The present disclosure relates to surgical constructs and methods for securing soft tissue to bone, and more particularly relates to surgical constructs having reduced profiles for use in securing soft tissue while minimizing or eliminating the tying of knots to tension and secure the tissue.
A common injury, especially among athletes and people of advancing age, is the complete or partial detachment of tendons, ligaments, or other soft tissues from bone. Tissue detachment may occur during a fall, by overexertion, or for a variety of other reasons. Surgical intervention is often needed, particularly when tissue is completely detached from its associated bone. Currently available devices for tissue attachment include screws, staples, suture anchors, and tacks. Currently available devices for patients of advancing age can be particularly insufficient due to soft and weak bones leading to inadequate fixation between the anchor and bones and the anchors and filaments with which the anchors are coupled.
Repair constructs made from one or more surgical filaments are typically used in soft tissue repair procedures to secure the tissue in a desired location. The repair constructs are typically disposed through one or more portions of the tissue to be repaired, which can cause trauma to the tissue, and are often coupled to anchors disposed in bone to which the tissue is to be approximated. While devices and techniques have been developed to help minimize trauma associated with passing repair constructs through tissue, there is still room for further improvement. For example, some repair constructs typically include a sleeve disposed around at least a portion of the limbs of filament of the construct. The sleeve can assist in minimizing trauma to tissue, and also in managing the limbs of suture while the construct is being disposed through tissue. However, the sleeve still adds extra size and cost to the construct. Additionally, there remains a desire to minimize the number of knots used in conjunction with the repair construct when performing soft tissue repair procedures. A variety of different knots, such as sliding knots, can be used to help draw and secure soft tissue with respect to bone. Although the tying of knots at a surgical site is common, in some instances knots can have a tendency to slip, which in turn can cause a loss of tension between the tissue and bone. This drawback is sometimes referred to as a loss of “loop security.” In addition to this “loop security” issue, conventional knots typically have an overall size that can be obstructive or intrusive, especially in tight joints, which may damage cartilage or other tissue by abrasion with the knot.
It is therefore desirable to provide repair constructs and methods that reduce the amount of trauma associated with using repair constructs while maintaining or improving the holding strength such constructs and methods can provide. It is also desirable to provide constructs and methods for use in soft tissue repair that minimize or eliminate the number and size of knots to be tied by a surgeon, particularly during arthroscopic repair procedures.
Surgical constructs and methods are generally provided for securing soft tissue to bone. In one exemplary embodiment the surgical construct includes a first limb, a second limb that is shorter than the first limb, a coaxial region, and a collapsible snare defined by the first limb and the second limb. The coaxial region can be formed by a terminal end of the second limb being disposed within a volume of the first limb, with the snare being located on one side of the coaxial region and a terminal end of the first limb being disposed on the other side of the coaxial region. The first and second limbs can be from the same surgical filament. In other embodiments the first and second limbs can be from separate surgical filaments. The surgical filament(s) can include, for example, braided suture. The collapsible snare can include a slidable knot that adjusts a size of an opening defined by the snare by moving towards and away from the coaxial region. In one embodiment, the size of the opening defined by the snare decreases when the slidable knot moves away from the coaxial region and increases when the slidable knot moves towards the coaxial region.
The first limb of the construct can be cannulated at the coaxial region. A length of the coaxial region can be substantially shorter than a length of the first limb extending from the other side of the coaxial region. The length of the coaxial region can also be substantially shorter than lengths of the first and second limbs on the side of the coaxial region on which the snare is located. The coaxial region can be configured to be deconstructed after placement of the suture construct at a surgical location. This can allow the first and second limbs to be used to secure a location of the suture construct, for instance after tissue coupled to the suture construct has been advanced to a desirable location proximate to bone.
The suture construct can also include a suture anchor having a filament engagement feature. A portion of the construct can be slidably disposed around a portion of the filament engagement feature. In some embodiments the snare can extend from one side of the anchor and the coaxial region can extend from another side of the anchor. In some other embodiments the portion of the first limb that is disposed on the other side of the coaxial region can engage the filament engagement feature of the anchor such that this portion of the first limb extends from both sides of the anchor.
One exemplary embodiment of a surgical repair method includes selecting a surgical repair construct having a snare defined by a first filament limb and a second filament limb, and a coaxial region formed by a terminal end of the second filament limb being disposed within a volume of the first filament limb. The method can further include fixing an anchor in bone in proximity to detached soft tissue. Further, a terminal end of the first filament limb can be passed through a portion of the detached soft tissue and around an engagement feature of the anchor. The resulting configuration can be one in which the snare extends from one side of the anchor and the terminal end of the first filament limb extends from another side of the anchor. Still further, the method can include passing the terminal end of the first filament limb through the snare, collapsing the snare to engage the soft tissue, advancing the collapsed snare distally to bring the tissue into proximity with the bone, and removing the terminal end of the second filament limb from the volume of the first filament limb to eliminate the coaxial region. The first and second filament limbs can then be used to tie one or more knots proximate to the collapsed snare to maintain the tissue at a desired location in proximity to the bone. The passing, collapsing, and advancing steps, however, can be effected without tying a knot in the first or second filament limbs.
In some embodiments at least one of a first end of the surgical repair construct and a second end of a surgical repair construct can be passed through a surgical cannula. Further, in some embodiments the method can include passing the terminal end of the first filament limb through a second portion of the detached soft tissue. The step of collapsing the snare can include collapsing the snare around the first filament limb extending from the coaxial region and disposed on an opposite side of the coaxial region from the snare. Alternatively, in some embodiments the step of passing the terminal end of the first filament limb through the snare can include passing the coaxial region through the snare and then collapsing the snare can include collapsing the snare around the first filament limb and the second filament limb disposed therethrough.
