1. Field of the Invention
The present invention generally relates to medical devices and methods, and in particular, surgical instruments configured to weld and/or incise tissue.
2. Description of the Related Art
In various open, endoscopic, and/or laparoscopic surgeries, for example, it may be necessary to coagulate, seal, and/or fuse tissue. One means of sealing tissue relies upon the application of electrical energy to tissue captured within an end effector of a surgical instrument in order to cause thermal effects within the tissue. Various mono-polar and bi-polar radio frequency (Rf) surgical instruments and surgical techniques have been developed for such purposes. In general, the delivery of Rf energy to the captured tissue elevates the temperature of the tissue and, as a result, the energy can at least partially denature proteins within the tissue. Such proteins, such as collagen, for example, may be denatured into a proteinaceous amalgam that intermixes and fuses, or “welds”, together as the proteins renature. As the treated region heals over time, this biological “weld” may be reabsorbed by the body's wound healing process.
In certain arrangements of a bi-polar radiofrequency surgical instrument, the surgical instrument can comprise opposing first and second jaws, wherein the face of each jaw can comprise an electrode. In use, the tissue can be captured between the jaw faces such that electrical current can flow between the electrodes in the opposing jaws and through the tissue positioned therebetween. Such instruments may have to seal or “weld” many types of tissues, such as anatomic structures having walls with irregular or thick fibrous content, bundles of disparate anatomic structures, substantially thick anatomic structures, and/or tissues with thick fascia layers such as large diameter blood vessels, for example. With particular regard to sealing large diameter blood vessels, for example, such applications may require a high strength tissue weld immediately post-treatment.
The foregoing discussion is intended only to illustrate various aspects of the related art in the field of the invention at the time, and should not be taken as a disavowal of claim scope.
In various embodiments, a surgical instrument may generally comprise a shaft comprising a proximal end and a distal end, a handle extending from the proximal end, wherein the handle comprises a gripping portion, and a divisible trigger assembly extending from the handle, wherein a portion of the divisible trigger assembly is movable relative to the gripping portion between an unactuated position, a first actuated position, a second actuated position, and a third actuated position. The divisible trigger assembly may generally comprise a first trigger portion and a second trigger portion, wherein the first trigger portion and the second trigger portion form a single component when the portion of the divisible trigger assembly is in the unactuated position, wherein the second trigger portion is released from the first trigger portion when the portion of the divisible trigger assembly is in the first actuated position, wherein the second trigger portion is spaced distally from the first trigger portion when the portion of the divisible trigger assembly is in the second actuated position, and wherein the second trigger portion and the first trigger portion again form the single component when the portion of the divisible trigger assembly is in the third actuated position.
In various embodiments, a separable trigger assembly for a surgical instrument may generally comprise a first trigger and a second trigger, wherein the first trigger and the second trigger are movable together on a first stroke of the separable trigger assembly, wherein the second trigger is configured to be biased away from the first trigger after the first stroke and before a second stroke, and wherein the second trigger is configured to be moved toward to the first trigger during the second stroke.
In various embodiments, a surgical instrument may generally comprise a shaft comprising a proximal end and a distal end, a handle extending from the proximal end, wherein the handle comprises a gripping portion, and a separable trigger assembly extending from the handle. The separable trigger assembly may generally comprise a first trigger movable between a first position distal from the gripping portion and a second position proximal to the gripping portion and a second trigger, wherein the second trigger forms part of the first trigger when the first trigger is in the first position, wherein the second trigger is configured to release from the first trigger when the first trigger is in the second position, and wherein the second trigger is movable toward the gripping portion once again after the second trigger has released from the first trigger.
The foregoing discussion should not be taken as a disavowal of claim scope.
Various features of the embodiments described herein are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows.
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Various embodiments are directed to apparatuses, systems, and methods for the treatment of tissue. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments, the scope of which is defined solely by the appended claims.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.
It will be appreciated that the terms “proximal” and “distal” may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.
Various embodiments of systems and methods of the invention relate to creating thermal “welds” or “fusion” within native tissue volumes. The alternative terms of tissue “welding” and tissue “fusion” may be used interchangeably herein to describe thermal treatments of a targeted tissue volume that result in a substantially uniform fused-together tissue mass, for example, in welding blood vessels that exhibit substantial burst strength immediately post-treatment. The strength of such welds is particularly useful for (i) permanently sealing blood vessels in vessel transection procedures; (ii) welding organ margins in resection procedures; (iii) welding other anatomic ducts wherein permanent closure is required; and also (iv) for performing vessel anastomosis, vessel closure or other procedures that join together anatomic structures or portions thereof. The welding or fusion of tissue as disclosed herein is to be distinguished from “coagulation”, “hemostasis” and other similar descriptive terms that generally relate to the collapse and occlusion of blood flow within small blood vessels or vascularized tissue. For example, any surface application of thermal energy can cause coagulation or hemostasis—but does not fall into the category of “welding” as the term is used herein. Such surface coagulation does not create a weld that provides any substantial strength in the treated tissue.
