A. Field of the Invention
The present invention relates to wireless remote medical devices. The invention has particular application when used with a method and system for determining the position of a wireless catheter probe being used during a surgical procedure.
B. Description of the Related Art
Various locating systems have been used in the past to determine the position of an object such as the tip of an endoscope or a catheter within the human body.
Systems and methods are known for determining the location of a catheter or endoscopic probe inserted into a selected body cavity of a patient undergoing a surgical procedure. For example, there exist systems that may use acoustics, optics, conductance and electromagnetics to locate or “localize” a medical instrument in an anatomical body. In an electromagnetic system, location data may be obtained from electrical measurements of voltage signals that are induced within a sensing coil affixed to the distal end of the catheter prove. A voltage is induced in the sensing coil in response to pre-specified electromagnetic fields that project into the anatomical region of interest which contains all prospective locations of the catheter probe. The electrical measurements of the induced signals may provide sufficient information to compute the angular orientation and the positional coordinates of a coil in a sensor, and hence the catheter probe, which collectively define the location of the coil.
Regardless of the technical particulars of a surgical localization system, each system typically includes a component internal to the patient associated with a medical device and a component external to the patient for calculating the position of the medical instrument.
The present invention is directed to improving communication links between internal and external surgical navigation components and to providing wireless power to internal components.
The invention in its broadest sense may include one or more of the following aspects alone or in combination with one or more elements:
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.
The present invention may be used in connection with any wireless surgical navigation system for determining a position of a medical instrument during surgery including the method and apparatus disclosed in U.S. Pat. No. 5,592,939 to Martinelli, hereby incorporated by reference. For brevity, the details of this system, including the assembly of the coils for generating a magnetic field within an anatomical body sufficient to describe the position of a medical instrument and the algorithm for determining the position of the medical instrument, are not enclosed herein.
One aspect of the present invention relates to locating a wireless sensor/transmitter associated with a probe, such as a catheter, inside an anatomical body.
As embodied herein, the signal generator of the invention may include at least one signal generator 14 which includes a coil capable of generating an electromagnetic field, described more fully hereinafter. As used herein, a coil refers to an electrically conductive, magnetically sensitive element of the sensor/transmitter that is responsive to time-varying magnetic fields for generating induced voltage signals as a function of, and representative of, the applied time-varying magnetic field. Preferably, signal generator 14 includes multiple coils. Each coil of the signal generator 14 may be activated in succession, each producing a magnetic field within the anatomical body 10 inducing a corresponding voltage signal in a sensing coil 22 of the sensor/transmitter 12.
In the preferred embodiment of the invention, signal generator 14 employs a distinct magnetic assembly so that the voltages induced in a sensing coil 22 corresponding to a transmitted time-dependent magnetic field produce sufficient information to describe the location, i.e. position and orientation, of the sensor/transmitter. The signals produced by the signal generator containing sufficient information to describe the position of the sensor/transmitter are referred to hereinafter as reference signals. Preferably, the reference signals are in the range of 2 KHz to 10 KHz.
In the preferred embodiment of the invention, the signal generator 14 is also configured to induce a voltage in the sensing coil of the sensor/transmitter sufficient to power a transmitting portion of the sensor/transmitter. In the preferred embodiment, the signals transmitted by the signal generator for powering the device, hereinafter referred to as powering signals, are frequency multiplexed with the reference signals as illustrated in
Alternatively, the powering signals may be transmitted by separate signal generators, each at a differing frequencies. Preferably, the powering signals are transmitted at higher frequencies than the reference signals. The preferred range of frequencies for the powering signals is 20 KHz to 200 KHz. Utilizing a higher modulation frequency than the reference signals enables the powering signals to couple better with the wireless sensor/transmitter, thereby enabling a greater transfer of power to the device. Using the preferred, mutually exclusive, frequency ranges for the transmission of the reference and powering signals, enables a single coil in the wireless sensor/transmitter to simultaneously receive both signals without interference of the signals.
Also in accordance with the present invention, there is provided an apparatus for locating a wireless sensor/transmitter within an anatomical body including a receiver for receiving positional signals from the wireless sensor/transmitter. As embodied herein, the receiver may include a receiver 16 that is adapted to receive radio-frequency (RF) mode positional signals or magnetic field mode positional signals.
In the preferred embodiment, the receiver 16 is adapted to receive RF signals. The RF signals may be amplitude modulated or frequency modulated signals in the frequency range of 1 MHz to 1 GHz. In the RF embodiment, there is no need to time multiplex the reference signals transmitted by the signal generator with the positional signals re-transmitted by the wireless sensor/transmitter since the signal types, magnetic and radio-frequency, are different. In other words, there is no concern with interference between the reference signal and the positional signal in the RF embodiment since the receiver 16 does not have difficulty in separating the reference signal from the positional signal.