The anchor that is fixed in bone can include a suture shuttle filament slidably coupled to the engagement feature. The suture shuttle filament can have a free end and a receiving end and can be coupled to the anchor prior to the step of passing a terminal end of the first filament limb through a portion of the detached soft tissue. In such embodiments, the step of passing a terminal end of the first filament limb through a portion of the detached soft tissue and around an engagement feature of the anchor can rely on the suture shuttle filament to assist in moving the surgical repair construct. More particularly, the terminal end of the first filament can be coupled to the receiving end of the suture shuttle filament and a force can be applied to the free end of the suture shuttle filament to move the receiving end of the suture shuttle filament, and thus the terminal end of the first filament limb, toward and then around the engagement feature of the anchor. The suture shuttle filament can then pass around and out of contact with the engagement feature of the anchor, thereby allowing the surgical repair construct to be in direct contact with the engagement feature. Eventually, the resulting configuration is the same as described above, with the snare extending from one side of the anchor and the coaxial region extending from another side of the anchor. In some embodiments the suture shuttle filament can be disposed through the detached soft tissue in two locations. As a result, the surgical repair construct can also be disposed through the detached soft tissue in two locations following the step of applying a force to the free end of the suture shuttle filament.
This invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the constructs and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the constructs and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention. Additionally, to the extent that linear or circular dimensions are used in the description of the disclosed constructs and methods, such dimensions are not intended to limit the types of shapes that can be used in conjunction with such constructs and methods. A person skilled in the art will recognize that an equivalent to such linear and circular dimensions can easily be determined for any geometric shape. Sizes and shapes of the constructs, and the components thereof, can depend at least on the anatomy of the subject in which the constructs will be used, the size and shape of components with which the constructs will be used, and the methods and procedures in which the constructs will be used.
The figures provided herein are not necessarily to scale. Further, to the extent arrows are used to describe a direction a component can be tensioned or pulled, these arrows are illustrative and in no way limit the direction the respective component can be tensioned or pulled. A person skilled in the art will recognize other ways and directions for creating the desired tension or movement. Likewise, while in some embodiments movement of one component is described with respect to another, a person skilled in the art will recognize that other movements are possible. By way of non-limiting example, in embodiments in which a sliding knot is used to help define a snare, a person skilled in the art will recognize that different knot configurations can change whether moving the knot in one direction will cause a size of an opening defined by the snare will increase or decrease. Additionally, a number of terms may be used throughout the disclosure interchangeably but will be understood by a person skilled in the art. By way of non-limiting example, the terms “suture” and “filament” may be used interchangeably.
Surgical repair constructs and methods for soft tissue repair are generally provided and they generally involve the use of surgical filaments that are configured in a variety of manners to minimize and/or eliminate the tying of knots during a surgical procedure. The constructs described herein provide superior strength for use in a number of different surgical procedures, such as rotator cuff and instability repair procedures and other types of tendon and tissue repair procedures. The designs of the constructs described herein are such that they have a particularly low profile, thereby allowing a construct to pass through the tissue with minimal trauma to the tissue and to become associated with the tissue without tying knots. The low profile results from inserting one limb of filament into another and eliminating any sort of sleeve, which is often used to assist in shuttling limbs of filament through tissue. Further, the designs of the constructs are such that they limit the number of filaments that are used to feed the construct through the tissue, or otherwise associate the construct with tissue. As described, a single limb of filament can be used to associate the construct with tissue that is being attached to bone, thereby assisting a surgeon with suture management.
As shown by one exemplary embodiment of a surgical repair construct 10 in
The collapsible snare 20 can be formed using any number of techniques known to those skilled in the art. In the illustrated embodiment the first and second limbs 12, 14 are formed to include a sliding knot 24. The sliding knot 24 is configured such that as it moves toward the coaxial region 30, a size of the opening 22 defined by the snare 20 increases, and as the knot 24 moves away from the coaxial region 30, the size of the opening 22 decreases. Some exemplary knot types include a Buntline Hitch, a Tennessee Slider, a Duncan Loop, and a Hangman's Noose. A person skilled in the art will understand that in other configurations, a size of the opening defined by the snare may be adjusted in different manners, depending on the type of knot, desired use, etc. Some exemplary snare and formations thereof are described in U.S. Published Patent Application No. 2012/0130424 of Sengun et al. and U.S. application Ser. No. 13/465,288, entitled “Systems, Devices, and Methods for Securing Tissue, and filed May 7, 2012, the content of which is incorporated by reference in their entireties.
Further, in some embodiments a snare-retaining member (not shown) can be disposed across the first and second limbs 12, 14, between the snare 20 and the coaxial region 30, for instance to prevent the unintentional collapse of the opening 22 of the snare 20, such as while the construct 10 is being moved through tissue. A snare-retaining member can include a flexible member or pin, such as the flexible members and pins described in U.S. application Ser. No. 13/465,299, entitled “Systems, Devices, and Methods for Securing Tissue” and filed May 7, 2012, the content of which is incorporated by reference in its entirety.
The coaxial region 30 in the illustrated embodiment is formed by passing terminal end 14t of the second limb 14 into a volume of the first limb 12. As shown in
The tail 40 of the construct 10 is formed by the remaining portion of the first limb 12 that extends beyond the coaxial region 30. The tail 40 can be used to help lead insertion of the construct 10 in tissue, coupling the construct 10 to a suture anchor, and leading the second end 10b of the construct 10 into the opening 22 of the snare 20 during tissue repair procedures, among other things. Accordingly, a length and thickness of the tail 40 can be such that it ensures robust shuttling of the construct 10 during a surgical procedure.