At the molecular level, the phenomena of truly “welding” tissue as disclosed herein may result from the thermally-induced denaturation of collagen and other protein molecules in a targeted tissue volume to create a transient liquid or gel-like proteinaceous amalgam. A selected energy density is provided in the targeted tissue to cause hydrothermal breakdown of intra- and intermolecular hydrogen crosslinks in collagen and other proteins. The denatured amalgam is maintained at a selected level of hydration—without desiccation—for a selected time interval which can be very brief. The targeted tissue volume is maintained under a selected very high level of mechanical compression to insure that the unwound strands of the denatured proteins are in close proximity to allow their intertwining and entanglement. Upon thermal relaxation, the intermixed amalgam results in protein entanglement as re-crosslinking or renaturation occurs to thereby cause a uniform fused-together mass.
Various embodiments disclosed herein provide electrosurgical jaw structures adapted for transecting captured tissue between the jaws and for contemporaneously welding the captured tissue margins with controlled application of Rf energy. The jaw structures can comprise a cutting element which can cut or score tissue independently of the tissue capturing and welding functions of the jaw structures. In various embodiments, as described in greater detail further below, the jaw structures can comprise first and second opposing jaws that carry positive temperature coefficient (PTC) bodies for modulating Rf energy delivery to the engaged tissue.
According to certain embodiments, as described in greater detail below, a nested trigger assembly for a surgical instrument may generally comprise one of a separable trigger assembly and a divisible trigger assembly. A nested trigger assembly may comprise a first trigger and a second trigger wherein the second trigger may form a portion of the first trigger prior to a first stroke of the nested trigger assembly. The first trigger and the second trigger may be movable together on a first stroke of the nested trigger assembly. The second trigger may be configured to be biased away from the first trigger after the first stroke and before a second stroke. In at least one such embodiment, the second trigger may be configured to release from the first trigger after the first stroke. Thereafter, the second trigger can be movable through a second stroke independently of the first trigger. During and/or after the second stroke, the second trigger may reform the nested trigger assembly with the first trigger.
In various embodiments, as described in greater detail further below, the surgical instrument may comprise an end-effector extending from the distal end of the shaft. The end effector may comprise an openable and closeable jaw assembly, and a knife edge as described herein. The end-effector may be configured to perform a first function and a second function. The first trigger may be configured to actuate the first function. In various embodiments, the first function may comprise opening and closing the jaw assembly. The first trigger may comprise a closure trigger configured to open and close the jaw assembly. The second trigger may be configured to actuate the second function. In various embodiments, the second function may comprise transecting tissue in the jaw assembly with the knife edge. The second trigger may comprise a firing trigger configured to move the knife edge distally to transect the tissue between the jaw assembly.
Referring now to an exemplary embodiment,
Further to the above, the end effector 110 of the surgical instrument 100 may extend from a distal end of the shaft 106. In various embodiments, the end effector 110 may be configured for clamping, transecting, and/or welding tissue, as described in greater detail further below; however, the end effector 110 may be suitable for various types of surgical devices, such as, for example, endocutters, graspers, cutters, staplers, clip appliers, access devices, drug/gene therapy devices, ultrasound devices, RF and/or laser devices. In various embodiments, further to the above, the end effector 110 may comprise a first jaw 122a, a second jaw 122b, and at least one electrode. In at least one such embodiment, the first jaw 122a may be movable relative to the second jaw 122b between an open position and a closed position. In use, the at least one electrode may be adapted to be activated to apply electrosurgical energy to weld tissue captured within the end effector 110 wherein the at least one electrode may be coupled to a radiofrequency (Rf) energy source.
Referring to
Further to the above, the end effector 110 may comprise a translatable member 140 configured to contact first jaw 122a and pivot it downwardly toward second jaw 122b, as shown in
In various embodiments, the translatable member 140 may be at least partially advanced toward the distal end 111 of the end effector 110 to move the first jaw 122a toward the second jaw 122b. Thereafter, the translatable member 140 may be advanced further toward the distal end 111 of the end effector 110 to transect the tissue positioned between the jaws 122a and 122b. In certain embodiments, the distal, or leading, end of the I-beam portion may comprise a sharp, or knife, edge 161 which may be configured to incise the tissue. Before, during, and/or after the translatable member 140 is advanced through the tissue, an electrical current may be supplied to the first electrode 165a and the second electrode 165bs to weld the tissue. In various embodiments, the operation of the trigger assembly 128, such as, for example, the second trigger portion 130b, may advance the knife edge 161 to the distal end of a slot or channel 142. After the knife edge 161 has been sufficiently advanced, the trigger assembly 128 may be released and moved to its original, or unactuated, position in order to retract the knife edge 161 and/or translatable member 140, and allow the first jaw 122a to move into its open position again. In at least one embodiment, the surgical instrument may comprise a jaw spring (not shown) configured to bias the first jaw 122a into its open position and/or a trigger spring, such as trigger spring 101, for example, configured to bias the trigger assembly 128 into its unactuated position. Various other jaw closing mechanisms and electrosurgical energy-delivery surfaces are described in the following United States patents, the entire disclosures of which are incorporated herein by reference: U.S. Pat. Nos. 7,220,951; 7,189,233; 7,186,253; 7,125,409; 7,112,201; 7,087,054; 7,083,619; 7,070,597; 7,041,102; 7,011,657; 6,929,644; 6,926,716; 6,905,497; 6,802,843; 6,770,072; 6,656,177; 6,533,784; and 6,500,176.
