The present disclosure is directed to medical devices and methods, and, more particularly, to electrosurgical instruments and methods for sealing and transecting tissue.
In various circumstances, a surgical instrument can be configured to apply energy to tissue in order to treat and/or destroy the tissue. In certain circumstances, a surgical instrument can comprise one or more electrodes which can be positioned against and/or positioned relative to the tissue such that electrical current can flow from one electrode, through the tissue, and to the other electrode. The surgical instrument can comprise an electrical input, a supply conductor electrically coupled with the electrodes, and/or a return conductor which can be configured to allow current to flow from the electrical input, through the supply conductor, through the electrodes and the tissue, and then through the return conductor to an electrical output, for example. In various circumstances, heat can be generated by the current flowing through the tissue, wherein the heat can cause one or more hemostatic seals to form within the tissue and/or between tissues. Such embodiments may be particularly useful for sealing blood vessels, for example. The surgical instrument can also comprise a cutting member that can be moved relative to the tissue and the electrodes in order to transect the tissue.
By way of example, energy applied by a surgical instrument may be in the form of radio frequency (“RF”) energy. RF energy is a form of electrical energy that may be in the frequency range of 300 kilohertz (kHz) to 1 megahertz (MHz). In application, RF surgical instruments transmit low frequency radio waves through electrodes, which cause ionic agitation, or friction, increasing the temperature of the tissue. Since a sharp boundary is created between the affected tissue and that surrounding it, surgeons can operate with a high level of precision and control, without much sacrifice to the adjacent normal tissue. The low operating temperatures of RF energy enables surgeons to remove, shrink or sculpt soft tissue while simultaneously sealing blood vessels. RF energy works particularly well on connective tissue, which is primarily comprised of collagen and shrinks when contacted by heat.
Further, in various open and laparoscopic surgeries, it may be necessary to coagulate, seal or fuse tissues. One means of sealing tissue relies upon the application of electrical energy to tissue captured within an end effector of a surgical instrument in order to cause thermal effects within the tissue. Various mono-polar and bi-polar RF jaw structures have been developed for such purposes. In general, the delivery of RF energy to the captured tissue elevates the temperature of the tissue and, as a result, the energy can at least partially denature proteins within the tissue. Such proteins, such as collagen, for example, may be denatured into a proteinaceous amalgam that intermixes and fuses, or “welds,” together as the proteins renature. As the treated region heals over time, this biological “weld” may be reabsorbed by the body's wound healing process.
In certain arrangements of a bi-polar radiofrequency (RF) jaw, the surgical instrument can comprise opposing first and second jaws, wherein the face of each jaw can comprise an electrode. In use, the tissue can be captured between the jaw faces such that electrical current can flow between the electrodes in the opposing jaws and through the tissue positioned therebetween. Such instruments may have to seal or “weld” many types of tissues, such as anatomic structures having walls with irregular or thick fibrous content, bundles of disparate anatomic structures, substantially thick anatomic structures, and/or tissues with thick fascia layers such as large diameter blood vessels, for example. With particular regard to sealing large diameter blood vessels, for example, such applications may require a high strength tissue weld immediately post-treatment.
The foregoing discussion is intended only to illustrate the present field and should not be taken as a disavowal of claim scope.
In various embodiments, a surgical instrument is provided. In at least one embodiment, the surgical instrument can comprise an end effector comprising a first flexible jaw defining a longitudinal axis and a channel, a second jaw, a cutting member including a distal end, and at least one compression element extending from the cutting member. Further, in these embodiments, the first jaw and the second jaw can be operably coupled together. Additionally, in these embodiments, in these embodiments, the cutting member can be sized and configured to fit at least partially within the channel and the cutting member can be configured to translate along the channel between a retracted position and a fully advanced position. Moreover, in these embodiments, the first flexible jaw can have a thickness less than or equal to about 1.3 mm in a direction perpendicular to the longitudinal axis and at a plane that transects the channel at the distal end of the cutting member when the cutting member is between the retracted position and the fully advanced position. Also, in these embodiments, the at least one compression element can be configured to cause the first flexible jaw to rotate with respect to the second jaw from an open position to a closed position when the cutting member translates with respect to the first flexible jaw beyond the retracted position.
