The invention relates to a surgical clip applicator with which generally U-shaped or V-shaped clips are typically applied to tissue structures of a patient, for example, a blood vessel, and then closed.
The surgical clip applicator comprises a handle portion, a shaft adjoining the handle portion, a clip applying tool arranged at the free end of the shaft, and a clip magazine in which a plurality of U-shaped or V-shaped clips are stored, which can be fed singly to the clip applying tool.
The applying tool comprises a mouthpiece with tool jaws for holding a clip during the application and a closing device for transferring the tool jaws from an open, idle position to a closed position in which the clips are closed and then adhere to the tissue structure or the blood vessel and occlude it.
The clip magazine is often held exchangeably on the clip applicator, as is known, for example, from DE 196 03 889 A1. A clip applicator with exchangeable clip magazine is disclosed therein. Herein the handle portion with the applicator shaft and the clip applying tool is used several times, whereas the clip magazine is used only once and is disposed of after depletion of the supply of clips. Following sterilization, the rest of the applicator can be fitted again with a fresh clip magazine and used again.
Owing to the harsh sterilization conditions, deformations may occur to some extent in clip guide tracks on which the clips are fed to the clip applying tool singly and/or in the applying tool, as a result of which, for example, clips become jammed or clips fall out of the applicator before they are fed to the applying tool. The clip applicator then has to be repaired. It is then no longer possible to put the clip magazine in use at that point in time with its supply of clips to further use.
In EP 0 793 944 B1 a clip applicator is described in which not only the clip magazine but also the mouthpiece can be exchanged as required. The problem with this applicator is that the need to exchange the mouthpiece can only be recognized by applying a clip as a test or possibly only during an operation on the patient. In such a case, the clip applicator has to be repaired, which means that the clip magazine with the remaining clips has to be discarded and the mouthpiece then exchanged, and the instrument sterilized and fitted with a new clip magazine before it can be used again.
In accordance with US 2005/0256529 A1 an applicator with a reusable handle portion and a disposable clip magazine exchangeably connectable to the handle portion is proposed, in which the steel mouthpiece is exchanged together with the clip magazine. Here the mouthpiece is exchanged each time with the used magazine, and a new mouthpiece is supplied along with each clip magazine, so that the problems occurring in usage, as described above, are prevented. However, the manufacturing costs of such disposable clip magazines with steel mouthpieces are relatively high.
A further alternative is described in U.S. Pat. No. 4,296,751, in which the complete applicator is designed as disposable article. For cost reasons it is also proposed therein that the forceps jaws of the mouthpiece be made of plastic material or plastic material reinforced with metal.
A disadvantage of this embodiment is that the plastic material, even when reinforced with plastic, does not produce satisfactory results when closing the clips, as the closing forces to be applied can only be transmitted to an insufficient extent by the plastic forceps jaws. Double-shank or multiple clips cannot be used with such applicators as the necessary closing forces cannot be transmitted here.
The object of the present invention is to propose a clip applicator, which, on the one hand, can be manufactured economically and, on the other hand, allows secure closure of the clips when applied to tissue structures, in particular, also in the case of double-shank or multiple clips.
This object is accomplished in accordance with the invention by a surgical clip applicator having the features of claim 1.
Owing to the mouthpiece being produced from a plastic material, cost-effective manufacture of the parts of the clips applicator to be used only once is possible. On the other hand, the components of higher quality, in particular, those made of steel, such as the handle portion and the closing device, are reusable and thus contribute further to the cost-effectiveness of the surgical clip applicator in accordance with the invention.
In addition, owing to the separate manufacture of the mouthpiece, the plastic material can be specially designed and selected for the specific demands, so that it can then take into account the mechanical requirements arising, in particular, from the closing of the clips and the expenditure of force necessary therefor.
In this connection, the plastic materials are selected, in particular, from polyolefins, polycarbonate, polyamide, polyetheretherketone, polyphenylene sulfide, polyether imide and liquid crystal polymers.
These polymers may then be fiber-reinforced, in particular, glass fiber-reinforced, with the proportion of fiber ranging, in particular, from approximately 20 to approximately 60% by weight, further preferred approximately 30 to approximately 50% by weight.