In various embodiments, the surgical instrument 100 may comprise a first conductor, such as, for example, an insulated wire, that may be operably coupled with the first electrode 165a in the first jaw 122a, and a second conductor, such as, for example, an insulated wire, that may be operably coupled with the second electrode 165b in the second jaw 122b. The first and second conductors may extend through shaft 106 between an electrical connector in the handle 105 and the first electrode 165a and second electrode 165b in the end effector 110. In use, the first and second conductors may be operably coupled to an electrical source 145 and a controller 150 by electrical leads in the cable 152 for the first electrode 165a and second electrode 165b to function as paired bi-polar electrodes with a positive polarity (+) and a negative polarity (−), for example. In at least one embodiment, one of the first electrode 165a and second electrodes 165b may be operably coupled with a positive (+) voltage terminal of the electrical source 145 and the other of the first electrode 165a and second electrode 165b may be electrically coupled with the negative voltage (−) terminal of the electrical source 145. Owing to the opposite polarities of the first electrode 165a and second electrode 165b, current may flow through the tissue positioned between the first electrode 165a and second electrode 165b and heat the tissue to a desired temperature. In certain embodiments, the translatable member 140 may act as an electrode when it is electrically coupled to a positive terminal or negative terminal of the electrical source 145, and/or any suitable ground.
According to certain embodiments, a surgical instrument may comprise, one, a shaft comprising a proximal end and a distal end and, two, a handle extending from the proximal end, wherein the handle comprises a gripping portion and a separable trigger assembly extending from the gripping portion. In various embodiments, as mentioned further above, the separable trigger assembly may comprise a first trigger and a second trigger. In use, the first and second triggers of the trigger assembly may be movable between a first, unactuated position spaced apart from the gripping portion (
The operation of divisible trigger assembly 128 described above can allow the surgical instrument to be operated in two separate stages. More particularly, moving the trigger portions 130a and 130b of the trigger assembly 128 between an unactuated position and their first actuated position can operate the surgical instrument in its first stage while moving the second trigger portion 130b between its second actuated position and its third actuated position can operate the surgical instrument in its second stage. Stated another way, in various embodiments, a first stroke of the trigger portions 130a and 130b together can actuate the first operating stage while a second stroke of the second trigger portion 130b, alone, can actuate the second operating stage. In various circumstances, further to the above, the first operating stage of the surgical instrument can move the jaws of the end effector into a closed configuration while the second operating stage can advance a cutting member relative to the jaws and/or transmit energy to the tissue captured between the jaws, for example. With regard to the exemplary embodiment depicted in
As shown in
As shown in
In various embodiments, referring again to
Among other things, the surgical instrument 100 can be configured to, one, manipulate tissue using the jaws 122a and 122b, two, transect the tissue using the knife 161 of translatable member 140 after the tissue has been compressed between the jaws 122a and 122b and, three, seal the tissue using energy supplied to at least one of the jaws 122a and 122b as described in greater detail below. In use, in various circumstances, a surgeon may desire to manipulate the tissue prior to transecting and/or sealing the tissue. In various embodiments, the surgical instrument 100 may be suitable for these purposes as the first actuation of the trigger assembly 128 may only advance the translatable member 140 a sufficient distance to close the jaws 122a and 122b without transecting the tissue captured therein and/or without heating the tissue. Thus, in the event that the surgeon desired to re-open the jaws 122a and 122b and re-position the jaws 122a and 122b relative to the tissue, the surgeon may do so prior to the transection of the tissue and/or prior to the application of energy to the tissue. In certain embodiments, the surgical instrument 100 can include a locking mechanism which holds the first trigger 103a in its first actuated position and, thus, holds the jaws 122a and 122b in their closed configuration. In such embodiments, the surgical instrument 100 can further include a release button, such as release button 176, for example, which can be configured to unlock the first trigger portion 103a and allow the first trigger portion 103a to be returned to its unactuated position. Correspondingly, the return of the first trigger portion 103a to its unactuated position can allow the jaws 122a and 122b to return to their actuated configuration wherein the jaws 122a and 122b can then be repositioned relative to the tissue, as described above. In various embodiments, the surgical instrument 100 can further include at least one return spring, such as trigger spring 101, for example, configured to return the trigger assembly 128 to its unactuated position and at least one spring configured to bias the jaws 122a and 122b into an open configuration after the trigger assembly 128 has been released from its second actuated position.
