The present invention relates to surgical instruments and, in various embodiments, to surgical cutting and stapling instruments and staple cartridges therefor that are designed to cut and staple tissue.
The various features and advantages of this invention and the manner of attaining them will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate preferred embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Applicant of the present application also owns the following patent applications that were filed on Dec. 23, 2013, and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 14/138,465, entitled SURGICAL STAPLES AND STAPLE CARTRIDGES, now U.S. Patent Application Publication No. 2015/173744;
U.S. patent application Ser. No. 14/138,475, entitled SURGICAL STAPLES AND STAPLE CARTRIDGES, now U.S. Patent Application Publication No. 2015/0173749;
U.S. patent application Ser. No. 14/138,481, entitled SURGICAL STAPLES AND METHODS FOR MAKING THE SAME, now U.S. Patent Application Publication No. 2015/0173750;
U.S. patent application Ser. No. 14/138,489, entitled SURGICAL STAPLES, now U.S. Pat. No. 9,687,232;
U.S. Design patent application Ser. No. 29/477,488, entitled SURGICAL FASTENER, now U.S. Pat. No. D775,336;
U.S. patent application Ser. No. 14/138,505, entitled FASTENER CARTRIDGE COMPRISING AN EXTENDABLE FIRING MEMBER, now U.S. Pat. No. 9,585,662;
U.S. patent application Ser. No. 14/138,518, entitled FASTENER CARTRIDGE COMPRISING A FIRING MEMBER CONFIGURED TO DIRECTLY ENGAGE AND EJECT FASTENERS FROM THE FASTENER CARTRIDGE, now U.S. Pat. No. 9,763,662;
U.S. patent application Ser. No. 14/138,530, entitled FASTENER CARTRIDGE COMPRISING A FIRING MEMBER INCLUDING FASTENER SURFACES, now U.S. Pat. No. 9,549,735;
U.S. patent application Ser. No. 14/138,554, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE SHAFT ARRANGEMENTS, now U.S. Patent Application Publication No. 2015/0173789;
U.S. patent application Ser. No. 14/138,474, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH SEPARATE AND DISTINCT CLOSING AND FIRING SYSTEMS, now U.S. Pat. No. 9,681,870;
U.S. patent application Ser. No. 14/138,497, entitled SURGICAL CUTTING AND STAPLING INSTRUMENTS WITH ARTICULATABLE END EFFECTORS, now U.S. Pat. No. 9,642,620;
U.S. patent application Ser. No. 14/138,516, entitled SURGICAL CUTTING AND STAPLING METHODS, now U.S. Patent Application Publication No. 2015/0173756; and
U.S. patent application Ser. No. 14/138,507, entitled MODULAR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,724,092.
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment”, or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation. Such modifications and variations are intended to be included within the scope of the present invention.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” referring to the portion closest to the clinician and the term “distal” referring to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the person of ordinary skill in the art will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, those of ordinary skill in the art will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongated shaft of a surgical instrument can be advanced.
Turning to the Drawings wherein like numerals denote like components throughout the several views,
In various implementations, the end effector 12 is configured to be coupled to an elongated shaft assembly 100 that protrudes from a handle assembly or housing 400. See
In various implementations, the elongated shaft assembly 100 may have an outer diameter that is substantially the same as the outer diameter of the end effector 12 when the end effector 12 is in a closed position. For example, a 5 mm end effector may be coupled to an elongated shaft assembly 100 that has 5 mm cross-sectional diameter. However, as the present Detailed Description proceeds, it will become apparent that various embodiments of the present may be effectively used in connection with different sizes of end effectors. For example, a 10 mm end effector may be attached to an elongated shaft that has a 5 mm cross-sectional diameter. Conversely, for those applications wherein a 10 mm or larger access opening or passage is provided, the elongated shaft assembly 100 may have a 10 mm (or larger) cross-sectional diameter, but may also be able to actuate a 5 mm or 10 mm end effector. Accordingly, the outer shaft assembly 100 may have an outer diameter that is the same as or is different from the outer diameter of a closed end effector 12 attached thereto.
Referring now to
The elongated channel 14 may be configured to support a variety of different surgical staple cartridges that are designed to be “implanted” within the patient. For example, the implantable surgical staple cartridge 30 may comprise any of the various surgical staple cartridge arrangements disclosed in U.S. Patent Application Publication No. 2012/0080484, filed Sep. 30, 2010, entitled SURGICAL STAPLING INSTRUMENT WITH A VARIABLE STAPLE FORMING SYSTEM, now U.S. Pat. No. 9,113,862, the entire disclosure of which is hereby incorporated by reference herein. In at least one implementation for example, the staple cartridge 30 includes a body portion 31 that consists of a compressible hemostat material such as, for example, oxidized regenerated cellulose (“ORC”) or a bio-absorbable foam in which lines of unformed metal staples 32 are supported. In at least some embodiments, in order to prevent the staple from being affected and the hemostat material from being activated during the introduction and positioning process, the entire cartridge may be coated or wrapped in a biodegradable film such as a polydioxanon film sold under the trademark PDS® or with a Polyglycerol sebacate (PGS) film or other biodegradable films formed from PGA (Polyglycolic acid, marketed under the trade mark Vicryl), PCL (Polycaprolactone), PLA or PLLA (Polylactic acid), PHA (polyhydroxyalkanoate), PGCL (poliglecaprone 25, sold under the trademark Monocryl) or a composite of PGA, PCL, PLA, PDS that would be impermeable until ruptured. The body 31 of staple cartridge 30 is sized to be removably supported within the elongated channel 14 as shown such that each staple 32 therein is aligned with corresponding staple forming pockets in the distal anvil portion 800 when the distal anvil portion 800 is driven into forming contact with the staple cartridge 30.
Referring to
In various implementations, the anvil assembly 20 includes a distal anvil portion 800 and a proximal anvil mounting tube 820. As can be seen in
Referring now to
Referring again to
Still referring to
The trigger assembly 430 may, for example, comprise a primary trigger 440 and a secondary trigger 460. The primary and secondary triggers 440 and 460 are pivotally journaled on a pivot pin assembly 431 formed in the housing assembly 400 such that the triggers 440 and 460 may essentially move relative to each other. Such arrangement permits the trigger assembly 430 to pivot relative to the housing assembly 400 about a pivot axis PA-PA. See
As can be seen in
Referring again to
In various arrangements, the end effector 12 may be configured to be selectively articulated relative to the longitudinal tool axis LT-LT. Stated another way, however, the first jaw 13 which comprises the elongated channel 14 may be selectively movable relative to the second jaw 15 which comprises the anvil assembly 20. As described above, the elongated channel 14 is pivotally coupled to the distal end 302 of the outer tube 300 by pivot pins 310. Such attachment arrangement permits the elongated channel 14 to articulate or move in a first direction “FD” about the pivot axis A-A which is essentially the same direction that the anvil assembly 20 moves in when the anvil assembly 20 is moved from a closed position to an open position (the anvil opening direction “OD”). See
The component parts of one form of articulation control system 200 are illustrated in
Still referring to
The nozzle 250 of the articulation control system 200 may include a nozzle body 252. The nozzle body 252 may have an axial bore 254 therethrough that facilitates the passage of the articulation rod 150 and other operative components of the instrument 10 including a the proximal end 306 of the outer shaft 300. See
Referring again to
Ratcheting rotation of the actuator 210 causes articulation of the elongated channel 14 in the first or second directions relative to the longitudinal tool axis LT-LT.
