Surgical clamping device with ratcheting grip lock

Information

  • Patent Grant
  • 8679140
  • Patent Number
    8,679,140
  • Date Filed
    Wednesday, May 30, 2012
    12 years ago
  • Date Issued
    Tuesday, March 25, 2014
    10 years ago
Abstract
At least on aspect of the present disclosure relates to a surgical clamping device, comprising first and second shaft members each having a jaw member disposed at a distal end thereof, a gripping member disposed on the first shaft member, and a gear system disposed on the second shaft member and configured to receive the gripping member and incrementally lock the gripping member in at least one predefined position.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to medical instruments and to the use thereof. More particularly, the present disclosure is directed to surgical clamping devices.


2. Background of Related Art


A hemostat device is a surgical instrument which relies on mechanical action between its jaws to grasp, clamp, constrict, and seal vessels or tissue. Such devices are commonly used in open, endoscopic, or laparoscopic surgical procedures. Energy-based hemostats (open or endoscopic) utilize both mechanical clamping action and energy to affect hemostasis by heating tissue and blood vessels to coagulate and/or cauterize tissue.


Certain surgical procedures require more than simply coagulating/cauterizing tissue and rely on the unique combination of clamping pressure, precise energy control, and gap distance (i.e., distance between opposing jaw members when closed about tissue) to “seal” tissue, vessels, and certain vascular bundles.


In order to effectively “seal” tissue or vessels, two predominant mechanical parameters must be accurately controlled: 1) the pressure applied to the vessel or tissue; and 2) the gap distance between the tissue contacting surfaces. As can be appreciated, both of these parameters are affected by the thickness of the tissue being sealed. Accurate application of pressure is important for several reasons: to reduce the tissue impedance to a low enough value that allows enough energy through the tissue; to overcome the forces of expansion during tissue heating; and to contribute to the end tissue thickness which is an indication of a good seal.


SUMMARY

As shown in the drawings and described throughout the following description, as is traditional when referring to relative positioning on a surgical instrument, the term “proximal” refers to the end of the apparatus that is closer to the user and the term “distal” refers to the end of the apparatus that is farther away from the user. The term “clinician” refers to any medical professional (e.g., doctor, surgeon, nurse, or the like) performing a medical procedure involving the use of embodiments described herein.


In at least one aspect of this disclosure, a surgical clamping device, comprising first and second shaft members each having a jaw member disposed at a distal end thereof, the shaft members pivotably coupled to one another and movable relative to one another between an open position and at least one closed position for moving the jaw members between a spaced-apart position and at least one approximated position, a gripping member disposed on the first shaft member, and a gear system disposed on the second shaft member and configured to receive the gripping member and incrementally lock the gripping member in at least one predefined position corresponding to the at least one approximated position of the jaw members, the gear system including a first gear rotatably connected to the second shaft member, a second gear operably connected to the first gear and movably connected to the second shaft member, and at least one locking member configured to engage one or more notches defined in the second shaft member, wherein upon movement of the first and second shaft members in a first direction, the first gear mechanically engages the gripping member thereby moving the first gear, and, in turn, the second gear such that the at least one locking member engages the notches to progressively lock the first and second shaft members from motion in a second direction.


In another aspect of this disclosure, the first and second shaft members relative movement defines a first plane, and wherein the first and second shaft members are maintained in the first plane when the gear system releases the gripping member.


In yet another aspect of this disclosure, the gripping member includes a plurality of gear teeth configured to communicate with the first gear.


In still yet another aspect of this disclosure, the surgical clamping device further comprises a release mechanism, wherein upon actuation of the release mechanism, the locking member disengages from the notches.


In still yet another aspect of this disclosure, the at least one locking member produces at least one of a tactile or audible feedback for each notch the at least one locking member engages.


In still yet another aspect of this disclosure, the one or more notches are positioned on the second shaft member to correspond to at least one predetermined clamping force produced by the jaw members in the at least one approximated position.


In still yet another aspect of this disclosure, the locking member is disposed on or forms a part of the second gear.


In still yet another aspect of this disclosure, the surgical clamping device is a hemostat.


In still yet another aspect of this disclosure, the gear system and the gripping member are made of a rigid material selected from the group consisting of one or more of a plastic, a metal, a polymer, a ceramic, an alloy, and combinations thereof.


In still yet another aspect of this disclosure, a method for clamping tissue at a predetermined force comprises providing a surgical clamping device, including first and second shaft members each having a jaw member disposed at a distal end thereof, the shaft members pivotably coupled to one another, a gripping member disposed on the first shaft member, and a gear system and one or more notches disposed on the second shaft member, the gear system including a first gear rotatably connected to the second shaft member, a second gear operably connected to the first gear and movably connected to the second shaft member, and at least one locking member, actuating the surgical clamping device to clamp tissue between the jaw members by moving the first shaft member toward the second shaft member, and engaging the gripping member and the gear system such that the locking member communicates with the one or more notches.


In still yet another aspect of this disclosure, the at least one locking member produces at least one of a tactile or audible feedback for each notch the at least one locking member engages.


In still yet another aspect of this disclosure, the method further comprises monitoring the at least one tactile or audible feedback to determine a clamping force.


In still yet another aspect of this disclosure, the method further comprises clamping tissue with a predetermined force using the surgical clamping device.


In still yet another aspect of this disclosure, the surgical clamping device is a hemostat.


In still yet another aspect of this disclosure, the gear system and the gripping member are made of a rigid material selected from the group consisting of one or more of a plastic, a metal, a polymer, a ceramic, an alloy, and combinations thereof.