As outlined above, the surgical instrument 100 can be configured to apply energy to, or direct electrical current through, the tissue captured between the jaws 122a and 122b. In various embodiments, the jaws 122a and 122b can each include one or more electrodes, or conductive surfaces, which can be electrically coupled to the terminals of a power source having different voltage potentials. In various embodiments, the surgical instrument 100 can be configured such that at least one of the electrodes is electrically disconnected from the power source prior to and/or during the first actuation of the trigger assembly 128. In at least one such embodiment, the surgical instrument 100 may comprise a lockout mechanism which is configured to prevent current from flowing from the energy source 145, for example, to at least one of the electrodes, such as, for example, the first electrode 165a and/or second electrode 165b, until the trigger assembly 128 is in the second actuated position and/or moving between the second actuated position and the third actuated position, for example. In at least one such embodiment, the surgical instrument 100 can include a lockout system including a plurality of switches which must be actuated to close an electrical circuit including the first electrode 165a, the tissue, the second electrode 165b, and the energy source 145, for example, and allow the current to flow through the tissue. In the embodiment in which the circuit is closed only when the second trigger portion 103b is being moved from its second actuated position to its third actuated position, for example, the second actuation of the trigger assembly 128 controls the application of energy to the tissue. This embodiment is described in greater detail further below, although other switch arrangements to control the application of energy to the tissue are contemplated and could be used with the surgical instruments described herein.
Referring again to
When the trigger assembly 128 is moved into its first actuated position, referring now to
As described above, and referring to
Further to the above, the translatable member 140 can be advanced distally at the same time that energy is being applied to the tissue captured within the end effector, i.e., during the second stroke of the trigger assembly 128. When the second trigger portion 130b has reached its third actuated position, as described above, the circuit can remain closed thereby allowing the surgeon to apply additional energy to the tissue, if so desired. Upon returning the trigger assembly 128 to its unactuated position, the first switch 199a may open thereby interrupting the flow of electrical current through the supply conductor 189. Furthermore, once the trigger assembly 128 has been returned to its unactuated position, the connector bar 198 may no longer connect the first crescent contact 196 to the second crescent contact 197 which would also interrupt the flow of electrical current through the supply conductor 189. In certain embodiments, the surgical instrument 100 can further comprise a trigger return spring operably coupled with the first trigger portion 130a and/or the second trigger portion 130b which can be configured to return the first trigger portion 130a and/or the second trigger portion 130b to their unactuated positions. In at least one such embodiment, the surgical instrument 100 can include a first trigger spring operably coupled with the first trigger portion 130a and a second trigger spring operably coupled to the second trigger portion 130b wherein the first and second trigger springs can be configured to return the first and second trigger portions 130a and 130b independently of one another and/or at the same time. In various embodiments, the surgical instrument 100 can comprise at least one biasing spring, such as spring 109, for example, having a first end mounted to the handle housing and a second end mounted to the gear rack 104 which can be configured to pull the gear rack 104 proximally toward its unfired position.
Further to the above, the first and second trigger portions 130a and 130b can advance the gear rack 104 distally and, as the trigger portions 130a and 130b are being returned to their unactuated positions, the spring 109 can bias the rack 104 back to its unactuated position. In at least one such embodiment, the pawl 108 can slide relative to the ratchet teeth 103b and the gear teeth 103a can remesh and reset relative to the gear teeth 107 extending from the first trigger portion 130a. At such point, the surgical instrument 100 can be reused once again to capture tissue between the jaws 122a and 122b, apply energy to the tissue, and/or transect the tissue, as outlined above.
As mentioned above, the handle 105 may comprise a locking mechanism configured to retain the first trigger portion 130a in its first actuated position. For example, the first trigger portion 130a can comprise a lock 170 extending therefrom which can comprise a cantilever arm 171 and a latching, or locking surface, 172 which can be configured to enter a lock cavity 174 defined in the gripping portion 102 when the first trigger portion 103a is moved into its first actuated position. In at least one such embodiment, the locking surface 172 can move behind a lock surface 173 defined in the lock cavity 174. In order to unlock the first trigger portion 130a, the surgical instrument 100 can further comprise an actuator 176 which can be depressed to push the lock 170 out of the lock cavity 174. More particularly, the actuator 176 can be operably connected to a lever arm 175 which can be rotated or pivoted to contact the lock 170 when the actuator 176 is depressed. Once the actuator 176 is released by the surgeon, a return spring 177 can reposition and reset the actuator 176 and the lever arm 175.
In various embodiments, the trigger assembly 128 may comprise a release mechanism movable between a first position in which it is engaged with the second trigger portion 130b and a second position in which it is disengaged from the second trigger portion 130b. The release mechanism may be in the first position when the portion of the trigger assembly 128 is in the unactuated position and when the trigger assembly 128 is moved between its unactuated position and its first actuated position. The release mechanism can be moved from its first position to its second position to uncouple the second trigger portion 130b from the first trigger portion 130a. Thus, in various embodiments, the release mechanism can hold the first trigger portion 130a and the second trigger portion 130b together during the first actuation of the trigger assembly and release the second trigger portion 130b after the first actuation such that the second trigger portion 130b can be actuated once again as described above.
Referring to
In various embodiments, the separable trigger assembly 228 may comprise a release mechanism movable between an engaged position in which it contacts the second trigger 230b and a disengaged position in which it is free from contact with the second trigger 230b. The release mechanism may be in the engaged position prior to and during the first stroke and after the second stroke.