The surgical instrument 10 may include a firing system generally designated as 410 that is supported within the housing assembly 400 and is operable to actuate various components of the instrument 10. Referring to
Various embodiments of the clutch assembly 480 may further comprise a clutch plate 510 that is slidably journaled on a clutch pin 449 provided on the primary drive portion 444 of the primary trigger 440. The clutch pin 449 may be movably received within a vertical slot 512 in the clutch plate 510. The clutch plate 510 also has a distally-extending clutch arm 514 that is adapted to actuatably engage a bevel plate 489 formed on the clutch shaft 482. In addition, a clutch spring 520 is employed to bias the clutch shaft 480 laterally such that the teeth 488 on the clutch shaft 482 are brought into meshing engagement with the teeth openings 492 in the drive gear 490.
As can be seen in
Still referring to
Referring again to
Various embodiments may also include a releasable closure locking assembly 560 that interfaces with the closure carriage 420 to selectively retain the closure carriage 420 in its distal-most closed or clamped position. In at least one form, the closure locking assembly 560 includes a locking button 562 that is pivotally supported in the housing assembly 400. The locking button 562 has a latch arm 564 that is configured to abut a locking ledge 421 formed on the closure carriage 420 when the button 562 is in the locked position. In addition, the latch arm 564 has a catch 566 formed thereon that is configured to releasably latch with a locking latch 502 on the proximal end of the firing rack 500. A locking spring 568 serves to bias the locking button 562 into the locked position.
Operation of the surgical instrument 10 will now be described.
To initiate the closure process, a first stroke is applied to the trigger assembly 430. That is, the trigger assembly 430 is initially pivoted toward the pistol grip 406. Such pivoting action serves to drive the closure carriage 420 in the distal direction “DD” by virtue of the meshing engagement between the closure gear segment 466 on the secondary trigger 460 and the carriage rack 423 formed on the underside of the closure carriage 420. Such distal movement of the closure carriage 420 also axially advances the anvil closure rod 112 in the distal direction “DD”. As the anvil closure rod 112 moves distally, the closure link 120 moves the anvil pin slide 122 distally. As the anvil pin slide 122 moves distally, anvil pin 124 moves up cam slots 840 in the proximal anvil portion 820 to cam the anvil assembly 20 towards the elongated channel 14 and the staple cartridge 30 supported therein. If the surgeon desires to simply grasp and manipulate tissue prior to clamping it between the anvil assembly 20 and the surgical staple cartridge 30, the trigger assembly 430 may be pivoted to open and close the anvil assembly 20 without fully pivoting the trigger assembly 430 to the fully closed position.
Those of ordinary skill in the art will understand that, as the trigger assembly 430 is pivoted toward the pistol grip 406, the actuation bar 470 will necessarily also be driven distally by virtue of the meshing engagement between the primary gear segment 446 on the primary trigger 440 and the first actuation rack 472 on the actuation bar 470. The distal movement of the actuation bar 470 will also result in the an application of a rotary actuation motion to the clutch shaft 482 by virtue of the meshing engagement between the clutch teeth 484 on the clutch shaft 482 and the second actuation rack 474 on the actuation bar 470. However, such rotary motion is not applied to the drive gear 490 because the clutch arm 514 of the clutch plate 510, in contact with the clutch drive bevel 489 on the clutch shaft 482, prevents the axial movement of the clutch shaft 482 into meshing engagement with the drive gear 490. Thus, the clutch shaft 482 freely rotates relative to the drive gear 490. Accordingly, the clutch assembly 480 automatically prevents the activation of the firing rack 500 during the initial actuation of the trigger assembly 430.
Once the trigger assembly 430 has been initially fully compressed into the closed position, the anvil assembly 20 will be locked in the closed position by the closure locking assembly 560 which prevents the proximal movement of the closure carriage 420. To drive the knife bar assembly 600 distally through the tissue clamped in the end effector 12, the surgeon again pivots the primary trigger 440 toward the pistol grip 406 of the housing assembly 400. As the primary trigger 440 is pivoted, the firing rack 500, the firing rod 530, and the knife bar assembly 600 are driven in the distal direction “DD”. As the knife bar assembly 600 is driven in the distal direction, the cutting head 610 also moves distally. As the cutting head 610 moves distally, the sloped surface 618 on the upper tab 616 travels up the sloped surfaces 811 on the distal anvil portion 800 moving the floating distal anvil portion 800 in the down direction “D” towards the staple cartridge 30. As the distal anvil portion 800 is driven downwardly towards the clamped tissue and the staple cartridge 30, the clamping or crushing action causes the staples to be formed against the underside of the distal anvil portion 800. Thus, as the cutting head 610 is driven distally through the end effector 12, the tissue cutting surface 620 thereon severs the clamped tissue while forming the staples in the staple cartridge 30 on both sides of the cut tissue. Such two part anvil assembly enables the distal anvil portion to essentially remain parallel to the elongated channel and top of the surgical staple cartridge during firing. Stated even more succinctly, the two part floating anvil arrangement enables the staple-forming undersurfaces to remain parallel with the top of the surgical staple cartridge and the elongated channel during firing.
After the cutting head 610 has been driven through the tissue clamped in the end effector 12, the surgeon then releases the primary trigger 440 to thereby permit the primary trigger 440 to pivot to its unactuated position under the bias of the firing spring 432. As the primary trigger 440 pivots back to the starting position, the firing rack 500, firing rod 530, and knife bar assembly 600 are drawn proximally back to their respective starting positions. The end effector 12 remains in its clamped position as shown in
To unlock the closure carriage 420 and the secondary trigger 460, the surgeon depresses the locking button 562. As the locking button 562 is depressed, the locking arm 564 is pivoted out of abutting engagement with the locking ledge 421 on the closure carriage 420. Further details regarding the operation of the firing and closure systems may be found in U.S. Patent Application Publication No. 2012/0074200 which has been herein incorporated by reference in its entirety. As the closure carriage 420 moves proximally, the anvil closure rod 112 is also drawn proximally. As the anvil closure rod 112 moves proximally, the anvil pin slide 122 and anvil pin 124 move proximally camming the anvil assembly 20 to the open position.
The surgical instrument 10 provides a host of advantages over prior surgical instruments. For example, the unique and novel floating anvil arrangement is able to automatically adjust the anvil gap between the undersurface of the anvil and the staple cartridge or elongated channel. Thus, the floating anvil arrangement can automatically compensate for different thickness of tissue while enabling the staple forming undersurface(s) of the anvil to remain parallel to the staple cartridge and elongated channel. This is all accomplished without sacrificing anvil stability.
Another distinct advantage that the surgical instrument 10 enjoys over prior surgical instruments with articulatable end effector is the nature in which the present end effector is articulatable relative to the elongated shaft assembly. As described in detail above, the elongated channel portion of the end effector is pivotally mounted to the elongated shaft assembly for selective pivotal travel relative thereto about a pivot axis. The pivot axis is transverse to the longitudinal tool axis defined by the elongated shaft assembly. The anvil assembly is also pivotally coupled to the elongated channel for selective pivotal travel relative thereto about the same pivot axis. This provides another distinct advantage over prior articulatable end effector arrangements for at least the following reason.