In still yet another aspect of this disclosure, the locking member is disposed on or forms a part of the second gear.


In still yet another aspect of this disclosure, the notches are disposed on the second shaft member in an arcuate formation to follow a rotation of the locking member as the locking member moves with the second gear in a rotational manner.


In still yet another aspect of this disclosure, the notches are formed by an arcuate piece of material that is disposed on the second shaft member to follow a rotation of the locking member as the locking member moves with the second gear in a rotational manner.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the present disclosure, by way of example only, are described herein with reference to the accompanying drawings, wherein like reference numerals refer to similar or identical elements throughout the description of the figures:



FIG. 1 illustrates an example of a surgical clamping device, in accordance with the present disclosure, in an unclamped position.



FIG. 2 illustrates the surgical clamping device of FIG. 1 in a clamped position.



FIG. 3 illustrates an enlarged view of the area of detail of FIG. 1 showing a ratchet assembly of the surgical clamping device.





DETAILED DESCRIPTION

In accordance with at least one aspect of the present disclosure, a surgical clamping device 100 is disclosed. In some embodiments, a surgical clamping device is a hemostat. Referring to FIG. 1, the surgical clamping device 100 includes a first shaft member 101 and a second shaft member 103, each having a proximal end 16a and 16b, and a distal end 14a and 14b, respectively. End effector assembly 200 is attached to distal ends 14a and 14b of shafts 101 and 103, respectively. End effector assembly 200 includes a pair of opposing jaw members 105 and 107 that are pivotably connected about a pivot 111. Each shaft 101 and 103 includes a handle 17a and 17b disposed at the proximal end 16a and 16b thereof. Each handle 17a and 17b defines a finger hole 18a and 18b therethrough for receiving a finger of the user. As can be appreciated, finger holes 18a and 18b facilitate movement of the shafts 101 and 103 relative to one another which, in turn, pivots jaw members 105 and 107 from an open position, wherein the jaw members 105 and 107 are disposed in spaced-apart relation relative to one another, to one or more closed positions, wherein the jaw members 105 and 107 cooperate to grasp tissue therebetween.


A ratchet assembly 102 is included for selectively locking the jaw members 105 and 107 relative to one another at various positions during pivoting. Ratchet assembly 102 includes graduations or other visual markings that enable the user to easily and quickly ascertain and control the amount of closure force desired between the jaw members 105 and 107. Alternatively or additionally, audible and/or tactile feedback may be provided to provide feedback to the user relating the degree of engagement of various components of the ratchet assembly 102 as described in greater detail hereinbelow.


One or both of the shafts 101, 103 are configured to connect the clamping device 100 to a source of energy such as a generator (not shown) such that the clinician may selectively apply energy to the jaw members 105 and 107 for treating tissue grasped therebetween. Clamping device 100 may further include a knife assembly (not shown) disposed within either of shafts 101, 103 and a knife channel (not shown) defined within one or both jaw members 105 and 107 to permit reciprocation of a knife blade (not shown) therethrough to divided previously-treated tissue (or to simply cut tissue, where tissue-treatment is not desired).


The shaft members 101, 103 are movable relative to one another between an open position (as shown in FIG. 1), and at least one closed position (as shown in FIGS. 2 and 3) for moving the jaw members 105, 107 between a spaced-apart position (as shown in FIG. 1) and at least one approximated position (as shown in FIGS. 2 and 3). The first and second shaft members 101, 103 may be movable in substantially parallel planes.


Ratchet assembly 102 includes a gripping member 113 that is disposed on the first shaft member 101 and includes one or more protrusions 117 extending therefrom. The protrusions 117 may be gear teeth configured to communicate with one or more corresponding gears as described herein.


The ratchet assembly 102 further includes a gear system 115 disposed on the second shaft member 103 and configured to mechanically engage the gripping member 113. The gear system 115 incrementally locks the gripping member 113 (and thus first shaft 101) in a predefined position relative to the second shaft member 103 as the shaft members 101 and 103 are approximated relative to one another. In some embodiments, the shaft members 101, 103 relative movement defines a first plane and the gear system 115 releases the gripping member 113 without moving either the shaft members 101, 103 outside of the first plane, e.g. without requiring movement of the shaft member 101, 103 laterally towards or away from one another.


Gear system 115 includes a first gear or cog 119 rotatably connected to the second shaft member 103. The first gear 119 includes gear teeth 127 that are configured to engage and/or pair with the gear teeth 117 of gripping member 113. The gear ratio and tooth size of gear 119 may be selected as desired for the intended use. Gear system 115 further includes a second gear 121 operably connected to the first gear 119 and movably connected to the second shaft member 103. The second gear 121 includes gear teeth 129 that interact and/or pair with the gear teeth 127 of first gear 119.


The gear system and the gripping member may be made of a rigid material including, but not limited to, one or more of a plastic, a metal, a polymer, a ceramic, an alloy, and combinations thereof.


Gear system 115 further includes a spring (e.g., a rotational spring) (not shown) connected to the second gear 121 which biases the second gear 121 against the first gear 119 as the gripping member 113 advances the first gear 119 during approximation.


At least one locking member 123 is configured to grip one or more notches 125 disposed on the second shaft member 103. In some embodiments, the locking member 123 is disposed on or forms a part of the second gear 121.


