Surgical connection apparatus and methods

Information

  • Patent Grant
  • 8394114
  • Patent Number
    8,394,114
  • Date Filed
    Friday, September 26, 2003
    20 years ago
  • Date Issued
    Tuesday, March 12, 2013
    11 years ago
Abstract
Surgical connection apparatus comprises a support structure, a plurality of clips, which can be self-closing clips, each clip being releasably coupled to the support structure, and a plurality of barbs, each barb being coupled to the support structure, the barbs being separate from the clips, which are ejectable from the support structure independently of the barbs.
Description
FIELD OF THE INVENTION

This invention relates to apparatus and methods for surgically joining structures. More particularly, the invention can involve anastomosing tubular structures and can be used, for example, in a proximal anastomosis.


BACKGROUND OF THE INVENTION

The occlusion of the arteries can lead to insufficient blood flow resulting in discomfort and risks of angina and ischemia. Significant blockage of blood flow in the coronary artery can result in damage to the myocardial tissue or death of the patient. In most cases, occlusion of the artery results from progressive long term deposits of plaque along the artery wall. While such deposits may be concentrated and occlude the artery at a particular site, the deposits are most certainly present throughout the arteries and the vascular system.


Coronary artery bypass graft (CABG) surgery is a surgical procedure performed in severe cases of coronary blockages. CABG procedures involve anastomosing an artery to a vascular graft which restores the flow of blood by establishing another pathway around the occluded vasculature. During coronary artery bypass graft surgery, a vein or other conduit can be attached proximally to the patient's aorta. The other end is attached to the blocked artery, downstream from the obstruction, thus bypassing the coronary occlusion. CABG procedures can be done by placing the patient on a heart-lung machine and stopping the heart from beating or they can be done on a beating heart without a heart lung machine. One problem encountered in either CABG procedure is the need to perform the procedure, while simultaneously maintaining sufficient function of the patient's circulatory system.


In the case where a CABG procedure involves arresting the heart so that blood flow is diverted from the vessel to be anastomosed, the patient's blood circulation is maintained by a cardiopulmonary bypass (CPB). This bypass is accomplished by diverting the blood flow at selected arterial locations. The blood is diverted to the bypass system for release of carbon dioxide and subsequent oxygenation. Then, the blood is returned to the patient via a pump. Examples of these procedures are found in U.S. Patents: U.S. Pat. No. 5,799,661 to Boyd, et al. which discloses a device and method for performing CABG surgery for multi-vessel coronary artery disease through port-access or closed-chest thorascopic methods; and U.S. Pat. No. 5,452,733 to Sterman, et al. which discusses performing grafts with an efficacy equal to or greater than conventional open surgical bypass techniques.


Although the beating heart CABG procedure eliminates the need for CPB, it has required diverting blood flow for a proximal anastomosis, such as one which attaches graft material (e.g., a graft vessel) to the ascending aorta. To attach the graft to the aorta in a beating heart situation, surgeons have typically used a “side-biting clamp” that isolates the aortic region where the anastomosis will be performed. This allows the surgeon to create the anastomosis without the site being exposed to the high-pressure blood flow of the normal aorta.


Among the drawbacks associated with aortic clamping are an increased chance of trauma to the arteries caused by ligatures at the clamped site and the possible dislodging of plaque within the clamped vessel wall. As mentioned above, the arterial bypass may be required due to the deposits of plaque which have occluded the vessel. However, the plaque is typically present throughout the artery and is not limited to the occluded location. Clamping the artery creates a risk of plaque being released into the blood stream. This release of plaque has the potential of causing a stroke, occlusion of a smaller peripheral vessel, or other vascular trauma. In a beating heart procedure, full clamping (i.e., cross clamping) of the aorta for graft attachment at the proximal anastomosis is not feasible. Therefore a side biting clamp is used to clamp off only a portion of the cross-section of the aorta, where the proximal anastomosis is performed. This type of clamping procedure poses the same risks described above with regard to cross clamping, e.g., the risk of release of plaque and resultant cause of a stroke, occlusion of a smaller peripheral vessel, or other vascular trauma.


Other attempts to address the problem related to blood flow diversion include diverting the blood by placing a balloon catheter within the aorta, such as described in U.S. Pat. No. 5,868,702 to Stevens, et al., for example. Drawbacks of using a balloon catheter in creating a seal to divert blood flow include the possibility of disturbing plaque deposits and creating particles in the blood stream, the chance that the balloon catheter may move within the aorta disrupting the seal and resulting in blood loss, and trauma to aortic tissue caused by the pressure needed to create the seal.


There remains some concern in the surgical community that neurological defects and strokes are associated with the use of heart-lung machines, side-biting clamps, and balloon occlusion devices.


PCT Patent Application No. PCT/US98/10245, to Cardio Medical Solutions and to Nobles, et al., which published under Publication No. WO 98/52475, attempts to address problems associated with diverting blood flow. Nobles, et al. provides a method and device for creating an area of hemostasis within a blood vessel without interrupting the flow of blood through the vessel which eliminates the need to clamp the vessel. However, the Nobles, et al. device requires the withdrawal of the hemostasis device prior to obtaining a tight seal between the graft and vessel. Therefore, since the area of hemostasis is lost upon the retrieval of the hemostasis device, the artery is open and blood is lost until the sutures are tightened.


Yet another problem related to CABG procedures lies in the procedure of suturing the vessels to create a tight seal. To ensure the integrity and patency of the anastomosis, the graft and vessel to be joined thereto must be precisely aligned with respect to each other. If one of the tissues is affixed too close to its edge, the suture can tear through the tissue and impair both the tissue and the anastomosis. Another problem is that, even after proper alignment of the tissue, it is difficult and time consuming to pass the needle through the tissues, form the knot with the suture material, and ensure that the suture material does not become entangled. These difficulties are exacerbated by the small size of the artery and graft. Another factor contributing to the difficulty of the CABG procedure is the limited time available to complete the procedure. The surgeon must complete the graft in as little time possible due to the absence of blood flowing through the artery. If blood flow is not promptly restored, sometimes in as little as 30 minutes, the tissues the artery supplies may experience significant damage or necrosis. As mentioned above, surgeons are under pressure to reduce the cross-clamp time, yet, an incomplete suture may result in a leak in the tissue approximation between the vessel and graft. Moreover, the tissue approximation must be smooth and open. Hence, the suture cannot be hastily performed.


Additionally, the difficulty of suturing a graft to an artery using minimally invasive surgical techniques, where the surgeon uses ports to access the internal organs to perform the procedure, has effectively prevented the safe use of complicated suturing technology in cardiovascular surgical procedures. Accordingly, many procedures are performed invasively and require a sternotomy, an opening of the sternum. As a result, the recovery times for patients is significantly increased. U.S. Pat. No. 5,868,763 to Spence, et al. attempts to circumvent the suturing process by attaching the vessels to a cuff device. Spence, et al. utilizes a passageway for continued blood flow so there is no clamping of the artery.


Arcia, et al., in U.S. Pat. No. 6,358,258, describes systems and methods for performing anastomosis or attachments of body ducts, which are asserted to simplify suture delivery in both stopped heart and beating heart procedures and to be suitable for use in a minimally invasive environment using percutaneous ports, or with retractor systems or in a generally open surgery environment. Bolduc, et al., in U.S. Pat. No. 6,461,365, describes surgical clips and methods of tissue approximation and attachment which are asserted as being useful in open surgical procedures as well as endoscopic, laproscopic, thoracoscopic and other minimally-invasive procedures.


Houser, et al., in U.S. Pat. No. 5,989,276, discloses various devices and techniques for performing bypass, one of which includes a device which can be intralumenally originated. Various other clamping arrangements are provided for securing a graft to a vessel without the use of sutures or other fasteners.


In PCT Application No. PCT/GB01/04666, to Anson Medical Limited and to Hopkinson, et al., and which published under Publication No. WO 02/34143, apparatus is described for carrying out an anastomosis by sealing an arteriotomy and connecting a graft to the artery with the seal in place (see the Abstract). The apparatus includes means for sealing the hole and means for locating the graft on the outside of the wall of the artery. Once the graft is completely connected, the seal can be removed from the artery through the bore of the graft. Means may be provided for clamping the graft and seal in place while the graft is being connected to free both of the surgeon's hands for the connection operation.


The problems discussed above can be exacerbated in those cases where multiple attachments or multiple anastomosis procedures are required. In those cases where multiple bypass procedures are performed, the patient will naturally be subject to increased risks as multiple grafts must be sutured to perform the bypass. Therefore, there is a need to improve and simplify surgical connection procedures such as anastomosis procedures.