During typical surgical procedures, the surgeon is viewing the surgical site and the end effector through a camera that can provide somewhat limited viewing. For example, such camera arrangements commonly only afford the surgeon with a view of a portion of the surgical end effector. When using an endocutter for example, the camera may only afford the surgeon a view of a portion of the endocutter's anvil and/or channel. In prior articulatable endocutter arrangements, the endocutter was coupled to the end of the elongated shaft by a flexible joint or other arrangement that did not always afford a consistent reference axis about which the end effector would pivot relative to the elongated shaft. So it was difficult for the surgeon when viewing a portion of the end effector to have a reliable frame of reference to know where the pivot axis resided. By having the articulation axis also be the axis about which the anvil pivots, the surgeon has a much more reliable frame of reference regarding the location of the pivot axis when viewing the endocutter's anvil through the camera. Stated another way, when using the end effector arrangement of the surgical instrument 10 the surgeon can determine where the elongated channel is going to pivot relative to the elongated shaft by viewing where the anvil is pivotally mounted to the elongated channel.
The surgical instrument 10 also employs separate control systems for moving the end effector jaws 13 and 15 relative to each other. For example, the clinician may elect to move or articulate the lower jaw 13 (elongated channel 14) about the pivot axis A-A toward or way from the upper jaw 15 (anvil assembly 20) without actuating the upper jaw 15 (anvil assembly 20). This may be accomplished by actuating the articulation control system (or first jaw closure system) without actuating the second jaw closure system 110. Thus, the elongated channel 14 may be selectively pivoted about the pivot axis A-A while the anvil assembly 20 remains in an open or closed position. Similarly, the anvil assembly 20 may be actuated or moved without moving the elongated channel 14 by actuating the closure system 110 without actuating the articulation control system. Such unique and novel arrangement provides the clinician with more flexibility when positioning the end effector jaws within the patient.
Referring now to
In various arrangements, the end effector 1012 may be configured to be selectively articulated about a longitudinal tool axis LT-LT that is defined by the elongated shaft assembly 1100. As can be seen in
In at least one implementation, the flex neck assembly 1110 may, for example, be fabricated in two pieces 1110R and 1110L that are configured to be coupled together by, fasteners such as snap features, screws, bolts, adhesive, etc. The flexible neck pieces 1110R and 1110L may be composed of rigid thermoplastic polyurethane sold commercially as ISOPLAST grade 2510 by the Dow Chemical Company. The right flexible neck portion 1110R includes a right upper rib segment 1112R and a right lower rib segment 1112L that are separated by an elongated right lateral spine (not shown). Similarly, the left flexible neck portion 1110L includes a left upper rib segment 1112L and a left lower rib segment 1114L that are separated by a left elongated lateral spine 1116. See
The proximal end of the outer shaft segment 1300 may be attached to a handle assembly of the type disclosed in U.S. Patent Application Publication No. 2012/0074200, entitled SURGICAL INSTRUMENT WITH SELECTIVELY ARTICULATABLE END EFFECTOR, which has been herein incorporated by reference in its entirety. Further details regarding at least one method of attaching the outer shaft segment to the handle assembly and operation of the outer shaft segment and related components may be gleaned from reference to that publication. Such arrangement permits the surgeon to rotate the outer shaft segment 1300 and the end effector 1012 operably coupled thereto about the longitudinal tool axis LT-LT by rotating the nozzle member relative to the handle assembly as discussed in detail therein.
Referring to
Referring to
In various embodiments, the first threaded nut assembly 2060 comprises a first disc 2062 that has first threads 2064 formed thereon. The first disc 2062 is supported on a knife tube 1800 by a first bearing bushing 2066. The first bearing bushing 2066 facilitates movement of the first disc 2062 relative to the knife tube 1800. Similarly, the second threaded nut assembly 2070 comprises a second disc 2072 that has second threads 2074 formed thereon. The second disc 2072 is supported on the knife tube 1800 by a second bearing bushing 2076 that facilitates movement of the second disc 2072 relative to the knife tube 1800. The first and second discs 2062, 2072 are also movably supported on upper and lower nut rails 2050, 2052 that are mounted to standoff posts 1905 molded into the handle cases 1904. See
The first and second articulation band assemblies 1150, 1170 are controlled by rotating the actuator wheel 2040 relative to the handle assembly 1900. To facilitate the application of such control motions, the first structural band portion 1156 has a first catch member configured to retainingly engage the first bearing bushing 2066 and the second structural band portion 1176 has a second catch member configured to retainingly engage the second bearing bushing 2076. In addition, the articulation system 2000 in at least one form includes an elongated support beam 2080 that extends longitudinally within the knife tube 1800 to provide lateral support to the first and second structural band portions 1156, 1176 within the knife tube 1800. The support beam 2080 may be fabricated from, for example, 400 or 300 grade stainless steel and is configured to facilitate axial movement of the first and second structural band portions 1156, 1176 while providing lateral support thereto.
The articulation system 2000 may articulate the end effector 1012 about the flexible neck assembly 1110 in the following manner. First, the surgeon rotates the articulation actuator wheel 2040 in a first rotary direction which causes the first and second discs 2062, 2072 to move toward each other. As the first disc 2062 moves in the proximal direction “PD”, the first articulation band assembly 1150 is pulled in the proximal direction “PD” by virtue of the first catch feature 2017 which is coupled to the first bearing bushing 2066. Likewise, as the second disc 2072 moves in the distal direction “DD”, the second articulation band assembly 1170 is pushed in the distal direction “DD” by virtue of the second catch feature 2027 which is coupled to the second bearing bushing 2076. Such action of the first and second articulation band assemblies 1150, 1170 causes the end effector 612 to articulate in the first articulation direction “FD” by virtue of the first and second articulation bands 1150, 1170 interconnection with the end effector 1012. To articulate the end effector in the second articulation direction “SD”, the user simply rotates the articulation actuator wheel 2040 in a second rotary direction that is opposite to the first rotary direction.
As indicated above, the articulation system 2000 in at least one form also includes an elongated support beam 2080 that extends longitudinally within the knife tube 1800 to provide lateral support to the first and second structural band portions 1150 and 1170 within the knife tube 1800. The support beam 2080 may be fabricated from, for example, 400 or 300 grade stainless steel and is configured to facilitate axial movement of the first and second structural band portions 1156, 1176 while providing lateral support thereto. In addition, the right and left segments 1110R, 1110L of the flexible neck assembly 1110, when joined together, form a passage 1118 for receiving a knife bar assembly 1180. In various forms, the knife bar assembly 1180 includes a distal knife bar portion 1182 that includes an upper knife bar 1184 and a lower knife bar 1186 that are attached to a tissue cutting head 1190. The upper knife bar 1184 is attached to a top portion 1192 of the tissue cutting head 1190 and the lower knife bar 1186 is attached to a lower portion 1194 of the tissue cutting head 1190. The upper knife bar 1184 and the lower knife bar 1186 are configured to flex as the flexible neck assembly 1110 flexes.
