1. Technical Field
The present disclosure relates to medical instruments and to the use thereof. More particularly, the present disclosure is directed to surgical clamping devices.
2. Background of Related Art
A hemostat device is a surgical instrument which relies on mechanical action between its jaws to grasp, clamp, constrict, and seal vessels or tissue. Such devices are commonly used in open, endoscopic, or laparoscopic surgical procedures. Energy-based hemostats (open or endoscopic) utilize both mechanical clamping action and energy to affect hemostasis by heating tissue and blood vessels to coagulate and/or cauterize tissue.
Certain surgical procedures require more than simply coagulating/cauterizing tissue and rely on the unique combination of clamping pressure, precise energy control, and gap distance (i.e., distance between opposing jaw members when closed about tissue) to “seal” tissue, vessels, and certain vascular bundles.
In order to effectively “seal” tissue or vessels, two predominant mechanical parameters must be accurately controlled: 1) the pressure applied to the vessel or tissue; and 2) the gap distance between the tissue contacting surfaces. As can be appreciated, both of these parameters are affected by the thickness of the tissue being sealed. Accurate application of pressure is important for several reasons: to reduce the tissue impedance to a low enough value that allows enough energy through the tissue; to overcome the forces of expansion during tissue heating; and to contribute to the end tissue thickness which is an indication of a good seal.
As shown in the drawings and described throughout the following description, as is traditional when referring to relative positioning on a surgical instrument, the term “proximal” refers to the end of the apparatus that is closer to the user and the term “distal” refers to the end of the apparatus that is farther away from the user. The term “clinician” refers to any medical professional (e.g., doctor, surgeon, nurse, or the like) performing a medical procedure involving the use of embodiments described herein.
In at least one aspect of this disclosure, a surgical clamping device, comprising first and second shaft members each having a jaw member disposed at a distal end thereof, the shaft members pivotably coupled to one another and movable relative to one another between an open position and at least one closed position for moving the jaw members between a spaced-apart position and at least one approximated position, a gripping member disposed on the first shaft member, and a gear system disposed on the second shaft member and configured to receive the gripping member and incrementally lock the gripping member in at least one predefined position corresponding to the at least one approximated position of the jaw members, the gear system including a first gear rotatably connected to the second shaft member, a second gear operably connected to the first gear and movably connected to the second shaft member, and at least one locking member configured to engage one or more notches defined in the second shaft member, wherein upon movement of the first and second shaft members in a first direction, the first gear mechanically engages the gripping member thereby moving the first gear, and, in turn, the second gear such that the at least one locking member engages the notches to progressively lock the first and second shaft members from motion in a second direction.
In another aspect of this disclosure, the first and second shaft members relative movement defines a first plane, and wherein the first and second shaft members are maintained in the first plane when the gear system releases the gripping member.
In yet another aspect of this disclosure, the gripping member includes a plurality of gear teeth configured to communicate with the first gear.
In still yet another aspect of this disclosure, the surgical clamping device further comprises a release mechanism, wherein upon actuation of the release mechanism, the locking member disengages from the notches.
In still yet another aspect of this disclosure, the at least one locking member produces at least one of a tactile or audible feedback for each notch the at least one locking member engages.
In still yet another aspect of this disclosure, the one or more notches are positioned on the second shaft member to correspond to at least one predetermined clamping force produced by the jaw members in the at least one approximated position.
In still yet another aspect of this disclosure, the locking member is disposed on or forms a part of the second gear.
In still yet another aspect of this disclosure, the surgical clamping device is a hemostat.
In still yet another aspect of this disclosure, the gear system and the gripping member are made of a rigid material selected from the group consisting of one or more of a plastic, a metal, a polymer, a ceramic, an alloy, and combinations thereof.
In still yet another aspect of this disclosure, a method for clamping tissue at a predetermined force comprises providing a surgical clamping device, including first and second shaft members each having a jaw member disposed at a distal end thereof, the shaft members pivotably coupled to one another, a gripping member disposed on the first shaft member, and a gear system and one or more notches disposed on the second shaft member, the gear system including a first gear rotatably connected to the second shaft member, a second gear operably connected to the first gear and movably connected to the second shaft member, and at least one locking member, actuating the surgical clamping device to clamp tissue between the jaw members by moving the first shaft member toward the second shaft member, and engaging the gripping member and the gear system such that the locking member communicates with the one or more notches.
In still yet another aspect of this disclosure, the at least one locking member produces at least one of a tactile or audible feedback for each notch the at least one locking member engages.
In still yet another aspect of this disclosure, the method further comprises monitoring the at least one tactile or audible feedback to determine a clamping force.
In still yet another aspect of this disclosure, the method further comprises clamping tissue with a predetermined force using the surgical clamping device.
In still yet another aspect of this disclosure, the surgical clamping device is a hemostat.