In at least one embodiment, a surgical instrument is provided that can comprise an end effector comprising a first jaw, a second jaw, a cutting member configured to translate with respect to the first jaw and the second jaw, and at least one compression element extending from the cutting member. In these embodiments, the first jaw and the second jaw can be operably coupled together. Further, in these embodiments, the at least one compression element can be configured to contact the first jaw such that the first jaw rotates with respect to the second jaw when the cutting member translates with respect to the first jaw. Moreover, in these embodiments, the at least one compression element can comprise one or both of a roller and a low-friction material. Additionally, in these embodiments, the static coefficient of friction between the low-friction material and the first jaw can be less than or equal to about 0.10.
In at least one embodiment, a surgical instrument is provided that can comprise an end effector comprising a first jaw, a second jaw, a cutting member configured to translate with respect to the first jaw between a retracted position and a fully advanced position, and at least one compression element extending from the cutting member. In these embodiments, the first jaw and the second jaw can be operably coupled together. Further, in these embodiments, the cutting member can define a longitudinal axis. Additionally, the at least one compression element can be configured to contact the first jaw such that the first jaw rotates with respect to the second jaw between an open position and a closed position when the cutting member translates with respect to the first jaw. Moreover, the first jaw can be precurved such that the first jaw curves away from the longitudinal axis when the first jaw is in the open position and no external load is applied to the first jaw.
The foregoing discussion should not be taken as a disavowal of claim scope.
Various features of the embodiments described herein are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows.
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments, in one or more forms, and such exemplifications are not to be construed as limiting the scope of the claims in any manner.
Various embodiments are directed to apparatuses, systems, and methods for the treatment of tissue. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments, the scope of which is defined solely by the appended claims.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.
It will be appreciated that the terms “proximal” and “distal” may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.
The entire disclosures of the following non-provisional United States patents are hereby incorporated by reference herein:
Various embodiments of systems and methods relate to creating thermal “welds” or “fusion” within native tissue volumes. The alternative terms of tissue “welding” and tissue “fusion” may be used interchangeably herein to describe thermal treatments of a targeted tissue volume that result in a substantially uniform fused-together tissue mass, for example, in welding blood vessels that exhibit substantial burst strength immediately post-treatment. The strength of such welds is particularly useful for (i) permanently sealing blood vessels in vessel transection procedures; (ii) welding organ margins in resection procedures; (iii) welding other anatomic ducts wherein permanent closure is required; and also (iv) for performing vessel anastomosis, vessel closure or other procedures that join together anatomic structures or portions thereof. The welding or fusion of tissue as disclosed herein is to be distinguished from “coagulation”, “hemostasis” and other similar descriptive terms that generally relate to the collapse and occlusion of blood flow within small blood vessels or vascularized tissue. For example, any surface application of thermal energy can cause coagulation or hemostasis—but does not fall into the category of “welding” as the term is used herein. Such surface coagulation does not create a weld that provides any substantial strength in the treated tissue.
At the molecular level, the phenomena of truly “welding” tissue as disclosed herein may result from the thermally-induced denaturation of collagen and other protein molecules in a targeted tissue volume to create a transient liquid or gel-like proteinaceous amalgam. A selected energy density is provided in the targeted tissue to cause hydrothermal breakdown of intra- and intermolecular hydrogen crosslinks in collagen and other proteins. The denatured amalgam is maintained at a selected level of hydration—without desiccation—for a selected time interval which can be very brief. The targeted tissue volume is maintained under a selected very high level of mechanical compression to insure that the unwound strands of the denatured proteins are in close proximity to allow their intertwining and entanglement. Upon thermal relaxation, the intermixed amalgam results in protein entanglement as re-crosslinking or renaturation occurs to thereby cause a uniform fused-together mass.
