded, and the clamp is opened, the distal jaw 520 will return to its articulated “limp” position, thereby repositioning the instrument guide from the surgical area. Examples of instrument guides and exemplary surgical procedures are disclosed in U.S. patent application Ser. No. 11/254,057, filed on Oct. 19, 2005 and published as U.S. Patent Application Publication No. 2006/0167478, each of which is incorporated herein by reference.
The handle 600 also houses an actuator mechanism. In this example a plunger 610 is used to actuate the jaws 520, 530. Here, the plunger 610 is aligned with the shaft 510. In the fully retraced or proximal position (as shown), the distal jaw 520 is in its articulated “limp” position. When the plunger 610 is depressed in the distal direction, the distal jaw 520 locks into an open position parallel with the proximal jaw 530. Further depression will move the proximal jaw 530 distally towards the closed position. The plunger 610 includes a slot 611 with an opening 612. When the jaws are in the closed position, the opening 612 aligns with the lock 620. A spring 634 forces the lock 620 into the opening 612 preventing the plunger 610 from moving proximally, thus maintaining the jaws in the closed position. Depressing the lock 620 will release the plunger 610 thus allowing proximal movement.
An actuator rod 650 actuates the jaws. Distal movement closes the jaws while proximal movement opens the jaws. The plunger 610 includes a relief rod 613 surrounded in a force limiting spring 633. The force limiting spring 633 is compressed between the step 614 and the actuator rod 650. Depressing the plunger 610 imparts a load on the force limiting spring 633 that is translated to the actuator rod 650, which will move the actuator rod 650 distally. A return spring 632 is operative to move the actuator rod 650 proximally upon releasing the plunger 610. If the jaw clamping load exceeds load of the force limiting spring 633, the slot and pin 615, 631 interface allows the relief rod 613 to move distally without moving the actuator rod 650. Thus, the force limiting spring 633 effectively defines the maximum jaw clamping load. One with ordinary skill in the art will recognize that the tissue clamping pressure is a function of the jaw clamping load and the tissue area being clamped.
While not required, the jaws will preferably move between the opened and closed positions in a 1:1 ratio relative the motion of the plunger 610. Likewise, the jaw clamping load preferably will have a 1:1 ratio relative the depression load on the plunger 610. One advantage of the 1:1 relative ratios of movement and/or load is to improve tactile feedback from the jaws to the surgeon during a surgical procedure.
The distal jaw 720 pivots with respect to the shaft 710 about the pin 722. A locking rod 740 is pivotally connected to the distal jaw 720 via a pin 742. A follower pin 744 is connected to the locking rod 740 and is seated in an L-shaped locking slot 714 in the shaft 710 and a stepped follower slot 752 in the actuator rod 750.
In
As illustrated in
In some example embodiments, end effector 806 includes one or more rotating offsets (e.g., gears, pulleys, cranks, arms, rods, etc.) configured to articulate individual jaws 808, 810. For example,
As used herein, the term “gear” refers to a rotating part including teeth which meshes with another toothed part. The circumferences of various gears described herein may be partially or fully toothed and/or may or may not be substantially circular. As used herein, “rack” refers to a substantially linear toothed component, such as a toothed bar or rod.
As will be recognized by one of ordinary skill in the art, the particular motion of the first jaw 808 resulting from movement of the rack 832 is determined by selection of the diameters and/or arrangement of the first gear 822 and/or the second gear 826, as well as the arrangement and/or size of slot 830 and/or the positions of pins 824, 828 on gears 822, 826. In an exemplary embodiment, the second jaw 810 is connected to head 812 by a similar double-gear mechanism, which may include a third gear 922 and/or a fourth gear 926. In some exemplary embodiments, the rack 832 is double-sided, meaning that it includes two toothed surfaces, which may be on generally opposite sides. Exemplary jaws 808, 810 include insulators 809, 811, which may at least partially encase one or more electrodes 807 associated with one or both of the jaws 808, 810.
In this exemplary embodiment, the movement of the first jaw 808 and the second jaw 810 in
In this exemplary embodiment, the first gear 822 has a diameter of about 0.25 inches and the second gear 826 has a diameter of about 0.30 inches. In this exemplary embodiment, the first jaw 808 is angled with respect to the second jaw 810 at about 10-30 degrees (e.g., about 20 degrees) in the articulated position. This exemplary in-line clamp 800 is operable such that the first jaw 808 and the second jaw 810 open to about 35 mm and the articulating joint 814 allows about +/−30 degrees of movement of the end effector 806 relative to the shaft 804.