However, a concern with interference between the reference signal and the positional signal may exist if the reference signal and the positional signal are both transmitted as a magnetic field without mutually exclusive frequency intervals. Therefore, in another embodiment in which the receiver is adapted to receive magnetic field mode positional signals, the transmission of the reference signals from the signal generator 14 and the re-transmission of the positional signals from the wireless sensor/transmitter 12 may be time multiplexed. That is, each signal may engage a wireless communication channel for only a fraction of an interval on a periodic basis, so that they may jointly utilize the common channel on a time-shared basis. In so doing, the signals are kept apart so that they do not interfere with each other.
However, in the preferred embodiment of the receiver adapted to receive magnetic field mode positional signals, the frequency range of the positional signal is differed from the reference signal by a voltage-to-frequency converter within the sensor/transmitter so that time multiplexing is unnecessary, thereby avoiding loss of cycles of each signal and an accompanying reduced data rate. In this case, the device may receive continuous powering signals and reference signals from the signal generator.
Also in accordance with the present invention, there is provided an apparatus for locating a wireless sensor/transmitter within an anatomical body including a processor for computing a position of the wireless sensor/transmitter as a function of the positional signals transmitted to the receiver. The processor may determine the position of the sensor/transmitter by solving equations representing signals induced in the sensing coil in response to a sequence of magnetic fields generated successively within the anatomical body. In the preferred embodiment of the present invention, the processor begins determining the position of the sensor/transmitter by first determining the angular orientation of the sensing coil and then using the orientation of the coil to further determine the position of the coil. However, as previously mentioned, the present invention is not limited to any specific method of determining the position of the wireless sensor/transmitter.
Another function of the processor may be to electrically activate the coil(s) of signal generator 14 to generate the desired electromagnetic fields. Yet another function of the processor may be to regulate the timing of the apparatus so that the processor may later recall which induced voltage corresponds to a given coil set within signal generator 14 when determining a position of the sensor/transmitter.
Also in accordance with the present invention, there is provided an apparatus for locating a wireless sensor/transmitter within an anatomical body including a circuit associated with the processor for outputting position image information to a display device. As embodied herein, the display device may include a display device 20, such as, for example, a CRT, LCD or other display suitable for displaying position image information for surgical procedures. The examples given are illustrative only. Display device 20 is not limited to any particular display.
Also in accordance with the present invention, there is provided a wireless sensor/transmitter for use in surgical procedures to track the movement of structures within an anatomical body, such as organs and tissues, including a portion for receiving a reference signal from a reference signal generator. The portion for receiving a reference signal includes a coil adapted to have a voltage induced by the signal generator. For example,
In a preferred embodiment of the invention, a sensing coil is not limited to receiving reference signals to induce voltage corresponding to positional signals. Instead, the sensing coil may also receive powering signals which induce sufficient voltage to power the transmitter. In the preferred embodiment of the device illustrated in
As embodied herein, the portion for receiving a reference signal further includes a sensing unit and a powering circuit, such as sensing unit 24 and power circuit 26 shown in
Upon separation of the positional and powering signals, sensing unit 24 may measure the induced voltage signal portion corresponding to a reference signal as a positional signal indicative of a current position of a wireless sensor/transmitter 12. The positional signal is retained for further processing and re-transmission by a transmitting portion of the sensor/transmitter. Similarly, power circuit 26 may retain the induced voltage signal portion corresponding to a powering signal for use by the power circuit in producing power. Powering circuit 26 may rectify the induced voltage generated on a coil by the powering signals to produce DC power. Powering circuit 28 may store the DC power using a capacitor, small battery, or other storage means for later use by one or more components of the wireless sensor/transmitter. In a preferred embodiment, the DC power is produced continuously by powering circuit 26 and storage is not necessary.
In another embodiment shown in
Also in accordance with the present invention, there is provided a wireless sensor/transmitter for use in surgical procedures to track the movement of structures within an anatomical body including a portion for wirelessly transmitting the reference signal as a positional signal indicative of a current position of the sensor. As illustrated in
Transmission processing unit 27 may include a voltage-to-frequency converter, embodied herein as voltage-to-frequency converter 28. Voltage-to-frequency converter converts the induced voltage signal corresponding to the position of a wireless sensor/transmitter to a corresponding signal with a transmission frequency which is proportional to the measured voltage. The frequencies produced by the converter may be made to vary within a given range. Preferably, voltage-to-frequency converter 28 is powered by the rectifier circuit of power circuit 26. In other embodiments, however, a battery or other power source may power voltage-to-frequency converter 28.
Transmission processing unit 27 also may include a transmitter, embodied herein as transmitter 30. Transmitter 30, and hence transmission processing unit 27, may be configured for RF transmission or magnetic field transmission.