The filament used to form the first and second limbs 12 and 14 can be any type and material typically used as filaments, including a cannulated filament, a braided filament, and a mono filament. The type and strength of the filament can depend, at least in part, on the other materials of the construct, if any, such as an anchor, the tissue and other components through which it will be passed or coupled to, and the type of procedure in which it is used. In one exemplary embodiment the filament is a #0 filament (about 26 gauge to about 27 gauge), such as an Orthocord™ filament that is commercially available from DePuy Mitek, Inc., DePuy Mitek Inc., 325 Paramount Drive, Raynham, Mass. 02767, or an Ethibond™ filament that is commercially available from Ethicon, Inc., Route 22 West, Somerville, N.J. 08876. A portion of the core of the filament can be removed to form a cannulated portion of the first limb 12 for use in the coaxial region 30. The thickness of the filament should provide strength in the connection but at the same time minimize the trauma caused to tissue through which it passes. In some embodiments the filament can have a size between about a #5 filament (about 20 gauge to about 21 gauge) and about a #3-0 filament (about 29 gauge to about 32 gauge). Orthocord™ suture is approximately fifty-five to sixty-five percent PDS™ polydioxanone, which is bioabsorbable, and the remaining thirty-five to forty-five percent ultra high molecular weight polyethylene, while Ethibond™ suture is primarily high strength polyester. The amount and type of bioabsorbable material, if any, utilized in the filaments of the present disclosure is primarily a matter of surgeon preference for the particular surgical procedure to be performed. Additionally, although in the illustrated embodiment a single filament is used to form the first and second limbs 12 and 14, a separate filament can be used for each of the first and second limbs 12 and 14 without departing from the spirit of the disclosures provided herein.
The lengths of the various portions of the construct 10 can likewise depend, at least in part, on the other materials of the construct, if any, the tissue and other components through which it will be passed or coupled to, the lengths of the various portions of the construct, and the type of procedure in which the construct is used. The various portions include the portions of the first and second limbs 12 and 14 on the side of the coaxial region 30 the snare 20 is located, the coaxial region 30, and the tail 40. In the illustrated embodiment the coaxial region 30 is substantially shorter than both the tail 40 and the portions of the first and second limbs 12 and 14 on the side of the coaxial region 30 the snare 20 is located.
As shown in
As described in greater detail below, in some embodiments the construct 10 can be pre-loaded on the suture anchor 50 prior to insertion of the anchor 50 to a surgical location, while in other embodiments the construct 10 is loaded onto the suture anchor 50 after the anchor is positioned at the surgical location. One skilled in the art will appreciate that a variety of suture anchor types can be used in conjunction with the constructs provided herein. For example, in some embodiments the anchor can be a Gryphon™ anchor that is commercially available from DePuy Mitek, Inc. The constructs described herein can be single-loaded or double-loaded onto a Gryphon™ anchor.
As a result of the configurations of the construct 10 described herein, anchors used in conjunction with the construct 10 can be smaller than previous anchors used in tissue repairs at least because a smaller diameter or thickness of construct can be associated with the anchor. Further, Gryphon™ anchors are merely non-limiting examples of anchor types that can be used in conjunction with the disclosures provided herein. Other types of hard and soft anchors can also be used. Some examples of such anchors include a Healix Ti™ anchor, which is commercial available from DePuy Mitek, Inc., as well as anchors described in U.S. application Ser. No. 13/465,376, entitled “Systems, Devices, and Methods for Securing Tissue Using Snare Assemblies and Soft Anchors,” filed May 7, 2012, and U.S. application Ser. No. 13/623,429, entitled “Systems, Devices, and Methods for Securing Tissue Using Hard Anchors,” filed Sep. 20, 2012, the content of which is incorporated by reference in their entireties.
One exemplary embodiment of a method for performing a rotator cuff repair using the repair construct 10 of
As shown in
As shown in
As shown in
Alternatively, in other embodiments just the tail 40 can be passed through the snare such that only a portion of the first limb 12 is disposed within the opening 22 of the snare 20, thereby allowing the tendon 104 through which the construct 10 is disposed to be captured. The snare 20 can then be collapsed or dressed around the portion of the tail 40 disposed therethrough. Although in such an embodiment the coaxial region 30 is distal of the snare 20, the snare 20 can be subsequently slid distally toward the tendon to allow the coaxial region 30 to become proximal of the snare 20, as described below with respect to
As shown in
As shown in
Although in the illustrated embodiment the construct 10 is passed through two portions of tendon 104, alternatively the construct 10 can be passed through only one portion of tendon or tissue while the second portion of the construct 10 can be free of the tendon or tissue. Such an embodiment can be used, for example, during a labral repair. Either of the two ends 10a, 10b can be the end that is not passed through the tendon or tissue, although in some embodiments it may be useful to have the end 10a on which the snare 20 is located to not pass through tissue to minimize the possibility of unintentional collapse of the snare 20. Further, in some embodiments, rather than passing through tissue, a repair construct 10 can be coupled to tissue using other techniques, such as, for example, by wrapping the construct around the tissue.