In particular, such plastic mouthpieces can be injection-molded and are, therefore, most cost-effective to produce. These are suitable not only for closing so-called single-leg clips, but also double-shank clips, where the deformation forces which have to be applied in order to securely close the clip are almost double.
It has proven particularly expedient to form the mouthpiece in the shape of a fork with two substantially parallel arms, which carry, at the free ends, tool jaws which, in particular, are also integrally formed on these and, in particular, are shaped by injection molding.
Also, fork-shaped mouthpieces have the further advantage that the mouthpiece opens again elastically and brings the tool jaws into the open, idle position without further structural elements having to assist this. This reduces the number of parts for manufacture of the clip applicator in accordance with the invention and, therefore, also the manufacturing costs.
A particularly preferred embodiment of the surgical clip applicator comprises a mouthpiece in which the tool jaws are held for pivotal movement on the mouthpiece arms. For this purpose, the mouthpiece arms then comprise, in their regions adjacent to the tool jaws, bearing elements which can be brought into abutment with each other and which in abutment with each other form a pivot bearing for the tool jaws. The bearing elements are arranged on the mouthpiece arms on surfaces facing each other and are preferably of self-centering construction.
In a further preferred embodiment of the invention, the mouthpiece arms are provided with protuberances on their outer surfaces located opposite the tool jaws. These protuberances reinforce the sections of the tool jaws and allow safe application of the closing forces to the clips to be applied.
In addition, these protuberances enable implementation of a simple closing mechanism, in which the closing device comprises a slide, which grips around the fork-shaped mouthpiece and is displaceable parallel to the longitudinal direction of the mouthpiece from a first, proximal position to a second, distal position. The protuberances of the mouthpiece arms are then configured as guides with which the distal end of the slide engages and, when displaced into the second position, transfers the tool jaws to their closed position.
This feature results, in particular, in connection with the use of bearing elements in the area of transition from the mouthpiece arms to the tool jaws in a mechanically very simple and efficient design, which, in addition, makes do with small component thicknesses and, therefore, a minimal expenditure of material.
Preferred bearing elements are of complementary construction, so that a centering results when they abut against each other. In particular, the bearing elements are constructed as plug and socket.
In view of the exchangeability of the mouthpiece, it is preferred if it is held on the clip magazine and is exchangeable together with it. The clip magazine can, therefore, be assembled together with the mouthpiece and packed ready for use, so that exchange of clip magazine and mouthpiece can be carried out in one operation and involve no more expenditure than the mere exchange of a clip magazine.
In such a case, the tool, not yet discussed in detail, for singling the clips and feeding them to the mouthpiece of the applying tool is then preferably also exchanged together with these.
In a further embodiment of the invention, the clip magazine is configured with the shaft and the closing device of the applying tool as a constructional unit, which is connectable to the handle portion so as to be separable and exchangeable in one step, so that only the mechanical parts of the handle portion are reusable and need be subjected to sterilization conditions.
For secure holding of the clips, the tool jaws preferably comprise a receiving area in which the clip to be applied is received after it has been fed singly to the applying tool.
The receiving area for the clip to be applied comprises, in each case, an abutment surface for one of the legs of the clip, with the abutment surface extending at least over part of the length of the legs and, therefore, guiding these.
A clip applicator in accordance with the invention preferably comprises receiving areas in which the abutment surface for the legs is followed by a recess in which a connecting region of the legs or an apex of the clip is received when the tool jaws are in the closed position.
This has the advantage that the receiving area widens at this point and, therefore, the clips to be applied do not have to be fully compressed at the apex in order to arrive at the required dimension of the closing gap between the legs, which is typically 0.25 mm or less, in particular, 0.07 mm to approximately 0.15 mm.
On the one hand, by avoiding excessive forces for compressing the apex of the clip to be applied, the expenditure of force is reduced for the operating surgeon who must apply it in order to close a clip. On the other hand, the stress on the mouthpieces made of plastic material is also reduced, so that, in turn, the design and also the choice of material with regard to the plastic material can be optimized here, with a saving of material.