SUMMARY OF THE INVENTION

The present invention involves improvements in surgical connection apparatus and methods. According to one embodiment of the invetnion, surgical connection apparatus comprises a support structure; a plurality clips (e.g., self-closing clips) releasably coupled to the support structure; and a plurality of barbs coupled to the support structure and being separate from the clips, which are ejectable from the support structure independently of the barbs. The barb and clip arrangement can improve clip positioning uniformity and/or graft or prosthesis attachment consistency and/or efficacy. It also may advantageously reduce procedure time.


The clips also can be arranged for simultaneous ejection from the support structure, which can further reduce procedure time and improve graft attachment consistency and/or efficacy.


According to another embodiment, surgical connection apparatus comprises a support structure forming a first plurality of paths and a second plurality of paths; a plurality of clips, each clip being slidably disposed in one path of the first plurality of paths; and a plurality of barbs, each slidably disposed in one path of the second plurality of paths.


According to another embodiment, surgical connection apparatus for connecting a first structure to a second structure comprises a support structure, a plurality of barbs coupled to the support structure, a plurality of clips slidably coupled to the support structure and unattached to the barbs; means for moving the barbs; and means for ejecting the clips from the support structure.


According to another embodiment, surgical connection apparatus for connecting a first structure to a second structure comprises a support structure, a plurality of barbs coupled to the support structure, a plurality of clips slidably coupled to the support structure and unattached to the barbs; and means for simultaneously ejecting the plurality of clips.


According to another embodiment, surgical connection apparatus for connecting a first structure to a second structure comprises a support structure, a plurality of barbs, each coupled to the support structure and having a distal end portion, a plurality of clips slidably coupled to the support structure, means for moving the barbs between a first position where the distal end portions are inside the support structure to a second position where the distal end portions extend from the support structure; and means for ejecting the clips from the support structure.


According to another embodiment, a method of performing an anastomosis comprises everting a tubular graft structure over a support structure and passing a plurality of barbs from the support structure into the graft to secure the graft to the support structure; introducing the everted portion of the tubular graft structure into an opening formed in a second tubular structure; and simultaneously passing a plurality of clips through the tubular graft structure and second tubular structure to secure the graft and second tubular structures together.


According to another embodiment, a method of surgically connecting structures in patient comprises placing a first structure on a support structure and passing a plurality of barbs from the support structure into the first structure to secure the first structure to the support structure; placing the support structure adjacent a second structure in a patient; and simultaneously passing a plurality of clips through the first and second structures to secure the first and second structures together.


The above is a brief description of some deficiencies in the prior art and. advantages of the present invention. Other features, advantages, and embodiments of the invention will be apparent to those skilled in the art from the following description, accompanying drawings, wherein, for purposes of illustration only, specific forms of the invention are set forth in detail.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of an anastomosis device in accordance with the principles of the present invention and shown in a first state;



FIG. 1B illustrates the embodiment of FIG. 1A in a second state;



FIG. 2A is a partial longitudinal section of the device of FIG. 1A;



FIG. 2B is a longitudinal section of a portion of the device shown in FIG. 2A;



FIG. 3A shows the device of 1A with the clip actuator assembly position prior to clip deployment;



FIG. 3B is a sectional view of a clip delivery tube of FIG. 3A prior to clip deployment;



FIG. 4A shows the device of FIG. 1A with the clip actuator assembly manipulated to partially deploy a clip;



FIG. 4B is a sectional view of a clip delivery tube of FIG. 4A with a clip partially deployed;



FIG. 5A shows the device of FIG. 1A with the clip actuator assembly manipulated for full clip deployment;



FIG. 5B is a sectional view of a clip delivery tube of FIG. 4A with a clip fully deployed;



FIGS. 6A-D illustrate a distal end portion of one of the tube pairs of the device of FIG. 1A where FIG. 6A shows the distal end portion before barb or clip deployment, FIG. 6B shows the distal end portion with a barb deployed, FIG. 6C shows the distal end portion with a barb deployed and a clip partially deployed, and FIG. 6D shows the distal end portion with a barb deployed and the proximal end of the clip positioned for full deployment;



FIG. 7A illustrates a graft everted over a tube pair and a barb extended to engage the graft;



FIG. 7B illustrates the graft and barb combination of FIG. 7A positioned in a target structure with a clip extended or partially deployed to engage the graft and target structure;



7C illustrates full deployment of the clip illustrated in FIG. 7B and the barb removed;



FIG. 8A illustrates a graft everted over the distal end portion of the device of FIG. 1A prior to placement in a vessel opening; and



FIG. 8B illustrates a completed anastomosis and removal of the anastomosis device illustrated in FIG. 1A.





DETAILED DESCRIPTION OF THE INVENTION

Before the present invention is described, it is to be understood that this invention is not limited to particular embodiments or examples described, as such may, of course, vary. Further, when referring to the drawings, like numerals indicate like elements.


The devices, systems, and methods described herein generally can be used to surgically connect structures in a patient. They can be used to connect or anastomose tubular structures or conduits together. The tubular structures can be vascular or nonvascular structures. The illustrative embodiments will be described in connection with coronary artery bypass grafting procedures during which a vascular conduit or graft structure, such as a vein (e.g., a saphenous vein), artery (e.g., an internal mammary artery), or an artificial conduit or graft structure, is anastomosed to an aorta, the example target structure. It should be understood, however, that the invention can be used in other applications not specifically described herein. For example, the devices also can be used to anastomose internal mammary arteries to coronary arteries, and saphenous veins to coronary, femoral or popliteal arteries. As noted above, the devices described herein also can be used to connect other body lumens including nonvascular lumens, which can include, but are not intended to be limited to, the bile duct, the urethra, the urinary bladder, intestines, esophagus, stomach, and bowel.


Referring to FIG. 1A, one embodiment of surgical connection apparatus in accordance with the principles of the present invention is illustrated and generally designated with reference numeral 1300. In the illustrative example, apparatus 1300 is constructed for delivering piercing members or surgical clips 1310, which include ball shaped proximal ends 1311, sharp distal ends, and a loop shaped memory set shape or configuration (see e.g., FIGS. 3B, 5B and 6D), which although shown as an overlapping loop, can be non-overlapping or otherwise shaped differently than that shown. Accordingly, piercing member or clip 1310 is a self-closing closing clip and can be nitinol wire and provided with the desired memory set configuration to exhibit pseudoelastic (supereastic) behavior. In other words, at least a portion of the shape memory alloy is converted from its austenitic phase to its martensitic phase when the wire is in its deformed configuration. As the stress is removed, the material undergoes a martensitic to austenitic conversion and springs back to its original undeformed configuration.


The shape memory alloy can be selected with a transformation temperature suitable for use with a stopped heart condition where cold cardioplegia has been injected for temporary paralysis of the heart tissue (e.g., temperatures as low as 8-10 degrees Celsius).


The cross-sectional diameter of the wire and length of the wire will vary depending on the specific application. The diameter of the wire may be, for example, between 0.001 and 0.015 inch. For coronary bypass applications, the diameter is preferably between 0.001 and 0.008 inch with a diameter of the wire loop in its closed configuration being between 0.0125 and 0.0875 inch. The wire may be formed in a loop shape by first wrapping the wire onto a mandrel and heat treating the wire at approximately 400-500 degrees Celsius for approximately 5 to 30 minutes. The wire is then air quenched at room temperature.


It is to be understood that the shape memory alloy may also be heat activated, or a combination of heat activation and pseudoelastic properties may be used as is well known by those skilled in the art.


Referring to FIGS. 1A and 1B, anastomosis device or apparatus 1300 generally includes a support structure for supporting the clips and can include an actuator for simultaneously deploying or ejecting the piercing members or clips. In the exemplary embodiment, the support structure comprises a plurality of piercing member or clip deploying or ejecting arms 1306, which form paths for the clips to move and be ejected therefrom. The arms can be tubular members and can comprise hypotubes. In the illustrative example, the support structure can further include barb supports, which also can be in the form of path forming arms. These arms also can be tubular members and can comprise hypotubes. As shown in the exemplary embodiment of FIGS. 1A and 1B, the arms are arranged to form a plurality of arm pairs, each arm pair including a clip carrying arm 1306 in which clip 1310 is slidably mounted or disposed and a barb carrying arm 1340 in which barb 1342 is slidably mounted or disposed (FIGS. 6A-D). Although six arm pairs are shown, generally five to twelve arm pairs typically may be used depending on the application.