In still yet another aspect of this disclosure, the gear system and the gripping member are made of a rigid material selected from the group consisting of one or more of a plastic, a metal, a polymer, a ceramic, an alloy, and combinations thereof.
In still yet another aspect of this disclosure, the locking member is disposed on or forms a part of the second gear.
In still yet another aspect of this disclosure, the notches are disposed on the second shaft member in an arcuate formation to follow a rotation of the locking member as the locking member moves with the second gear in a rotational manner.
In still yet another aspect of this disclosure, the notches are formed by an arcuate piece of material that is disposed on the second shaft member to follow a rotation of the locking member as the locking member moves with the second gear in a rotational manner.
Various aspects of the present disclosure, by way of example only, are described herein with reference to the accompanying drawings, wherein like reference numerals refer to similar or identical elements throughout the description of the figures:
In accordance with at least one aspect of the present disclosure, a surgical clamping device 100 is disclosed. In some embodiments, a surgical clamping device is a hemostat. Referring to
A ratchet assembly 102 is included for selectively locking the jaw members 105 and 107 relative to one another at various positions during pivoting. Ratchet assembly 102 includes graduations or other visual markings that enable the user to easily and quickly ascertain and control the amount of closure force desired between the jaw members 105 and 107. Alternatively or additionally, audible and/or tactile feedback may be provided to provide feedback to the user relating the degree of engagement of various components of the ratchet assembly 102 as described in greater detail hereinbelow.
One or both of the shafts 101, 103 are configured to connect the clamping device 100 to a source of energy such as a generator (not shown) such that the clinician may selectively apply energy to the jaw members 105 and 107 for treating tissue grasped therebetween. Clamping device 100 may further include a knife assembly (not shown) disposed within either of shafts 101, 103 and a knife channel (not shown) defined within one or both jaw members 105 and 107 to permit reciprocation of a knife blade (not shown) therethrough to divided previously-treated tissue (or to simply cut tissue, where tissue-treatment is not desired).
The shaft members 101, 103 are movable relative to one another between an open position (as shown in
Ratchet assembly 102 includes a gripping member 113 that is disposed on the first shaft member 101 and includes one or more protrusions 117 extending therefrom. The protrusions 117 may be gear teeth configured to communicate with one or more corresponding gears as described herein.
The ratchet assembly 102 further includes a gear system 115 disposed on the second shaft member 103 and configured to mechanically engage the gripping member 113. The gear system 115 incrementally locks the gripping member 113 (and thus first shaft 101) in a predefined position relative to the second shaft member 103 as the shaft members 101 and 103 are approximated relative to one another. In some embodiments, the shaft members 101, 103 relative movement defines a first plane and the gear system 115 releases the gripping member 113 without moving either the shaft members 101, 103 outside of the first plane, e.g. without requiring movement of the shaft member 101, 103 laterally towards or away from one another.
Gear system 115 includes a first gear or cog 119 rotatably connected to the second shaft member 103. The first gear 119 includes gear teeth 127 that are configured to engage and/or pair with the gear teeth 117 of gripping member 113. The gear ratio and tooth size of gear 119 may be selected as desired for the intended use. Gear system 115 further includes a second gear 121 operably connected to the first gear 119 and movably connected to the second shaft member 103. The second gear 121 includes gear teeth 129 that interact and/or pair with the gear teeth 127 of first gear 119.
The gear system and the gripping member may be made of a rigid material including, but not limited to, one or more of a plastic, a metal, a polymer, a ceramic, an alloy, and combinations thereof.
Gear system 115 further includes a spring (e.g., a rotational spring) (not shown) connected to the second gear 121 which biases the second gear 121 against the first gear 119 as the gripping member 113 advances the first gear 119 during approximation.
At least one locking member 123 is configured to grip one or more notches 125 disposed on the second shaft member 103. In some embodiments, the locking member 123 is disposed on or forms a part of the second gear 121.
More particularly, the locking member 123 engages the one or more notches 125 in a progressive manner such that when the lock member 123 is moved over a notch 125, a portion of locking member 123 engages the notch 125 and prevents the locking member 123 from returning to a previous position. In this instance, the locking member 123 may be configured to produce a tactile or audible click as the locking member 123 progresses over successive notches 125.
The locking member 123 is selectively released from the notch 125 via a release mechanism 135 such as, but not limited to, a button or lever (not shown) disposed on the second shaft portion 103 or second gear 121. Upon actuation of the release mechanism 135, the locking member 123 disengages from a given notch 125. For example, release mechanism 135 may push or pull the second gear 121 and/or locking member 123 to dislodge the locking member 123 from the notch 125 by slideably moving the second gear 121 on hinge 150 (hinge 150 may be slideable relative to the second shaft portion 103 such that the second gear 121 or locking member 123 move with the hinge 150 as it is pushed or pulled). A spring (not shown) may bias the second gear member 121 or locking member 123 in locking position with the repective notch(s) 125. In this instance, the gear system 115 can selectively release the gripping member 113 without moving either the first or second shaft members 101, 103 relative to one another, thus maintaining the plane formed by shaft members 101, 103.