In various embodiments, the surgical instrument may comprise a switch that may be actuated to supply current to the electrodes positioned within the end effector. The surgical instrument may comprise a switch that may be tripped to supply current to the electrodes positioned within the end effector when the trigger assembly is moved into the third actuated position. In at least one embodiment, the switch may be in an open configuration as the trigger assembly is moved through the range of motion from the unactuated position to the third actuated position, and once tripped by the trigger assembly, such as, for example, when the second trigger is in the third actuated position, the switch may be in a closed configuration as the trigger assembly is moved through from the third actuated position to the unactuated position. In various embodiments, current may not flow through the electrodes in the end effector as the trigger assembly is moved from the unactuated position to the first actuated position and as the first jaw is being moved into its closed position.
In various embodiments, current may flow through the electrodes as the trigger assembly is moved from the first actuated position to the third actuated position. In various embodiments, current may flow through the electrodes as the trigger assembly is moved from the second actuated position to the third actuated position and as the knife edge is being advanced distally by the trigger assembly as described above. In various embodiments, the switch may be positioned within handle such that the switch is aligned with the trigger assembly when the trigger assembly is in the third actuated position.
Referring to
In various embodiments, surgical instrument 100 and/or accompanying system may comprise a control system and/or controller 150 to switch the surgical instrument 100 from one operating mode to another mode after the jaws 122a and 122b have been closed a predetermined amount. In various embodiments, the switchover may occur at 10%, 20%, 30%, 40%, 50%, 60%, 70%, and/or 80% of the jaw closure, for example. In certain embodiments, the surgical instrument 100 may comprise a sensor (not shown) configured to detect the degree to which the jaws 122a and 122b have been closed. In various embodiments, the switching between electrosurgical modes may be triggered by one or more operational parameters, such as (i) the degree of jaw closure as described above, (ii) the impedance of the engaged tissue, and/or (iii) the rate of change of impedance or any combination thereof. Furthermore, the polarity of the electrodes may be switched more than two times during the operation of the surgical instrument. Other operating modes are disclosed in U.S. patent application Ser. No. 12/050,462, entitled ELECTROSURGICAL INSTRUMENT AND METHOD, filed on Mar. 18, 2008, the entire disclosure of which is incorporated by reference herein.
In various embodiments, as described above, current may flow from one electrode to another while passing through the tissue captured by the end effector of the surgical instrument. As also described above, the current passing through the tissue may heat the tissue. In various circumstances, however, the tissue may become overheated. In order to avoid such overheating, the electrodes of various surgical instruments may comprise materials which may no longer conduct current, or may conduct at least substantially less current, when the electrode materials have reached or exceeded a certain temperature. Stated another way, in at least one embodiment, the electrical resistance of the electrode material may increase with the temperature of the material and, in certain embodiments, the electrical resistance of the material may increase significantly when the material has reached or exceeded a certain transition, or switching, temperature. In various circumstances, such materials may be referred to as positive temperature coefficient, or PTC, materials. In at least some such PTC materials, the PTC material may be comprised of a first non-conductive material, or substrate, which has a high electrical resistance and, in addition, a second, conductive material, or particles, having a lower electrical resistance interdispersed throughout the substrate material. In at least one embodiment, the substrate material may comprise polyethylene and/or high-density polyethylene (HDPE), for example, and the conductive material may comprise carbon particles, for example. In any event, when the temperature of the PTC material is below its transition temperature, the conductive material may be present in the non-conductive material in a sufficient volumetric density such that the current may flow through the PTC material via the conductive particles. When the temperature of the PTC material has exceeded its transition temperature, the substrate, or non-conductive material may have sufficiently expanded and/or changed states such that the conductive particles are no longer sufficiently in contact with one another in order provide a sufficient path for the current to flow therethrough. Stated another way, the expansion and/or state change of the substrate material may cause the volumetric density of the conductive particles to fall below a sufficient volumetric density in order for current to be conducted therethrough, or at least substantially conducted therethrough. In various circumstances, as a result of the above, the PTC material may act as a circuit breaker which can prevent, or at least inhibit, additional energy from reaching the tissue being treated, that is, at least until the PTC material has cooled sufficiently and reached a temperature which is below the transition, or switching, temperature. At such point, the PTC material could begin to conduct current again.
Further to the above, describing a material as having a positive temperature coefficient of resistance (PTC) may mean that the resistance of the material increases as the temperature of the material increases. Many metal-like materials exhibit electrical conduction that has a slight positive temperature coefficient of resistance. In such metal-like materials, the PTC's variable resistance effect may be characterized by a gradual increase in resistance that is linearly proportional to temperature, i.e., a linear PTC effect. A “nonlinear” PTC effect may be exhibited by certain types of polymer matrices, or substrates, which are doped with conductive particles. These polymer PTC compositions may comprise a base polymer that undergoes a phase change or can comprise a glass transition temperature Tg such that the PTC composition may have a resistance that increases sharply over a narrow temperature range.