Arms 1306, which have an open distal end, and arms 1340, which have a rounded closed distal end, are arranged in spring body or spring support cylinder 1380 (FIG. 2A) so as to converge toward their distal ends as shown in FIGS. 1A and 2A. A spreader or slide 1322, which can be generally in the form of a disc, can be used to radially expand the arm pairs from this configuration. One side of spreader or slide 1322 can be secured to shaft 1318, which can have a knob such as knob 1323 secured to a proximal end thereof. Spreader or slide 1322 has a plurality of circumferentially spaced longitudinal openings or grooves in which the barb-clip arm pairs are slidably disposed. As shown, each barb-clip arm pair is slidably diposed in a spreader opening or groove. When slide 1322 is in a proximal position as shown in FIG. 1A, arms 1306 and 1340 are in their converging configuration. As knob 1323 is moved distally, spreader or slide 1322 moves distally and expands arms 1306 and 1340 radially outward as shown in FIG. 1B.


Surgical connection or anastomosis device 1300 can include one or more mechanisms for deploying the barbs and/or clips. It can include an actuator assembly for simultaneously deploying the barbs and an actuator assembly for simultaneously deploying the clips. In the illustrative example, one actuator assembly for simultaneously deploying barbs includes an actuator knob 1350 and one actuator assembly for simultaneously deploying clips includes an actuator knob 1360. Body member or knob 1370 can be provided for the surgeon to hold while manipulating actuator knobs and a cover sleeve 1390, having a longitudinal slot 1392 formed therein, can be provided to cover the clip actuator assembly.


Referring to the illustrative example in FIG. 2A, the barb actuator assembly can generally include knob 1350, threaded member 1352, and cylinder or plunger 1354, which is secured or keyed to shaft 1318 to prevent relative rotation therebetween. Knob 1350 surrounds shaft 1318 and threaded member 1352 is fixedly secured to knob 1350. The threads on threaded member 1352 are configured to engage the inner threaded portion of knob 1370 so that knob 1370 can be maintained in a stationary position as member 1352 is rotated. Threaded member 1352 is coupled to cylinder 1354 to convert the rotational motion of member 1352 to linear motion in cylinder or plunger 1354 so that cylinder 1354 moves distally or in an axial direction. One example mechanism is shown in FIG. 2B where threaded member 1352 has a flange 1353 at its distal end that is free to rotate in an annular groove formed in cylinder 1354. Retaining pins 1355 retain flange 1353 in the annular groove. As threaded member 1352 rotates and moves cylinder or plunger 1354 distally, cylinder 1354 pushes the proximal ends of barbs 1342, which are glued or otherwise secured thereto. This extends the distal ends of the barbs through windows 1344 and moves the distal ends of the barbs from a position inside arms 1340 to a position where they extend from arms 1340 (see e.g., FIGS. 6A and 6B).


The barbs or piercing members can be made from shape memory material such as nitinol and the distal ends of the barbs provided with a desired memory set shape such as the illustrated hook shape. Procedures similar to those described above can be used to set the shape. When the distal end of the barb exits tube 1340 and is no longer biased toward a generally straight configuration by tube 1340, it exhibits its pseudoelastic (superelastic) behavior and assumes its memory set hook shape as shown for example in FIG. 6B.


One embodiment of a clip deployment or ejection actuator assembly also is shown in FIG. 2A. In this embodiment, the clip deployment or ejection actuator assembly generally includes knob 1360 and cylinder or plunger 1366, which is secured or keyed to shaft 1318. Since shaft 1318 is fixedly secured to spreader 1322, shaft 1318 and cylinder 1366 are prevented from rotation relative to spreader 1322. Further, barb tubes 1340 extend longitudinally through cylinder or plunger 1366 and prevent cylinder or plunger 1366 from rotating relative thereto.


Cylinder 1366 is shown in partial section in FIG. 2A and includes a threaded outer surface 1368 that cooperates with threaded inner surface of knob 1360. These threaded portions are configured so that cylinder 1366 moves distally when knob 1360 is rotated in one direction. As cylinder 1366 moves distally, it pushes pusher arms 1324, which can be secured thereto. Each pusher arm can have an inner diameter less than the diameter of the ball shaped proximal end 1311 of a clip so that the pusher arms begin to eject or deploy clips 1310 (see e.g., FIGS. 4A, 4B and 6C).


The clip deployment actuator mechanism also can include a mechanism to retract the clip tubes 1306 when the clips are partially deployed and engaged with the target and/or graft structure. One embodiment of a mechanism to retract the clip tubes generally includes compression coil or spring support cylinder 1380, which includes a pin 1382 radially extending therefrom, coil spring 1384, which is coiled around cylinder 1380, and retaining plate 1386. In this embodiment, knob 1360 is provided with a circumferential opening 1362, which can extend less than or up to 360°, and a longitudinal opening 1364 extending therefrom. Spring 1384 is compressed between pin 1382 and plate 1386 when pin 1382 is not aligned with longitudinal opening 1364. However, spring 1384 is allowed to expand when pin 1382 is aligned with longitudinal opening 1364. In FIG. 2A, the pin is shown at the moment it is aligned with longitudinal opening 1364 and just prior to moving proximally therealong as spring 1384 is allowed to expand. Clip arms 1306 extend longitudinally through spring cylinder 1380 and are fixedly secured thereto by gluing, swaging or any other suitable means. In this manner, clip arms 1306 move with cylinder 1380. In contrast, barb arms 1340 are slidably disposed in longitudinal bores formed in spring cylinder 1380. Thus, when cylinder 1380 is retracted or moved proximally relative to spreader 1322, for example, the barb arms need not move therewith. The operation of the clip arm or tube mechanism is further illustrated in FIGS. 3-5.


Referring FIG. 3A, the clip actuator assembly position prior to clip deployment with pin 1382 spaced from longitudinal opening 1364 and compressing spring 1384 against plate 1386. Each clip is ready for deployment as shown in FIG. 3B with tubular arm 1306 restraining the self-closing clip 1310 in an open configuration or biasing the clip away from its memory set closed configuration. In FIG. 3B, clip 1310 is shown biased toward a generally straight configuration. After knob 1360 is partially rotated, clip 1310 is partially deployed and pin 1364 moves along opening 1362 toward longitudinal opening 1364 as shown in FIGS. 4A and 4B. Knob 1360 is further rotated and pusher arms 1324 moved distally until pin 1382 is aligned with longitudinal opening 1364 at which time spring 1384 expands and pushes pin 1382 proximally as shown in FIG. 5A. Since clip arms 1306 are fixedly attached to spring cylinder 1380, arms 1306 move proximally with pin 1382 to release the proximal portions of clips 1310 from clip pushers 1324 simultaneously. The deployed clips move toward or assume their memory shape set configuration, such as the loop shaped configuration shown in FIG. 5B. The mating threads on actuating knob 1360 and cylinder 1366 can be configured to facilitate deployment of all of the clips simultaneously upon one half turn of knob 1360.


Referring to FIGS. 6A-D, enlarged views of the distal portion of barb and clip arm pair is shown. FIG. 6A shows the distal portion of the arm pair before deployment of the barb or clip. FIG. 6B shows barb deployment. FIG. 6C shows the barb deployed and a clip partially deployed. FIG. 6D shows the barb deployed and arm 1306 retracted to fully deploy clip 1310.


In use, a tubular graft is everted over the distal ends of the barb-clip arm pairs. Barb actuator knob 1350 is rotated to extend all of the barbs simultaneously through their respective openings 1344 (FIG. 6B) to secure the graft to anastomosis device 1300 (see e.g., FIGS. 7A and 8A).


If the distal anastomosis (i.e., the anastomosis between the other end of the tubular graft structure “G” and a target coronary artery) has not yet been performed, then a cross-clamp is placed on the free end portion of the tubular graft structure to prevent blood leaking from the tubular graft structure.


Once this is completed the surgeon forms an opening “O” (FIG. 8A) in the aorta using, for example, a scalpel and an aorta cutting device such as an aortic punch (not shown). It should be understood that other known devices to form the opening also can be used. For example, a cylindrical member with a sharp cutting cylindrical edge with a piercing member positioned therein with an arrow type head to catch the cut tissue can be used. When the aortotomy or opening has been completed, the surgeon removes the cutter or punch and introduces the anastomosis device. More specifically, the anastomosis device is then positioned in an opening formed in a target tubular structure (e.g., an aorta) to which the tubular graft is to be anastomosed. The barbs sit on top of the target structure (e.g., around the opening formed in the aorta) and serve as a stop for the device. Spreader 1322 can be moved distally to expand the arms and form a seal between the tubular graft and the target structure. If the distal anastomosis was previously completed, blood can flow through the everted tubular graft structure to the coronary artery, thus revascularizing the heart.