Still further, although the method described with respect to
One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. Further, although the constructs and methods provided for herein are generally directed to surgical techniques, at least some of the constructs and methods can be used in applications outside of the surgical field. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
The present application is a continuation of and claims priority to U.S. patent application Ser. No. 15/001,513, filed Jan. 20, 2016, which is a divisional of and claims priority to U.S. patent application Ser. No. 13/728,044, filed Dec. 27, 2012, and entitled “SURGICAL CONSTRUCTS AND METHODS FOR SECURING TISSUE,” and which issued as U.S. Pat. No. 9,271,716 on Mar. 1, 2016, the contents of each which is hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2566625 | Nagelmann | Sep 1951 | A |
2600395 | Domoj et al. | Jun 1952 | A |
2697624 | Thomas et al. | Dec 1954 | A |
2758858 | Smith | Aug 1956 | A |
2992029 | Russell | Jul 1961 | A |
3106417 | Clow | Oct 1963 | A |
3131957 | Musto | May 1964 | A |
3177021 | Benham | Apr 1965 | A |
3402957 | Peterson | Sep 1968 | A |
3521918 | Hammond | Jul 1970 | A |
3565077 | Glick | Feb 1971 | A |
3580256 | Wilkinson et al. | May 1971 | A |
3712651 | Shockley | Jan 1973 | A |
3752516 | Mumma | Aug 1973 | A |
3873140 | Bloch | Mar 1975 | A |
4029346 | Browning | Jun 1977 | A |
4036101 | Burnett | Jul 1977 | A |
4038988 | Perisse | Aug 1977 | A |
4105034 | Shalaby et al. | Aug 1978 | A |
4130639 | Shalaby et al. | Dec 1978 | A |
4140678 | Shalaby et al. | Feb 1979 | A |
4141087 | Shalaby et al. | Feb 1979 | A |
4186921 | Fox | Feb 1980 | A |
4205399 | Shalaby et al. | Jun 1980 | A |
4208511 | Shalaby et al. | Jun 1980 | A |
4319428 | Fox | Mar 1982 | A |
4403797 | Ragland, Jr. | Sep 1983 | A |
4510934 | Batra | Apr 1985 | A |
4572554 | Janssen et al. | Feb 1986 | A |
4792336 | Hlavacek et al. | Dec 1988 | A |
4870957 | Goble et al. | Oct 1989 | A |
4946377 | Kovach | Aug 1990 | A |
4962929 | Melton, Jr. | Oct 1990 | A |
4987665 | Dumican et al. | Jan 1991 | A |
5062344 | Gerker | Nov 1991 | A |
5098137 | Wardall | Mar 1992 | A |
5144961 | Chen et al. | Sep 1992 | A |
5156616 | Meadows et al. | Oct 1992 | A |
5178629 | Kammerer | Jan 1993 | A |
5217495 | Kaplan et al. | Jun 1993 | A |
5250053 | Snyder | Oct 1993 | A |
5250054 | Li | Oct 1993 | A |
5259846 | Granger et al. | Nov 1993 | A |
5263984 | Li et al. | Nov 1993 | A |
5279311 | Snyder | Jan 1994 | A |
5282809 | Kammerer et al. | Feb 1994 | A |
5284485 | Kammerer et al. | Feb 1994 | A |
5312423 | Rosenbluth et al. | May 1994 | A |
5318575 | Chesterfield et al. | Jun 1994 | A |
5320629 | Noda et al. | Jun 1994 | A |
5374278 | Chesterfield et al. | Dec 1994 | A |
5376118 | Kaplan et al. | Dec 1994 | A |
5391176 | de la Torre | Feb 1995 | A |
5395382 | DiGiovanni et al. | Mar 1995 | A |
5405352 | Weston | Apr 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5454820 | Kammerer et al. | Oct 1995 | A |
5456722 | McLeod et al. | Oct 1995 | A |
5464427 | Curtis et al. | Nov 1995 | A |
5464929 | Bezwada et al. | Nov 1995 | A |
5472446 | de la Torre | Dec 1995 | A |
5527323 | Jervis et al. | Jun 1996 | A |
5534011 | Greene, Jr. et al. | Jul 1996 | A |
5540703 | Barker, Jr. et al. | Jul 1996 | A |
5549618 | Fleenor et al. | Aug 1996 | A |
5562684 | Kammerer | Oct 1996 | A |
5569306 | Thal | Oct 1996 | A |
5571139 | Jenkins, Jr. | Nov 1996 | A |
5573286 | Rogozinski | Nov 1996 | A |
5591207 | Coleman | Jan 1997 | A |
5593189 | Little | Jan 1997 | A |
5595751 | Bezwada et al. | Jan 1997 | A |
5597579 | Bezwada et al. | Jan 1997 | A |
5607687 | Bezwada et al. | Mar 1997 | A |
5618552 | Bezwada et al. | Apr 1997 | A |
5620698 | Bezwada et al. | Apr 1997 | A |
5628756 | Barker | May 1997 | A |
5645850 | Bezwada et al. | Jul 1997 | A |
5647616 | Hamilton | Jul 1997 | A |
5647874 | Hayhurst | Jul 1997 | A |
5648088 | Bezwada et al. | Jul 1997 | A |
5667528 | Colligan | Sep 1997 | A |
5683417 | Cooper | Nov 1997 | A |
5683419 | Thal | Nov 1997 | A |
5685037 | Fitzner et al. | Nov 1997 | A |
5698213 | Jamiolkowski et al. | Dec 1997 | A |
5700583 | Jamiolkowski et al. | Dec 1997 | A |
5702397 | Goble et al. | Dec 1997 | A |
5709708 | Thal | Jan 1998 | A |
5716368 | de la Torre et al. | Feb 1998 | A |
5725556 | Moser et al. | Mar 1998 | A |
5728109 | Schulze et al. | Mar 1998 | A |
5741332 | Schmitt | Apr 1998 | A |
5749898 | Schulze et al. | May 1998 | A |
5782864 | Lizardi | Jul 1998 | A |
5814069 | Schulze et al. | Sep 1998 | A |
5859150 | Jamiolkowski et al. | Jan 1999 | A |