With reference to
As shown in
As shown in
As shown in
As shown in
Operation of the exemplary clamp 800 will now be discussed. With the jaws 808, 810 in the open position, the clamp 800 is placed so that the target tissue 801 lies between the jaws 808, 810. The plunger 816 is depressed, operating the reversing mechanism and exerting a pulling force on the linkage 803 (see
The present disclosure contemplates that cable-driven mechanisms may employ generally similar kinematic concepts and therefore generally similar positions of the pulleys 1822, 1826, 1922, 1926 and the pins 1824, 1828, 1924, 1928 as the gears 822, 826, 922, 926 of some double-gear mechanisms.
Some exemplary cable-driven mechanisms 1813 permit the use of a shortened head 1812 as compared to some double-gear mechanisms 813 because space for proximal and/or distal motion of the rack 832 may not be provided. Some exemplary cable-driven mechanisms 1813 may be less expensive and/or may be constructed with less precision than some double-gear mechanisms 813. Some exemplary cable-driven mechanisms 1813 may be subject to less internal friction than some double-gear mechanisms 813.
Some exemplary cable-driven mechanisms 1813 may be operable using a plurality of linkages 803. For example, a first linkage 803 may be configured to pull on cable portions 1954, 1956 to close the jaws 1808, 1810 and/or a second linkage 803 may be configured to pull on the cable portions 1958, 1960 to open the jaws 1808, 1810. Thus, some exemplary cable-driven mechanisms 1813 may include only linkages 803 for exerting tension as compared to linkages capable of transmitting substantial force in both tension and compression.
Some exemplary clamps may incorporate tip bias to account for the effects of tissue on the angular relationships of the jaws. For example, closing the jaws of an exemplary clamp on tissue may cause the jaws to flex apart due to bending stress. Thus, the angular positions of the jaws when shut on tissue may differ from the angular positions of the jaws when shut empty. Some exemplary embodiments may account for such differences by, for example, constructing the end effector such that the jaws are slightly non-parallel in the opened position when the jaws are empty. For example, the tips of the jaws may be biased inward from parallel by about 0.020 inches in the closed position when empty, which may result in the jaws being substantially parallel in the closed position when tissue is between the jaws. More generally, the design of the end effector and the jaws may be such that the jaws are substantially parallel when actuated on tissue.
As used herein, “substantially parallel” generally means that the jaws are within about +/−5 degrees of parallel. In some detailed exemplary embodiments, substantially parallel may mean that the jaws are within about +/−3 degrees and/or within about +/−0.5 degrees of parallel.
[Incorporate by Reference: Force-limiting, Return Spring, or Lock Button Features of the Handle.]
While exemplary embodiments have been set forth above for the purpose of disclosure, modifications of the disclosed embodiments as well as other embodiments thereof may occur to those skilled in the art. Accordingly, it is to be understood that the disclosure is not limited to the above precise embodiments and that changes may be made without departing from the scope. For instance, the examples, embodiments, geometries, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Likewise, it is to be understood that it is not necessary to meet any or all of the stated advantages or objects disclosed herein to fall within the scope of the disclosure, since inherent and/or unforeseen advantages may exist even though they may not have been explicitly discussed herein.