Actuator knob 1360 is then rotated to begin deployment of the clips, which begin to return to their unconstrained closed shape or configuration (FIGS. 6C and 7B). FIG. 6D shows a further step in clip 1310 deployment. Knob 1360 is further rotated until pin 1382 is aligned with longitudinal opening 1364 at which time spring 1384 is allowed to expand toward its relaxed state and move pin 1364 proximally and clip tubes 1306 therewith. This exposes the proximal portions of clips 1310 and allows the clips, including their ball portions 1311, to pass through the openings or slots in pusher arms 1324 (FIG. 6D). Once deployed, released or ejected from arms 1306, self-closing clips 1310 return or move toward their memory set closed shape or configuration as described above and depicted in FIGS. 7C and 8B. At this point, knob 1350 is turned or rotated the other direction to retract barbs back into the barb arms 1340 so that the entire device can be removed from graft and target structure (e.g., an aorta) as shown in FIG. 8B.


As noted above, the devices described herein generally can be used to surgically connect structures in a patient. In a further example, they can be used to connect a generally circular object, such as a valve prosthesis, to an anatomic structure, such as a valve annulus. In the valve case, the barbs are passed through the outer annular portion or the sewing cuff of a valve prosthesis instead of an everted graft. The barb-valve prosthesis combination is then introduced through the space inside a patient's valve annulus and the clips positioned for ejection beneath the valve annulus. The clips are then ejected in a manner to pass through the valve annulus and the valve prosthesis so that as they are ejected they move toward their memory set closed configuration and secure the valve prosthesis to the valve annulus. The barbs can then be retracted and the device removed.


Variations and modifications of the devices and methods disclosed herein will be readily apparent to persons skilled in the art. As such, it should be understood that the foregoing detailed description and the accompanying illustrations, are made for purposes of clarity and understanding, and are not intended to limit the scope of the invention, which is defined by the claims appended hereto.