The one or more notches 125 are configured to allow the locking member 123 to move across the one or more notches 125 while progressively snapping into each successive notch 125 when the locking member 123 is advanced in a first direction, for example, in the direction of the first shaft portion 101. The one or more notches 125 prevent the locking member 123 from moving in a second direction preventing the ratcheting system 115 from reverse motion while the locking member 123 is engaged with a particular notch 125.
The one or more notches 125 may be integral, overlaid, carved, or inlayed on the second shaft member 103. Alternatively, the one or more notches 125 may be a separate piece of material attached to the second shaft member 103 in any suitable manner.
The one or more notches 125 may be any shape as desired to facilitate engagement and release from the locking member 123. For example, the one or more notches may be disposed along an arcuate piece of material as shown in
Moreover, the one or more notches 125 may be positioned on the second shaft member 103 to correspond to one or more predetermined clamping forces produced by the jaw members 105, 107 when approximated. For example, one or more positions may correspond to closure pressures at the jaw members 105, 107 to between about 3 kg/cm^2 to 16 kg/cm^2, which are closure pressures particularly suited for vessel sealing, although other closure pressures may be provided.
In use, a clinician may move the first shaft member 101 and the second shaft member 103 together to close the jaw members 105, 107 from the open position as shown in
Referring to
By listening or sensing the feedback (clicks), a clinician can determine and/or select the amount of clamping force being applied at the jaw members 105, 107 by the clamping device 100. Once the desired force setting is reached, the clinician simply stops advancing the first shaft member 101 toward the second shaft member 103 and, at this point, the locking member 123 is engaged with a corresponding notch 125 to lock the gear system 115. In this position, the first shaft member 101 can not pull away from the second shaft member 103 (i.e., reverse rotation of gear 119) as long as the gripping member 113 engages the first gear 119.
The restoring force of a mass e.g., tissue, being clamped in the jaw members 105, 107, or the material restoring force of the two jaw members 105, 107 being forced together will produce an opposing force tending to pull the first shaft member 101 away from the second shaft member 103. However, as disclosed above, when in the locked state, the gear system 115 does not allow the release of the gripping member 113 and, thus, the first shaft member 101 cannot be forced away from the second shaft member 103 due to the restoring force. Thus, a desired clamping pressure about tissue can be maintained.
To release the locking member 123 from the corresponding notch 125, the clinician activates the release mechanism 135 to dislodge the locking member 123 from the notch 125. When the locking member 123 is disengaged, the gear system 115 is free to operate in reverse motion (i.e., allow gripping member 113 to pull the first gear 119 in the reverse direction) thereby allowing the first shaft member 101 to move in the direction away from the second shaft member 103 and unclamp jaw members 105, 107. The clinician does not need to move the first shaft member 101 and the second shaft member 103 laterally (out of the plane defined therebetween) to release the gear system as with conventional systems.
In another embodiment of the present disclosure, a method for clamping tissue with a predetermined force is further disclosed. The method includes providing a surgical clamping device 100 as described above, actuating the surgical clamping device 100 to clamp tissue by moving the first shaft member 101 toward the second shaft member 103; and engaging the gripping member 113 and the gear system 115 such that the locking member 123 engages a corresponding notch 125. The method may further include monitoring the tactile or audible feedback to determine a clamping force.
Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings; however, the disclosed embodiments are merely examples of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
Number | Name | Date | Kind |
---|---|---|---|
107577 | Will | Sep 1870 | A |
3459187 | Pallotta | Aug 1969 | A |
3866610 | Kletschka | Feb 1975 | A |
3911766 | Fridolph et al. | Oct 1975 | A |
3952749 | Fridolph et al. | Apr 1976 | A |
D249549 | Pike | Sep 1978 | S |
D263020 | Rau, III | Feb 1982 | S |
4448194 | DiGiovanni et al. | May 1984 | A |
4662372 | Sharkany et al. | May 1987 | A |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
D298353 | Manno | Nov 1988 | S |
D299413 | DeCarolis | Jan 1989 | S |
5209747 | Knoepfler | May 1993 | A |
5211655 | Hasson | May 1993 | A |
5219354 | Choudhury et al. | Jun 1993 | A |
5250056 | Hasson | Oct 1993 | A |
5269804 | Bales et al. | Dec 1993 | A |
D343453 | Noda | Jan 1994 | S |
5304203 | El-Mallawany et al. | Apr 1994 | A |
5308357 | Lichtman | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
D348930 | Olson | Jul 1994 | S |
D349341 | Lichtman et al. | Aug 1994 | S |
5350391 | Iacovelli | Sep 1994 | A |
D354564 | Medema | Jan 1995 | S |
5389098 | Tsuruta et al. | Feb 1995 | A |
5403342 | Tovey et al. | Apr 1995 | A |
D358887 | Feinberg | May 1995 | S |
5476479 | Green et al. | Dec 1995 | A |
5480409 | Riza | Jan 1996 | A |
5520702 | Sauer et al. | May 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5601601 | Tai et al. | Feb 1997 | A |
5603723 | Aranyi et al. | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5620459 | Lichtman | Apr 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
D384413 | Zlock et al. | Sep 1997 | S |
5700270 | Peyser et al. | Dec 1997 | A |
H1745 | Paraschac | Aug 1998 | H |
5792165 | Klieman et al. | Aug 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5810877 | Roth et al. | Sep 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5833695 | Yoon | Nov 1998 | A |
D402028 | Grimm et al. | Dec 1998 | S |
D408018 | McNaughton | Apr 1999 | S |
5893863 | Yoon | Apr 1999 | A |
5935126 | Riza | Aug 1999 | A |
5954731 | Yoon | Sep 1999 | A |
5957937 | Yoon | Sep 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5984932 | Yoon | Nov 1999 | A |
5984939 | Yoon | Nov 1999 | A |
5989277 | LeMaire, III et al. | Nov 1999 | A |
5993466 | Yoon | Nov 1999 | A |
5993467 | Yoon | Nov 1999 | A |
6017358 | Yoon et al. | Jan 2000 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6099537 | Sugai et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6139563 | Cosgrove, III et al. | Oct 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6214028 | Yoon et al. | Apr 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
D453923 | Olson | Feb 2002 | S |
D454951 | Bon | Mar 2002 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
H2037 | Yates et al. | Jul 2002 | H |
6461368 | Fogarty et al. | Oct 2002 | B2 |
D465281 | Lang | Nov 2002 | S |
D466209 | Bon | Nov 2002 | S |
6556100 | Takamine | Apr 2003 | B2 |
6638287 | Danitz et al. | Oct 2003 | B2 |
6641595 | Moran et al. | Nov 2003 | B1 |
6676676 | Danitz et al. | Jan 2004 | B2 |
6743239 | Kuehn et al. | Jun 2004 | B1 |
D493888 | Reschke | Aug 2004 | S |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
6824547 | Wilson, Jr. et al. | Nov 2004 | B2 |
D502994 | Blake, III | Mar 2005 | S |
6935031 | Huang | Aug 2005 | B1 |
D509297 | Wells | Sep 2005 | S |
6976992 | Sachatello et al. | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
D525361 | Hushka | Jul 2006 | S |
7083618 | Couture et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7118587 | Dycus et al. | Oct 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7131971 | Dycus et al. | Nov 2006 | B2 |
D533274 | Visconti et al. | Dec 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
7147638 | Chapman et al. | Dec 2006 | B2 |
D535027 | James et al. | Jan 2007 | S |
7160299 | Baily | Jan 2007 | B2 |
D538932 | Malik | Mar 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
7204835 | Latterell et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
D541611 | Aglassinger | May 2007 | S |
D541938 | Kerr et al | May 2007 | S |
D545432 | Watanabe | Jun 2007 | S |
D547154 | Lee | Jul 2007 | S |