The abutment surfaces in the area of the free ends of the legs of the clips are preferably provided with a setback, so that the physical contact between the legs of the clip and the tool jaws remains limited to the necessary area that is required for closing the clips. Owing to the U-shape or V-shape of the clips, it is sufficient for these to have contact with the tool jaws in the middle section of the legs, as a pretension with respect to their free ends is already achieved during the closing on account of the clip shape.
The abutment surfaces are preferably of such dimensions that when the tool jaws are in the closed position, the legs abut only with a middle section against the tool jaws, however, the legs abut against the tool jaws, in particular, over approximately one third of their length, in particular, half of their length or somewhat more, when the tool jaws are in the closed position.
Furthermore, the recesses of the receiving areas of the tool jaws have a depth perpendicular to the closing direction of the clip legs, which corresponds approximately to half of the thickness of a clip leg or its diameter or more. In particular, the depth of the recess is approximately equal to the thickness or diameter of the leg of the clip.
The thickness of a clip leg is to be understood as its extent in the direction of the closing direction of the clip.
Approximately twice the diameter or thickness of a clip leg or more is preferably chosen for the length of the recess, which receives the connecting region of the clip legs, parallel to the longitudinal direction of the clip leg.
Further preferred, approximately four times the diameter or thickness of a clip leg or less is chosen for the length of the recess.
It is thus ensured that the clip, also under load, is securely fixed in its position between the tool jaws of the clip applicator.
In a further preferred embodiment of the clip applicator in accordance with the invention, the abutment surfaces are provided with a guide element, which ensures alignment of the clips to be applied in the tool jaws.
In simple or one-leg clips, this guide element is often configured as a groove. In so-called double-shank clips, the guide element may comprise a projection which between the parallel legs comes to rest on one side of the clip and thus ensures orientation and guidance of the double-shank clip. This applies accordingly in the case of clips with, for example, three parallel legs.
These and further advantages of the invention will be explained in further detail hereinbelow with reference to the drawings.
The clip magazine 14 comprises next to a mounting and holding device 16 with which the clip magazine 14 is attachable to the handle 12, a shaft part 18a and at the free end thereof a mouthpiece 20 as part of the clip applying tool of the applicator.
The handle portion contains a part of the shaft 18b integrated therein, in which a closing device 21 is accommodated as part of the applying tool of the applicator 10. Here the closing device 21 is formed as a slide, the distal end of which engages partially around the mouthpiece 20 in the assembled state.
In
Also visible in
In
The mouthpiece 28 is of fork-shaped configuration and comprises two parallel arms 30, 31, on the free ends of which tool jaws 32, 33 are integrally formed. At the area of transition between the arms 30, 31 and the tool jaws 32 and 33, respectively, the arms 30, 31 comprise bearing elements 36, 37, which project towards each other in the shape of plugs into the space between the two arms 30, 31.
The bearing elements 36, 37 are of complementary configuration. In the example of
When the tool jaws 32, 33 are brought closer together from their open, idle position shown in
On the upper side shown in
The guides 40, 41 continue to the free (distal) end of the tool jaws 30, 33 as grooves 42, 43, in which a clip is held in its end position until it is applied.
As indicated by broken lines in
For implementation of a simple closing mechanism, the tool jaws 32, 33 are provided on their outer sides with protuberances 50, 51, via which closure of the tool jaws 32, 33 can be brought about by translational movements of a slide (not shown in
The embodiment of the mouthpiece 60 has a bearing element construction which is different from that of the mouthpiece 28. Here the bearing elements are formed by simple flat abutment surfaces 72, 73, and an articulated connection of the jaws 64, 65 with the arms 62, 63 is achieved by the arms being formed with a setback 76, 77 on the inner side of the fork-shaped mouthpiece. A slide 78, which grips around the arms 62, 63 with its distal end area 80, is actuated in order to actuate the mouthpiece 60 or the tool jaws 64, 65 for application and closure of the clip 70. When the slide 78 is pushed out of its first position shown in
This closure mechanism is shown again in greater detail in a schematic representation of the mouthpiece 28 and a slide 90 in
The distal end 92 of the slide 90 is located at the area of transition of the arms 30, 31 to the jaws 32, 33, in which the bearing elements 36, 37 are also arranged. In this position, a clip (not shown) can be pushed via the guides 40, 41 into its end position between the tool jaws 32, 33.