Claims
  • 1. Surgical connection apparatus comprising: a support structure, wherein said support structure comprises a first plurality of tubular members and second plurality of tubular members;a plurality of self-closing clips, each clip being, slidably disposed in one of said first plurality of tubular members, wherein the clips are configured to elect and release from the first plurality of tubular arms; anda plurality of barbs, each of the plurality of barbs being slidably disposed in one of said second plurality of tubular members, wherein a distal end of said each of the plurality of barbs is configured to extend from a distal portion of said each of second plurality of tubular members and retract back into said distal portion of said each of second plurality of tubular members.
  • 2. The apparatus of claim 1 further including a first plunger movably coupled to said support structure and a pusher disposed in each of said first plurality of tubular members, each pusher having a proximal end being secured to said plunger and a distal end portion coupled to a respective clip so that movement of said plunger moves all of said clips therewith.
  • 3. The apparatus of claim 2 wherein each clip has a memory set closed configuration, when said clips are disposed in said first plurality of tubular members each tubular member biases a respective clip away from said closed configuration, and when said clips are released from said tubular members said clips move toward their memory set closed configuration.
  • 4. The apparatus of any one of claim 1 further including means for simultaneously deploying said clips.
  • 5. The apparatus of claim 2 further including a second plunger movably coupled to said support structure, each barb having a distal end and a proximal end, said second plunger being coupled to each barb proximal end so that said second plunger moves all of said barbs therewith.
  • 6. The apparatus of claim 1 wherein each barb has a distal portion with a memory set hook configuration, when said barb distal end portions are disposed in said second plurality of tubular members each tubular member biases a respective barb distal end portion away from said hook configuration, and when said barb distal end portions are extended away from said tubular members said barbs move toward their memory set hook configuration.
  • 7. The apparatus of claim 1 further including means for simultaneously deploying said barbs.
  • 8. The apparatus of claim 1 further including means for simultaneously deploying said clips and means for simultaneously deploying said barbs independently of said clips.
  • 9. Surgical connection apparatus comprising: a support structure comprising a first plurality of arms and a second plurality of arms wherein the first plurality of arms forms a first plurality of paths and the second plurality of arms forms a second plurality of paths;a plurality of clips, each clip being slidably disposed in one path of the first plurality of paths, wherein the clips are configured to eject and release from the first plurality of arms; anda plurality of barbs, each of the plurality of barbs being longitudinally slidably disposed in one path of the second plurality of paths, wherein a distal end of each of the plurality of barbs is configured to extend from a distal portion of each of the second plurality of paths and retract back into the distal portion of each of the second plurality of paths, wherein the clips are separate from the barbs and are movable independently of the barbs and wherein the first plurality of arms and the second plurality of arms are arranged to form a plurality of arm pairs.
  • 10. The apparatus of claim 9 further including a plunger movably coupled to said support structure and a pusher disposed in each of said first plurality of paths, each pusher having a proximal end being secured to said plunger and a distal end portion coupled to a respective clip so that movement of said plunger moves all of said clips therewith.
  • 11. The apparatus of claim 10 further including a second plunger movably coupled to said support structure, each barb having a distal end and a proximal end, said second plunger being coupled to each barb proximal end so that said second plunger moves all of said barbs therewith.
  • 12. The apparatus of claim 11 wherein said plungers are independently movable.
  • 13. Surgical connection apparatus for connecting a first structure to a second structure, the connection apparatus comprising: a support structure comprising a plurality of arm pairs, the plurality of arm pairs comprising a first plurality of tubular arms and a second plurality of tubular arms, a plurality of barbs coupled within the first plurality of tubular arms, wherein a distal end of each of the plurality of barbs is configured to extend from a distal portion of each of the first plurality of tubular arms and retract back into the distal portion of each of the first plurality of tubular arms, a plurality of clips being slidably coupled within the second plurality of tubular arms and independent of the barbs;means for moving the barbs; andmeans for ejecting and releasing the clips from the second plurality of tubular arms.
  • 14. The apparatus of claim 13 wherein said clips comprise shape memory material, have a memory set closed configuration, and move toward said closed configuration when ejected from said support structure.
  • 15. The apparatus of claim 14 wherein said clip ejecting and releasing means ejects said clips simultaneously.
  • 16. The apparatus of claim 13 wherein said clip ejecting and releasing means ejects and releases said clips simultaneously.
  • 17. The apparatus of claim 16 wherein said barb moving means provides means for extending the barbs from said distal portion of each of the first plurality of tubular arms and retracting the barbs into said distal portion of each of the first plurality of tubular arms.
  • 18. The apparatus of any one of claims 15-17 wherein said barb moving means moves said barbs simultaneously.
US Referenced Citations (611)
Number Name Date Kind
43098 Cooper Jun 1864 A
655190 Bramson Aug 1900 A
1087186 Scholfield Feb 1914 A
1167014 O'Brien Jan 1916 A
1583271 Biro May 1926 A
1625602 Gould et al. Apr 1927 A
1867624 Hoffman Jul 1932 A
2201610 Dawson May 1940 A
2240330 Flagg et al. Apr 1941 A
2256382 Dole Sep 1941 A
2264679 Ravel Dec 1941 A
2413142 Jones et al. Dec 1946 A
2430293 Howells Apr 1947 A
2505358 Gusberg et al. Apr 1950 A
2516710 Mascolo Jul 1950 A
2715486 Marcoff-Moghadam Aug 1955 A
2890519 Storz, Jr. Jun 1959 A
2940452 Smialowski Jun 1960 A
3055689 Jorgensen Sep 1962 A
3057355 Smialowski Oct 1962 A
3082426 Miles Mar 1963 A
3802438 Miles Mar 1963 A
3143742 Cromie Aug 1964 A
3150379 Brown Sep 1964 A
3180337 Smialowski Apr 1965 A
3249104 Hohnstein May 1966 A
3274658 Pile Sep 1966 A
3452742 Muller Jul 1969 A
3506012 Brown Apr 1970 A
3509882 Blake May 1970 A
3547103 Cook Dec 1970 A
3570497 Lemole Mar 1971 A
3608095 Barry Sep 1971 A
3638654 Akuba Feb 1972 A
3656185 Carpentier Apr 1972 A
RE27391 Merser Jun 1972 E
3753438 Wood et al. Aug 1973 A
3776237 Hill et al. Dec 1973 A
3825009 Williams Jul 1974 A
3837345 Matar Sep 1974 A
3874388 King et al. Apr 1975 A
3875648 Bone Apr 1975 A
3905403 Smith et al. Sep 1975 A
3908662 Razgulov et al. Sep 1975 A
3910281 Kletschka et al. Oct 1975 A
3958576 Komiya May 1976 A
3976079 Samuels Aug 1976 A
4006747 Kronenthal et al. Feb 1977 A
4018228 Goosen Apr 1977 A
4038725 Keefe Aug 1977 A
4042979 Angell Aug 1977 A
4103690 Harris Aug 1978 A
4111206 Vishnevsky et al. Sep 1978 A
4129059 Van Eck Dec 1978 A
4140125 Smith Feb 1979 A
4170990 Baumgart et al. Oct 1979 A
4185636 Gabbay et al. Jan 1980 A
4192315 Hilzinger et al. Mar 1980 A
4214587 Sakura Jul 1980 A
4217902 March Aug 1980 A
4243048 Griffin Jan 1981 A
4324248 Perlin Apr 1982 A
4345601 Fukuda Aug 1982 A
4352358 Angelchik Oct 1982 A