Polymeric PTC material may consist of a crystalline or semi-crystalline polymer (e.g., polyethylene) that carries a dispersed filler of conductive particles, such as carbon powder or nickel particles, for example, therein. In use, a polymeric PTC material may exhibit temperature-induced changes in the base polymer in order to alter the electrical resistance of the polymer-particle composite. In a low temperature state, the crystalline structure of the base polymer may cause dense packing of the conductive particles (i.e., carbon) into its crystalline boundaries so that the particles may be in close proximity and allow current to flow through the PTC material via these carbon “chains”. When the PTC material is at a low temperature, numerous carbon chains may form the conductive paths through the material. When the PTC material is heated to a selected level, or an over-current causes I2R heating (Joule heating) within the PTC material, the polymer base material may be elevated in temperature until it exceeds a phase transformation temperature. As the polymer passes through this phase transformation temperature, the crystalline structure may change to an amorphous state. The amorphous state may cause the conductive particles to move apart from each other until the carbon chains are disrupted and can no longer conduct current. Thus, the resistance of the PTC material increases sharply. In general, the temperature at which the base polymer transitions to its amorphous state and affects conductivity is called its switching temperature Ts. In at least one embodiment, the transition or switching temperature Ts may be approximately 120 degrees Celsius, for example. In any event, as long as the base polymer of the PTC material stays above its switching temperature Ts, whether from external heating or from an overcurrent, the high resistance state will remain. Reversing the phase transformation allows the conductive particle chains to reform as the polymer re-crystallizes to thereby restore multiple current paths, and a low resistance, through the PTC material. Conductive polymer PTC compositions and their use are disclosed in U.S. Pat. Nos. 4,237,441; 4,304,987; 4,545,926; 4,849,133; 4,910,389; 5,106,538; and 5,880,668, the entire disclosures of which are incorporated by reference herein.
The devices disclosed herein may be designed to be disposed of after a single use, or they may be designed to be used multiple times. In either case, however, the device may be reconditioned for reuse after at least one use. Reconditioning may include a combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device may be disassembled, and any number of particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those of ordinary skill in the art will appreciate that the reconditioning of a device may utilize a variety of different techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of this application.
Preferably, the various embodiments of the devices described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. Other sterilization techniques can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, and/or steam.
Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Number | Name | Date | Kind |
---|---|---|---|
2366274 | Luth et al. | Jan 1945 | A |
2458152 | Eakins | Jan 1949 | A |
2510693 | Green | Jun 1950 | A |
3166971 | Stoecker | Jan 1965 | A |
3580841 | Cadotte et al. | May 1971 | A |
3703651 | Blowers | Nov 1972 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4058126 | Leveen | Nov 1977 | A |
4220154 | Semm | Sep 1980 | A |
4237441 | van Konynenburg et al. | Dec 1980 | A |
4281785 | Brooks | Aug 1981 | A |
4304987 | van Konynenburg | Dec 1981 | A |
4545926 | Fouts, Jr. et al. | Oct 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4582236 | Hirose | Apr 1986 | A |
4761871 | O'Connor et al. | Aug 1988 | A |
4849133 | Yoshida et al. | Jul 1989 | A |
4910389 | Sherman et al. | Mar 1990 | A |
5104025 | Main et al. | Apr 1992 | A |
5106538 | Barma et al. | Apr 1992 | A |
5108383 | White | Apr 1992 | A |
5190541 | Abele et al. | Mar 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5309927 | Welch | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5395312 | Desai | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5428504 | Bhatla | Jun 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5480409 | Riza | Jan 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5504650 | Katsui et al. | Apr 1996 | A |
5511556 | DeSantis | Apr 1996 | A |
5522839 | Pilling | Jun 1996 | A |
5558671 | Yates | Sep 1996 | A |
5563179 | Stone et al. | Oct 1996 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5709680 | Yates et al. | Jan 1998 | A |
5716366 | Yates | Feb 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5800432 | Swanson | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5817033 | DeSantis et al. | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5880668 | Hall | Mar 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5984938 | Yoon | Nov 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6013052 | Durman et al. | Jan 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6099483 | Palmer et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6206876 | Levine et al. | Mar 2001 | B1 |
6292700 | Morrison et al. | Sep 2001 | B1 |