This application is a continuation-in-part of prior U.S. Nonprovisional application Ser. No. 12/552,133, filed Sep. 1, 2009 now U.S. Pat. No. 7,951,147, which is a continuation of U.S. Nonprovisional application Ser. No. 11/254,075, filed Oct. 19, 2005, now U.S. Pat. No. 7,582,086, which claims the benefit of U.S. Provisional Application No. 60/620,609, filed Oct. 20, 2004, all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2060724 | Carroll | Nov 1936 | A |
3032039 | Beaty | May 1962 | A |
3503396 | Pierie et al. | Mar 1970 | A |
3682180 | McFarlane | Aug 1972 | A |
3856017 | Perisse et al. | Dec 1974 | A |
3954108 | Davis | May 1976 | A |
4552128 | Haber | Nov 1985 | A |
4651737 | Deniega | Mar 1987 | A |
4655216 | Tischer | Apr 1987 | A |
4730524 | Petersen | Mar 1988 | A |
4788966 | Yoon | Dec 1988 | A |
4869268 | Yoon | Sep 1989 | A |
4950284 | Green et al. | Aug 1990 | A |
5026379 | Yoon | Jun 1991 | A |
5100416 | Oh et al. | Mar 1992 | A |
5152778 | Bales et al. | Oct 1992 | A |
5171250 | Yoon | Dec 1992 | A |
5174300 | Bales et al. | Dec 1992 | A |
5217030 | Yoon | Jun 1993 | A |
5258000 | Gianturco | Nov 1993 | A |
5282817 | Hoogeboom et al. | Feb 1994 | A |
5290299 | Fain et al. | Mar 1994 | A |
5309927 | Welch | May 1994 | A |
5331971 | Bales et al. | Jul 1994 | A |
5342373 | Stefanchik et al. | Aug 1994 | A |
5350391 | Iacovelli | Sep 1994 | A |
5408904 | Neff | Apr 1995 | A |
5439156 | Grant et al. | Aug 1995 | A |
5445167 | Yoon et al. | Aug 1995 | A |
5456401 | Green et al. | Oct 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5490819 | Nicholas et al. | Feb 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5609599 | Levin | Mar 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5643291 | Pier et al. | Jul 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5681330 | Hughett et al. | Oct 1997 | A |
5683405 | Yacoubian et al. | Nov 1997 | A |
5707377 | Keller et al. | Jan 1998 | A |
5728121 | Bimbo et al. | Mar 1998 | A |
5733295 | Back et al. | Mar 1998 | A |
5758420 | Schmidt et al. | Jun 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5782844 | Yoon et al. | Jul 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5810851 | Yoon | Sep 1998 | A |
5810881 | Hoskin et al. | Sep 1998 | A |
5810882 | Bolduc et al. | Sep 1998 | A |
5824008 | Bolduc et al. | Oct 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5833700 | Fogelberg et al. | Nov 1998 | A |
5843121 | Yoon | Dec 1998 | A |
5843122 | Riza | Dec 1998 | A |
5893863 | Yoon | Apr 1999 | A |
5919202 | Yoon | Jul 1999 | A |
5921997 | Fogelberg et al. | Jul 1999 | A |
5922001 | Yoon | Jul 1999 | A |
5922002 | Yoon | Jul 1999 | A |
5944723 | Colleran et al. | Aug 1999 | A |
5964772 | Bolduc et al. | Oct 1999 | A |
5984938 | Yoon | Nov 1999 | A |
5984939 | Yoon | Nov 1999 | A |
6074418 | Buchanan et al. | Jun 2000 | A |
6088889 | Luther et al. | Jul 2000 | A |
6096052 | Callister et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6139563 | Cosgrove et al. | Oct 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6270516 | Tanner et al. | Aug 2001 | B1 |
6296656 | Bolduc et al. | Oct 2001 | B1 |
6299612 | Ouchi | Oct 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6330964 | Kayan et al. | Dec 2001 | B1 |
6361534 | Chen et al. | Mar 2002 | B1 |
6364879 | Chen et al. | Apr 2002 | B1 |
6387105 | Gifford, III et al. | May 2002 | B1 |
6436088 | Frazier et al. | Aug 2002 | B2 |
6447542 | Weadock | Sep 2002 | B1 |
6450391 | Kayan et al. | Sep 2002 | B1 |
6485407 | Alferness et al. | Nov 2002 | B2 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6506149 | Peng et al. | Jan 2003 | B2 |