7246734 | Shelton, IV | Jul 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7255697 | Dycus et al. | Aug 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7329256 | Johnson et al. | Feb 2008 | B2 |
D564662 | Moses et al. | Mar 2008 | S |
D567943 | Moses et al. | Apr 2008 | S |
7384420 | Dycus et al. | Jun 2008 | B2 |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
D582038 | Swoyer et al. | Dec 2008 | S |
7473253 | Dycus et al. | Jan 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7500975 | Cunningham et al. | Mar 2009 | B2 |
7510556 | Nguyen et al. | Mar 2009 | B2 |
7513898 | Johnson et al. | Apr 2009 | B2 |
7553312 | Tetzlaff et al. | Jun 2009 | B2 |
7582087 | Tetzlaff et al. | Sep 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7628791 | Garrison et al. | Dec 2009 | B2 |
7686827 | Hushka | Mar 2010 | B2 |
7708735 | Chapman et al. | May 2010 | B2 |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
7753909 | Chapman et al. | Jul 2010 | B2 |
D621503 | Otten et al. | Aug 2010 | S |
7766910 | Hixson et al. | Aug 2010 | B2 |
7771425 | Dycus et al. | Aug 2010 | B2 |
7780662 | Bahney | Aug 2010 | B2 |
7811283 | Moses et al. | Oct 2010 | B2 |
D627462 | Kingsley | Nov 2010 | S |
D628289 | Romero | Nov 2010 | S |
D628290 | Romero | Nov 2010 | S |
7828792 | McNally et al. | Nov 2010 | B2 |
7846161 | Dumbauld et al. | Dec 2010 | B2 |
7855007 | Gross et al. | Dec 2010 | B2 |
7857812 | Dycus et al. | Dec 2010 | B2 |
D630324 | Reschke | Jan 2011 | S |
7877852 | Unger et al. | Feb 2011 | B2 |
7877853 | Unger et al. | Feb 2011 | B2 |
7879035 | Garrison et al. | Feb 2011 | B2 |
7887536 | Johnson et al. | Feb 2011 | B2 |
7896878 | Johnson et al. | Mar 2011 | B2 |
7909823 | Moses et al. | Mar 2011 | B2 |
7922718 | Moses et al. | Apr 2011 | B2 |
D649249 | Guerra | Nov 2011 | S |
D649643 | Allen, IV et al. | Nov 2011 | S |
8070746 | Orton et al. | Dec 2011 | B2 |
8070748 | Hixson et al. | Dec 2011 | B2 |
8080004 | Downey et al. | Dec 2011 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8136252 | Linden et al. | Mar 2012 | B2 |
8147489 | Moses et al. | Apr 2012 | B2 |
8166659 | Huang | May 2012 | B2 |
D661394 | Romero et al. | Jun 2012 | S |
8197479 | Olson et al. | Jun 2012 | B2 |
8225513 | Huang | Jul 2012 | B2 |
8241282 | Unger et al. | Aug 2012 | B2 |
8241284 | Dycus et al. | Aug 2012 | B2 |
8303586 | Cunningham et al. | Nov 2012 | B2 |
8327549 | Huang | Dec 2012 | B2 |
8357159 | Romero | Jan 2013 | B2 |
8361071 | Tetzlaff et al. | Jan 2013 | B2 |
20020188294 | Couture et al. | Dec 2002 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030018831 | Lebena | Jan 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030181910 | Dycus et al. | Sep 2003 | A1 |
20030220637 | Truckai et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20040082952 | Dycus et al. | Apr 2004 | A1 |
20040116924 | Dycus et al. | Jun 2004 | A1 |
20040162557 | Tetzlaff et al. | Aug 2004 | A1 |
20040243125 | Dycus et al. | Dec 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20050149017 | Dycus | Jul 2005 | A1 |
20050197659 | Bahney | Sep 2005 | A1 |
20060052778 | Chapman et al. | Mar 2006 | A1 |
20060084973 | Hushka | Apr 2006 | A1 |
20060089670 | Hushka | Apr 2006 | A1 |
20060189981 | Dycus et al. | Aug 2006 | A1 |
20070043352 | Garrison et al. | Feb 2007 | A1 |
20070043353 | Dycus et al. | Feb 2007 | A1 |
20070062017 | Dycus et al. | Mar 2007 | A1 |
20070078458 | Dumbauld et al. | Apr 2007 | A1 |
20070088356 | Moses et al. | Apr 2007 | A1 |
20070106295 | Garrison et al. | May 2007 | A1 |
20070142833 | Dycus et al. | Jun 2007 | A1 |
20070156140 | Baily | Jul 2007 | A1 |
20070179499 | Garrison | Aug 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20080033428 | Artale et al. | Feb 2008 | A1 |
20080074417 | Mejdrich et al. | Mar 2008 | A1 |
20080079890 | Sugahara | Apr 2008 | A1 |
20080082100 | Orton et al. | Apr 2008 | A1 |
20080114356 | Johnson et al. | May 2008 | A1 |
20080167452 | Maiti et al. | Jul 2008 | A1 |
20080167651 | Tetzlaff et al. | Jul 2008 | A1 |
20080217709 | Minervini et al. | Sep 2008 | A1 |
20080234701 | Morales et al. | Sep 2008 | A1 |
20080319442 | Unger et al. | Dec 2008 | A1 |
20090012520 | Hixson et al. | Jan 2009 | A1 |
20090043304 | Tetzlaff et al. | Feb 2009 | A1 |