4366819 Kaster Jan 1983 A
4396139 Hall et al. Aug 1983 A
4416266 Baucom Nov 1983 A
4456017 Miles Jun 1984 A
4465071 Samuels et al. Aug 1984 A
4470415 Wozniak Sep 1984 A
4470533 Schuler Sep 1984 A
4474181 Schenck Oct 1984 A
4485816 Krumme Dec 1984 A
4492229 Grunwald Jan 1985 A
4522207 Klieman et al. Jun 1985 A
4523592 Daniel Jun 1985 A
4532927 Miksza Aug 1985 A
4535764 Ebert Aug 1985 A
4549545 Levy Oct 1985 A
4553542 Schenck et al. Nov 1985 A
4576605 Kaidash et al. Mar 1986 A
4586502 Bedi et al. May 1986 A
4586503 Kirsch et al. May 1986 A
4593693 Schenck Jun 1986 A
4595007 Mericle Jun 1986 A
4612932 Caspar et al. Sep 1986 A
4622970 Wozniak Nov 1986 A
4624255 Schenck et al. Nov 1986 A
4637380 Orejola Jan 1987 A
4641652 Hutterer et al. Feb 1987 A
4657019 Walsh et al. Apr 1987 A
4665906 Jervis May 1987 A
4665917 Clanton et al. May 1987 A
4683895 Pohndorf Aug 1987 A
4706362 Strausburg Nov 1987 A
4719917 Barrows et al. Jan 1988 A
4719924 Crittenden et al. Jan 1988 A
4730615 Sutherland et al. Mar 1988 A
4732151 Jones Mar 1988 A
4733664 Kirsch et al. Mar 1988 A
4771775 Walsh et al. Sep 1988 A
4787386 Walsh et al. Nov 1988 A
4809695 Gwathmey et al. Mar 1989 A
4820298 Leveen et al. Apr 1989 A
4844318 Kunreuther Jul 1989 A
4873975 Walsh et al. Oct 1989 A
4890615 Caspari et al. Jan 1990 A
4896668 Popoff et al. Jan 1990 A
4899744 Fujitsuka et al. Feb 1990 A
4901721 Hakki Feb 1990 A
4917087 Walsh et al. Apr 1990 A
4923461 Caspari et al. May 1990 A
4924866 Yoon May 1990 A
4926860 Stice et al. May 1990 A
4929240 Kirsch et al. May 1990 A
4930674 Barak Jun 1990 A
4932955 Merz et al. Jun 1990 A
4950283 Dzubow et al. Aug 1990 A
4950285 Wilk Aug 1990 A
4957498 Caspari et al. Sep 1990 A
4983176 Cushman et al. Jan 1991 A
4990152 Yoon Feb 1991 A
4994069 Ritchart et al. Feb 1991 A
4997439 Chen Mar 1991 A
5002550 Li Mar 1991 A
5002562 Oberlander Mar 1991 A
5002563 Pyka et al. Mar 1991 A
5007920 Torre Apr 1991 A
5011481 Myers et al. Apr 1991 A
5020713 Kunreuther Jun 1991 A
5026379 Yoon Jun 1991 A
5032127 Frazee et al. Jul 1991 A
5035692 Lyon et al. Jul 1991 A
5035702 Taheri Jul 1991 A
5042707 Taheri Aug 1991 A
5047047 Yoon Sep 1991 A
5053047 Yoon Oct 1991 A
5064431 Gilbertson et al. Nov 1991 A
5074874 Yoon et al. Dec 1991 A
5100418 Yoon Mar 1992 A
5100421 Christoudias Mar 1992 A
5104407 Lam et al. Apr 1992 A
5119983 Green et al. Jun 1992 A
5123913 Wilk et al. Jun 1992 A
5127413 Ebert Jul 1992 A
5129913 Ruppert Jul 1992 A
5152769 Baber Oct 1992 A
5154189 Oberlander Oct 1992 A
5158566 Pianetti Oct 1992 A
5171250 Yoon Dec 1992 A
5171252 Friedland Dec 1992 A
5174087 Bruno Dec 1992 A
5178634 Ramos Martinez Jan 1993 A
5192294 Blake Mar 1993 A
5196022 Bilweis Mar 1993 A
5201880 Wright et al. Apr 1993 A
5207694 Broome May 1993 A
5217027 Hermens Jun 1993 A
5219358 Bendel et al. Jun 1993 A
5221259 Weldon et al. Jun 1993 A
5222961 Nakao et al. Jun 1993 A
5222976 Yoon Jun 1993 A
5234447 Kaster et al. Aug 1993 A
5236440 Hlavacek Aug 1993 A
5242456 Nash et al. Sep 1993 A
5242457 Akopov et al. Sep 1993 A
5246443 Mai Sep 1993 A
5250053 Snyder Oct 1993 A
5258011 Drews Nov 1993 A
5261917 Hasson et al. Nov 1993 A
5269783 Sander Dec 1993 A
5269809 Hayhurst et al. Dec 1993 A
5282825 Muck et al. Feb 1994 A
5290289 Sanders et al. Mar 1994 A
5304117 Wilk Apr 1994 A
5304204 Bregen Apr 1994 A
5306296 Wright et al. Apr 1994 A
5312436 Coffey et al. May 1994 A
5314468 Martinez May 1994 A
5330503 Yoon Jul 1994 A
5336233 Chen Aug 1994 A
5336239 Gimpelson Aug 1994 A
5346459 Allen Sep 1994 A
5350420 Cosgrove et al. Sep 1994 A
5353804 Kornberg et al. Oct 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5356424 Buzerak et al. Oct 1994 A
5366459 Yoon Nov 1994 A
5366462 Kaster et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5374268 Sander Dec 1994 A
5382259 Phelps et al. Jan 1995 A
5383904 Totakura et al. Jan 1995 A
5403331 Chesterfield Apr 1995 A
5403333 Kaster et al. Apr 1995 A
5403338 Milo Apr 1995 A
5403346 Loeser Apr 1995 A
5417700 Egan May 1995 A
5423821 Pasque Jun 1995 A
5431666 Sauer et al. Jul 1995 A
5437680 Yoon Aug 1995 A
5437681 Meade et al. Aug 1995 A
5437685 Blasnik Aug 1995 A
5439479 Schichman et al. Aug 1995 A
5445167 Yoon et al. Aug 1995 A
5445644 Pietrafitta et al. Aug 1995 A
5450860 O'Connor Sep 1995 A
5452733 Sterman et al. Sep 1995 A
5454834 Boebel et al. Oct 1995 A
5456246 Schmiedling et al. Oct 1995 A
5462561 Voda Oct 1995 A
5474557 Mai Dec 1995 A
5480405 Yoon Jan 1996 A
5486187 Schenck Jan 1996 A
5486197 Le et al. Jan 1996 A
5488958 Topel et al. Feb 1996 A
5496334 Klundt et al. Mar 1996 A
5499990 Schulken et al. Mar 1996 A
5500000 Feagin et al. Mar 1996 A
5522884 Wright Jun 1996 A
5527342 Pietrzak et al. Jun 1996 A
5533236 Tseng Jul 1996 A
5538509 Dunlap et al. Jul 1996 A
5545214 Stevens Aug 1996 A
5549619 Peters et al. Aug 1996 A
5556411 Taoda et al. Sep 1996 A
5562685 Mollenauer et al. Oct 1996 A
5569205 Hart et al. Oct 1996 A
5569274 Rapacki et al. Oct 1996 A
5569301 Granger et al. Oct 1996 A
5571119 Atala Nov 1996 A
5571175 Vanney et al. Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5582619 Ken Dec 1996 A
5584879 Reimold et al. Dec 1996 A
5586983 Sanders et al. Dec 1996 A
5591179 Edelstein Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5593424 Northrupp, III Jan 1997 A
5597378 Jervis Jan 1997 A
5601571 Moss Feb 1997 A
5601572 Middleman et al. Feb 1997 A
5601600 Ton Feb 1997 A
5603718 Xu Feb 1997 A
5607435 Sachdeva et al. Mar 1997 A
5609608 Bennett et al. Mar 1997 A
5628757 Hasson May 1997 A
5630540 Blewett May 1997 A
5632752 Buelna May 1997 A
5632753 Loeser May 1997 A
5643295 Yoon Jul 1997 A
5643305 Al-Tameem Jul 1997 A
5645568 Chervitz et al. Jul 1997 A
5653718 Yoon Aug 1997 A
5658312 Green et al. Aug 1997 A
5660186 Bachir Aug 1997 A
5665109 Yoon Sep 1997 A
5669918 Balazs et al. Sep 1997 A
5676670 Kim Oct 1997 A
5683417 Cooper Nov 1997 A
5690662 Chiu et al. Nov 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5697913 Sierocuk et al. Dec 1997 A
5697943 Sauer et al. Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700271 Whitfield et al. Dec 1997 A
5702412 Popov et al. Dec 1997 A
5707362 Yoon Jan 1998 A
5707380 Hinchliffe et al. Jan 1998 A
5709693 Taylor Jan 1998 A
5709695 Northrup, III Jan 1998 A
5715987 Kelley et al. Feb 1998 A
5720755 Dakov Feb 1998 A
5720756 Green et al. Feb 1998 A
5725537 Green et al. Mar 1998 A
5725539 Matern Mar 1998 A
5725542 Yoon Mar 1998 A
5728135 Bregen et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5735290 Sterman et al. Apr 1998 A
5749879 Middleman et al. May 1998 A
5755778 Kleshinski May 1998 A
5766189 Matsumo Jun 1998 A
5769870 Salahich et al. Jun 1998 A
5779718 Green et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5797920 Kim Aug 1998 A
5797933 Snow et al. Aug 1998 A
5797934 Rygaard Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5799661 Boyd et al. Sep 1998 A
5799857 Robertson et al. Sep 1998 A
5810848 Hayhurst Sep 1998 A
5810851 Yoon Sep 1998 A
5810853 Yoon Sep 1998 A
5810882 Bolduc et al. Sep 1998 A
5817113 Gifford, III et al. Oct 1998 A
5820631 Nobles Oct 1998 A
5824002 Gentelia et al. Oct 1998 A
5824008 Bolduc et al. Oct 1998 A
5827265 Glinsky et al. Oct 1998 A
5827316 Young et al. Oct 1998 A
5830221 Stein et al. Nov 1998 A
5830222 Makower Nov 1998 A
5833698 Hinchliffe Nov 1998 A
5849019 Yoon Dec 1998 A
5851216 Allen Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5868702 Stevens et al. Feb 1999 A
5868763 Spence et al. Feb 1999 A
5871528 Camps et al. Feb 1999 A
5879371 Gardiner et al. Mar 1999 A
5881943 Heck et al. Mar 1999 A
5882340 Yoon Mar 1999 A
5891130 Palermo et al. Apr 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5893369 LeMole Apr 1999 A
5893865 Swindle et al. Apr 1999 A
5893886 Zegdi et al. Apr 1999 A
5895394 Kienzle et al. Apr 1999 A
5904697 Gifford, III et al. May 1999 A
5908428 Scirica et al. Jun 1999 A
5911352 Racenet et al. Jun 1999 A
5919207 Taheri Jul 1999 A
5921995 Kleshinski Jul 1999 A
5931842 Goldsteen et al. Aug 1999 A