A surgical instrument can be configured to supply energy, such as electrical energy and/or heat energy, to the tissue of a patient. For example, various embodiments disclosed herein provide electrosurgical jaw structures adapted for transecting captured tissue between the jaws and for contemporaneously welding the captured tissue margins with controlled application of RF energy. In more detail, in various embodiments, referring now to
Moving now to
End effector 110 may be adapted for capturing, welding and transecting tissue. First jaw 120A and second jaw 120B may close to thereby capture or engage tissue about a longitudinal axis 125 defined by cutting member 140. First jaw 120A and second jaw 120B may also apply compression to the tissue. Elongate shaft 108, along with first jaw 120A and second jaw 120B, can be rotated a full 360° degrees, as shown by arrow 117, relative to handle 105 through, for example, a rotary triple contact. First jaw 120A and second jaw 120B can remain openable and/or closeable while rotated.
Referring briefly now to
More specifically, referring now to
Referring now to
In at least one embodiment, one or both of the jaws 120A, 120B may be flexible, such that one of the jaws is configured to flex when gripping tissue. In at least one embodiment, referring now to
The end effector 110 may further include at least one compression element extending from the cutting member 140, such as inner cam surface 144A and/or 144B of flanges 140A and 140B, see
In at least one embodiment, the first flexible jaw 120A may be configured to flex when gripping an object, such as tissue, as follows. Referring now to
In various embodiments, referring now to
As illustrated in
In various embodiments, the compression elements 244A may be configured to contact the first jaw 220A such that the first jaw 220A rotates with respect to the second jaw 220B when the cutting member 240 translates with respect to the first jaw 220A. In at least one embodiment, the first jaw 220A may comprise an upper first outward-facing surface 262A and the cutting member 240 may be sized and configured to slide along channels in first jaw 220A and/or second jaw 220B (not shown, see however, e.g., channel 142A illustrated in
Referring to
While the compression element (s) may comprise a roller or rollers, the compression element(s) may alternatively or further comprise a low-friction material. In at least one embodiment, the rollers 247, 249, see
Alternatively, in at least one embodiment, the compression element(s) may include a pad or pads attached to projections extending from the cutting member 240, where the pad is not configured to roll along the surface 262A, but rather to slide along the surface 262A. Further, referring to
In any event, the firing force required to advance the cutting member in the distal or proximal directions DD, PD may be reduced by one or more of the above embodiments where the compression element or elements comprise a low-friction material.
In various embodiments, the low-friction material may comprise a thermoplastic, including, but not limited to, one or more of the following: nylon, high-density polyethylene, and polytetrafluoroethylene (“PTFE;” sold, for example, under the trade name TEFLON®). The first and second jaws 220A, 220B may be made from heat-treated stainless steel. Accordingly, in various embodiments the static coefficient of friction between the low-friction material of the compression element(s) and the first jaw 220A may be less than or equal to about 0.10. Further, in another embodiment, the static coefficient of friction between the low-friction material and the first jaw may be less than or equal to about 0.07. Additionally, where the compression element(s) comprise PTFE, for example, the static coefficient of friction between the low-friction material and the first jaw may be less than or equal to about 0.05 and/or equal to about 0.04. See, e.g., Kurt Gieck & Reiner Gieck, Engineering Formulas §Z.7 (7th ed. 1997).
Referring still to
In at least one embodiment, the first jaw 220A may further be configured to flex when gripping tissue between the first jaw and the second jaw. As described above, such flexing may reduce the required firing force and may result from making the first jaw 220A thin and/or from making the jaw from a flexible material such as a plastic.
Referring now to
As illustrated in
Similarly, referring still to
In various embodiments, the compression elements 344A may be configured to contact the first jaw 320A such that the first jaw 320A rotates with respect to the second jaw 320B and/or the elongate shaft 308 when the cutting member 340 translates with respect to the first jaw 320A. Likewise, the compression elements 344B may be configured to contact the second jaw 320B such that the second jaw 320B rotates with respect to the first jaw 320A and/or the elongate shaft 308. In at least one embodiment, the first jaw 320A may comprise an upper first outward-facing surface 362A and the second jaw 320B may comprise a lower outward-facing surface 362B. The cutting member 340 may be sized and configured to slide along channels in first jaw 320A and/or second jaw 320B (not shown, see however, e.g., channels 142A and 142B illustrated in
Referring to
While the compression element (s) may comprise a roller or rollers, the compression element(s) may alternatively or further comprise a low-friction material. In at least one embodiment, the rollers 247, 249 and 354, 356, see
Alternatively, in at least one embodiment, the compression element(s) may include a pad or pads attached to projections extending from the cutting member 340, where the pad or pads are not configured to roll along the surfaces 362A and/or 362B, but rather to slide along the surfaces 362A and/or 362B.