20090082766 | Unger et al. | Mar 2009 | A1 |
20090082767 | Unger et al. | Mar 2009 | A1 |
20090082769 | Unger et al. | Mar 2009 | A1 |
20090149853 | Shields et al. | Jun 2009 | A1 |
20090149854 | Cunningham et al. | Jun 2009 | A1 |
20090171350 | Dycus et al. | Jul 2009 | A1 |
20090171353 | Johnson et al. | Jul 2009 | A1 |
20090182327 | Unger | Jul 2009 | A1 |
20090248007 | Falkenstein et al. | Oct 2009 | A1 |
20090248013 | Falkenstein et al. | Oct 2009 | A1 |
20090248019 | Falkenstein et al. | Oct 2009 | A1 |
20090248020 | Falkenstein et al. | Oct 2009 | A1 |
20090248022 | Falkenstein et al. | Oct 2009 | A1 |
20090292282 | Dycus | Nov 2009 | A9 |
20090293288 | Hernandez | Dec 2009 | A1 |
20090306660 | Johnson et al. | Dec 2009 | A1 |
20100023009 | Moses et al. | Jan 2010 | A1 |
20100042100 | Tetzlaff et al. | Feb 2010 | A1 |
20100100122 | Hinton | Apr 2010 | A1 |
20100130971 | Baily | May 2010 | A1 |
20100130977 | Garrison et al. | May 2010 | A1 |
20100145334 | Olson et al. | Jun 2010 | A1 |
20100179545 | Twomey et al. | Jul 2010 | A1 |
20100204698 | Chapman et al. | Aug 2010 | A1 |
20100280515 | Hixson et al. | Nov 2010 | A1 |
20100312235 | Bahney | Dec 2010 | A1 |
20110054469 | Kappus et al. | Mar 2011 | A1 |
20110054472 | Romero | Mar 2011 | A1 |
20110071525 | Dumbauld et al. | Mar 2011 | A1 |
20110106079 | Garrison et al. | May 2011 | A1 |
20110196368 | Moses et al. | Aug 2011 | A1 |
20110218530 | Reschke | Sep 2011 | A1 |
20110238067 | Moses et al. | Sep 2011 | A1 |
20110257681 | Reschke et al. | Oct 2011 | A1 |
20120046659 | Mueller | Feb 2012 | A1 |
20120078250 | Orton et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
2104423 | Feb 1994 | CA |
2590520 | Nov 2007 | CA |
201299462 | Sep 2009 | CN |
2415263 | Oct 1975 | DE |
2514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
3423356 | Jun 1986 | DE |
3612646 | Apr 1987 | DE |
8712328 | Mar 1988 | DE |
4303882 | Aug 1994 | DE |
4403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
19506363 | Aug 1996 | DE |
29616210 | Jan 1997 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19751108 | May 1999 | DE |
10031773 | Nov 2001 | DE |
19946527 | Dec 2001 | DE |
20121161 | Apr 2002 | DE |
10045375 | Oct 2002 | DE |
10 2004 026179 | Dec 2005 | DE |
20 2007 009318 | Aug 2007 | DE |
20 2007 009165 | Oct 2007 | DE |
20 2007 009317 | Oct 2007 | DE |
20 2007 016233 | Mar 2008 | DE |
19738457 | Jan 2009 | DE |
10 2008 018406 | Jul 2009 | DE |
0584787 | Mar 1994 | EP |
1159926 | Dec 2001 | EP |
1486177 | May 2005 | EP |
1532932 | May 2005 | EP |
1535581 | Jun 2005 | EP |
1609430 | Dec 2005 | EP |
1642543 | Apr 2006 | EP |
1645240 | Apr 2006 | EP |
1685806 | Aug 2006 | EP |
1769765 | Apr 2007 | EP |
1810625 | Jul 2007 | EP |
1929970 | Jun 2008 | EP |
2105104 | Sep 2009 | EP |
61-501068 | Sep 1984 | JP |
6-502328 | Mar 1992 | JP |
5-5106 | Jan 1993 | JP |
5-40112 | Feb 1993 | JP |
6-030945 | Feb 1994 | JP |
6-121797 | May 1994 | JP |
6-285078 | Oct 1994 | JP |
6-343644 | Dec 1994 | JP |
6-511401 | Dec 1994 | JP |
7-265328 | Oct 1995 | JP |
8-56955 | Mar 1996 | JP |
8-317936 | Mar 1996 | JP |
8-289895 | May 1996 | JP |
8-252263 | Oct 1996 | JP |
8-317934 | Dec 1996 | JP |
9-000538 | Jan 1997 | JP |
9-10223 | Jan 1997 | JP |
9-122138 | May 1997 | JP |
10-000195 | Jan 1998 | JP |
10-24051 | Jan 1998 | JP |
11-070124 | May 1998 | JP |
10-155798 | Jun 1998 | JP |
2000-102545 | Sep 1998 | JP |
11-47150 | Feb 1999 | JP |
11-169381 | Jun 1999 | JP |
11-192238 | Jul 1999 | JP |
11-244298 | Sep 1999 | JP |
2000-342599 | Dec 2000 | JP |
2000-350732 | Dec 2000 | JP |
2001-8944 | Jan 2001 | JP |
2001-29356 | Feb 2001 | JP |
2001-128990 | May 2001 | JP |
2001-190564 | Jul 2001 | JP |
2001-3400 | Nov 2001 | JP |
2002-528166 | Mar 2002 | JP |
2002-136525 | May 2002 | JP |
2003-116871 | Apr 2003 | JP |
2003-175052 | Jun 2003 | JP |
2003-245285 | Sep 2003 | JP |
2004-517668 | Jun 2004 | JP |
2004-528869 | Sep 2004 | JP |
2005-152663 | Jun 2005 | JP |
2005-253789 | Sep 2005 | JP |
2006-015078 | Jan 2006 | JP |
2006-501939 | Jan 2006 | JP |
2006-095316 | Apr 2006 | JP |
2011-125195 | Jun 2011 | JP |
401367 | Nov 1974 | SU |
WO 9420025 | Sep 1994 | WO |
WO 9611635 | Apr 1996 | WO |
WO 9622056 | Jul 1996 | WO |
WO 9814124 | Apr 1998 | WO |