5899920 | DeSatnick et al. | May 1999 | A |
5941900 | Bonutti | Aug 1999 | A |
5964783 | Grafton et al. | Oct 1999 | A |
5971447 | Steck, III | Oct 1999 | A |
5989252 | Fumex | Nov 1999 | A |
6024758 | Thal | Feb 2000 | A |
6045574 | Thal | Apr 2000 | A |
6143017 | Thal | Nov 2000 | A |
6221084 | Fleenor | Apr 2001 | B1 |
6267766 | Burkhart | Jul 2001 | B1 |
6296659 | Foerster | Oct 2001 | B1 |
6299612 | Ouchi | Oct 2001 | B1 |
6319271 | Schwartz et al. | Nov 2001 | B1 |
6322112 | Duncan | Nov 2001 | B1 |
6517578 | Hein | Feb 2003 | B2 |
6527794 | McDevitt et al. | Mar 2003 | B1 |
6527795 | Lizardi | Mar 2003 | B1 |
6540750 | Burkhart | Apr 2003 | B2 |
6547807 | Chan et al. | Apr 2003 | B2 |
6596015 | Pitt et al. | Jul 2003 | B1 |
6641596 | Lizardi | Nov 2003 | B1 |
6641597 | Burkhart et al. | Nov 2003 | B2 |
6652563 | Dreyfuss | Nov 2003 | B2 |
6660023 | McDevitt et al. | Dec 2003 | B2 |
6689154 | Bartlett | Feb 2004 | B2 |
6716234 | Grafton et al. | Apr 2004 | B2 |
6767037 | Wenstrom, Jr. | Jul 2004 | B2 |
6818010 | Eichhorn et al. | Nov 2004 | B2 |
6887259 | Lizardi | May 2005 | B2 |
6923824 | Morgan et al. | Aug 2005 | B2 |
6994719 | Grafton | Feb 2006 | B2 |
7029490 | Grafton et al. | Apr 2006 | B2 |
7048754 | Martin et al. | May 2006 | B2 |
7081126 | McDevitt et al. | Jul 2006 | B2 |
7217279 | Reese | May 2007 | B2 |
7226469 | Benavitz et al. | Jun 2007 | B2 |
7235090 | Buckman et al. | Jun 2007 | B2 |
7285124 | Foerster | Oct 2007 | B2 |
7309337 | Colleran et al. | Dec 2007 | B2 |
7338502 | Rosenblatt | Mar 2008 | B2 |
7381213 | Lizardi | Jun 2008 | B2 |
7390332 | Selvitelli et al. | Jun 2008 | B2 |
7455684 | Gradel et al. | Nov 2008 | B2 |
7582105 | Kolster | Sep 2009 | B2 |
7601165 | Stone | Oct 2009 | B2 |
7651509 | Bojarski et al. | Jan 2010 | B2 |
7654321 | Zazovsky et al. | Feb 2010 | B2 |
7658750 | Li | Feb 2010 | B2 |
7658751 | Stone et al. | Feb 2010 | B2 |
7682374 | Foerster et al. | Mar 2010 | B2 |
7695495 | Dreyfuss | Apr 2010 | B2 |
7703372 | Shakespeare | Apr 2010 | B1 |
7803173 | Burkhart et al. | Sep 2010 | B2 |
7875043 | Ashby et al. | Jan 2011 | B1 |
7883528 | Grafton et al. | Feb 2011 | B2 |
7883529 | Sinnott et al. | Feb 2011 | B2 |
7905903 | Stone et al. | Mar 2011 | B2 |
7905904 | Stone et al. | Mar 2011 | B2 |
7959650 | Kaiser et al. | Jun 2011 | B2 |
7981140 | Burkhart | Jul 2011 | B2 |
8012171 | Schmieding | Sep 2011 | B2 |
8088130 | Kaiser et al. | Jan 2012 | B2 |
8088146 | Wert et al. | Jan 2012 | B2 |
8114128 | Cauldwell et al. | Feb 2012 | B2 |
8118836 | Denham et al. | Feb 2012 | B2 |
8128658 | Kaiser et al. | Mar 2012 | B2 |
8137382 | Denham et al. | Mar 2012 | B2 |
8231653 | Dreyfuss | Jul 2012 | B2 |
8231654 | Kaiser et al. | Jul 2012 | B2 |
8323316 | Maiorino et al. | Dec 2012 | B2 |
8419769 | Thal | Apr 2013 | B2 |
8545535 | Hirotsuka et al. | Oct 2013 | B2 |
8608758 | Singhatat et al. | Dec 2013 | B2 |
8790369 | Orphanos et al. | Jul 2014 | B2 |
8790370 | Spenciner et al. | Jul 2014 | B2 |
8814905 | Sengun et al. | Aug 2014 | B2 |
8821543 | Hernandez et al. | Sep 2014 | B2 |
8821544 | Sengun et al. | Sep 2014 | B2 |
8821545 | Sengun | Sep 2014 | B2 |
8894684 | Sengun | Nov 2014 | B2 |
8974495 | Hernandez et al. | Mar 2015 | B2 |
9017381 | Kaiser et al. | Apr 2015 | B2 |
9034013 | Sengun | May 2015 | B2 |
9060763 | Sengun | Jun 2015 | B2 |
9060764 | Sengun | Jun 2015 | B2 |
9095331 | Hernandez et al. | Aug 2015 | B2 |
9179908 | Sengun | Nov 2015 | B2 |
9192373 | Sengun | Nov 2015 | B2 |
9198653 | Sengun et al. | Dec 2015 | B2 |
9271716 | Sengun | Mar 2016 | B2 |
9345468 | Sengun et al. | May 2016 | B2 |
9345567 | Sengun | May 2016 | B2 |
9532778 | Sengun et al. | Jan 2017 | B2 |
9737293 | Sengun et al. | Aug 2017 | B2 |
9757116 | Sengun | Sep 2017 | B2 |
9763655 | Sengun | Sep 2017 | B2 |
9795373 | Sengun | Oct 2017 | B2 |
9833229 | Hernandez et al. | Dec 2017 | B2 |
9872678 | Spenciner et al. | Jan 2018 | B2 |
9895145 | Sengun et al. | Feb 2018 | B2 |
10258321 | Sengun | Apr 2019 | B2 |
10271833 | Sengun | Apr 2019 | B2 |
10292695 | Sengun et al. | May 2019 | B2 |
10524777 | Sengun | Jan 2020 | B2 |
10631848 | Sengun et al. | Apr 2020 | B2 |
10695047 | Sengun | Jun 2020 | B2 |
10751041 | Spenciner et al. | Aug 2020 | B2 |
10835231 | Hernandez et al. | Nov 2020 | B2 |
10912549 | Sengun et al. | Feb 2021 | B2 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020029066 | Foerster | Mar 2002 | A1 |
20030004545 | Burkhart et al. | Jan 2003 | A1 |
20030050667 | Grafton et al. | Mar 2003 | A1 |
20030120309 | Colleran et al. | Jun 2003 | A1 |
20030130695 | McDevitt et al. | Jul 2003 | A1 |