As will be discussed in further detail below, in at least one embodiment, the axial advancement and withdrawal of the knife bar assembly 1180 may be controlled by, for example, the manual activation of a firing trigger that is operably supported on the handle assembly 1900. As can be seen in
In at least one embodiment, actuation motions may be manually applied to the firing carriage 1814 by a firing trigger assembly 1820 that is pivotally supported on the handle assembly 1900. The firing trigger assembly 1820 includes a firing trigger 1822 that has an attachment plate 1824 that is configured to operably interface with a pair of actuation plates 1826. As can be seen in
Various embodiments of the surgical instrument 1010 may further include a locking system 1840 that includes a locking trigger 1842 that is pivotally coupled to the handle housing 1900. The locking trigger 1842 includes a locking bar portion that is configured to operably engage a locking member 1846 that is pivotally attached to the attachment plate 1824 of the firing trigger 1822 by pin 1849. Further discussion regarding the operation of the locking system 1840 may be found in U.S. Patent Application Publication No. US 2012/0074200 A1.
Actuation of the end effector 1012 will now be explained. While grasping the pistol grip portion 1908 of the handle assembly 1900, the surgeon may apply a closing motion to the anvil assembly 1020 of the end effector 1012 by applying an actuation force to the firing trigger 1822. Such action results in the application of an actuation motion to the firing carriage 1814 by the actuation plates 1826 which ultimately results in the axial displacement of the knife tube 1800 in the distal direction “DD”. As the knife tube 1800 is advanced in the distal direction “DD”, the knife bar assembly 1180 is likewise driven in the distal direction “DD”. As the knife bar assembly 1180 and, more particularly the tissue cutting head 1190, is driven in the distal direction “DD”, the upper tab portions 1196 on the tissue cutting head 1190 contact sloped surfaces 1025 on the anvil body 1021 to start to apply a closing motion to the anvil assembly 1020. Further application of the actuation force to the firing trigger 1822 results in further axial displacement of the knife tube 1800 and the tissue cutting head 1090. Such action further moves the anvil assembly 1020 towards the elongated jaw channel 1014. As the firing trigger 1822 is pivoted towards the pistol grip portion 1908 of the handle assembly 1900, the locking member 1848 also pivots in the counterclockwise “CCW” direction about the pin 1849. At this point, the tissue cutting head 1190 is prevented from moving any further in the distal direction “DD” by virtue of the locking system 1840. Thus, the surgeon may move the anvil assembly 1020 to capture and manipulate tissue in the end effector 1012 without risk of actually “firing” the end effector 1012 (i.e., or cutting the tissue and forming the staples).
Once the surgeon desires to cut tissue and form staples, a second actuation force is applied to the locking trigger 1842. When the locking trigger 842 is depressed, the locking bar portion 1844 pivots to a forward position which thereby permits the locking member 1848 to continue to pivot in the counterclockwise direction as the surgeon continues to apply the actuation force to the trigger 1822. Such actuation of the firing trigger 1822 results in the axial displacement of the tissue cutting head 1190 through the anvil assembly 1020 and the elongated jaw channel 1014. At this point, the upper tab portions 1196 and the lower foot 1198 on the tissue cutting head 1190 serves to space the anvil assembly 1020 relative to the elongated jaw channel 1014 such that the staples 32 in the staple cartridge 30 are formed into the tissue on each side of the tissue cut line.
After completing the cutting and stapling process, the firing trigger 1822 may be released. A return spring (not shown) attached to the firing trigger 1822 returns the firing trigger 1822 to the unactuated position. Alternative, the user can use the hook feature of the trigger to “pull” open the trigger if no spring is used. As the firing trigger 1822 moves in the clockwise “CW” direction, the firing carriage 1814 is moved in the proximal direction “PD” which also moves the knife bar assembly 1180 in the proximal direction “PD”. As the tissue cutting head 1190 returns to its starting position, the upper tabs 1196 on the tissue cutting head 1190 contact an arcuate opening surface 1027 on the underside of the anvil cap 1023 as shown in
The surgical instrument 1010 also provides advantages over prior surgical instruments. For example, the unique and novel floating anvil arrangement is able to automatically adjust the anvil gap between the undersurface of the anvil and the staple cartridge or elongated channel. Thus, the floating anvil arrangement can automatically compensate for different thickness of tissue while enabling the staple forming undersurface(s) of the anvil to remain parallel to the staple cartridge and elongated channel. This is all accomplished without sacrificing anvil stability.
In various implementations, the end effector 3012 is configured to be coupled to an elongated shaft assembly 3100 that protrudes from a handle assembly or housing 3400. See
Referring to
Referring again to
The anvil mounting portion 3030 has a pair of mounting holes 3032 (only one is shown in
Articulation of the end effector 3012 about the pivot axis A-A as well as actuation of the anvil assembly 3020 between open and closed positions may be controlled by a single firing system generally designated as 3500. In at least one implementation, for example, the firing system 3500 includes an actuation pivot 3510 that is movably supported between the upstanding side walls 3202 of the elongated channel 3014. The actuation pivot 3510 includes a distal cam surface 3512 and a proximal cam surface 3514. The distal cam surface 3512 is configured to operably interface with an inwardly protruding distal anvil pin 3034 that protrudes from the anvil mounting portion 3030. The proximal cam surface 3514 is configured to operably interface with an inwardly protruding proximal anvil pin 3036 that also protrudes inwardly from the anvil mounting portion 3030. As can be seen in
The firing system 3500 may be controlled, for example, by a closure trigger arrangement on a handle assembly 3400 of the type disclosed in U.S. Patent Application Publication No. 2012/0074200. For example, the firing system 3500 may include an actuation bar 3520 that is movably coupled to the actuation pivot 3510. The actuation bar 3520 may have, for example, an attachment ball member 3522 formed on the distal end thereof that is rotatably received within a semi-circular groove 3516 in the actuation pivot 3510. Such arrangement permits the actuation pivot 3510 to pivot or otherwise move relative to the actuation bar 3520. Other methods of movably coupling the actuation bar 3520 to the actuation pivot 3510 may also be employed. The actuation bar 3520 may extend through the hollow outer shaft 3300 and be operably coupled to, for example, the closure carriage arrangement disclosed in the aforementioned published patent application such that actuation of the trigger 440 will result in the axial travel of the actuation bar 3520 within the outer shaft 3330. In various implementations, a series of support collars 3530, 3532, 3534 may be provided in the outer shaft 3300 to provide support to the actuation bar 3520 within the outer shaft 3300.