5941434 Green Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5941888 Wallace et al. Aug 1999 A
5941908 Goldsteen et al. Aug 1999 A
5944730 Nobles et al. Aug 1999 A
5951576 Wakabayashi Sep 1999 A
5951600 Lemelson Sep 1999 A
5954735 Rygaard Sep 1999 A
5957363 Heck Sep 1999 A
5957938 Zhu et al. Sep 1999 A
5957940 Tanner et al. Sep 1999 A
5961481 Sterman et al. Oct 1999 A
5961539 Northrup, III et al. Oct 1999 A
5964772 Bolduc et al. Oct 1999 A
5964782 Lafontaine et al. Oct 1999 A
5972024 Northrup, III et al. Oct 1999 A
5976159 Bolduc et al. Nov 1999 A
5976161 Kirsch et al. Nov 1999 A
5976164 Bencini et al. Nov 1999 A
5976178 Goldsteen et al. Nov 1999 A
5984917 Fleischman et al. Nov 1999 A
5984959 Robertson et al. Nov 1999 A
5989242 Saadat et al. Nov 1999 A
5989268 Pugsley, Jr. et al. Nov 1999 A
5989276 Houser et al. Nov 1999 A
5989278 Mueller Nov 1999 A
5993468 Rygaard Nov 1999 A
5997556 Tanner Dec 1999 A
6001110 Adams Dec 1999 A
6007544 Kim Dec 1999 A
6010531 Donlon et al. Jan 2000 A
6013084 Ken et al. Jan 2000 A
6022367 Sherts Feb 2000 A
6024748 Manzo et al. Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6033419 Hamblin, Jr. et al. Mar 2000 A
6036699 Andreas et al. Mar 2000 A
6036703 Evans et al. Mar 2000 A
6036710 McGarry et al. Mar 2000 A
6042607 Williamson et al. Mar 2000 A
6056751 Fenton May 2000 A
6063070 Eder May 2000 A
6066148 Rygaard May 2000 A
6068637 Popov et al. May 2000 A
6074401 Gardiner et al. Jun 2000 A
6074418 Buchanan et al. Jun 2000 A
6077291 Das Jun 2000 A
6080114 Russin Jun 2000 A
6083237 Huitema et al. Jul 2000 A
6106538 Shiber Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6113611 Allen et al. Sep 2000 A
6113612 Swanson et al. Sep 2000 A
6120524 Taheri Sep 2000 A
6132438 Fleischmann et al. Oct 2000 A
6139540 Rost et al. Oct 2000 A
6143004 Davis et al. Nov 2000 A
6149658 Gardiner et al. Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6152937 Peterson et al. Nov 2000 A
6159165 Ferrera et al. Dec 2000 A
6159225 Makower Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6165185 Shennib et al. Dec 2000 A
6171320 Monassevitch Jan 2001 B1
6171321 Gifford, III et al. Jan 2001 B1
6176413 Heck et al. Jan 2001 B1
6176864 Chapman Jan 2001 B1
6179840 Bowman Jan 2001 B1
6179848 Solem Jan 2001 B1
6179849 Yencho et al. Jan 2001 B1
6183512 Howanec et al. Feb 2001 B1
6190373 Palermo et al. Feb 2001 B1
6190396 Whitin et al. Feb 2001 B1
6193733 Adams Feb 2001 B1
6193734 Bolduc et al. Feb 2001 B1
6197037 Hair Mar 2001 B1
6217611 Klostermeyer Apr 2001 B1
6221083 Mayer Apr 2001 B1
6241738 Dereume Jun 2001 B1
6241741 Duhaylongsod et al. Jun 2001 B1
6248117 Blatter Jun 2001 B1
6250308 Cox Jun 2001 B1
6254615 Bolduc et al. Jul 2001 B1
6269819 Oz et al. Aug 2001 B1
6280460 Bolduc et al. Aug 2001 B1
6283979 Mers et al. Sep 2001 B1
6283993 Cosgrove et al. Sep 2001 B1
6293955 Houser et al. Sep 2001 B1
6296622 Kurz et al. Oct 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6306141 Jervis Oct 2001 B1
6332893 Mortier et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6346112 Adams Feb 2002 B2
6350269 Shipp et al. Feb 2002 B1
6352543 Cole Mar 2002 B1
6358258 Arcia et al. Mar 2002 B1
6361559 Houser et al. Mar 2002 B1
6368348 Gabbay Apr 2002 B1
6371964 Vargas et al. Apr 2002 B1
6387105 Gifford, III et al. May 2002 B1
6391038 Vargas et al. May 2002 B2
6402764 Hendricksen et al. Jun 2002 B1
6402765 Monassevitch et al. Jun 2002 B1
6406492 Lytle Jun 2002 B1
6406493 Tu et al. Jun 2002 B1
6409739 Nobles et al. Jun 2002 B1
6409758 Stobie et al. Jun 2002 B2
6416527 Berg et al. Jul 2002 B1
6418597 Deschenes et al. Jul 2002 B1
6419658 Restelli et al. Jul 2002 B1
6419681 Vargas et al. Jul 2002 B1
6419695 Gabbay Jul 2002 B1
6425900 Knodel et al. Jul 2002 B1
6428550 Vargas et al. Aug 2002 B1
6428555 Koster, Jr. Aug 2002 B1
6451034 Gifford, III et al. Sep 2002 B1
6451048 Berg et al. Sep 2002 B1
6461320 Yencho et al. Oct 2002 B1
6461365 Bolduc et al. Oct 2002 B2
6475222 Berg et al. Nov 2002 B1
6478804 Vargas et al. Nov 2002 B2
6485496 Suyker et al. Nov 2002 B1
6491707 Makower et al. Dec 2002 B2
6497671 Ferrera et al. Dec 2002 B2
6497710 Yencho et al. Dec 2002 B2
6514265 Ho et al. Feb 2003 B2
6517558 Gittings et al. Feb 2003 B2
6524338 Gundry Feb 2003 B1
6533812 Swanson et al. Mar 2003 B2
6537288 Vargas et al. Mar 2003 B2
6547799 Hess et al. Apr 2003 B2
6551332 Nguyen et al. Apr 2003 B1
6562053 Schulze et al. May 2003 B2
6572626 Knodel et al. Jun 2003 B1
6575985 Knight et al. Jun 2003 B2
6589255 Schulze et al. Jul 2003 B2
6607541 Gardiner et al. Aug 2003 B1
6607542 Wild et al. Aug 2003 B1
6613059 Schaller et al. Sep 2003 B2
6623494 Blatter Sep 2003 B1
6626920 Whayne Sep 2003 B2
6629988 Weadock Oct 2003 B2
6635214 Rapacki et al. Oct 2003 B2
6641593 Schaller et al. Nov 2003 B1
6648900 Fleischman et al. Nov 2003 B2
6651670 Rapacki et al. Nov 2003 B2
6651672 Roth Nov 2003 B2
6652540 Cole et al. Nov 2003 B1
6652541 Vargas et al. Nov 2003 B1
6652544 Houser et al. Nov 2003 B2
6660015 Berg et al. Dec 2003 B1
6669708 Nissenbaum et al. Dec 2003 B1
6673084 Peterson et al. Jan 2004 B1
6682540 Sancoff et al. Jan 2004 B1
6695857 Gifford, III et al. Feb 2004 B2
6695859 Golden et al. Feb 2004 B1
6695878 McGuckin et al. Feb 2004 B2
6699257 Gifford, III et al. Mar 2004 B2
6702826 Liddicoat et al. Mar 2004 B2
6709442 Miller et al. Mar 2004 B2
6712829 Schulze Mar 2004 B2
6719768 Cole et al. Apr 2004 B1
6743243 Roy et al. Jun 2004 B1
6749622 McGuckin et al. Jun 2004 B2
6776782 Schulze Aug 2004 B2
6776784 Ginn Aug 2004 B2
6776785 Yencho et al. Aug 2004 B1
6802847 Carson et al. Oct 2004 B1
6805708 Yencho et al. Oct 2004 B1
6811555 Willis et al. Nov 2004 B1
6821286 Carranza et al. Nov 2004 B1
6869444 Gabbay Mar 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6896684 Monassevitch et al. May 2005 B2
6899718 Gifford, III et al. May 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6916327 Northrup, III et al. Jul 2005 B2
6918917 Nguyen et al. Jul 2005 B1
6921407 Nguyen et al. Jul 2005 B2
6926730 Nguyen et al. Aug 2005 B1
6945980 Nguyen et al. Sep 2005 B2
6955679 Hendricksen et al. Oct 2005 B1
6960221 Ho et al. Nov 2005 B2
6962596 Bolduc et al. Nov 2005 B2
6966920 Yencho et al. Nov 2005 B2
6972023 Whayne et al. Dec 2005 B2
6979337 Kato Dec 2005 B2
6979338 Loshakove et al. Dec 2005 B1
6991636 Rose Jan 2006 B2
6994713 Berg et al. Feb 2006 B2
7015002 Isobe Mar 2006 B2
7018388 Yencho et al. Mar 2006 B2
7022131 Derowe et al. Apr 2006 B1
7041112 Vargas et al. May 2006 B2
7048747 Arcia et al. May 2006 B2
7056330 Gayton Jun 2006 B2
7063711 Loshakove et al. Jun 2006 B1
7070618 Streeter Jul 2006 B2
7087064 Hyde Aug 2006 B1
7108701 Evens et al. Sep 2006 B2
7108702 Yencho et al. Sep 2006 B2
7112211 Gifford, III et al. Sep 2006 B2
7128749 Vargas et al. Oct 2006 B1
7182769 Ainsworth et al. Feb 2007 B2
7211095 Bachinski et al. May 2007 B2
7220265 Chanduszko et al. May 2007 B2
7220268 Blatter May 2007 B2
7223273 Manzo May 2007 B2
7270670 Yencho Sep 2007 B1
7291157 Hausen et al. Nov 2007 B1
7303569 Yencho et al. Dec 2007 B2
7335212 Edoga et al. Feb 2008 B2
7338503 Rosenberg et al. Mar 2008 B2
20010018592 Schaller et al. Aug 2001 A1
20010018593 Nguyen et al. Aug 2001 A1
20010018611 Solem et al. Aug 2001 A1
20010021856 Bolduc et al. Sep 2001 A1
20010021858 Bolduc et al. Sep 2001 A1
20010047181 Ho et al. Nov 2001 A1
20020010490 Schaller et al. Jan 2002 A1
20020042623 Blatter et al. Apr 2002 A1
20020082614 Logan et al. Jun 2002 A1
20020095166 Vargas et al. Jul 2002 A1
20020099395 Acampora et al. Jul 2002 A1
20020151916 Muramatsu et al. Oct 2002 A1
20020165561 Ainsworth et al. Nov 2002 A1
20020173803 Yang et al. Nov 2002 A1
20020177859 Monassevitch et al. Nov 2002 A1
20030065345 Weadock Apr 2003 A1
20030074012 Nguyen et al. Apr 2003 A1
20030078603 Schaller et al. Apr 2003 A1
20030083742 Spence et al. May 2003 A1
20030093118 Ho et al. May 2003 A1
20030114867 Bolduc et al. Jun 2003 A1
20030125755 Schaller et al. Jul 2003 A1