20030229362 | Chan et al. | Dec 2003 | A1 |
20040093031 | Burkhart et al. | May 2004 | A1 |
20040098050 | Foerster et al. | May 2004 | A1 |
20040153074 | Bojarski et al. | Aug 2004 | A1 |
20040172062 | Burkhart | Sep 2004 | A1 |
20040199185 | Davignon | Oct 2004 | A1 |
20040236373 | Anspach | Nov 2004 | A1 |
20050033363 | Bojarski et al. | Feb 2005 | A1 |
20050119696 | Walters et al. | Jun 2005 | A1 |
20050137624 | Fallman | Jun 2005 | A1 |
20050165416 | Bojarski | Jul 2005 | A1 |
20050187577 | Selvitelli et al. | Aug 2005 | A1 |
20050251208 | Elmer et al. | Nov 2005 | A1 |
20060106423 | Weisel et al. | May 2006 | A1 |
20060178680 | Nelson et al. | Aug 2006 | A1 |
20060178702 | Pierce et al. | Aug 2006 | A1 |
20060259076 | Burkhart | Nov 2006 | A1 |
20060293710 | Foerster et al. | Dec 2006 | A1 |
20070027476 | Harris et al. | Feb 2007 | A1 |
20070032792 | Collin et al. | Feb 2007 | A1 |
20070060922 | Dreyfuss | Mar 2007 | A1 |
20070083236 | Sikora et al. | Apr 2007 | A1 |
20070135843 | Burkhart | Jun 2007 | A1 |
20070150003 | Dreyfuss et al. | Jun 2007 | A1 |
20070156148 | Fanton et al. | Jul 2007 | A1 |
20070156149 | Fanton et al. | Jul 2007 | A1 |
20070156150 | Fanton et al. | Jul 2007 | A1 |
20070156176 | Fanton et al. | Jul 2007 | A1 |
20070219557 | Bourque et al. | Sep 2007 | A1 |
20070219558 | Deutsch | Sep 2007 | A1 |
20070225719 | Stone et al. | Sep 2007 | A1 |
20070239209 | Fallman | Oct 2007 | A1 |
20080009901 | Redmond et al. | Jan 2008 | A1 |
20080009904 | Bourque et al. | Jan 2008 | A1 |
20080027446 | Stone et al. | Jan 2008 | A1 |
20080065114 | Stone et al. | Mar 2008 | A1 |
20080077182 | Geissler et al. | Mar 2008 | A1 |
20080091237 | Schwartz et al. | Apr 2008 | A1 |
20080103528 | Zirps et al. | May 2008 | A1 |
20080140092 | Stone et al. | Jun 2008 | A1 |
20080147063 | Cauldwell et al. | Jun 2008 | A1 |
20080188893 | Selvitelli et al. | Aug 2008 | A1 |
20080195205 | Schwartz | Aug 2008 | A1 |
20080208265 | Frazier et al. | Aug 2008 | A1 |
20080228265 | Spence et al. | Sep 2008 | A1 |
20080255613 | Kaiser | Oct 2008 | A1 |
20080275469 | Fanton et al. | Nov 2008 | A1 |
20080312689 | Denham et al. | Dec 2008 | A1 |
20090023984 | Stokes et al. | Jan 2009 | A1 |
20090036905 | Schmieding | Feb 2009 | A1 |
20090043317 | Cavanaugh et al. | Feb 2009 | A1 |
20090054928 | Denham et al. | Feb 2009 | A1 |
20090062850 | Ken | Mar 2009 | A1 |
20090062854 | Kaiser et al. | Mar 2009 | A1 |
20090082790 | Shad et al. | Mar 2009 | A1 |
20090082805 | Kaiser et al. | Mar 2009 | A1 |
20090082807 | Miller et al. | Mar 2009 | A1 |
20090088798 | Snyder et al. | Apr 2009 | A1 |
20090099598 | McDevitt et al. | Apr 2009 | A1 |
20090138042 | Thal | May 2009 | A1 |
20090234387 | Miller et al. | Sep 2009 | A1 |
20090281568 | Cendan et al. | Nov 2009 | A1 |
20090281581 | Berg | Nov 2009 | A1 |
20090287246 | Cauldwell et al. | Nov 2009 | A1 |
20090306711 | Stone et al. | Dec 2009 | A1 |
20090312776 | Kaiser et al. | Dec 2009 | A1 |
20090312794 | Nason et al. | Dec 2009 | A1 |
20090318958 | Ochiai | Dec 2009 | A1 |
20100004683 | Hoof et al. | Jan 2010 | A1 |
20100016892 | Kaiser et al. | Jan 2010 | A1 |
20100094425 | Bentley et al. | Apr 2010 | A1 |
20100162882 | Shakespeare | Jul 2010 | A1 |
20100204730 | Maiorino et al. | Aug 2010 | A1 |
20100249809 | Singhatat et al. | Sep 2010 | A1 |
20100249834 | Dreyfuss | Sep 2010 | A1 |
20100256677 | Albertorio et al. | Oct 2010 | A1 |
20100292732 | Hirotsuka et al. | Nov 2010 | A1 |
20100292792 | Stone et al. | Nov 2010 | A1 |
20110022083 | DiMatteo et al. | Jan 2011 | A1 |
20110022084 | Sengun et al. | Jan 2011 | A1 |
20110077667 | Singhatat et al. | Mar 2011 | A1 |
20110098727 | Kaiser et al. | Apr 2011 | A1 |
20110152928 | Colleran et al. | Jun 2011 | A1 |
20110190815 | Saliman | Aug 2011 | A1 |
20110208239 | Stone et al. | Aug 2011 | A1 |
20110208240 | Stone et al. | Aug 2011 | A1 |
20110213416 | Kaiser | Sep 2011 | A1 |
20110238111 | Frank | Sep 2011 | A1 |
20110264140 | Lizardi et al. | Oct 2011 | A1 |
20110264141 | Denham et al. | Oct 2011 | A1 |
20110270278 | Overes et al. | Nov 2011 | A1 |
20120046693 | Denham et al. | Feb 2012 | A1 |
20120053630 | Denham et al. | Mar 2012 | A1 |
20120059417 | Norton et al. | Mar 2012 | A1 |
20120101523 | Wert et al. | Apr 2012 | A1 |
20120101524 | Bennett | Apr 2012 | A1 |
20120130423 | Sengun et al. | May 2012 | A1 |
20120130424 | Sengun | May 2012 | A1 |
20120150223 | Manos et al. | Jun 2012 | A1 |
20120165864 | Hernandez et al. | Jun 2012 | A1 |
20120179199 | Hernandez et al. | Jul 2012 | A1 |
20120253389 | Sengun et al. | Oct 2012 | A1 |
20120253390 | Sengun | Oct 2012 | A1 |