If RF transmission is employed, transmitter 30 may include an antenna to retransmit the positional signal to a receiver. The positional signal is preferably transmitted by the sensor/transmitter in the frequency range of 1 MHz to 1 GHz, where voltage-to-frequency converter 28 is adapted to produce the positional signal in the given frequency range according to the measured induced voltage. In the RF embodiment, as previously mentioned, transmitter 30 does not need to time-multiplex the re-transmission of positional signals with the transmission of reference signals since no interference between the signals occurs.
If magnetic field transmission is employed, transmitter 30 may include a coil arrangement to transmit the positional signal to the receiver. Transmitter 30 may have its own magnetic coil or it may share the coil of the sensing unit. As shown in
Alternatively, the transmitting portion of the wireless sensor/transmitter may include an inductor-capacitor (LC) tank circuit instead of a coil to transmit the positional signal via a magnetic field mode to the receiver. If an LC tank circuit is used instead of a coil for magnetic transmission of the positional signal, the LC tank circuit is tuned to a resonant frequency to receive the magnetic field and transmit it to the wireless magnetic receiver. As stated above, the position signal may have its frequencies changed from those of the reference signal to avoid time multiplexing during transmission, or it may use time multiplexing for simplification of the processing and transmission of the positional signal upon receiving the same.
The transmitting portion may also transmit the positional signal via digital RF transmission. If digital RF transmission is chosen, the transmission processing unit 27 may include an analog-to-digital (A/D) converter for converting the analog signal to digital. The A/D converter may include an A/D converter 40 shown in
In a preferred embodiment illustrated in
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. For example, instead of using the induced voltage on the sensing coil to find the position of a wireless sensor/transmitter, one could induce voltage on a sensing coil of a probe to power any sensor or battery in the anatomical body. One sensor receiving power, for example, may be a thermostat for measuring temperature within the chamber of the heart.
Another embodiment of the invention may derive power in a wireless sensor/transmitter through an optical means. For example, the power coil of the present invention could be substituted with a photocell or solar cell to obtain optical power from an optical transmitter, such as infrared or a light-emitting diode (LED), and convert it to electrical power for use by the device. Moreover, any transmitter in the system may be substituted with an optical transmission means. Optical transmission means may be combined with other transmission means, such as magnetic or RF transmissions. For example, the sensing coil may receive electromagnetic signals for powering transmitter 30, while transmitter 30 may generate optical signals to receiver 16. The present invention allows various types of transmission
It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This application is a continuation of U.S. patent application Ser No. 09/428,722 filed on Oct. 28, 1999, now U.S. Pat. No. 6,474,341, issued Nov. 05, 2002. The disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3868565 | Kuipers | Feb 1975 | A |
3893111 | Cotter | Jul 1975 | A |
4182312 | Mashabac | Jan 1980 | A |
4314251 | Raab | Feb 1982 | A |
4317078 | Weed et al. | Feb 1982 | A |
4339953 | Iwasaki | Jul 1982 | A |
4399441 | Vaughan et al. | Aug 1983 | A |
4422041 | Lienau | Dec 1983 | A |
4431005 | McCormick | Feb 1984 | A |
4618978 | Cosman | Oct 1986 | A |
4642786 | Hansen | Feb 1987 | A |
4722056 | Roberts et al. | Jan 1988 | A |
4737794 | Jones | Apr 1988 | A |
4793355 | Crum et al. | Dec 1988 | A |
4821731 | Martinelli et al. | Apr 1989 | A |
4905698 | Strohl, Jr. et al. | Mar 1990 | A |
5057095 | Fabian | Oct 1991 | A |