In use, the end effector 3012 is articulated into a desired position prior to closing the anvil assembly 3020. Of course, if the end effector 3012 must be inserted through a trocar or other opening in the patient, the clinician can move the anvil assembly 3020 to the closed position (
The surgical instrument 3010 further includes a knife bar assembly 3600 that can be attached to the firing bar and firing rack arrangement disclosed herein and/or in U.S. Patent Application Publication No. 2012/0074200 such that it can be controlled by actuating the secondary trigger 460. In various embodiments, the knife bar assembly 3600 may comprise an upper bar segment 3602 and a lower bar segment 3604. Such arrangement may enable the knife bar assembly 3600 to flex as the end effector 3012 is articulated, while remaining sufficiently rigid to be driven distally through the shaft assembly 3100. In the depicted embodiment, the upper and lower knife bar segments 3602, 3604 are each attached to a cutting head 3610. In the depicted configuration, the cutting head 3610 includes a vertically oriented body portion 3612 that has an upper portion 3615 and a lower portion 3617. A bottom foot 3614 is formed on or attached to the lower portion 3617. Similarly, an upper tab 3616 is formed on or otherwise attached to the upper portion 3615 of the vertically oriented body portion 3612. In addition, as can be seen in
Referring to
As was discussed in detail above, by having the articulation axis also be the axis about which the anvil pivots, the surgeon has a much more reliable frame of reference regarding the location of the pivot axis when viewing the endocutter's anvil through the camera. Stated another way, when using the end effector arrangement of the surgical instrument 10 the surgeon can determine where the elongated channel is going to pivot relative to the elongated shaft by viewing where the anvil is pivotally mounted to the elongated channel.
In various implementations, the end effector 4012 is configured to be coupled to an elongated shaft assembly 4100 that protrudes from a handle assembly or housing 4400. See
Referring to
In at least one implementation, the elongated channel 4014 is configured to be moved or articulated relative to the elongated shaft assembly 4100 and the anvil assembly 4020 about a pivot axis A-A about which the anvil assembly 4020 is also pivotally mounted. The elongated shaft assembly 4100 defines a longitudinal tool axis LT-LT. The pivot axis A-A is transverse to the longitudinal tool axis LT-LT. The elongated shaft assembly 4100 comprises a hollow outer shaft 4300 and serves to function as the shaft spine of the elongated shaft assembly 4100. The proximal end of the outer shaft 4300 may be rotatably supported by the handle assembly 4400 so that the clinician may selectively rotate the elongated shaft assembly 4100 and the end effector 4012 attached thereto about the longitudinal tool axis LT-LT.
Referring again to
Initial closure of the anvil assembly 4020 relative to the elongated channel assembly 4014 and the surgical staple cartridge 30 operably supported therein may be accomplished by a unique and novel closure system, generally designated as 4110. The closure system 4110 may also be referred to herein as the “second jaw closure system”. In one implementation, the closure system 4110 includes an anvil closure rod 4112 that has a proximal end that may be operably coupled to the closure carriage in the handle assembly 4400 in the various manners discussed herein and also disclosed in further detail in U.S. Patent Application Publication No. 2012/0074200. For example, the proximal end of the closure rod 4112 may have a flange (not shown) that is configured to be rotatably attached to a closure carriage that is operably supported within the housing assembly 4400. Thus, actuation of the trigger 440 will result in the axial advancement of the anvil closure rod 4112 within the outer shaft 4300.
Referring again to
In various arrangements, the end effector 4012 may be configured to be selectively articulated relative to the longitudinal tool axis LT-LT. Stated another way, the elongated channel assembly 4014 may be selectively articulatable or movable relative to the anvil assembly 4020. As described above, the elongated channel 4014 is pivotally coupled to the distal end 4302 of the outer tube 4300 by pivot pins 4310. Such attachment arrangement permits the end elongated channel assembly 4014 to articulate in a first direction “FD” about the articulation and pivot axis A-A which is essentially the same direction that the anvil assembly 4020 moves in when the anvil assembly 4020 is moved from a closed position to an open position (the anvil opening direction “OD”). Such arrangement further facilitates articulation or movement in a second articulation direction “SD” that is essentially the same as the direction that the anvil assembly 4020 moves from an open position to a closed position (the anvil closing direction “CD”). To facilitate such movement of the elongated channel assembly 4014 relative to the anvil assembly 4020, a reciprocatable articulation rod 4150 is employed. The articulation rod 4150 may also be referred to herein as the “first jaw actuator bar”. More specifically and with reference to
The surgical instrument 4010 as illustrated in
Still referring to
Operation of the surgical instrument 4010 will now be described. To initiate the closure process, a first stroke is applied to the trigger assembly 430. That is, the trigger assembly 430 is initially pivoted toward the pistol grip 406. Such pivoting action serves to drive the closure carriage in the distal direction “DD”. Such distal movement of the closure carriage also axially advances the anvil closure rod 4112 in the distal direction “DD”. As the anvil closure rod 4112 moves distally, the closure link 4120 moves the anvil pin slide 4122 distally. As the anvil pin slide 4122 moves distally, the anvil assembly 4020 is pivoted to the closed position by virtue of the camming interaction of the anvil pin 4034 within the slots 4208, 4126. See
As was discussed in detail above, by having the articulation axis also be the axis about which the anvil pivots, the surgeon has a much more reliable frame of reference regarding the location of the pivot axis when viewing the endocutter's anvil through the camera. Stated another way, when using the end effector arrangement of the surgical instrument 10 the surgeon can determine where the elongated channel is going to pivot relative to the elongated shaft by viewing where the anvil is pivotally mounted to the elongated channel.
The surgical instrument 4010 also employs separate control systems for moving the end effector jaws 4013 and 4015. For example, the clinician may elect to move or articulate the lower jaw 4013 (elongated channel 14) about the pivot axis A-A toward or way from the upper jaw 4015 without actuating the upper jaw 4015 (anvil assembly 4020). This may be accomplished by actuating the articulation control system 200 without actuating the closure system 4110. Thus, the elongated channel 4014 may be selectively pivoted about the pivot axis A-A while the anvil assembly 4020 is open or closed. Similarly, the anvil assembly 4020 may be actuated or moved without moving the elongated channel 4014 by actuating the closure system 4110 without actuating the articulation control system 200. Such unique and novel arrangement provides the clinician with more flexibility when positioning the end effector jaws within the patient.
In various implementations, the end effector 5012 is configured to be coupled to an elongated shaft assembly 5100 that protrudes from a handle assembly or housing 5400. See
Referring to
In at least one implementation, for example, the end effector 5012 is configured to be articulated relative to the elongated shaft assembly 5100 about an articulation and pivot axis A-A about which the anvil assembly 5020 is pivoted relative to the elongated channel 5014. The elongated shaft assembly 5100 defines a longitudinal tool axis LT-LT. The articulation and pivot axis A-A is transverse to the longitudinal tool axis LT-LT. The elongated shaft assembly 5100 comprises a hollow outer shaft 5300 and serves to function as the shaft spine of the elongated shaft assembly 5100. The proximal end of the elongated shaft assembly 5100 may be rotatably supported by the handle assembly 5400 so that the clinician may selectively rotate the elongated shaft assembly 5100 and the end effector 5012 attached thereto about the longitudinal tool axis LT-LT. For example, the proximal end of the elongated shaft assembly 5100 may be operably coupled to a nozzle assembly 5250 that is rotatably supported on the handle assembly 5400. Rotation of nozzle assembly 5250 relative to the handle assembly 5400 (represented by arrow “R”) will result in rotation of the elongated shaft assembly 5100 as well as the end effector 5012 coupled thereto. See
Referring again to
The anvil assembly 5020 is selectively movable between open and closed positions by means of an anvil bar 5110. The anvil bar 5110 may be coupled to a closure carriage of the type disclosed herein and/or in U.S. Patent Application Publication No. US 2012/0074200 A1 such that actuation of a trigger mounted on the handle assembly will result in the axial movement of the anvil bar 5110 within elongated shaft assembly 5100. The anvil bar 5110 is configured for movable attachment to an actuator cam 5510 that is pivotally journaled on an anvil pin 5038 that protrudes inwardly from the left mounting wall 5034 of the anvil mounting portion 5030. See
The end effector 5012 may also be articulatable or pivotable relative to the elongated shaft assembly 5100 about the pivot axis A-A by an articulation system of the type described herein and/or in U.S. Patent Application Publication No. US 2012/0074200 A1. The articulation system may be employed to axially actuate an articulation bar 5150 that is pivotally coupled to the actuator cam 5510. Referring to
As can also be seen in
As was discussed in detail above, by having the articulation axis also be the axis about which the anvil pivots, the surgeon has a much more reliable frame of reference regarding the location of the pivot axis when viewing the endocutter's anvil through the camera. Stated another way, when using the end effector arrangement of the surgical instrument 10 the surgeon can determine where the elongated channel is going to pivot relative to the elongated shaft by viewing where the anvil is pivotally mounted to the elongated channel.