In any event, the firing force required to advance the cutting member 340 in the distal or proximal directions DD, PD may be reduced by one or more of the above embodiments where one or more of the compression elements comprise a low-friction material.
In various embodiments, the low-friction material may comprise a thermoplastic, including, but not limited to, one or more of the following: nylon, high-density polyethylene, and polytetrafluoroethylene (“PTFE;” sold, for example, under the trade name TEFLON®). The first and second jaws 320A, 320B may be made from heat-treated stainless steel. Accordingly, in various embodiments the static coefficient of friction between the low-friction material of the compression element(s) and the first jaw 320A may be less than or equal to about 0.10. Further, in another embodiment, the static coefficient of friction between the low-friction material and the first jaw may be less than or equal to about 0.07. Additionally, where the compression element(s) comprise PTFE, for example, the static coefficient of friction between the low-friction material and the first jaw may be less than or equal to about 0.05 and/or equal to about 0.04. See, e.g., Kurt Gieck & Reiner Gieck, Engineering Formulas §Z.7 (7th ed. 1997).
Referring back to
In at least one embodiment, at least partially because the jaws 320A and 320B are mounted to the elongate shaft 308 by floating hinge 322 and at least partially because the jaw 320A is precurved, the jaws may each independently “rock” with respect to the longitudinal axis 325 as the cutting member 340 and, subsequently, compression elements 344A and 344B are advanced in a proximal or distal direction PD, DD. These rocking motions may further reduce the required firing force by allowing tissue proximal to the cutting member's sharp distal edge 353 to re-expand after being cut at or near the high compression zone HC.
In at least one embodiment, the first jaw 320A and/or second jaw 320B may further be configured to flex when gripping tissue between the first jaw 320A and the second jaw 320B. As described above, such flexing may reduce the required firing force and may result from making either or both of jaws 320A and 320B thin and/or from making the jaw from a flexible material such as a plastic.
Thus, in various embodiments, the overall force required to advance a cutting member, close jaws, and/or otherwise operate an end effector of a surgical instrument may be reduced. Further, in various embodiments, a larger range of tissue types and thicknesses may be accommodated than that currently possible with other surgical devices. Moreover, in various embodiments, the target tissue being griped by a surgical instrument may undergo high compressive forces nearest a cutting edge of the instrument and reduced compressive forces away from the cutting edge.
The embodiments of the devices described herein may be introduced inside a patient using minimally invasive or open surgical techniques. In some instances it may be advantageous to introduce the devices inside the patient using a combination of minimally invasive and open surgical techniques. Minimally invasive techniques may provide more accurate and effective access to the treatment region for diagnostic and treatment procedures. To reach internal treatment regions within the patient, the devices described herein may be inserted through natural openings of the body such as the mouth, anus, and/or vagina, for example. Minimally invasive procedures performed by the introduction of various medical devices into the patient through a natural opening of the patient are known in the art as NOTES™ procedures. Some portions of the devices may be introduced to the tissue treatment region percutaneously or through small—keyhole—incisions.
Endoscopic minimally invasive surgical and diagnostic medical procedures are used to evaluate and treat internal organs by inserting a small tube into the body. The endoscope may have a rigid or a flexible tube. A flexible endoscope may be introduced either through a natural body opening (e.g., mouth, anus, and/or vagina) or via a trocar through a relatively small—keyhole—incision incisions (usually 0.5-1.5 cm). The endoscope can be used to observe surface conditions of internal organs, including abnormal or diseased tissue such as lesions and other surface conditions and capture images for visual inspection and photography. The endoscope may be adapted and configured with working channels for introducing medical instruments to the treatment region for taking biopsies, retrieving foreign objects, and/or performing surgical procedures.