20120265222 | Gordin et al. | Oct 2012 | A1 |
20120296375 | Thal | Nov 2012 | A1 |
20130110165 | Burkhart et al. | May 2013 | A1 |
20130158598 | Lizardi | Jun 2013 | A1 |
20130253581 | Robison | Sep 2013 | A1 |
20130261664 | Spenciner et al. | Oct 2013 | A1 |
20130296895 | Sengun | Nov 2013 | A1 |
20130296896 | Sengun | Nov 2013 | A1 |
20130296931 | Sengun | Nov 2013 | A1 |
20130296934 | Sengun | Nov 2013 | A1 |
20140039551 | Donahue | Feb 2014 | A1 |
20140081324 | Sengun | Mar 2014 | A1 |
20140107701 | Lizardi et al. | Apr 2014 | A1 |
20140188163 | Sengun | Jul 2014 | A1 |
20140188164 | Sengun | Jul 2014 | A1 |
20140277132 | Sengun et al. | Sep 2014 | A1 |
20140330312 | Spenciner et al. | Nov 2014 | A1 |
20140343606 | Hernandez et al. | Nov 2014 | A1 |
20140343607 | Sengun et al. | Nov 2014 | A1 |
20150012038 | Sengun et al. | Jan 2015 | A1 |
20150025572 | Sengun | Jan 2015 | A1 |
20150045832 | Sengun | Feb 2015 | A1 |
20150238183 | Sengun | Aug 2015 | A1 |
20150245832 | Sengun | Sep 2015 | A1 |
20150297214 | Hernandez et al. | Oct 2015 | A1 |
20150313587 | Lizardi et al. | Nov 2015 | A1 |
20160128687 | Sengun | May 2016 | A1 |
20160278761 | Sengun et al. | Sep 2016 | A1 |
20160296222 | Sengun | Oct 2016 | A1 |
20170000479 | Sengun et al. | Jan 2017 | A1 |
20170303913 | Sengun et al. | Oct 2017 | A1 |
20170360428 | Sengun | Dec 2017 | A1 |
20170367690 | Sengun | Dec 2017 | A1 |
20180042600 | Hernandez et al. | Feb 2018 | A1 |
20180098763 | Spenciner et al. | Apr 2018 | A1 |
20180140292 | Sengun et al. | May 2018 | A1 |
20190223857 | Sengun | Jul 2019 | A1 |
20190223860 | Sengun et al. | Jul 2019 | A1 |
20200178952 | Sengun | Jun 2020 | A1 |
20200383681 | Sengun et al. | Dec 2020 | A1 |
20210030411 | Spenciner et al. | Feb 2021 | A1 |
20210038214 | Sengun | Feb 2021 | A1 |
20210093312 | Hernandez et al. | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
724861 | Oct 2000 | AU |
2008229746 | Oct 2008 | AU |
2772500 | Sep 2013 | CA |
2719234 | Aug 2005 | CN |
101252887 | Aug 2008 | CN |
101442944 | May 2009 | CN |
101961256 | Feb 2011 | CN |
102113901 | Jul 2011 | CN |
0706779 | Apr 1996 | EP |
0 870 471 | Oct 1998 | EP |
1 199 035 | Apr 2002 | EP |
1 707 127 | Oct 2006 | EP |
2 277 457 | Jan 2011 | EP |
2 455 003 | May 2012 | EP |
2 572 650 | Mar 2013 | EP |
2000-512193 | Sep 2000 | JP |
2008-543509 | Dec 2008 | JP |
95019139 | Jul 1995 | WO |
97017901 | May 1997 | WO |
98011825 | Mar 1998 | WO |
98042261 | Oct 1998 | WO |
0106933 | Feb 2001 | WO |
03022161 | Mar 2003 | WO |
2007002561 | Jan 2007 | WO |
2007005394 | Jan 2007 | WO |
2007078281 | Jul 2007 | WO |
2007109769 | Sep 2007 | WO |
WO-2009107121 | Sep 2009 | WO |
Entry |
---|
U.S. Appl. No. 12/977,146, filed Dec. 23, 2010, Adjustable Anchor Systems and Methods. |
U.S. Appl. No. 12/977,154, filed Dec. 23, 2010, Surgical Filament Snare Assemblies. |
U.S. Appl. No. 13/218,810, filed Aug. 26, 2011, Surgical Filament Snare Assemblies. |
U.S. Appl. No. 13/336,151, filed Dec. 23, 2011, Adjustable Anchor Systems and Methods. |
U.S. Appl. No. 13/435,790, filed Mar. 30, 2012, Surgical Filament Assemblies. |
U.S. Appl. No. 13/435,834, filed Mar. 30, 2012, Surgical Filament Snare Assemblies. |
U.S. Appl. No. 13/435,846, filed Mar. 30, 2012, Surgical Filament Snare Assemblies. |
U.S. Appl. No. 13/465,288, filed May 7, 2012, Systems, Devices, and Methods for Securing Tissue. |
U.S. Appl. No. 13/465,299, filed May 7, 2012, Systems, Devices, and Methods for Securing Tissue. |
U.S. Appl. No. 13/465,362, filed May 7, 2012, Systems, Devices, and Methods for Securing Tissue Using a Suture Having One or More Protrusions. |
U.S. Appl. No. 13/465,376, filed May 7, 2012, Systems, Devices, and Methods for Securing Tissue Using Snare Assemblies and Soft Anchors. |
U.S. Appl. No. 13/623,429, filed Sep. 20, 2012, Systems, Devices, and Methods for Securing Tissue Using Hard Anchors. |
U.S. Appl. No. 13/728,044, filed Dec. 27, 2012, Surgical Constructs and Methods for Securing Tissue. |
U.S. Appl. No. 14/145,486, filed Dec. 31, 2013, Surgical Constructs With Collapsing Suture Loop and Methods for Securing Tissue. |
U.S. Appl. No. 14/145,501, filed Dec. 31, 2013, Surgical Constructs and Methods for Securing Tissue. |
U.S. Appl. No. 14/334,844, filed Jul. 18, 2014, Surgical Filament Assemblies. |
U.S. Appl. No. 14/448,812, filed Jul. 31, 2014, Adjustable Anchor Systems and Methods. |
U.S. Appl. No. 14/448,827, filed Jul. 31, 2014, Surgical Filament Snare Assemblies. |
U.S. Appl. No. 14/448,847, filed Jul. 31, 2014, Surgical Filament Snare Assemblies. |
U.S. Appl. No. 14/448,852, filed Jul. 31, 2014, Surgical Filament Snare Assemblies. |