6340878 | Oglesbee | Jan 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6443968 | Holthaus et al. | Sep 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6503248 | Levine | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558376 | Bishop | May 2003 | B2 |
6572639 | Ingle et al. | Jun 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6602252 | Mollenauer | Aug 2003 | B2 |
6635057 | Harano et al. | Oct 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656198 | Tsonton et al. | Dec 2003 | B2 |
6673248 | Chowdhury | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6789939 | Schrödinger et al. | Sep 2004 | B2 |
6800085 | Selmon et al. | Oct 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6811842 | Ehrnsperger et al. | Nov 2004 | B1 |
6821273 | Mollenauer | Nov 2004 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6860880 | Treat et al. | Mar 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908463 | Treat et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929622 | Chian | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7169156 | Hart | Jan 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7235073 | Levine et al. | Jun 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7267685 | Butaric et al. | Sep 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7307313 | Ohyanagi et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7354440 | Truckai et al. | Apr 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7435582 | Zimmermann et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7488319 | Yates | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7513025 | Fischer | Apr 2009 | B2 |
7517349 | Truckai et al. | Apr 2009 | B2 |
7550216 | Ofer et al. | Jun 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7628792 | Guerra | Dec 2009 | B2 |
7641671 | Crainich | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645277 | McClurken et al. | Jan 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7666206 | Taniguchi et al. | Feb 2010 | B2 |
7703459 | Saadat et al. | Apr 2010 | B2 |
7708751 | Hughes et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7762445 | Heinrich et al. | Jul 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7803156 | Eder et al. | Sep 2010 | B2 |
7815641 | Dodde et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7879035 | Garrison et al. | Feb 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7931649 | Couture et al. | Apr 2011 | B2 |
7935114 | Takashino et al. | May 2011 | B2 |
7955331 | Truckai et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7981113 | Truckai et al. | Jul 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8070036 | Knodel et al. | Dec 2011 | B1 |
8136712 | Zingman | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8246618 | Bucciaglia et al. | Aug 2012 | B2 |
8282669 | Gerber et al. | Oct 2012 | B2 |
8298232 | Unger | Oct 2012 | B2 |
8323310 | Kingsley | Dec 2012 | B2 |
20020165541 | Whitman | Nov 2002 | A1 |
20030105474 | Bonutti | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030130693 | Levin et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030216722 | Swanson | Nov 2003 | A1 |
20040019350 | O'Brien et al. | Jan 2004 | A1 |
20040138621 | Jahns et al. | Jul 2004 | A1 |
20040193150 | Sharkey et al. | Sep 2004 | A1 |
20040232196 | Shelton, IV et al. | Nov 2004 | A1 |
20050085809 | Mucko et al. | Apr 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050203507 | Truckai et al. | Sep 2005 | A1 |
20050261581 | Hughes et al. | Nov 2005 | A1 |
20050267464 | Truckai et al. | Dec 2005 | A1 |
20060052778 | Chapman et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060069388 | Truckai et al. | Mar 2006 | A1 |
20060159731 | Shoshan | Jul 2006 | A1 |
20060217709 | Couture et al. | Sep 2006 | A1 |
20070027469 | Smith et al. | Feb 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070106158 | Madan et al. | May 2007 | A1 |
20070146113 | Truckai et al. | Jun 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070208312 | Norton et al. | Sep 2007 | A1 |
20070232920 | Kowalski et al. | Oct 2007 | A1 |
20070232926 | Stulen et al. | Oct 2007 | A1 |
20070232927 | Madan et al. | Oct 2007 | A1 |
20070232928 | Wiener et al. | Oct 2007 | A1 |
20070239025 | Wiener et al. | Oct 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20080071269 | Hilario et al. | Mar 2008 | A1 |
20080147062 | Truckai et al. | Jun 2008 | A1 |
20080167522 | Giordano et al. | Jul 2008 | A1 |
20080188851 | Truckai et al. | Aug 2008 | A1 |
20080221565 | Eder et al. | Sep 2008 | A1 |
20080262491 | Swoyer et al. | Oct 2008 | A1 |
20080269862 | Elmouelhi et al. | Oct 2008 | A1 |
20080294158 | Pappone et al. | Nov 2008 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090076534 | Shelton, IV et al. | Mar 2009 | A1 |
20090099582 | Isaacs et al. | Apr 2009 | A1 |
20090125027 | Fischer | May 2009 | A1 |
20090138003 | Deville et al. | May 2009 | A1 |
20090206140 | Scheib et al. | Aug 2009 | A1 |
20090209979 | Yates et al. | Aug 2009 | A1 |
20090248002 | Takashino et al. | Oct 2009 | A1 |
20090320268 | Cunningham et al. | Dec 2009 | A1 |
20090326530 | Orban, III et al. | Dec 2009 | A1 |
20100010299 | Bakos et al. | Jan 2010 | A1 |
20100032470 | Hess et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100036380 | Taylor et al. | Feb 2010 | A1 |
20100036405 | Giordano et al. | Feb 2010 | A1 |
20100076433 | Taylor et al. | Mar 2010 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081880 | Widenhouse et al. | Apr 2010 | A1 |