6508829 | Levinson et al. | Jan 2003 | B1 |
6514265 | Ho et al. | Feb 2003 | B2 |
6544274 | Danitz et al. | Apr 2003 | B2 |
6578585 | Stachowski et al. | Jun 2003 | B1 |
6579304 | Hart et al. | Jun 2003 | B1 |
6607504 | Haarala et al. | Aug 2003 | B2 |
6607542 | Wild | Aug 2003 | B1 |
6610074 | Santilli | Aug 2003 | B2 |
6645196 | Nixon et al. | Nov 2003 | B1 |
6652515 | Maguire et al. | Nov 2003 | B1 |
6723109 | Solingen | Apr 2004 | B2 |
6746461 | Fry | Jun 2004 | B2 |
6770081 | Cooper et al. | Aug 2004 | B1 |
6793664 | Mazzocchi et al. | Sep 2004 | B2 |
6849075 | Bertolero et al. | Feb 2005 | B2 |
6858028 | Mulier et al. | Feb 2005 | B2 |
6899710 | Hooven | May 2005 | B2 |
6905498 | Hooven | Jun 2005 | B2 |
6911032 | Jugenheimer et al. | Jun 2005 | B2 |
6923806 | Hooven et al. | Aug 2005 | B2 |
6955643 | Gellman et al. | Oct 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
7087071 | Nicholas et al. | Aug 2006 | B2 |
7108703 | Danitz et al. | Sep 2006 | B2 |
7113831 | Hooven | Sep 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7135020 | Lawes et al. | Nov 2006 | B2 |
7306599 | Karasawa et al. | Dec 2007 | B2 |
7373219 | Nowlin et al. | May 2008 | B2 |
7424965 | Racenet et al. | Sep 2008 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7875028 | Christian et al. | Jan 2011 | B2 |
7896895 | Boudreaux et al. | Mar 2011 | B2 |
8002771 | Cox et al. | Aug 2011 | B2 |
20010005787 | Oz et al. | Jun 2001 | A1 |
20020013605 | Bolduc et al. | Jan 2002 | A1 |
20020026214 | Tanner et al. | Feb 2002 | A1 |
20020026216 | Grimes | Feb 2002 | A1 |
20020032454 | Durgin et al. | Mar 2002 | A1 |
20020049457 | Kaplan et al. | Apr 2002 | A1 |
20020055760 | Durgin et al. | May 2002 | A1 |
20020058967 | Jervis | May 2002 | A1 |
20020062130 | Jugenheimer et al. | May 2002 | A1 |
20020065524 | Miller et al. | May 2002 | A1 |
20020077660 | Kayan et al. | Jun 2002 | A1 |
20020099390 | Kaplan et al. | Jul 2002 | A1 |
20020103492 | Kaplan et al. | Aug 2002 | A1 |
20020111637 | Kaplan et al. | Aug 2002 | A1 |
20020111641 | Peterson et al. | Aug 2002 | A1 |
20020177859 | Monassevitch et al. | Nov 2002 | A1 |
20020177862 | Aranyi et al. | Nov 2002 | A1 |
20030009441 | Holsten et al. | Jan 2003 | A1 |
20030023248 | Parodi | Jan 2003 | A1 |
20040030335 | Zenati et al. | Feb 2004 | A1 |
20040068274 | Hooven | Apr 2004 | A1 |
20040087940 | Jahns et al. | May 2004 | A1 |
20040097982 | Jugenheimer et al. | May 2004 | A1 |
20040215216 | Gannoe et al. | Oct 2004 | A1 |
20050085808 | Nakao | Apr 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050203561 | Palmer et al. | Sep 2005 | A1 |
20060084974 | Privitera et al. | Apr 2006 | A1 |
20060161147 | Privitera et al. | Jul 2006 | A1 |
20060161149 | Privitera et al. | Jul 2006 | A1 |
20090012545 | Williamson, IV et al. | Jan 2009 | A1 |
20090069823 | Foerster et al. | Mar 2009 | A1 |
20090253961 | Le et al. | Oct 2009 | A1 |
20120035622 | Kiser et al. | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
1 600 108 | Mar 2006 | EP |
WO 9405224 | Mar 1994 | WO |
WO 9962409 | Dec 1999 | WO |
WO 0135832 | May 2001 | WO |
WO 0211623 | Feb 2002 | WO |
WO 03011150 | Feb 2003 | WO |
PCTUS2005037748 | May 2006 | WO |
WO 2006055166 | May 2006 | WO |
PCTUS2005037748 | Jan 2007 | WO |
WO 2007009099 | Jan 2007 | WO |
PCTUS2006027553 | Jan 2008 | WO |
PCTUS1322600 | Apr 2013 | WO |
Entry |
---|
Unknown, Endowrist Instruments and Accessories Catalog, Intuitive Surgical, Sunnyvale, California, Sep. 2005. |
Kamohara et al, Impact of left atrial appendage exclusion on left atrial function, J Thorac Cardiov Surg 2007;133:174-81, © 2007 American Association for Thoracic Surgery, USA. |