20030163143 Wakabayashi Aug 2003 A1
20030191481 Nguyen et al. Oct 2003 A1
20030195531 Nguyen et al. Oct 2003 A1
20030199974 Lee et al. Oct 2003 A1
20040050393 Golden et al. Mar 2004 A1
20040068276 Golden et al. Apr 2004 A1
20040073240 Bolduc et al. Apr 2004 A1
20040087985 Loshakove et al. May 2004 A1
20040092975 Loshakove et al. May 2004 A1
20040102797 Golden et al. May 2004 A1
20040111099 Nguyen et al. Jun 2004 A1
20040138685 Clague et al. Jul 2004 A1
20040172050 Bolduc et al. Sep 2004 A1
20040176663 Edoga Sep 2004 A1
20040193259 Gabbay Sep 2004 A1
20040243154 Berg et al. Dec 2004 A1
20040249415 Vargas et al. Dec 2004 A1
20050004582 Edoga Jan 2005 A1
20050021054 Ainsworth et al. Jan 2005 A1
20050038454 Loshakove et al. Feb 2005 A1
20050043708 Gleeson et al. Feb 2005 A1
20050043749 Breton et al. Feb 2005 A1
20050065601 Lee et al. Mar 2005 A1
20050070924 Schaller et al. Mar 2005 A1
20050075659 Realyvasquez et al. Apr 2005 A1
20050075667 Schaller et al. Apr 2005 A1
20050080454 Drews Apr 2005 A1
20050085834 Carranza et al. Apr 2005 A1
20050101975 Nguyen et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050131429 Ho et al. Jun 2005 A1
20050267572 Schoon et al. Dec 2005 A1
20050277964 Brenneman et al. Dec 2005 A1
20050277965 Brenneman et al. Dec 2005 A1
20050277967 Brenneman et al. Dec 2005 A1
20060004389 Nguyen et al. Jan 2006 A1
20060106405 Fann et al. May 2006 A1
20060111704 Brenneman et al. May 2006 A1
20060253143 Edoga Nov 2006 A1
20060271081 Realyvasquez Nov 2006 A1
20060293701 Ainsworth et al. Dec 2006 A1
20070010835 Breton et al. Jan 2007 A1
20070027461 Gardiner et al. Feb 2007 A1
20070106313 Golden et al. May 2007 A1
20070118158 Deem et al. May 2007 A1
20070142848 Ainsworth et al. Jun 2007 A1
Foreign Referenced Citations (127)
Number Date Country
0219999 Mar 1910 DE
0377052 Jun 1923 DE
2703529 Jan 1977 DE
3203410 May 1981 DE
3227984 Feb 1984 DE
3504202 Aug 1985 DE
4133800 Oct 1991 DE
4402058 Apr 1995 DE
19547617 Sep 1997 DE
19732234 Jan 1999 DE
0072232 Feb 1983 EP
0122046 Mar 1983 EP
0129441 Dec 1984 EP
0130037 Jan 1985 EP
0140557 May 1985 EP
0121362 Sep 1987 EP
0409569 Jan 1991 EP
0432692 Jun 1991 EP
0478949 Aug 1991 EP
0494636 Jul 1992 EP
0537955 Apr 1993 EP
0559429 Sep 1993 EP
0598529 May 1994 EP
0326426 Dec 1994 EP
0419597 Dec 1994 EP
0632999 Jan 1995 EP
0641546 Mar 1995 EP
0656191 Jun 1995 EP
0687446 Dec 1995 EP
0705568 Apr 1996 EP
0711532 May 1996 EP
0705569 Oct 1996 EP
0734697 Oct 1996 EP
0778005 Jun 1997 EP
0815795 Jan 1998 EP
915677 Apr 1999 EP
956825 Nov 1999 EP
1009293 Jun 2000 EP
1413256 Apr 2004 EP
1421909 May 2004 EP
1513459 Mar 2005 EP
2223410 Apr 1990 GB
07308322 Nov 1995 JP
08836544 Dec 1996 JP
10337291 Dec 1998 JP
2110222 May 1998 RU
577022 Oct 1977 SU
1186199 Oct 1985 SU
1456109 Feb 1989 SU
1560133 Apr 1990 SU
9006725 Jun 1990 WO
9009149 Aug 1990 WO
9014795 Dec 1990 WO
9107916 Jun 1991 WO
9108708 Jun 1991 WO
9117712 Nov 1991 WO
9205828 Apr 1992 WO
9212676 Aug 1992 WO
9222041 Dec 1992 WO
9301750 Feb 1993 WO
9415535 Jul 1994 WO
9415537 Jul 1994 WO
9600035 Jan 1996 WO
9606565 Mar 1996 WO
9625886 Aug 1996 WO
9638090 Dec 1996 WO
9712555 Apr 1997 WO
9716122 May 1997 WO
9727898 Aug 1997 WO
9728744 Aug 1997 WO
9728745 Aug 1997 WO
9731575 Sep 1997 WO
9732526 Sep 1997 WO
9740754 Nov 1997 WO
9742881 Nov 1997 WO
9819636 May 1998 WO
9829040 Jul 1998 WO
9830153 Jul 1998 WO
9842262 Oct 1998 WO
9848707 Nov 1998 WO
9852475 Nov 1998 WO
9907294 Feb 1999 WO
9912484 Mar 1999 WO
9915088 Apr 1999 WO
9937218 Jul 1999 WO
9962406 Dec 1999 WO
9962408 Dec 1999 WO
9962409 Dec 1999 WO
9962415 Dec 1999 WO
9963910 Dec 1999 WO
9965409 Dec 1999 WO
0003759 Jan 2000 WO
0015144 Mar 2000 WO
0059380 Oct 2000 WO
0060995 Oct 2000 WO
0064381 Nov 2000 WO
0074603 Dec 2000 WO
0119292 Mar 2001 WO
0126557 Apr 2001 WO
0126586 Apr 2001 WO
0128432 Apr 2001 WO
0130230 May 2001 WO
0154618 Aug 2001 WO
0174254 Oct 2001 WO
0195783 Dec 2001 WO
0213701 Feb 2002 WO
0213702 Feb 2002 WO
0230172 Apr 2002 WO
0230295 Apr 2002 WO
0230298 Apr 2002 WO
0234143 May 2002 WO
02080779 Oct 2002 WO
02080780 Oct 2002 WO
02087425 Nov 2002 WO
03026475 Apr 2003 WO
03053289 Jul 2003 WO
03063691 Aug 2003 WO
03088875 Oct 2003 WO
03101311 Dec 2003 WO
2004008936 Jan 2004 WO
2005011468 Feb 2005 WO
2005018683 Mar 2005 WO
2005058170 Jun 2005 WO
2005122919 Dec 2005 WO
2006057920 Jun 2006 WO
2006108050 Oct 2006 WO
2008086287 Jul 2008 WO
Non-Patent Literature Citations (46)
Entry
US 6,503,260, 01/2003, Schaller et al. (withdrawn)
“VCS Clip Applier System,” published in 1995 by Auto Suture Company, a Division of U.S. Surgical Corporation (8 pages).
Approach to Treat Mitral Regurgitation due to Severe Myxomatous Disease: Surgical Technique, European Journal of Cardiothoracic Surgery, vol. 17, 2000, pp. 201-205.
Chitwood Jr., Mitral Valve Repair: Ischemic, Mastery of Cardiothoracic Surgery, Lippencott-Raven Publishers, 1998, pp. 309-321.
Emery, et al., “Suture Techniques for MIDCAB Surgery,” Chapter 12 in Techniques for Minimally Invasive Direct Coronary Artery Bypass (MIDCAB) Surgery. R.W. Emery ed., Hanley & Belfus, Inc.: Philadelphia, PA, 1997, pp. 87-91.
Grondin, et al., Carpentier's Annulus and De Vega's Annuloplasty, Nov. 1975, pp. 852-861.
Holper, et al., Surgery For Tricuspid Insufficiency: Long Term Follow-Up After De Vega Annuloplasty, Sep. 9, 1992.
Maisano, et al. The Double Orifice Technique as a Standardized Approach to Treat Mitral Regurgitation Due to Severe Myxomatous Disease: Surgical Technique, European Journal of Cardiothoracic Surgery, vol. 17, 2000, 201-205.
Rabago, The New De Vega Technique in Tricuspid Annuloplasty, pp. 231-238, Mar. 1980.
Rivera, et al., Carpentier's Flexible Ring Versus De Vega's Annuloplasty, Feb. 1985, pp. 196-203.
Wei, et al., De Vega's Semicircular Annuloplasty For Tricuspid Valve Regurgitation, Jun. 2, 1992, pp. 482-485.
Wylie, et al., Manual of Vascular Surgery, R. H. Egdahl ed. Spring-Verlag: New York, vol. I & II, 1986, Table of Contents only (10 pages).
Wylie, et al., Manual of Vascular Surgery, Springer-Verlag New York, 1980, Table of Contents only (3 pages).
Yun, et al. Mitral Valve Replacement, Mastery of Cardiothoracic Surgery, Lippencott-Raven Publishers, pp. 329-341, 1998.
International Search Report PCT/US98/00462, 1998.
International Search Report PCT/US98/00795, 1998.
International Search Report PCT/US98/14211, 1998.
International Search Report PCT/US99/12563, 1999.
International Search Report PCT/US99/12566, 1999.
International Search Report PCT/US00/09092, 2000.
International Search Report PCT/US01/10501, 2001.
International Search Report PCT/US01/31709, 2001.
International Search Report PCT/US01/42653, 2001.
International Search Report PCT/US02/10865, 2002.
International Search Report PCT/US02/10866, 2002.
International Search Report PCT/US02/14261, 2002.
International Search Report PCT/US03/12073, 2003.
International Preliminary Examination Report PCT/US98/00462, 1998.
International Preliminary Examination Report PCT/US98/00795, 1998.
International Preliminary Examination Report PCT/US99/12566, 1999.
International Preliminary Examination Report PCT/US00/09092, 2000.
International Preliminary Examination Report PCT/US01/31709, 2001.
International Preliminary Examination Report PCT/US01/42653, 2001.
International Preliminary Examination Report PCT/US02/14261, 2002.
International Preliminary Examination Report PCT/US02/10865, 2002.
International Preliminary Examination Report PCT/US02/10866, 2002.
International Preliminary Examination Report PCT/US03/12073, 2003.
Written Opinion PCT/US99/12563, 1999.
Written Opinion PCT/US99/12566, 1999.
Written Opinion PCT/US00/09092, 2001.
Written Opinion PCT/US01/10501, 2001.
Written Opinion PCT/US01/31709, 2001.
Written Opinion PCT/US02/10866, 2002.
Written Opinion PCT/US02/14261, 2002.
Written Opinion PCT/US03/12073, 2003.
International Preliminary Report on Patentability PCT/US2004/023728, 2004.
Related Publications (1)
Number Date Country
20050070924 A1 Mar 2005 US