WO 0024330 | May 2000 | WO |
WO 0036986 | Jun 2000 | WO |
WO 0047124 | Aug 2000 | WO |
WO 0059392 | Oct 2000 | WO |
WO 0115614 | Mar 2001 | WO |
WO 0154604 | Aug 2001 | WO |
WO 0207627 | Jan 2002 | WO |
WO 0245589 | Jun 2002 | WO |
WO 02080783 | Oct 2002 | WO |
WO 02080794 | Oct 2002 | WO |
WO 02080795 | Oct 2002 | WO |
WO 02080796 | Oct 2002 | WO |
WO 02080797 | Oct 2002 | WO |
WO 02080799 | Oct 2002 | WO |
WO 03101311 | Dec 2003 | WO |
WO 2004073490 | Sep 2004 | WO |
WO 2004098383 | Nov 2004 | WO |
WO 2004103156 | Dec 2004 | WO |
WO 2005004734 | Jan 2005 | WO |
WO 2005004735 | Jan 2005 | WO |
WO 2005110264 | Nov 2005 | WO |
WO 2006021269 | Mar 2006 | WO |
WO 2008040483 | Apr 2008 | WO |
WO 2009124097 | Oct 2009 | WO |
Entry |
---|
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler. |
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan. |
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich. |
U.S. Appl. No. 13/050,182, filed Mar. 17, 2011, Glen A. Horner. |
U.S. Appl. No. 13/072,945, filed Mar. 28, 2011, Patrick L. Dumbauld. |
U.S. Appl. No. 13/080,383, filed Apr. 5, 2011, David M. Garrison. |
U.S. Appl. No. 13/085,144, filed Apr. 12, 2011, Keir Hart. |
U.S. Appl. No. 13/091,331, filed Apr. 21, 2011, Jeffrey R. Townsend. |
U.S. Appl. No. 13/102,573, filed May 6, 2011, John R. Twomey. |
U.S. Appl. No. 13/102,604, filed May 6, 2011, Paul E. Ourada. |
U.S. Appl. No. 13/108,093, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,129, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,152, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,177, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,196, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,441, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,468, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/111,642, filed May 19, 2011, John R. Twomey. |
U.S. Appl. No. 13/111,678, filed May 19, 2011, Nikolay Kharin. |
U.S. Appl. No. 13/113,231, filed May 23, 2011, David M. Garrison. |
U.S. Appl. No. 13/157,047, filed Jun. 9, 2011, John R. Twomey. |
U.S. Appl. No. 13/162,814, filed Jun. 17, 2011, Barbara R. Tyrrell. |
U.S. Appl. No. 13/166,477, filed Jun. 22, 2011, Daniel A. Joseph. |
U.S. Appl. No. 13/166,497, filed Jun. 22, 2011, Daniel A. Joseph. |
U.S. Appl. No. 13/179,919, filed Jul. 11, 2011, Russell D. Hempstead. |
U.S. Appl. No. 13/179,960, filed Jul. 11, 2011, Boris Chernov. |
U.S. Appl. No. 13/179,975, filed Jul. 11, 2011, Grant T. Sims. |
U.S. Appl. No. 13/180,018, filed Jul. 11, 2011, Chase Collings. |
U.S. Appl. No. 13/183,856, filed Jul. 15, 2011, John R. Twomey. |
U.S. Appl. No. 13/185,593, filed Jul. 19, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/204,841, filed Aug. 8, 2011, Edward J. Chojin. |
U.S. Appl. No. 13/205,999, filed Aug. 9, 2011, Jeffrey R. Unger. |
U.S. Appl. No. 13/212,297, filed Aug. 18, 2011, Allan J. Evans. |
U.S. Appl. No. 13/212,308, filed Aug. 18, 2011, Allan J. Evans. |
U.S. Appl. No. 13/212,329, filed Aug. 18, 2011, Allan J. Evans. |
U.S. Appl. No. 13/212,343, filed Aug. 18, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/223,521, filed Sep. 1, 2011, John R. Twomey. |
U.S. Appl. No. 13/227,220, filed Sep. 7, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/228,742, filed Sep. 9, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/231,643, filed Sep. 13, 2011, Keir Hart. |
U.S. Appl. No. 13/234,357, filed Sep. 16, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/236,168, filed Sep. 19, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/236,271, filed Sep. 19, 2011, Monty S. Fry. |
U.S. Appl. No. 13/243,628, filed Sep. 23, 2011, William Ross Whitney. |
U.S. Appl. No. 13/247,778, filed Sep. 28, 2011, John R. Twomey. |
U.S. Appl. No. 13/247,795, filed Sep. 28, 2011, John R. Twomey. |
U.S. Appl. No. 13/248,976, filed Sep. 29, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/249,013, filed Sep. 29, 2011, Jeffrey R. Unger. |
U.S. Appl. No. 13/249,024, filed Sep. 29, 2011, John R. Twomey. |
U.S. Appl. No. 13/251,380, filed Oct. 3, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/277,373, filed Oct. 20, 2011, Glenn A. Horner. |
U.S. Appl. No. 13/277,926, filed Oct. 20, 2011, David M. Garrison. |