U.S. Appl. No. 14/522,562, filed Oct. 23, 2014, Systems, Devices, and Methods for Securing Tissue Using a Suture Having One or More Protrusions. |
U.S. Appl. No. 14/711,959, filed May 14, 2015, Systems, Devices, and Methods for Securing Tissue Using a Suture Having One or More Protrusions. |
U.S. Appl. No. 14/713,566, filed May 15, 2015, Systems, Devices, and Methods for Securing Tissue. |
U.S. Appl. No. 14/754,773, filed Jun. 30, 2015, Adjustable Anchor Systems and Methods. |
U.S. Appl. No. 15/001,513, filed Jan. 20, 2016, Surgical Constructs and Methods for Securing Tissue. |
U.S. Appl. No. 15/143,496, filed Apr. 29, 2016, Systems, Devices, and Methods for Securing Tissue Using Snare Assemblies and Soft Anchors. |
U.S. Appl. No. 15/143,502, filed Apr. 29, 2016, Surgical Filament Snare Assemblies. |
U.S. Appl. No. 15/264,645, filed Sep. 14, 2016, Surgical Filament Snare Assemblies. |
U.S. Appl. No. 15/648,068, filed Jul. 12, 2017, Surgical Constructs With Collapsing Suture Loop and Methods for Securing Tissue. |
U.S. Appl. No. 15/692,885, filed Aug. 31, 2017, Systems, Devices, and Methods for Securing Tissue Using Hard Anchors. |
U.S. Appl. No. 15/700,901, filed Sep. 11, 2017, Systems, Devices, and Methods for Securing Tissue. |
U.S. Appl. No. 15/794,625, filed Oct. 26, 2017, Adjustable Anchor Systems and Methods. |
U.S. Appl. No. 15/840,106, filed Dec. 13, 2017, Surgical Filament Assemblies. |
U.S. Appl. No. 15/874,063, filed Jan. 18, 2018, Surgical Filament Snare Assemblies. |
Indian First Examination Report for Application No. 3243/DEL/2011, dated Dec. 30, 2019 (6 pages). |
[No Author Listed] Arthroscopic Knot Tying Manual 2005. DePuy Mitek. 27 pages. |
[No Author Listed] Gryphon Brochure. DePuy Mitek. 2 pages (undated). |
[No Author Listed] Versalok Anchor. Brochure. DePuy Mitek, a Johnson & Johnson company, 92 pages, 2007. |
Allcock, The Encyclopedia of Polymer Science, vol. 13, pp. 31-41, Wiley Intersciences, John Wiley & Sons, 1988. |
Chinese Office Action for Application No. 201310163420.7, dated May 5, 2016 (21 pages). |
Chinese Office Action for Application No. 201310163700.8 dated Jun. 3, 2016 (14 pages). |
Chinese Office Action for Application No. 201310429109.2 dated Oct. 24, 2016 (13 pages). |
Chinese Office Action for Application No. 201310741440.8, dated Jan. 26, 2017 (12 pages). |
Cohn et al., Biodegradable PEO/PLA block copolymers. J Biomed Mater Res. Nov. 1988;22(11):993-1009. |
Cohn et al., Polym Preprint. 1989;30(1):498. |
Dahl et al., Biomechanical characteristics of 9 arthroscopic knots. Arthroscopy. Jun. 2010;26(6):813-8. |
EP Search Report for Application No. 11190157.5 dated Feb. 27, 2012. (8 pages). |
Extended European Search Report for Application No. 11190157.5 dated Jul. 6, 2012. (10 pages). |
EP Search Report for Application No. 11190159.1 dated Feb. 21, 2012. (8 pages). |
Extended European Search Report for Application No. 11190159.1 dated Jul. 6, 2012. (11 pages). |
Extended European Search Report for Application No. 11195100.0 dated Oct. 17, 2012. (7 pages). |
Extended European Search Report for Application No. 13166905.3 dated Aug. 13, 2013 (9 Pages). |
Extended European Search Report for Application No. 13166907.9, dated Aug. 1, 2013 (6 pages). |
Extended European Search Report for Application No. 13166908.7, dated Aug. 23, 2013 (8 pages). |
Extended European Search Report for Application No. 13185425.9 dated Dec. 16, 2013 (9 Pages). |
Extended European Search Report for Application No. 13199724.9 dated Apr. 4, 2014 (6 Pages). |
Extended European Search Report for Application No. 16205548.7, dated Dec. 22, 2017 (11 pages). |
Heller, Handbook of Biodegradable Polymers, edited by Domb, et al, Hardwood Academic Press, pp. 99-118 (1997). |
International Search Report for Application No. PCT/US2011/067119, dated Jun. 4, 2012. (6 pages). |
Japanese Office Action for Application No. 2011-281088, dated Nov. 10, 2015 (4 pages). |
Japanese Office Action for Application No. 2013-097645, dated May 9, 2017 (6 pages). |
Japanese Office Action for Application No. 2013-268840, dated Sep. 26, 2017 (5 pages). |
Kemnitzer et al., Handbook of biodegradable Polymers. Eds. Domb et al. Hardwood Acad. Press. 1997;251-72. |
Vandorpe et al., Handbook of Biodegradable Polymers, edited by Domb, et al., Hardwood Acad. Press, pp. 161-182 (1997). |
Number | Date | Country | |
---|---|---|---|
20190216457 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13728044 | Dec 2012 | US |
Child | 15001513 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15001513 | Jan 2016 | US |
Child | 16363421 | US |