20100081881 | Murray et al. | Apr 2010 | A1 |
20100081882 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100081995 | Widenhouse et al. | Apr 2010 | A1 |
20100094323 | Isaacs et al. | Apr 2010 | A1 |
20100237132 | Measamer et al. | Sep 2010 | A1 |
20100264194 | Huang et al. | Oct 2010 | A1 |
20100274278 | Fleenor et al. | Oct 2010 | A1 |
20110087208 | Boudreaux et al. | Apr 2011 | A1 |
20110087209 | Boudreaux et al. | Apr 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110087219 | Boudreaux et al. | Apr 2011 | A1 |
20110087220 | Felder et al. | Apr 2011 | A1 |
20110155781 | Swensgard et al. | Jun 2011 | A1 |
20110190809 | Mohan et al. | Aug 2011 | A1 |
20110238065 | Hunt et al. | Sep 2011 | A1 |
20110251608 | Timm et al. | Oct 2011 | A1 |
20110251609 | Johnson et al. | Oct 2011 | A1 |
20110251612 | Faller et al. | Oct 2011 | A1 |
20110251613 | Guerra et al. | Oct 2011 | A1 |
20110264093 | Schall | Oct 2011 | A1 |
20110276057 | Conlon et al. | Nov 2011 | A1 |
20110282339 | Weizman et al. | Nov 2011 | A1 |
20110301605 | Horner | Dec 2011 | A1 |
20110306963 | Dietz et al. | Dec 2011 | A1 |
20110306964 | Stulen et al. | Dec 2011 | A1 |
20110306965 | Norvell et al. | Dec 2011 | A1 |
20110306966 | Dietz et al. | Dec 2011 | A1 |
20110306967 | Payne et al. | Dec 2011 | A1 |
20110306968 | Beckman et al. | Dec 2011 | A1 |
20110306972 | Widenhouse et al. | Dec 2011 | A1 |
20110306973 | Cummings et al. | Dec 2011 | A1 |
20120010615 | Cummings et al. | Jan 2012 | A1 |
20120010616 | Huang et al. | Jan 2012 | A1 |
20120012636 | Beckman et al. | Jan 2012 | A1 |
20120012638 | Huang et al. | Jan 2012 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120022519 | Huang et al. | Jan 2012 | A1 |
20120022524 | Timm et al. | Jan 2012 | A1 |
20120022525 | Dietz et al. | Jan 2012 | A1 |
20120022526 | Aldridge et al. | Jan 2012 | A1 |
20120022527 | Woodruff et al. | Jan 2012 | A1 |
20120022528 | White et al. | Jan 2012 | A1 |
20120022529 | Shelton, IV et al. | Jan 2012 | A1 |
20120022530 | Woodruff et al. | Jan 2012 | A1 |
20120101488 | Aldridge et al. | Apr 2012 | A1 |
20120136353 | Romero | May 2012 | A1 |
20120150176 | Weizman | Jun 2012 | A1 |
20130023875 | Harris et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
29623113 | Oct 1997 | DE |
20004812 | Sep 2000 | DE |
10201569 | Jul 2003 | DE |
0340803 | Aug 1993 | EP |
0630612 | Dec 1994 | EP |
0705571 | Apr 1996 | EP |
0640317 | Sep 1999 | EP |
1749479 | Feb 2007 | EP |
1767157 | Mar 2007 | EP |
1878399 | Jan 2008 | EP |
1915953 | Apr 2008 | EP |
1532933 | May 2008 | EP |
1707143 | Jun 2008 | EP |
1943957 | Jul 2008 | EP |
1849424 | Apr 2009 | EP |
2042117 | Apr 2009 | EP |
2060238 | May 2009 | EP |
1810625 | Aug 2009 | EP |
2090238 | Aug 2009 | EP |
2092905 | Aug 2009 | EP |
2105104 | Sep 2009 | EP |
1747761 | Oct 2009 | EP |
1769766 | Feb 2010 | EP |
2151204 | Feb 2010 | EP |
2153791 | Feb 2010 | EP |
2243439 | Oct 2010 | EP |
1728475 | Aug 2011 | EP |
2353518 | Aug 2011 | EP |
WO 9322973 | Nov 1993 | WO |
WO 9635382 | Nov 1996 | WO |
WO 9800069 | Jan 1998 | WO |
WO 9840020 | Sep 1998 | WO |
WO 9857588 | Dec 1998 | WO |
WO 9923960 | May 1999 | WO |
WO 9940861 | Aug 1999 | WO |
WO 0025691 | May 2000 | WO |
WO 0128444 | Apr 2001 | WO |
WO 03001986 | Jan 2003 | WO |
WO 03013374 | Feb 2003 | WO |
WO 03020339 | Mar 2003 | WO |
WO 03028541 | Apr 2003 | WO |
WO 03030708 | Apr 2003 | WO |
WO 03068046 | Aug 2003 | WO |
WO 2004011037 | Feb 2004 | WO |
WO 2005052959 | Jun 2005 | WO |
WO 2006021269 | Mar 2006 | WO |
WO 2006036706 | Apr 2006 | WO |
WO 2006055166 | May 2006 | WO |
WO 2008020964 | Feb 2008 | WO |
WO 2008045348 | Apr 2008 | WO |
WO 2008099529 | Aug 2008 | WO |
WO 2008101356 | Aug 2008 | WO |
WO 2009022614 | Feb 2009 | WO |
WO 2009036818 | Mar 2009 | WO |
WO 2009039179 | Mar 2009 | WO |
WO 2009059741 | May 2009 | WO |
WO 2009082477 | Jul 2009 | WO |
WO 2009149234 | Dec 2009 | WO |
WO 2010017266 | Feb 2010 | WO |
WO 2010104755 | Sep 2010 | WO |
WO 2011089717 | Jul 2011 | WO |
Entry |
---|
International Search Report for PCT/US2012/051686, Jan. 24, 2013 (5 pages). |
Written Opinion for PCT/US2012/051686, Jan. 24, 2013 (6 pages). |
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949). |
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971). |
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947). |
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000). |
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998). |
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998). |
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004). |
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003). |
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009. |
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995). |
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000). |
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999). |
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004). |
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001). |
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003). |
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997). |
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011. |
Glaser and Subak-Sharpe, Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached). |
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26. |
Number | Date | Country | |
---|---|---|---|
20130053831 A1 | Feb 2013 | US |