5160337 | Cosman | Nov 1992 | A |
5186174 | Schlondorff et al. | Feb 1993 | A |
5187475 | Wagener et al. | Feb 1993 | A |
5198877 | Schulz | Mar 1993 | A |
5211165 | Dumoulin et al. | May 1993 | A |
5243984 | Ogura et al. | Sep 1993 | A |
5251127 | Raab | Oct 1993 | A |
5253647 | Takahashi et al. | Oct 1993 | A |
5255680 | Darrow et al. | Oct 1993 | A |
5261404 | Mick et al. | Nov 1993 | A |
5265610 | Darrow et al. | Nov 1993 | A |
5271400 | Dumoulin et al. | Dec 1993 | A |
5305203 | Raab | Apr 1994 | A |
5318025 | Dumoulin et al. | Jun 1994 | A |
5332971 | Aubert | Jul 1994 | A |
5353795 | Souza et al. | Oct 1994 | A |
5353807 | DeMarco | Oct 1994 | A |
5359417 | Muller et al. | Oct 1994 | A |
5377678 | Dumoulin et al. | Jan 1995 | A |
5383454 | Bucholz | Jan 1995 | A |
5391199 | Ben-Haim | Feb 1995 | A |
5425367 | Shapiro et al. | Jun 1995 | A |
5425382 | Golden et al. | Jun 1995 | A |
5443066 | Dumoulin et al. | Aug 1995 | A |
5443489 | Ben-Haim | Aug 1995 | A |
5445150 | Dumoulin et al. | Aug 1995 | A |
5453686 | Anderson | Sep 1995 | A |
5456718 | Szymaitis | Oct 1995 | A |
5480422 | Ben-Haim | Jan 1996 | A |
5483961 | Kelly et al. | Jan 1996 | A |
5494034 | Schlondorff et al. | Feb 1996 | A |
5515160 | Schulz et al. | May 1996 | A |
5546951 | Ben-Haim | Aug 1996 | A |
5558091 | Acker et al. | Sep 1996 | A |
5568809 | Ben-Haim | Oct 1996 | A |
5592939 | Martinelli | Jan 1997 | A |
5603318 | Heilbrun et al. | Feb 1997 | A |
5617857 | Chader et al. | Apr 1997 | A |
5622169 | Golden et al. | Apr 1997 | A |
5622170 | Schulz | Apr 1997 | A |
5630431 | Taylor | May 1997 | A |
5638819 | Manwaring et al. | Jun 1997 | A |
5647361 | Damadian | Jul 1997 | A |
5662111 | Cosman | Sep 1997 | A |
5676673 | Ferre et al. | Oct 1997 | A |
5681260 | Ueda et al. | Oct 1997 | A |
5682886 | Delp et al. | Nov 1997 | A |
5694945 | Ben-Haim et al. | Dec 1997 | A |
5697377 | Wittkampf | Dec 1997 | A |
5711299 | Manwaring et al. | Jan 1998 | A |
5715822 | Watkins et al. | Feb 1998 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5727552 | Ryan | Mar 1998 | A |
5727553 | Saad | Mar 1998 | A |
5729129 | Acker | Mar 1998 | A |
5738096 | Ben-Haim et al. | Apr 1998 | A |
5744953 | Hansen | Apr 1998 | A |
5748767 | Raab | May 1998 | A |
5749835 | Glantz | May 1998 | A |
5752513 | Acker et al. | May 1998 | A |
5752976 | Duffin et al. | May 1998 | A |
5755725 | Druais | May 1998 | A |
RE35816 | Schulz | Jun 1998 | E |
5758667 | Slettenmark | Jun 1998 | A |
5762064 | Polvani | Jun 1998 | A |
5769843 | Abela et al. | Jun 1998 | A |
5769861 | Vilsmeier | Jun 1998 | A |
5782765 | Jonkman | Jul 1998 | A |
5787886 | Kelly et al. | Aug 1998 | A |
5797849 | Vesely et al. | Aug 1998 | A |
5800352 | Ferre et al. | Sep 1998 | A |
5810728 | Kuhn | Sep 1998 | A |
5823958 | Truppe | Oct 1998 | A |
5829444 | Ferre et al. | Nov 1998 | A |
5833608 | Acker | Nov 1998 | A |
5836954 | Heilbrun et al. | Nov 1998 | A |
5840025 | Ben-Haim | Nov 1998 | A |
5848967 | Cosman | Dec 1998 | A |
5851183 | Bucholz | Dec 1998 | A |
5871445 | Bucholz | Feb 1999 | A |
5871455 | Ueno | Feb 1999 | A |
5873822 | Ferre et al. | Feb 1999 | A |
5882304 | Ehnholm et al. | Mar 1999 | A |
5884410 | Prinz | Mar 1999 | A |
5891034 | Bucholz | Apr 1999 | A |
5904691 | Barnett et al. | May 1999 | A |
5907395 | Schulz et al. | May 1999 | A |
5913820 | Bladen et al. | Jun 1999 | A |
5920395 | Schulz | Jul 1999 | A |
5921992 | Costales et al. | Jul 1999 | A |
5938603 | Ponzi | Aug 1999 | A |
5947981 | Cosman | Sep 1999 | A |
5971997 | Guthrie et al. | Oct 1999 | A |
6025725 | Gershenfeld et al. | Feb 2000 | A |
6119033 | Spigelman et al. | Sep 2000 | A |
6261247 | Ishikawa et al. | Jul 2001 | B1 |
6312380 | Hoek et al. | Nov 2001 | B1 |
6474341 | Hunter et al. | Nov 2002 | B1 |
Number | Date | Country |
---|---|---|
0 655 138 | Apr 1998 | EP |
0 894 473 | Feb 1999 | EP |
WO 9404938 | Mar 1994 | WO |
WO 0069335 | Nov 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20030078003 A1 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09428722 | Oct 1999 | US |
Child | 10245843 | US |