More particularly, the locking member 123 engages the one or more notches 125 in a progressive manner such that when the lock member 123 is moved over a notch 125, a portion of locking member 123 engages the notch 125 and prevents the locking member 123 from returning to a previous position. In this instance, the locking member 123 may be configured to produce a tactile or audible click as the locking member 123 progresses over successive notches 125.


The locking member 123 is selectively released from the notch 125 via a release mechanism 135 such as, but not limited to, a button or lever (not shown) disposed on the second shaft portion 103 or second gear 121. Upon actuation of the release mechanism 135, the locking member 123 disengages from a given notch 125. For example, release mechanism 135 may push or pull the second gear 121 and/or locking member 123 to dislodge the locking member 123 from the notch 125 by slideably moving the second gear 121 on hinge 150 (hinge 150 may be slideable relative to the second shaft portion 103 such that the second gear 121 or locking member 123 move with the hinge 150 as it is pushed or pulled). A spring (not shown) may bias the second gear member 121 or locking member 123 in locking position with the repective notch(s) 125. In this instance, the gear system 115 can selectively release the gripping member 113 without moving either the first or second shaft members 101, 103 relative to one another, thus maintaining the plane formed by shaft members 101, 103.


The one or more notches 125 are configured to allow the locking member 123 to move across the one or more notches 125 while progressively snapping into each successive notch 125 when the locking member 123 is advanced in a first direction, for example, in the direction of the first shaft portion 101. The one or more notches 125 prevent the locking member 123 from moving in a second direction preventing the ratcheting system 115 from reverse motion while the locking member 123 is engaged with a particular notch 125.


The one or more notches 125 may be integral, overlaid, carved, or inlayed on the second shaft member 103. Alternatively, the one or more notches 125 may be a separate piece of material attached to the second shaft member 103 in any suitable manner.


The one or more notches 125 may be any shape as desired to facilitate engagement and release from the locking member 123. For example, the one or more notches may be disposed along an arcuate piece of material as shown in FIGS. 1-3.


Moreover, the one or more notches 125 may be positioned on the second shaft member 103 to correspond to one or more predetermined clamping forces produced by the jaw members 105, 107 when approximated. For example, one or more positions may correspond to closure pressures at the jaw members 105, 107 to between about 3 kg/cm^2 to 16 kg/cm^2, which are closure pressures particularly suited for vessel sealing, although other closure pressures may be provided.


In use, a clinician may move the first shaft member 101 and the second shaft member 103 together to close the jaw members 105, 107 from the open position as shown in FIG. 1, to the closed position, as shown in FIGS. 2 and 3. As the first shaft member 101 advances toward the second shaft member 103, the gripping member 113 advances toward the first gear 119.


Referring to FIGS. 2 and 3, the first gear 119 is configured to engage the gripping member 113 and be advanced thereby. For example, as the gripping member 113 is advanced further in the direction of the second shaft portion 103, the gripping member 113 engages first gear 119 and first gear 119 rotates in a first direction with further advancement of the gripping member 113. As the first gear 119 rotates, the second gear 121 rotates in a second direction. The second gear 121, being operably connected to the locking member 123, moves the locking member 123 across or over successive notches 125. As mentioned above, the locking member 123 produces a tactile or audible feedback (click) as it passes each notch 125. The ratio of gear teeth determines the frequency of the feedback (clicks).


By listening or sensing the feedback (clicks), a clinician can determine and/or select the amount of clamping force being applied at the jaw members 105, 107 by the clamping device 100. Once the desired force setting is reached, the clinician simply stops advancing the first shaft member 101 toward the second shaft member 103 and, at this point, the locking member 123 is engaged with a corresponding notch 125 to lock the gear system 115. In this position, the first shaft member 101 can not pull away from the second shaft member 103 (i.e., reverse rotation of gear 119) as long as the gripping member 113 engages the first gear 119.


The restoring force of a mass e.g., tissue, being clamped in the jaw members 105, 107, or the material restoring force of the two jaw members 105, 107 being forced together will produce an opposing force tending to pull the first shaft member 101 away from the second shaft member 103. However, as disclosed above, when in the locked state, the gear system 115 does not allow the release of the gripping member 113 and, thus, the first shaft member 101 cannot be forced away from the second shaft member 103 due to the restoring force. Thus, a desired clamping pressure about tissue can be maintained.


To release the locking member 123 from the corresponding notch 125, the clinician activates the release mechanism 135 to dislodge the locking member 123 from the notch 125. When the locking member 123 is disengaged, the gear system 115 is free to operate in reverse motion (i.e., allow gripping member 113 to pull the first gear 119 in the reverse direction) thereby allowing the first shaft member 101 to move in the direction away from the second shaft member 103 and unclamp jaw members 105, 107. The clinician does not need to move the first shaft member 101 and the second shaft member 103 laterally (out of the plane defined therebetween) to release the gear system as with conventional systems.


In another embodiment of the present disclosure, a method for clamping tissue with a predetermined force is further disclosed. The method includes providing a surgical clamping device 100 as described above, actuating the surgical clamping device 100 to clamp tissue by moving the first shaft member 101 toward the second shaft member 103; and engaging the gripping member 113 and the gear system 115 such that the locking member 123 engages a corresponding notch 125. The method may further include monitoring the tactile or audible feedback to determine a clamping force.


Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings; however, the disclosed embodiments are merely examples of the disclosure and may be embodied in various forms. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.