In various implementations, when employing surgical end effectors of the types disclosed herein, the end effector is configured to be coupled to an elongated shaft assembly that protrudes from a housing. The housing may comprise a hand-manipulatable handle arrangement or it may, for example, comprise a portion of a robotic system or other automated control system arrangement. The end effector and elongated shaft may typically be introduced to the surgical site within the patient through a trocar tube or working channel in another form of access instrument. In at least some surgical procedures, it is desirable and indeed, even sometimes necessary, to limit the size of trocar tubes/access tubes that are employed. This limits the size of end effector and elongated shaft arrangements that may be employed. For example, if a trocar is employed that has a 5 mm diameter opening through the trocar tube, the end effector as well as the elongated shaft must be sized to enable them to be passed through that opening. When employing cutting and stapling end effectors that essentially comprise jaws that are moveable between open and closed positions, the clinician passes the end effector through the trocar when the jaws are in their closed position. Typically when the jaws are in their fully closed position, the end effector is in its smallest cross-sectional shape to facilitate such insertion through the tube or access opening. Once the end effector has been passed through the tube or opening, the clinician may then open the jaws to grasp and manipulate the target tissue. Once the target tissue is properly positioned between the jaws, the clinician may cause the jaws to be closed onto or clamped onto the tissue in preparation for firing the instrument (i.e., causing the instrument to cut and staple the tissue). Thus, the size of the end effector that may be employed to complete a surgical procedure may necessarily be limited by the size of access opening or access tube that it must pass through. Such limitations can become problematic, however, in instances wherein the jaws cannot sufficiently accommodate the target tissue due to the thickness of the target tissue to be cut and stapled. In some applications, for example, the tissue may be over compressed by the jaws if the tissue is thicker than anticipated.
Over the years, a variety of end effector arrangements have been developed to effectively accommodate various tissue thicknesses. For example, U.S. Pat. No. 7,665,647, entitled SURGICAL CUTTING AND STAPLING DEVICE WITH CLOSURE APPARATUS FOR LIMITING MAXIMUM TISSUE COMPRESSION, issued Feb. 23, 2010, the entire disclosure of which is hereby incorporated by reference herein discloses cutting head configurations referred to as “E-Beam” arrangements that are configured to limit an amount of compression applied to the tissue as the E-beam is fired down the end effector. While effective, there is a need for an end effector that has a fully closed height that is smaller than a closed “operating height” or “stapling height” when stapling tissue.
Referring to
The lower portion 6650 of the cutting beam head 6630 further includes lower foot tabs 6652 that protrude laterally from the lower portion 6650. As can be seen in
As can be seen in
As can also be seen in
As indicated above, the anvil assembly 7130 is also responsive to actuation motions in the form of opening and closing motions that are applied thereto by a closure drive system 7200. Various details regarding the certain aspects of the construction and operation of the closure drive system 7200 may be found in U.S. patent application Ser. No. 13/803,097, filed Mar. 14, 2013, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, now U.S. Pat. No. 9,687,230, the entire disclosure of which is incorporated by reference herein. As discussed in that reference and as shown in
Referring to
In various arrangements, the closure tube attachment yoke 7230 is movably mounted on a proximal articulation tube 7402 of an articulation system 7400 which will be discussed in further detail below. Such arrangement permits the closure tube attachment yoke 7230 to move axially on the proximal articulation tube 7402 in response to actuation of the closure trigger 7202. In particular, the closure tube attachment yoke 7230 may be pivotally coupled to the closure trigger 7202 by a closure linkage bar 7240. See
The closure drive system 7200 may further include an intermediate tube segment 7250 that is configured for attachment to the distal end 7218 of the proximal closure tube segment 7210. As can be seen in
The closure drive system 7200 may further include a distal closure tube segment 7280 that is configured to axially engage and apply opening and closing motions to the anvil assembly 7130. The distal closure tube segment 7280 may be attached to the distal end of intermediate tube segment 7250 for axial travel therewith. The articulation spine 7262 may further include distal end portions 7266 that are configured to be received in corresponding notches 7284 in the proximal end 7282 of the distal closure tube segment 7280 to prevent relative rotation between the distal closure tube segment 7280 and the intermediate tube segment 7250. See
The distal closure tube segment 7280 is configured to apply opening and closing motions to the anvil assembly 7130. The anvil mounting portion 7136 may be formed with an anvil tab 7142. The distal end 7288 of the distal closure tube segment 7280 has an inwardly extending actuation tab 7290 formed therein that is configured to interact with the anvil tab 7142. For example, when the distal closure tube segment 7280 is in the open position, the actuation tab 7290 is in biasing contact with the anvil tab 7142 which serves to pivot the anvil assembly 7130 to the open position.
Operation of the closure drive system 7200 will now be described. The anvil assembly 7130 may be moved relative to the surgical fastener cartridge 7110 by pivoting the closure trigger 7202 toward and away from the pistol grip portion 7028 of the handle 7022. Thus, actuating the closure trigger 7202 causes the proximal closure tube segment 7210, the intermediate tube segment 7250 and the distal closure tube segment 7280 to move axially in the distal direction “DD” to contact the end wall 7144 of the anvil body portion 7132 to pivot or otherwise move the anvil assembly 7130 toward the surgical fastener cartridge 7110. The clinician may grasp and manipulate tissue between the anvil assembly 7130 and the fastener cartridge 7110 by opening and closing the anvil assembly 7130. Once the target tissue is captured between the anvil assembly 7130 and fastener cartridge 7110, the clinician may pivot the closure trigger 7202 to the fully actuated position wherein it is locked in place for firing.