Fumoto et al, A novel device for left atrial appendage exclusion: The third-generation atrial exclusion device; J Thorac Cardiov Surg 2008;136:1019-27, © 2008 American Association for Thoracic Surgery, USA. |
Lipkin et al, Aneurysmal dilation of left atrial appendage diagnosed by cross sectional echocardiography and surgically removed, Br Heart J 1985; 53:69-71, National Heart Hospital, London, UK. |
Cohn et al, Right thoracotomy, femorofemoral bypass, and deep hypothermia for re-replacement of the mitral valve, Ann Thorac Surg 1989;48:69-71, © 1989 Society of Thoracic Surgeons, USA. |
Al-Saady et al, Left atrial appendage: structure, function, and role in thrombo-boembolism, Heart 1999;82:547-555, St. George's Hosp Med School, London UK. |
Kaymaz et al, Location, Size and Morphological Characteristics of Left Atrial Thrombi as Assessed by Echocardiography in Patients with Rheumatic Mitral Valve Disease, Eur. J Echocardiography, vol. 2, Issue 4, Dec. 2001, pp. 270-276, © 2001 The European Society of Cardiology. |
Rosenzweig et al, Thromboembolus from a Ligated Left Atrial Appendage, J Am Soc Echocardiography, vol. 14, pp. 396-398, May 2001, © 2001 American Society of Echocardiography, USA. |
Hondo et al, The Role of the Left Atrial Appendage; A Volume Loading Study in Open-chest Dogs, Jpn Heart J, Mar. 1995, pp. 225-234, Japan. |
Veinot et al, Anatomy of the Normal Left Atrial Appendage: A Quantitative Study of Age-Related Changes . . . , ahajournals 1997; 96: 3112-3115, USA. |
Halperin et al, Obliteration of the Left Atrial Appendage for Prevention of Thromboembolis, J Am Coll of Cardiol, 2003;42:1259-1261, USA. |
Unknown, Transesophageal Echocardiographic Correlates of Thromboembolism in High Risk Patients with Nonvalvular Atrial Fibrillation, The American College of Physicians, Apr. 1998, pp. 639-647, © 1998 American College of Physicians, USA. |
Omari et al, Effect of right atrial appendectomy on the release of atrial natriuretic hormone, J Thorac Cardiovasc Surg 1991; 102:272-279, USA. |
Mole et al, Desmoid Tumour in Thoractomy Scar 5 Years After Excision of a Left Giant Atrial Appendage Aneurysm in Female with a Family History of Gardner's Syndrome, Thorac Cardiovasc Surg 40 (1991) pp. 300-302, © 1992 Georg Thieme Verlag Stuttgart, New York. |
Crystal et al, Left Atrial Appendage Occlusion Study (LAA0S): A randomized clinical trial of left atrial appendage occlusion during routine coronary artery bypass graft surgery for long-term stroke prevention, Am Heart J 2003; 145:174-178, © 2003 Mosby, Inc., USA. |
Garcia-Fernadez et al, Role of left atrial appendage obliteration in stroke reduction in patients with mitral valve prosthesis: A transeophageal echocardiographic study, J Am Coll Cardiol 2003;42:1253-1258, © 2003 American College of Cardiology Foundation, USA. |
Burke et al, Improved Surgical Approach to Left Atrial Appendage Aneurysm, J Cardi Surg, 1992, vol. 7, No. 2, pp. 104-107, USA. |
Fisher et al, Large Gradient Across a Partially Ligated Left Atrial Appendage, J Am Soc Echocardiography, vol. 11, No. 12, pp. 1163-1165, © 1998 American Society of Echocardiography, USA. |
Grundeman et al, Experimental videothoracoscopic cannulation of the left atrial appendix, Surg Endosc (1993) 7:511-513, © 1993 Springer-Verlag New York, Inc., USA. |
Number | Date | Country | |
---|---|---|---|
20100185232 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
60620609 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11254075 | Oct 2005 | US |
Child | 12552133 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12552133 | Sep 2009 | US |
Child | 12748842 | US |