Claims
  • 1. A surgical clamping device, comprising: first and second shaft members each having a jaw member disposed at a distal end thereof, the shaft members pivotably coupled to one another and movable relative to one another between an open position and at least one closed position for moving the jaw members between a spaced-apart position and at least one approximated position;a gripping member disposed on the first shaft member; anda gear system disposed on the second shaft member and configured to receive the gripping member and incrementally lock the gripping member in at least one predefined position corresponding to the at least one approximated position of the jaw members, the gear system including: a first gear rotatably connected to the second shaft member;a second gear operably connected to the first gear and movably connected to the second shaft member; andat least one locking member configured to engage one or more notches defined in the second shaft member, wherein upon movement of the first and second shaft members in a first direction, the first gear mechanically engages the gripping member thereby moving the first gear, and, in turn, the second gear such that the at least one locking member engages the notches to progressively lock the first and second shaft members from motion in a second direction.
  • 2. The surgical clamping device of claim 1, wherein the first and second shaft members relative movement defines a first plane, and wherein the first and second shaft members are maintained in the first plane when the gear system releases the gripping member.
  • 3. The surgical clamping device of claim 1, wherein the gripping member includes a plurality of gear teeth configured to communicate with the first gear.
  • 4. The surgical clamping device of claim 1, further comprising a release mechanism, wherein upon actuation of the release mechanism, the locking member disengages from the notches.
  • 5. The surgical clamping device of claim 1, wherein the at least one locking member produces at least one of a tactile or audible feedback for each notch the at least one locking member engages.
  • 6. The surgical clamping device of claim 1, wherein the one or more notches are positioned on the second shaft member to correspond to at least one predetermined clamping force produced by the jaw members in the at least one approximated position.
  • 7. The surgical clamping device of claim 1, wherein the locking member is disposed on or forms a part of the second gear.
  • 8. The surgical clamping device of claim 1, wherein the surgical clamping device is a hemostat.
  • 9. The surgical clamping device of claim 1, wherein the gear system and the gripping member are made of a rigid material selected from the group consisting of one or more of a plastic, a metal, a polymer, a ceramic, an alloy, and combinations thereof.
  • 10. A method for clamping tissue at a predetermined force, comprising: providing a surgical clamping device, including: first and second shaft members each having a jaw member disposed at a distal end thereof, the shaft members pivotably coupled to one another;a gripping member disposed on the first shaft member; anda gear system and one or more notches disposed on the second shaft member, the gear system including: a first gear rotatably connected to the second shaft member;a second gear operably connected to the first gear and movably connected to the second shaft member; andat least one locking member;actuating the surgical clamping device to clamp tissue between the jaw members by moving the first shaft member toward the second shaft member; andengaging the gripping member and the gear system such that the locking member communicates with the one or more notches.
  • 11. The method of claim 10, wherein the at least one locking member produces at least one of a tactile or audible feedback for each notch the at least one locking member engages.
  • 12. The method of claim 11, further comprising monitoring the at least one tactile or audible feedback to determine a clamping force.
  • 13. The method of claim 12, further comprising clamping tissue with a predetermined force using the surgical clamping device.
  • 14. The method of claim 10, wherein the surgical clamping device is a hemostat.
  • 15. The method of claim of claim 10, wherein the gear system and the gripping member are made of a rigid material selected from the group consisting of one or more of a plastic, a metal, a polymer, a ceramic, an alloy, and combinations thereof.
  • 16. The method of claim of claim 10, wherein the locking member is disposed on or forms a part of the second gear.
  • 17. The method of claim of claim 16, wherein the notches are disposed on the second shaft member in an arcuate formation to follow a rotation of the locking member as the locking member moves with the second gear in a rotational manner.