Referring again to
The electric motor 7302 can include a rotatable shaft 7308 that operably interfaces with a gear reducer assembly 7310 that is mounted in meshing engagement with a with a set, or rack, of drive teeth 7322 on a longitudinally-movable drive member 7320. The gear reducer assembly 7310 can include, among other things, a housing and an output pinion gear 7314. In certain embodiments, the output pinion gear 7314 can be directly operably engaged with the longitudinally-movable drive member 7320 or, alternatively, operably engaged with the drive member 7320 via one or more intermediate gears. In use, the electric motor 7302 can move the drive member distally, indicated by an arrow “DD”, and/or proximally, indicated by an arrow “PD”, depending on the direction in which the electric motor 7302 rotates. For example, a voltage polarity provided by the battery can operate the electric motor 7302 in a clockwise direction wherein the voltage polarity applied to the electric motor by the battery can be reversed in order to operate the electric motor 7302 in a counter-clockwise direction. When the electric motor 7302 is rotated in one direction, the drive member 7320 will be axially driven in the distal direction “DD”. When the motor 7302 is driven in the opposite rotary direction, the drive member 320 will be axially driven in a proximal direction “PD”. The handle 7022 can include a switch which can be configured to reverse the polarity applied to the electric motor 7302 by the battery. The handle 7022 can also include a sensor that is configured to detect the position of the movable drive member 7320 and/or the direction in which the movable drive member 7320 is being moved.
Actuation of the motor 7302 can be controlled by a firing trigger 7330 that is pivotally supported on the handle 7022. The firing trigger 7330 may be pivoted between an unactuated position and an actuated position. The firing trigger 7330 may be biased into the unactuated position by a spring (not shown) or other biasing arrangement such that when the clinician releases the firing trigger 7330, it may be pivoted or otherwise returned to the unactuated position by the spring or biasing arrangement. In at least one form, the firing trigger 7330 can be positioned “outboard” of the closure trigger 7202 as discussed in further detail in U.S. patent application Ser. No. 13/803,097, now U.S. Pat. No. 9,687,230, which has been previously incorporated by reference in its entirety herein. In at least one form, a firing trigger safety button 7332 may be pivotally mounted to the closure trigger 7202. The safety button 7332 may be positioned between the firing trigger 7330 and the closure trigger 7202 and have a pivot arm (not shown) protruding therefrom. When the closure trigger 7202 is in the unactuated position, the safety button 7332 is contained in the handle housing where the clinician cannot readily access it and move it between a safety position preventing actuation of the firing trigger 7330 and a firing position wherein the firing trigger 7330 may be fired. As the clinician depresses the closure trigger 7202, the safety button 7332 and the firing trigger 7330 pivot down to a position wherein they can then be manipulated by the clinician.
As indicated above, in at least one form, the longitudinally movable drive member 7320 has a rack of teeth 7322 formed thereon for meshing engagement with a corresponding drive gear of the gear reducer assembly 7310. At least one form may also include a manually-actuatable “bailout” assembly that is configured to enable the clinician to manually retract the longitudinally movable drive member 7320 should the motor become disabled. U.S. patent application Ser. No. 13/803,097, now U.S. Pat. No. 9,687,230, contains further details of one form of bailout assembly that may be employed. U.S. Patent Application Publication No. 2010/0089970, now U.S. Pat. No. 8,608,045, also discloses “bailout” arrangements and other components, arrangements and systems that may also be employed with the various instruments disclosed herein. U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Pat. No. 8,608,045, is incorporated by reference in its entirety.
Referring to
The distal firing shaft assembly 7070 may include a central firing beam 7074 that is located between a right sled pusher beam 7076 and a left sled pusher beam 7078. The central firing beam 7074 and the pusher beams 7076, 7078 may, for example, each be fabricated from metal that facilitates axial actuation of the sled assemblies 7160, 7170 in the surgical end effector 7100 while also facilitating flexing thereof when the end effector 7100 is articulated. In at least one arrangement, the central pusher beam 7074, the right sled pusher beam 7076 and the left sled pusher beam 7078 may extend through a slot 7146 in the anvil mounting portion 7136. The right sled pusher beam 7076 corresponds to the right sled assembly 7160 and the left sled pusher beam 7078 corresponds to the left sled assembly 7170 movably supported within the elongated channel 7102. Axial movement of the right sled pusher beam 7076 and the left sled pusher beam 7078 will result in the axial advancement of the right and left sled assemblies 7160, 7170, respectively, within the elongate channel 7102. As the right sled assembly 7160 is axially advanced within the elongated channel 7102, it drives the surgical fasteners 7120 supported in the cartridge body 7112 on the right side of the slot 7114 out of their respective pockets 7116 and as the left sled assembly 7170 is axially advanced within the elongated channel 7102, it drives the surgical fasteners 7120 supported within the cartridge body 7112 on the left side of the slot 7114 out of their respective pockets 7116.
The central firing beam 7074 has a distal end 7080 that may be configured to be received within a slot provided in the body portion 7155 of the knife assembly 7154 and retained therein by, for example, a frictional fit, adhesive, welding, etc. In at least one form, the elongated channel 7102 is formed with a right upstanding wall 7107 and a left upstanding wall 7108 that define a centrally-disposed channel slot 7109. Once the knife assembly 7150 is inserted into the bottom window in the elongated channel 7102, the body portion 7151 of the knife assembly 7150 may be inserted into the channel slot 7109 and advanced proximally in the elongated channel 7102 to be coupled with the distal end 7080 of the central firing beam 7074. A lower channel cover 7111 may be attached to the bottom of the elongated channel 7102 to prevent tissue, body fluids, etc. from entering into the elongated channel 7102 which might hamper the movement of the knife assembly 7150 therein.
The surgical instrument 7010 may also include an articulation system 7400 of the type described in detail in U.S. patent application Ser. No. 13/803,097, now U.S. Pat. No. 9,687,230. In one implementation, for example, the articulation system 7400 includes an articulation shaft assembly 7430 that may be operably controlled by an articulation control system 7460. In one form, for example, the articulation shaft assembly 7430 may include a right articulation shaft segment 7440 and a left articulation shaft segment 7450. The right articulation shaft segment 7440 includes a proximal end 7442 that has a right passage segment 7444 formed therein. Likewise the left articulation shaft segment 7450 includes a proximal end portion 7452 that has a left passage segment 7454 formed therein. When the right articulation shaft segment 7440 and the left articulation shaft segment 7450 are installed within the proximal closure tube segment 7210, they form the articulation shaft assembly 7430. The right passage segment 7444 and the left passage segment 7454 cooperate to receive a portion of the proximal firing shaft 762 therein. The right articulation shaft segment 7440 and the left articulation shaft segment 7450 may be, for example, composed of a plastic, especially a glass fiber-reinforced amorphous polyamide, sold commercially under the trade name Grivory GV-6H by EMS-American Grilon.
Still referring to
The surgical instrument 7010 may be used in a minimally invasive procedure wherein it is inserted through a trocar port that has been installed in a patient. In such applications, it is generally advantageous to minimize the overall cross-sectional shape of the end effector during insertion into the patient in order to minimize the size of the trocar port that must be employed. The smallest cross-sectional configuration that the end effector 7100 may adopt is achieved when the upper jaw or anvil assembly 7130 is in its a “first insertion position” relative to the lower jaw or more specifically relative to the surgical staple cartridge 7110 installed in the elongated channel 7102. Thus, to facilitate insertion of the end effector 7100 through the trocar port, the cross-sectional area or footprint is sized relative to the cross-sectional size of the port opening in the trocar port to permit the end effector 7110 to slidably pass therethrough.