The devices disclosed herein may be designed to be disposed of after a single use, or they may be designed to be used multiple times. In either case, however, the device may be reconditioned for reuse after at least one use. Reconditioning may include a combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device may be disassembled, and any number of particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those of ordinary skill in the art will appreciate that the reconditioning of a device may utilize a variety of different techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of this application.
Preferably, the various embodiments of the devices described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. Other sterilization techniques can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, and/or steam.
Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Number | Name | Date | Kind |
---|---|---|---|
3580841 | Cadotte et al. | May 1971 | A |
3703651 | Blowers | Nov 1972 | A |
4058126 | Leveen | Nov 1977 | A |
4237441 | van Konynenburg et al. | Dec 1980 | A |
4304987 | van Konynenburg | Dec 1981 | A |
4545926 | Fouts, Jr. et al. | Oct 1985 | A |
4849133 | Yoshida et al. | Jul 1989 | A |
4910389 | Sherman et al. | Mar 1990 | A |
5104025 | Main et al. | Apr 1992 | A |
5106538 | Barma et al. | Apr 1992 | A |
5108383 | White | Apr 1992 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5309927 | Welch | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5428504 | Bhatla | Jun 1995 | A |
5504650 | Katsui et al. | Apr 1996 | A |
5511556 | DeSantis | Apr 1996 | A |
5558671 | Yates | Sep 1996 | A |
5563179 | Stone et al. | Oct 1996 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5624452 | Yates | Apr 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5709680 | Yates et al. | Jan 1998 | A |
5716366 | Yates | Feb 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5817033 | DeSantis et al. | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5880668 | Hall | Mar 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6063098 | Houser et al. | May 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6099483 | Palmer et al. | Aug 2000 | A |
6292700 | Morrison et al. | Sep 2001 | B1 |
6340878 | Oglesbee | Jan 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6503248 | Levine | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656198 | Tsonton et al. | Dec 2003 | B2 |
6673248 | Chowdhury | Jan 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6789939 | Schrödinger et al. | Sep 2004 | B2 |
6800085 | Selmon et al. | Oct 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6811842 | Ehrnsperger et al. | Nov 2004 | B1 |
6860880 | Treat et al. | Mar 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929622 | Chian | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7169156 | Hart | Jan 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7235073 | Levine et al. | Jun 2007 | B2 |
7307313 | Ohyanagi et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7354440 | Truckai et al. | Apr 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7435582 | Zimmermann et al. | Oct 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7513025 | Fischer | Apr 2009 | B2 |
7550216 | Ofer et al. | Jun 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7641671 | Crainich | Jan 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7708751 | Hughes et al. | May 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7931649 | Couture et al. | Apr 2011 | B2 |
20020115997 | Truckai et al. | Aug 2002 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030199870 | Truckai et al. | Oct 2003 | A1 |
20040193150 | Sharkey et al. | Sep 2004 | A1 |
20040232196 | Shelton, IV et al. | Nov 2004 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050203507 | Truckai et al. | Sep 2005 | A1 |
20050261581 | Hughes et al. | Nov 2005 | A1 |
20050267464 | Truckai et al. | Dec 2005 | A1 |
20070027469 | Smith et al. | Feb 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070106158 | Madan et al. | May 2007 | A1 |
20070146113 | Truckai et al. | Jun 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070208312 | Norton et al. | Sep 2007 | A1 |
20070232920 | Kowalski et al. | Oct 2007 | A1 |
20070232926 | Stulen et al. | Oct 2007 | A1 |
20070232927 | Madan et al. | Oct 2007 | A1 |
20070232928 | Wiener et al. | Oct 2007 | A1 |
20070239025 | Wiener et al. | Oct 2007 | A1 |
20080147062 | Truckai et al. | Jun 2008 | A1 |