  • 18. The method of claim 16, wherein the notches are formed by an arcuate piece of material that is disposed on the second shaft member to follow a rotation of the locking member as the locking member moves with the second gear in a rotational manner.
US Referenced Citations (266)
Number Name Date Kind
107577 Will Sep 1870 A
3459187 Pallotta Aug 1969 A
3866610 Kletschka Feb 1975 A
3911766 Fridolph et al. Oct 1975 A
3952749 Fridolph et al. Apr 1976 A
D249549 Pike Sep 1978 S
D263020 Rau, III Feb 1982 S
4448194 DiGiovanni et al. May 1984 A
4662372 Sharkany et al. May 1987 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
D298353 Manno Nov 1988 S
D299413 DeCarolis Jan 1989 S
5209747 Knoepfler May 1993 A
5211655 Hasson May 1993 A
5219354 Choudhury et al. Jun 1993 A
5250056 Hasson Oct 1993 A
5269804 Bales et al. Dec 1993 A
D343453 Noda Jan 1994 S
5304203 El-Mallawany et al. Apr 1994 A
5308357 Lichtman May 1994 A
5318589 Lichtman Jun 1994 A
D348930 Olson Jul 1994 S
D349341 Lichtman et al. Aug 1994 S
5350391 Iacovelli Sep 1994 A
D354564 Medema Jan 1995 S
5389098 Tsuruta et al. Feb 1995 A
5403342 Tovey et al. Apr 1995 A
D358887 Feinberg May 1995 S
5476479 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5520702 Sauer et al. May 1996 A
5536251 Evard et al. Jul 1996 A
5582611 Tsuruta et al. Dec 1996 A
5601601 Tai et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5618307 Donlon et al. Apr 1997 A
5620459 Lichtman Apr 1997 A
5626607 Malecki et al. May 1997 A
5626609 Zvenyatsky et al. May 1997 A
5643294 Tovey et al. Jul 1997 A
D384413 Zlock et al. Sep 1997 S
5700270 Peyser et al. Dec 1997 A
H1745 Paraschac Aug 1998 H
5792165 Klieman et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797958 Yoon Aug 1998 A
5810877 Roth et al. Sep 1998 A
5827323 Klieman et al. Oct 1998 A
5833695 Yoon Nov 1998 A
D402028 Grimm et al. Dec 1998 S
D408018 McNaughton Apr 1999 S
5893863 Yoon Apr 1999 A
5935126 Riza Aug 1999 A
5954731 Yoon Sep 1999 A
5957937 Yoon Sep 1999 A
D416089 Barton et al. Nov 1999 S
5984932 Yoon Nov 1999 A
5984939 Yoon Nov 1999 A
5989277 LeMaire, III et al. Nov 1999 A
5993466 Yoon Nov 1999 A
5993467 Yoon Nov 1999 A
6017358 Yoon et al. Jan 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6099537 Sugai et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6117158 Measamer et al. Sep 2000 A
H1904 Yates et al. Oct 2000 H
6139563 Cosgrove, III et al. Oct 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6214028 Yoon et al. Apr 2001 B1
6270508 Klieman et al. Aug 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
D453923 Olson Feb 2002 S
D454951 Bon Mar 2002 S
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
H2037 Yates et al. Jul 2002 H
6461368 Fogarty et al. Oct 2002 B2
D465281 Lang Nov 2002 S
D466209 Bon Nov 2002 S
6556100 Takamine Apr 2003 B2
6638287 Danitz et al. Oct 2003 B2
6641595 Moran et al. Nov 2003 B1
6676676 Danitz et al. Jan 2004 B2
6743239 Kuehn et al. Jun 2004 B1
D493888 Reschke Aug 2004 S
D496997 Dycus et al. Oct 2004 S
D499181 Dycus et al. Nov 2004 S
6824547 Wilson, Jr. et al. Nov 2004 B2
D502994 Blake, III Mar 2005 S
6935031 Huang Aug 2005 B1
D509297 Wells Sep 2005 S
6976992 Sachatello et al. Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6981628 Wales Jan 2006 B2
7041102 Truckai et al. May 2006 B2
D525361 Hushka Jul 2006 S
7083618 Couture et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
D533274 Visconti et al. Dec 2006 S
D533942 Kerr et al. Dec 2006 S
7147638 Chapman et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
7160299 Baily Jan 2007 B2
D538932 Malik Mar 2007 S
D541418 Schechter et al. Apr 2007 S
7204835 Latterell et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
D541611 Aglassinger May 2007 S
D541938 Kerr et al May 2007 S
D545432 Watanabe Jun 2007 S
D547154 Lee Jul 2007 S
7246734 Shelton, IV Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7329256 Johnson et al. Feb 2008 B2
D564662 Moses et al. Mar 2008 S
D567943 Moses et al. Apr 2008 S
7384420 Dycus et al. Jun 2008 B2
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
D582038 Swoyer et al. Dec 2008 S
7473253 Dycus et al. Jan 2009 B2
7491201 Shields et al. Feb 2009 B2
7500975 Cunningham et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513898 Johnson et al. Apr 2009 B2
7553312 Tetzlaff et al. Jun 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7628791 Garrison et al. Dec 2009 B2
7686827 Hushka Mar 2010 B2
7708735 Chapman et al. May 2010 B2
D617900 Kingsley et al. Jun 2010 S
D617901 Unger et al. Jun 2010 S
D617902 Twomey et al. Jun 2010 S
D617903 Unger et al. Jun 2010 S
D618798 Olson et al. Jun 2010 S
7753909 Chapman et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766910 Hixson et al. Aug 2010 B2