To apply the clip, the slide 90 is moved out of its proximal position into a distal position shown in
A further translational movement of the slide 90 to the distal position then causes a pivoting of the tool jaws 32, 33 about the pivot bearing formed by the bearing elements 36, 37. The end position which the slide 90 finally reaches is shown in
| Number | Date | Country | Kind |
|---|---|---|---|
| 10 2011 001 706 | Mar 2011 | DE | national |
This application is a continuation of international application number PCT/EP2012/054106 filed on Mar. 9, 2012 and claims the benefit of German application number 10 2011 001 706.2 filed on Mar. 31, 2011, which are incorporated herein by reference in their entirety and for all purposes.
| Number | Name | Date | Kind |
|---|---|---|---|
| 439994 | Ballard | Nov 1890 | A |
| 2758302 | White | Aug 1956 | A |
| 2988314 | Urich | Jun 1961 | A |
| 3270745 | Wood | Sep 1966 | A |
| 3317973 | Finkle | May 1967 | A |
| 3463156 | McDermott | Aug 1969 | A |
| 3616497 | Esposito, Jr. | Nov 1971 | A |
| 3629912 | Klopp | Dec 1971 | A |
| 3631707 | Miller | Jan 1972 | A |
| 3636954 | Weston | Jan 1972 | A |
| 3774438 | Weston | Nov 1973 | A |
| 3775826 | Reed | Dec 1973 | A |
| 3777538 | Weatherly et al. | Dec 1973 | A |
| 3856016 | Davis | Dec 1974 | A |
| 3916908 | Leveen | Nov 1975 | A |
| 3954108 | Davis | May 1976 | A |
| 4044771 | Wannag | Aug 1977 | A |
| 4152920 | Green | May 1979 | A |
| 4242902 | Green | Jan 1981 | A |
| 4296751 | Blake, III et al. | Oct 1981 | A |
| 4299224 | Noiles | Nov 1981 | A |
| 4388747 | Plummer | Jun 1983 | A |
| 4412539 | Jarvik | Nov 1983 | A |
| 4430997 | DiGiovanni et al. | Feb 1984 | A |
| 4444181 | Wevers et al. | Apr 1984 | A |
| 4449531 | Cerwin et al. | May 1984 | A |
| 4456006 | Wevers et al. | Jun 1984 | A |
| 4477008 | Struble | Oct 1984 | A |
| 4478220 | Di Giovanni et al. | Oct 1984 | A |
| 4509518 | McGarry et al. | Apr 1985 | A |
| 4512345 | Green | Apr 1985 | A |
| 4514885 | Delahousse et al. | May 1985 | A |
| 4527726 | Assell et al. | Jul 1985 | A |
| 4549544 | Favaron | Oct 1985 | A |
| 4576165 | Green et al. | Mar 1986 | A |
| 4586503 | Kirsch et al. | May 1986 | A |
| 4602632 | Jorgensen | Jul 1986 | A |
| 4637395 | Caspar et al. | Jan 1987 | A |
| 4646740 | Peters et al. | Mar 1987 | A |
| 4648542 | Fox et al. | Mar 1987 | A |
| 4733664 | Kirsch et al. | Mar 1988 | A |
| 4854317 | Braun | Aug 1989 | A |
| 4887601 | Richards | Dec 1989 | A |
| 4929240 | Kirsch et al. | May 1990 | A |
| 4983176 | Cushmann et al. | Jan 1991 | A |
| 5032127 | Frazee et al. | Jul 1991 | A |
| 5047038 | Peters et al. | Sep 1991 | A |
| 5084057 | Green et al. | Jan 1992 | A |