20080167522 | Giordano et al. | Jul 2008 | A1 |
20080188851 | Truckai et al. | Aug 2008 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090076534 | Shelton, IV et al. | Mar 2009 | A1 |
20090099582 | Isaacs et al. | Apr 2009 | A1 |
20090206140 | Scheib et al. | Aug 2009 | A1 |
20090209979 | Yates et al. | Aug 2009 | A1 |
20100010299 | Bakos et al. | Jan 2010 | A1 |
20100032470 | Hess et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100036405 | Giordano et al. | Feb 2010 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081880 | Widenhouse et al. | Apr 2010 | A1 |
20100081881 | Murray et al. | Apr 2010 | A1 |
20100081882 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100081995 | Widenhouse et al. | Apr 2010 | A1 |
20100094323 | Isaacs et al. | Apr 2010 | A1 |
20100237132 | Measamer et al. | Sep 2010 | A1 |
20100264194 | Huang et al. | Oct 2010 | A1 |
20110087208 | Boudreaux et al. | Apr 2011 | A1 |
20110087209 | Boudreaux et al. | Apr 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110087219 | Boudreaux et al. | Apr 2011 | A1 |
20110087220 | Felder et al. | Apr 2011 | A1 |
Number | Date | Country |
---|---|---|
20004812 | Sep 2000 | DE |
0705571 | Apr 1996 | EP |
WO 9635382 | Nov 1996 | WO |
WO 03030708 | Apr 2003 | WO |
WO 03068046 | Aug 2003 | WO |
WO 2005052959 | Jun 2005 | WO |
Entry |
---|
International Search Report for PCT/US2011/029560, Jul. 1, 2011 (5 pages). |
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997). |
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949). |
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971). |
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947). |
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000). |
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998). |
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998). |
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004). |
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003). |
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009. |
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995). |
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000). |
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999). |
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004). |
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001). |
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003). |
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011. |
U.S. Appl. No. 12/576,756, filed Oct. 9, 2009. |
U.S. Appl. No. 12/576,776, filed Oct. 9, 2009. |
U.S. Appl. No. 12/576,789, filed Oct. 9, 2009. |
U.S. Appl. No. 12/576,808, filed Oct. 9, 2009. |
U.S. Appl. No. 12/576,831, filed Oct. 9, 2009. |
U.S. Appl. No. 12/836,366, filed Jul. 14, 2010. |
U.S. Appl. No. 12/836,383, filed Jul. 14, 2010. |
U.S. Appl. No. 12/836,396, filed Jul. 14, 2010. |
U.S. Appl. No. 12/842,464, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,476, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,507, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,518, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,538, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,565, filed Jul. 23, 2010. |
U.S. Appl. No. 12/758,253, filed Apr. 12, 2010. |
U.S. Appl. No. 12/758,268, filed Apr. 12, 2010. |
U.S. Appl. No. 12/758,284, filed Apr. 12, 2010. |
U.S. Appl. No. 12/758,298, filed Apr. 12, 2010. |
U.S. Appl. No. 12/765,175, filed Apr. 22, 2010. |
U.S. Appl. No. 12/911,943, filed Oct. 26, 2010. |
U.S. Appl. No. 12/841,480, filed Jul. 22, 2010. |
U.S. Appl. No. 12/963,001, filed Dec. 8, 2010. |
U.S. Appl. No. 12/797,207, filed Jun. 9, 2010. |
U.S. Appl. No. 12/797,252, filed Jun. 9, 2010. |
U.S. Appl. No. 12/797,288, filed Jun. 9, 2010. |
U.S. Appl. No. 12/797,305, filed Jun. 9, 2010. |
U.S. Appl. No. 12/841,370, filed Jul. 22, 2010. |
U.S. Appl. No. 12/797,844, filed Jun. 10, 2010. |
U.S. Appl. No. 12/797,853, filed Jun. 10, 2010. |
U.S. Appl. No. 12/797,861, filed Jun. 10, 2010. |
U.S. Appl. No. 12/797,866, filed Jun. 10, 2010. |
U.S. Appl. No. 12/832,345, filed Jul. 8, 2010. |
U.S. Appl. No. 12/832,361, filed Jul. 8, 2010. |
U.S. Appl. No. 12/781,243, filed May 17, 2010. |
U.S. Appl. No. 12/775,724, filed May 7, 2010. |
U.S. Appl. No. 12/622,113, filed Nov. 19, 2009. |
U.S. Appl. No. 12/635,415, filed Dec. 10, 2009. |
U.S. Appl. No. 12/647,134, filed Dec. 24, 2009. |
Number | Date | Country | |
---|---|---|---|
20110238065 A1 | Sep 2011 | US |