7771425 Dycus et al. Aug 2010 B2
7780662 Bahney Aug 2010 B2
7811283 Moses et al. Oct 2010 B2
D627462 Kingsley Nov 2010 S
D628289 Romero Nov 2010 S
D628290 Romero Nov 2010 S
7828792 McNally et al. Nov 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7855007 Gross et al. Dec 2010 B2
7857812 Dycus et al. Dec 2010 B2
D630324 Reschke Jan 2011 S
7877852 Unger et al. Feb 2011 B2
7877853 Unger et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7887536 Johnson et al. Feb 2011 B2
7896878 Johnson et al. Mar 2011 B2
7909823 Moses et al. Mar 2011 B2
7922718 Moses et al. Apr 2011 B2
D649249 Guerra Nov 2011 S
D649643 Allen, IV et al. Nov 2011 S
8070746 Orton et al. Dec 2011 B2
8070748 Hixson et al. Dec 2011 B2
8080004 Downey et al. Dec 2011 B2
8128624 Couture et al. Mar 2012 B2
8136252 Linden et al. Mar 2012 B2
8147489 Moses et al. Apr 2012 B2
8166659 Huang May 2012 B2
D661394 Romero et al. Jun 2012 S
8197479 Olson et al. Jun 2012 B2
8225513 Huang Jul 2012 B2
8241282 Unger et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8303586 Cunningham et al. Nov 2012 B2
8327549 Huang Dec 2012 B2
8357159 Romero Jan 2013 B2
8361071 Tetzlaff et al. Jan 2013 B2
20020188294 Couture et al. Dec 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030018831 Lebena Jan 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030220637 Truckai et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040082952 Dycus et al. Apr 2004 A1
20040116924 Dycus et al. Jun 2004 A1
20040162557 Tetzlaff et al. Aug 2004 A1
20040243125 Dycus et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20050149017 Dycus Jul 2005 A1
20050197659 Bahney Sep 2005 A1
20060052778 Chapman et al. Mar 2006 A1
20060084973 Hushka Apr 2006 A1
20060089670 Hushka Apr 2006 A1
20060189981 Dycus et al. Aug 2006 A1
20070043352 Garrison et al. Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070078458 Dumbauld et al. Apr 2007 A1
20070088356 Moses et al. Apr 2007 A1
20070106295 Garrison et al. May 2007 A1
20070142833 Dycus et al. Jun 2007 A1
20070156140 Baily Jul 2007 A1
20070179499 Garrison Aug 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20080033428 Artale et al. Feb 2008 A1
20080074417 Mejdrich et al. Mar 2008 A1
20080079890 Sugahara Apr 2008 A1
20080082100 Orton et al. Apr 2008 A1
20080114356 Johnson et al. May 2008 A1
20080167452 Maiti et al. Jul 2008 A1
20080167651 Tetzlaff et al. Jul 2008 A1
20080217709 Minervini et al. Sep 2008 A1
20080234701 Morales et al. Sep 2008 A1
20080319442 Unger et al. Dec 2008 A1
20090012520 Hixson et al. Jan 2009 A1
20090043304 Tetzlaff et al. Feb 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090082767 Unger et al. Mar 2009 A1
20090082769 Unger et al. Mar 2009 A1
20090149853 Shields et al. Jun 2009 A1
20090149854 Cunningham et al. Jun 2009 A1
20090171350 Dycus et al. Jul 2009 A1
20090171353 Johnson et al. Jul 2009 A1
20090182327 Unger Jul 2009 A1
20090248007 Falkenstein et al. Oct 2009 A1
20090248013 Falkenstein et al. Oct 2009 A1
20090248019 Falkenstein et al. Oct 2009 A1
20090248020 Falkenstein et al. Oct 2009 A1
20090248022 Falkenstein et al. Oct 2009 A1
20090292282 Dycus Nov 2009 A9
20090293288 Hernandez Dec 2009 A1
20090306660 Johnson et al. Dec 2009 A1
20100023009 Moses et al. Jan 2010 A1
20100042100 Tetzlaff et al. Feb 2010 A1
20100100122 Hinton Apr 2010 A1
20100130971 Baily May 2010 A1
20100130977 Garrison et al. May 2010 A1
20100145334 Olson et al. Jun 2010 A1
20100179545 Twomey et al. Jul 2010 A1
20100204698 Chapman et al. Aug 2010 A1
20100280515 Hixson et al. Nov 2010 A1
20100312235 Bahney Dec 2010 A1
20110054469 Kappus et al. Mar 2011 A1
20110054472 Romero Mar 2011 A1
20110071525 Dumbauld et al. Mar 2011 A1
20110106079 Garrison et al. May 2011 A1
20110196368 Moses et al. Aug 2011 A1
20110218530 Reschke Sep 2011 A1
20110238067 Moses et al. Sep 2011 A1
20110257681 Reschke et al. Oct 2011 A1
20120046659 Mueller Feb 2012 A1
20120078250 Orton et al. Mar 2012 A1
Foreign Referenced Citations (117)
Number Date Country
2104423 Feb 1994 CA
2590520 Nov 2007 CA
201299462 Sep 2009 CN
2415263 Oct 1975 DE
2514501 Oct 1976 DE
2627679 Jan 1977 DE
3423356 Jun 1986 DE
3612646 Apr 1987 DE
8712328 Mar 1988 DE
4303882 Aug 1994 DE
4403252 Aug 1995 DE
19515914 Jul 1996 DE
19506363 Aug 1996 DE
29616210 Jan 1997 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
10031773 Nov 2001 DE
19946527 Dec 2001 DE
20121161 Apr 2002 DE
10045375 Oct 2002 DE
10 2004 026179 Dec 2005 DE
20 2007 009318 Aug 2007 DE
20 2007 009165 Oct 2007 DE
20 2007 009317 Oct 2007 DE
20 2007 016233 Mar 2008 DE
19738457 Jan 2009 DE
10 2008 018406 Jul 2009 DE
0584787 Mar 1994 EP
1159926 Dec 2001 EP
1486177 May 2005 EP
1532932 May 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1642543 Apr 2006 EP
1645240 Apr 2006 EP
1685806 Aug 2006 EP
1769765 Apr 2007 EP
1810625 Jul 2007 EP
1929970 Jun 2008 EP