| 5112343 | Thornton | May 1992 | A |
| 5160339 | Chen et al. | Nov 1992 | A |
| 5171247 | Hughett et al. | Dec 1992 | A |
| 5171250 | Yoon | Dec 1992 | A |
| 5207692 | Kraus et al. | May 1993 | A |
| 5217473 | Yoon | Jun 1993 | A |
| 5222961 | Nakao et al. | Jun 1993 | A |
| 5236440 | Hlavacek | Aug 1993 | A |
| 5282807 | Knoepfler | Feb 1994 | A |
| 5366459 | Yoon | Nov 1994 | A |
| 5397046 | Savage et al. | Mar 1995 | A |
| 5431668 | Burbank, III et al. | Jul 1995 | A |
| 5441509 | Vidal et al. | Aug 1995 | A |
| 5452500 | Revis | Sep 1995 | A |
| 5464413 | Siska, Jr. et al. | Nov 1995 | A |
| 5472132 | Savage et al. | Dec 1995 | A |
| 5527318 | McGarry | Jun 1996 | A |
| 5527320 | Carruthers et al. | Jun 1996 | A |
| D371390 | Johnson | Jul 1996 | S |
| 5542949 | Yoon | Aug 1996 | A |
| 5584425 | Savage et al. | Dec 1996 | A |
| 5591178 | Green et al. | Jan 1997 | A |
| 5607436 | Pratt et al. | Mar 1997 | A |
| 5609599 | Levin | Mar 1997 | A |
| 5625931 | Visser et al. | May 1997 | A |
| 5626585 | Mittelstadt et al. | May 1997 | A |
| 5626586 | Pistl et al. | May 1997 | A |
| RE35525 | Stefanchik et al. | Jun 1997 | E |
| 5643291 | Pier et al. | Jul 1997 | A |
| 5665097 | Baker et al. | Sep 1997 | A |
| 5681330 | Hughett et al. | Oct 1997 | A |
| 5700271 | Whitfield et al. | Dec 1997 | A |
| 5725542 | Yoon | Mar 1998 | A |
| 5752973 | Kieturakis | May 1998 | A |
| 5772673 | Cuny et al. | Jun 1998 | A |
| 5779720 | Walder-Utz et al. | Jul 1998 | A |
| 5788716 | Kobren et al. | Aug 1998 | A |
| D401626 | Shyu | Nov 1998 | S |
| 5843097 | Mayenberger et al. | Dec 1998 | A |
| 5893506 | Powell | Apr 1999 | A |
| 5894979 | Powell | Apr 1999 | A |
| 5895394 | Kienzle et al. | Apr 1999 | A |
| 6015417 | Reynolds, Jr. | Jan 2000 | A |
| RE36720 | Green et al. | May 2000 | E |
| 6210419 | Mayenberger et al. | Apr 2001 | B1 |
| 6258105 | Hart et al. | Jul 2001 | B1 |
| 6261303 | Mayenberger et al. | Jul 2001 | B1 |
| 6273898 | Kienzle et al. | Aug 2001 | B1 |
| 6352541 | Kienzle et al. | Mar 2002 | B1 |
| 6428548 | Durgin et al. | Aug 2002 | B1 |
| 6599298 | Forster et al. | Jul 2003 | B1 |
| 6837895 | Mayenberger | Jan 2005 | B2 |
| 7207997 | Shipp et al. | Apr 2007 | B2 |
| 7572266 | Young et al. | Aug 2009 | B2 |
| D600749 | Azman et al. | Sep 2009 | S |
| D600750 | Azman et al. | Sep 2009 | S |
| 7678125 | Shipp | Mar 2010 | B2 |
| 8506580 | Zergiebel et al. | Aug 2013 | B2 |
| 8512357 | Viola | Aug 2013 | B2 |
| 20020099388 | Mayenberger | Jul 2002 | A1 |
| 20040044363 | Fowler | Mar 2004 | A1 |
| 20040147942 | Chao | Jul 2004 | A1 |
| 20040153100 | Ahlberg et al. | Aug 2004 | A1 |
| 20050119677 | Shipp | Jun 2005 | A1 |
| 20050149063 | Young et al. | Jul 2005 | A1 |