U.S. Appl. No. 13/277,962, filed Oct. 20, 2011, David M. Garrison. |
U.S. Appl. No. 13/293,754, filed Nov. 10, 2011, Jeffrey M. Roy. |
U.S. Appl. No. 13/306,523, filed Nov. 29, 2011, David M. Garrison. |
U.S. Appl. No. 13/306,553, filed Nov. 29, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/308,104, filed Nov. 30, 2011, John R. Twomey. |
U.S. Appl. No. 13/312,172, filed Dec. 6, 2011, Robert J. Behnke, II. |
U.S. Appl. No. 13/324,863, filed Dec. 13, 2011, William H. Nau, Jr. |
U.S. Appl. No. 13/344,729, filed Jan. 6, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/355,829, filed Jan. 23, 2012, John R. Twomey. |
U.S. Appl. No. 13/357,979, filed Jan. 25, 2012, David M. Garrison. |
U.S. Appl. No. 13/358,136, filed Jan. 25, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/360,925, filed Jan. 30, 2012, James H. Orszulak. |
U.S. Appl. No. 13/400,290, filed Feb. 20, 2012, Eric R. Larson. |
U.S. Appl. No. 13/404,435, filed Feb. 24, 2012, Kim V. Brandt. |
U.S. Appl. No. 13/404,476, filed Feb. 24, 2012, Kim V. Brandt. |
U.S. Appl. No. 13/412,879, filed Mar. 6, 2012, David M. Garrison. |
U.S. Appl. No. 13/412,897, filed Mar. 6, 2012, Joanna Ackley. |
U.S. Appl. No. 13/421,373, filed Mar. 15, 2012, John R. Twomey. |
U.S. Appl. No. 13/430,325, filed Mar. 26, 2012, William H. Nau, Jr. |
U.S. Appl. No. 13/433,924, filed Mar. 29, 2012, Keir Hart. |
U.S. Appl. No. 13/448,577, filed Apr. 17, 2012, David M. Garrison. |
U.S. Appl. No. 13/460,455, filed Apr. 30, 2012, Luke Waaler. |
U.S. Appl. No. 13/461,335, filed May 1, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/461,378, filed May 1, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/461,397, filed May 1, 2012, James R. Unger. |
U.S. Appl. No. 13/461,410, filed May 1, 2012, James R. Twomey. |
U.S. Appl. No. 13/464,569, filed May 4, 2012, Duane E. Kerr. |
U.S. Appl. No. 13/466,274, filed May 8, 2012, Stephen M. Kendrick. |
U.S. Appl. No. 13/467,767, filed May 9, 2012, Duane E. Kerr. |
U.S. Appl. No. 13/470,543, filed May 14, 2012, Sean T. Dycus. |
U.S. Appl. No. 13/470,775, filed May 14, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/470,797, filed May 14, 2012, John J. Kappus. |
U.S. Appl. No. 13/482,589, filed May 29, 2012, Eric R. Larson. |
U.S. Appl. No. 13/483,733, filed May 30, 2012, Dennis W. Butcher. |
U.S. Appl. No. 13/491,853, filed Jun. 8, 2012, Jessica E. Olson. |
U.S. Appl. No. 13/537,517, filed Jun. 29, 2012, David N. Heard. |
U.S. Appl. No. 13/537,577, filed Jun. 29, 2012, Tony Moua. |
U.S. Appl. No. 13/550,322, filed Jul. 16, 2012, John J. Kappus. |
U.S. Appl. No. 13/571,055, filed Aug. 9, 2012, Paul Guerra. |
U.S. Appl. No. 13/571,821, filed Aug. 10, 2012, Joseph D. Bucciaglia. |
U.S. Appl. No. 13/584,194, filed Aug. 13, 2012, Sean T. Dycus. |
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” ; Innovations That Work, Jun. 2003. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. |
Tinkcler L.F., “Combined Diathermy and Suction Forceps” , Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC; Date: Aug. 2003. |
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000. |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004. |
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000). |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999. |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878. |
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801. |
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999. |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002. |
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Benaron et al., “Optical Time-of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157. |
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001. |
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J.Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. |
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24. |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000. |
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. |
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. |
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. |
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999. |
Number | Date | Country | |
---|---|---|---|
20130325043 A1 | Dec 2013 | US |