2105104 Sep 2009 EP
61-501068 Sep 1984 JP
6-502328 Mar 1992 JP
5-5106 Jan 1993 JP
5-40112 Feb 1993 JP
6-030945 Feb 1994 JP
6-121797 May 1994 JP
6-285078 Oct 1994 JP
6-343644 Dec 1994 JP
6-511401 Dec 1994 JP
7-265328 Oct 1995 JP
8-56955 Mar 1996 JP
8-317936 Mar 1996 JP
8-289895 May 1996 JP
8-252263 Oct 1996 JP
8-317934 Dec 1996 JP
9-000538 Jan 1997 JP
9-10223 Jan 1997 JP
9-122138 May 1997 JP
10-000195 Jan 1998 JP
10-24051 Jan 1998 JP
11-070124 May 1998 JP
10-155798 Jun 1998 JP
2000-102545 Sep 1998 JP
11-47150 Feb 1999 JP
11-169381 Jun 1999 JP
11-192238 Jul 1999 JP
11-244298 Sep 1999 JP
2000-342599 Dec 2000 JP
2000-350732 Dec 2000 JP
2001-8944 Jan 2001 JP
2001-29356 Feb 2001 JP
2001-128990 May 2001 JP
2001-190564 Jul 2001 JP
2001-3400 Nov 2001 JP
2002-528166 Mar 2002 JP
2002-136525 May 2002 JP
2003-116871 Apr 2003 JP
2003-175052 Jun 2003 JP
2003-245285 Sep 2003 JP
2004-517668 Jun 2004 JP
2004-528869 Sep 2004 JP
2005-152663 Jun 2005 JP
2005-253789 Sep 2005 JP
2006-015078 Jan 2006 JP
2006-501939 Jan 2006 JP
2006-095316 Apr 2006 JP
2011-125195 Jun 2011 JP
401367 Nov 1974 SU
WO 9420025 Sep 1994 WO
WO 9611635 Apr 1996 WO
WO 9622056 Jul 1996 WO
WO 9814124 Apr 1998 WO
WO 0024330 May 2000 WO
WO 0036986 Jun 2000 WO
WO 0047124 Aug 2000 WO
WO 0059392 Oct 2000 WO
WO 0115614 Mar 2001 WO
WO 0154604 Aug 2001 WO
WO 0207627 Jan 2002 WO
WO 0245589 Jun 2002 WO
WO 02080783 Oct 2002 WO
WO 02080794 Oct 2002 WO
WO 02080795 Oct 2002 WO
WO 02080796 Oct 2002 WO
WO 02080797 Oct 2002 WO
WO 02080799 Oct 2002 WO
WO 03101311 Dec 2003 WO
WO 2004073490 Sep 2004 WO
WO 2004098383 Nov 2004 WO
WO 2004103156 Dec 2004 WO
WO 2005004734 Jan 2005 WO
WO 2005004735 Jan 2005 WO
WO 2005110264 Nov 2005 WO
WO 2006021269 Mar 2006 WO
WO 2008040483 Apr 2008 WO
WO 2009124097 Oct 2009 WO
Non-Patent Literature Citations (140)
Entry
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler.
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier.
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz.
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan.
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich.
U.S. Appl. No. 13/050,182, filed Mar. 17, 2011, Glen A. Horner.
U.S. Appl. No. 13/072,945, filed Mar. 28, 2011, Patrick L. Dumbauld.
U.S. Appl. No. 13/080,383, filed Apr. 5, 2011, David M. Garrison.
U.S. Appl. No. 13/085,144, filed Apr. 12, 2011, Keir Hart.
U.S. Appl. No. 13/091,331, filed Apr. 21, 2011, Jeffrey R. Townsend.
U.S. Appl. No. 13/102,573, filed May 6, 2011, John R. Twomey.
U.S. Appl. No. 13/102,604, filed May 6, 2011, Paul E. Ourada.
U.S. Appl. No. 13/108,093, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,129, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,152, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,177, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,196, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,441, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/108,468, filed May 16, 2011, Boris Chernov.
U.S. Appl. No. 13/111,642, filed May 19, 2011, John R. Twomey.
U.S. Appl. No. 13/111,678, filed May 19, 2011, Nikolay Kharin.
U.S. Appl. No. 13/113,231, filed May 23, 2011, David M. Garrison.
U.S. Appl. No. 13/157,047, filed Jun. 9, 2011, John R. Twomey.
U.S. Appl. No. 13/162,814, filed Jun. 17, 2011, Barbara R. Tyrrell.
U.S. Appl. No. 13/166,477, filed Jun. 22, 2011, Daniel A. Joseph.
U.S. Appl. No. 13/166,497, filed Jun. 22, 2011, Daniel A. Joseph.
U.S. Appl. No. 13/179,919, filed Jul. 11, 2011, Russell D. Hempstead.
U.S. Appl. No. 13/179,960, filed Jul. 11, 2011, Boris Chernov.
U.S. Appl. No. 13/179,975, filed Jul. 11, 2011, Grant T. Sims.
U.S. Appl. No. 13/180,018, filed Jul. 11, 2011, Chase Collings.
U.S. Appl. No. 13/183,856, filed Jul. 15, 2011, John R. Twomey.
U.S. Appl. No. 13/185,593, filed Jul. 19, 2011, James D. Allen, IV.
U.S. Appl. No. 13/204,841, filed Aug. 8, 2011, Edward J. Chojin.
U.S. Appl. No. 13/205,999, filed Aug. 9, 2011, Jeffrey R. Unger.
U.S. Appl. No. 13/212,297, filed Aug. 18, 2011, Allan J. Evans.
U.S. Appl. No. 13/212,308, filed Aug. 18, 2011, Allan J. Evans.
U.S. Appl. No. 13/212,329, filed Aug. 18, 2011, Allan J. Evans.
U.S. Appl. No. 13/212,343, filed Aug. 18, 2011, Duane E. Kerr.
U.S. Appl. No. 13/223,521, filed Sep. 1, 2011, John R. Twomey.
U.S. Appl. No. 13/227,220, filed Sep. 7, 2011, James D. Allen, IV.
U.S. Appl. No. 13/228,742, filed Sep. 9, 2011, Duane E. Kerr.
U.S. Appl. No. 13/231,643, filed Sep. 13, 2011, Keir Hart.
U.S. Appl. No. 13/234,357, filed Sep. 16, 2011, James D. Allen, IV.
U.S. Appl. No. 13/236,168, filed Sep. 19, 2011, James D. Allen, IV.
U.S. Appl. No. 13/236,271, filed Sep. 19, 2011, Monty S. Fry.
U.S. Appl. No. 13/243,628, filed Sep. 23, 2011, William Ross Whitney.
U.S. Appl. No. 13/247,778, filed Sep. 28, 2011, John R. Twomey.
U.S. Appl. No. 13/247,795, filed Sep. 28, 2011, John R. Twomey.