| 20050177177 | Viola | Aug 2005 | A1 |
| 20050234478 | Wixey | Oct 2005 | A1 |
| 20050256529 | Yawata et al. | Nov 2005 | A1 |
| 20060212049 | Mohiuddin | Sep 2006 | A1 |
| 20070073314 | Gadberry | Mar 2007 | A1 |
| 20080045981 | Margolin et al. | Feb 2008 | A1 |
| 20080103510 | Taylor | May 2008 | A1 |
| 20080188872 | Duff | Aug 2008 | A1 |
| 20080312670 | Lutze et al. | Dec 2008 | A1 |
| 20100137886 | Zergiebel et al. | Jun 2010 | A1 |
| 20100274262 | Schulz et al. | Oct 2010 | A1 |
| 20130150870 | Morales | Jun 2013 | A1 |
| 20130289583 | Zergiebel et al. | Oct 2013 | A1 |
| Number | Date | Country |
|---|---|---|
| 1 149 106 | Jul 1983 | CA |
| 1 959 610 | Nov 1972 | DE |
| 2 245 405 | Mar 1973 | DE |
| 24 05 390 | Aug 1975 | DE |
| 28 45 213 | Apr 1979 | DE |
| 30 21 099 | Dec 1980 | DE |
| 30 14 578 | Nov 1981 | DE |
| 34 04 561 | Aug 1984 | DE |
| 33 35 986 | Apr 1985 | DE |
| 34 43 367 | Jun 1985 | DE |
| 37 04 760 | Mar 1988 | DE |
| 43 03 544 | Sep 1993 | DE |
| 94 06 926 | Sep 1994 | DE |
| 44 29 084 | Jun 1995 | DE |
| 690 28 200 | Feb 1997 | DE |
| 691 22 002 | Feb 1997 | DE |
| 196 03 889 | Aug 1997 | DE |
| 695 25 083 | Aug 2002 | DE |
| 696 34 391 | Jan 2006 | DE |
| 20 2006 000 329 | Apr 2006 | DE |
| 20 2006 011 054 | Oct 2006 | DE |
| 10 2006 001 344 | Jul 2007 | DE |
| 20 2007 003 398 | Jul 2007 | DE |
| 696 36 965 | Dec 2007 | DE |
| 20 2009 006 1 | Aug 2009 | DE |
| 20 2011 000 754 | Jun 2011 | DE |
| 20 2011 000 755 | Jul 2011 | DE |
| 0 406 724 | Jan 1991 | EP |
| 0 409 569 | Jan 1991 | EP |
| 0 283 526 | Feb 1991 | EP |
| 0 567 965 | Nov 1993 | EP |
| 0 621 006 | Oct 1994 | EP |
| 0 793 944 | Sep 1999 | EP |
| 0 697 198 | May 2002 | EP |
| 1 198 204 | Feb 2003 | EP |
| 2 073 022 | Oct 1981 | GB |
| H05208019 | Aug 1993 | JP |
| 2005522259 | Jul 2005 | JP |
| 2010523282 | Jul 2010 | JP |
| WO 9523557 | Sep 1995 | WO |
| WO 9616602 | Jun 1996 | WO |
| WO 9632891 | Oct 1996 | WO |
| WO 9818389 | May 1998 | WO |
| WO 9927859 | Jun 1999 | WO |
| WO 0042922 | Jul 2000 | WO |
| WO 2007009099 | Jan 2007 | WO |
| Entry |
|---|
| Patent Abstracts of Japan, Abstract of Japanese Patent “Tissue Ligator”, Publication No. 06-233774, Aug. 23, 1994, Japanese Application No. 05-022585, filed Feb. 10, 1993. |
| Leaflet of Aesculap AG & Co. KG “Titanium Ligature Clips and Applicators”, 8 pages, Feb. 2002. |
| Brochure of Aesculap AG & Co. KG “Challenger Ti”, 12 pages, Feb. 2002. |
| U.S. Appl. No. 60/117,079, filed Jan. 25, 1999, Johnson et al. |
| Number | Date | Country | |
|---|---|---|---|
| 20140005696 A1 | Jan 2014 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | PCT/EP2012/054106 | Mar 2012 | US |
| Child | 13946042 | US |