U.S. Appl. No. 13/248,976, filed Sep. 29, 2011, James D. Allen, IV.
U.S. Appl. No. 13/249,013, filed Sep. 29, 2011, Jeffrey R. Unger.
U.S. Appl. No. 13/249,024, filed Sep. 29, 2011, John R. Twomey.
U.S. Appl. No. 13/251,380, filed Oct. 3, 2011, Duane E. Kerr.
U.S. Appl. No. 13/277,373, filed Oct. 20, 2011, Glenn A. Horner.
U.S. Appl. No. 13/277,926, filed Oct. 20, 2011, David M. Garrison.
U.S. Appl. No. 13/277,962, filed Oct. 20, 2011, David M. Garrison.
U.S. Appl. No. 13/293,754, filed Nov. 10, 2011, Jeffrey M. Roy.
U.S. Appl. No. 13/306,523, filed Nov. 29, 2011, David M. Garrison.
U.S. Appl. No. 13/306,553, filed Nov. 29, 2011, Duane E. Kerr.
U.S. Appl. No. 13/308,104, filed Nov. 30, 2011, John R. Twomey.
U.S. Appl. No. 13/312,172, filed Dec. 6, 2011, Robert J. Behnke, II.
U.S. Appl. No. 13/324,863, filed Dec. 13, 2011, William H. Nau, Jr.
U.S. Appl. No. 13/344,729, filed Jan. 6, 2012, James D. Allen, IV.
U.S. Appl. No. 13/355,829, filed Jan. 23, 2012, John R. Twomey.
U.S. Appl. No. 13/357,979, filed Jan. 25, 2012, David M. Garrison.
U.S. Appl. No. 13/358,136, filed Jan. 25, 2012, James D. Allen, IV.
U.S. Appl. No. 13/360,925, filed Jan. 30, 2012, James H. Orszulak.
U.S. Appl. No. 13/400,290, filed Feb. 20, 2012, Eric R. Larson.
U.S. Appl. No. 13/404,435, filed Feb. 24, 2012, Kim V. Brandt.
U.S. Appl. No. 13/404,476, filed Feb. 24, 2012, Kim V. Brandt.
U.S. Appl. No. 13/412,879, filed Mar. 6, 2012, David M. Garrison.
U.S. Appl. No. 13/412,897, filed Mar. 6, 2012, Joanna Ackley.
U.S. Appl. No. 13/421,373, filed Mar. 15, 2012, John R. Twomey.
U.S. Appl. No. 13/430,325, filed Mar. 26, 2012, William H. Nau, Jr.
U.S. Appl. No. 13/433,924, filed Mar. 29, 2012, Keir Hart.
U.S. Appl. No. 13/448,577, filed Apr. 17, 2012, David M. Garrison.
U.S. Appl. No. 13/460,455, filed Apr. 30, 2012, Luke Waaler.
U.S. Appl. No. 13/461,335, filed May 1, 2012, James D. Allen, IV.
U.S. Appl. No. 13/461,378, filed May 1, 2012, James D. Allen, IV.
U.S. Appl. No. 13/461,397, filed May 1, 2012, James R. Unger.
U.S. Appl. No. 13/461,410, filed May 1, 2012, James R. Twomey.
U.S. Appl. No. 13/464,569, filed May 4, 2012, Duane E. Kerr.
U.S. Appl. No. 13/466,274, filed May 8, 2012, Stephen M. Kendrick.
U.S. Appl. No. 13/467,767, filed May 9, 2012, Duane E. Kerr.
U.S. Appl. No. 13/470,543, filed May 14, 2012, Sean T. Dycus.
U.S. Appl. No. 13/470,775, filed May 14, 2012, James D. Allen, IV.
U.S. Appl. No. 13/470,797, filed May 14, 2012, John J. Kappus.
U.S. Appl. No. 13/482,589, filed May 29, 2012, Eric R. Larson.
U.S. Appl. No. 13/483,733, filed May 30, 2012, Dennis W. Butcher.
U.S. Appl. No. 13/491,853, filed Jun. 8, 2012, Jessica E. Olson.
U.S. Appl. No. 13/537,517, filed Jun. 29, 2012, David N. Heard.
U.S. Appl. No. 13/537,577, filed Jun. 29, 2012, Tony Moua.
U.S. Appl. No. 13/550,322, filed Jul. 16, 2012, John J. Kappus.
U.S. Appl. No. 13/571,055, filed Aug. 9, 2012, Paul Guerra.
U.S. Appl. No. 13/571,821, filed Aug. 10, 2012, Joseph D. Bucciaglia.
U.S. Appl. No. 13/584,194, filed Aug. 13, 2012, Sean T. Dycus.
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” ; Innovations That Work, Jun. 2003.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
Tinkcler L.F., “Combined Diathermy and Suction Forceps” , Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447.
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC; Date: Aug. 2003.
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000.
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004.
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999.
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878.
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427.
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002.
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801.
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002.
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
Benaron et al., “Optical Time-of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466.
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157.
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001.
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J.Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24.
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003.
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004.
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000.
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000.
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999.
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000.
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005.
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C.
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999.
Related Publications (1)
Number Date Country
20130325043 A1 Dec 2013 US