In at least one implementation, the end effector 7100 employs an active anvil control system 7600 that is configured to enable the anvil assembly 7130 to move to the first insertion position to enable the end effector 7100 to be inserted through the trocar port and then once the end effector 7100 has passed through the trocar port, enables the anvil assembly 7130 to assume an operating configuration for stapling tissue. Referring to
As can be seen in
The elongated channel 7102 is equipped with an elastic “biasing means” 7620 that serves to bias the anvil body portion 7132 away from the elongated channel 7102. In various embodiments, the elastic biasing means 7620 may comprise any form of resilient member(s) and/or spring(s) that are attached directly to the elongated channel 7102. For example, in the depicted arrangement, the biasing means comprises strips of compressible or elastic foam material 7622 attached along the sides of the elongated channel 7102. When the anvil assembly 7130 is inside the trocar port 7630, the foam strips 7622 will be compressed as shown in
As can be seen in
In various implementations, biasing means 7750 are provided on portions of the underside 7733 of the anvil body portion 7732 as well as on the sides of the elongated channel 7721 and/or on portions of the surgical staple cartridge. For example, anvil biasing member(s) 7752 may be provided on the anvil body portion 7732 in confronting arrangement with anvil biasing member(s) 7756 on the elongated channel 7721. The biasing means 7752, 7754 may comprise any form of resilient member(s) and/or spring(s). For example, in the depicted arrangement, the biasing means comprises strips of compressible or elastic foam material. When the anvil assembly 7730 is inside the trocar port 7630, the biasing members 7752, 7754 will be compressed as shown in
As illustrated in
As can also be seen in
Referring now to
Referring to
In various arrangements, the closure tube attachment yoke 8030 is movably mounted on a proximal articulation tube 8202 of an articulation system 8200 which will be discussed in further detail below. Such arrangement permits the closure tube attachment yoke 8030 to move axially on the proximal articulation tube 8202 in response to actuation of the closure trigger 8002. In particular, the closure tube attachment yoke 8030 may be pivotally coupled to the closure trigger 8002 by a closure linkage bar 8040. See
The closure drive system 8000 may further include an intermediate flexible tube segment 8050 that is configured for attachment to the distal end 8018 of the proximal closure tube segment 8010. As can be seen in
The closure drive system 8000 may further include a distal closure tube segment 8080 that is configured to axially engage and apply opening and closing motions to the anvil assembly 7930. The distal closure tube segment 8080 may be attached to the distal end of intermediate tube segment 8050 for axial travel therewith. The articulation spine 8062 may further include distal end portions 8066 that are configured to be received in corresponding notches 8084 in the proximal end 8082 of the distal closure tube segment 8080 to prevent relative rotation between the distal closure tube segment 8080 and the intermediate tube segment 8050. See
The distal closure tube segment 8080 is configured to apply opening and closing motions to the anvil assembly 7930. As can be seen in
Operation of the closure drive system 8000 will now be described. The anvil assembly 7930 may be moved relative to the surgical fastener cartridge 7910 by pivoting the closure trigger toward and away from the pistol grip portion 7828 of the handle 7822. Thus, actuating the closure trigger 8002 causes the proximal closure tube segment 8010, the intermediate tube segment 8050 and the distal closure tube segment 8080 to move axially in the distal direction “DD” to contact the end wall 7944 of the anvil body portion 7932 to pivot or otherwise move the anvil 7930 toward the surgical fastener cartridge 7910. The clinician may grasp and manipulate tissue between the anvil assembly 7930 and the fastener cartridge 7910 by opening and closing the anvil assembly 7930. Once the target tissue is captured between the anvil assembly 7930 and fastener cartridge 7910, the clinician may pivot the closure trigger 8002 to the fully actuated position wherein it is locked in place for firing.
As indicated above, the frame 7830 may also be configured to operably support the firing drive system 8100 that is configured to apply firing motions to corresponding portions of the elongated shaft assembly 7850 and ultimately to the knife assembly 7950 and the sled assemblies 7960, 7970. As can be seen in
As outlined above with respect to other various forms, the electric motor 8102 can include a rotatable shaft 8108 that operably interfaces with a gear reducer assembly 8110 that is mounted in meshing engagement with a with a set, or rack, of drive teeth 8122 on a longitudinally-movable drive member 8120. The gear reducer assembly 8110 can include, among other things, a housing 8112 and an output pinion gear 8114. See
Actuation of the motor 8102 can be controlled by a firing trigger 8130 that is pivotally supported on the handle 7822. The firing trigger 8130 may be pivoted between an unactuated position and an actuated position. The firing trigger 8130 may be biased into the unactuated position by a spring (not shown) or other biasing arrangement such that when the clinician releases the firing trigger 8130, it may be pivoted or otherwise returned to the unactuated position by the spring or biasing arrangement. In at least one form, the firing trigger 8130 can be positioned “outboard” of the closure trigger 8002 as discussed in further detail in U.S. patent application Ser. No. 13/803,097, now U.S. Pat. No. 9,687,230, which has been previously incorporated by reference in its entirety herein. In at least one form, a firing trigger safety button 8132 may be pivotally mounted to the closure trigger 8002. The safety button 8132 may be positioned between the firing trigger 8130 and the closure trigger 8002 and have a pivot arm (not shown) protruding therefrom. When the closure trigger 8002 is in the unactuated position, the safety button 8132 is contained in the handle housing where the clinician cannot readily access it and move it between a safety position preventing actuation of the firing trigger 8130 and a firing position wherein the firing trigger 8130 may be fired. As the clinician depresses the closure trigger 8002, the safety button 8132 and the firing trigger 8130 pivot down to a position wherein they can then be manipulated by the clinician.
As indicated above, in at least one form, the longitudinally movable drive member 8120 has a rack of teeth 8122 formed thereon for meshing engagement with a corresponding drive gear of the gear reducer assembly 8110. At least one form may also include a manually-actuatable “bailout” assembly that is configured to enable the clinician to manually retract the longitudinally movable drive member 8120 should the motor become disabled. U.S. patent application Ser. No. 13/803,097, now U.S. Pat. No. 9,687,230, contains further details of one form of bailout assembly that may be employed. U.S. Pat. No. 8,608,045, also discloses “bailout” arrangements and other components, arrangements and systems that may also be employed with the various instruments disclosed herein. U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Pat. No. 8,608,045, is incorporated by reference in its entirety herein.
Referring to
The distal firing shaft assembly 7870 may include a central firing beam 7874 that is located between a right sled pusher beam 7876 and a left sled pusher beam 7878. The central firing beam 7874 and the pusher beams 7876, 7878 may, for example, each be fabricated from metal that facilitates axial actuation of the sled assemblies 7960, 7970 in the surgical end effector 7900 while also facilitating flexing thereof when the end effector 7900 is articulated as will be discussed in further detail below. In at least one arrangement, the central pusher beam 7874, the right sled pusher beam 7876 and the left sled pusher beam 7878 may extend through a slot 7946 in the anvil mounting portion 7936. The right sled pusher beam 7876 corresponds to the right sled assembly 7960 and the left sled pusher beam 7878 corresponds to the left sled assembly 7970 movably supported within the elongated channel 7902. Axial movement of the right sled pusher beam 7876 and the left sled pusher beam 7878 will result in the axial advancement of the right and left sled assemblies 7960, 7970, respectively, within the elongated channel 7902. As the right sled assembly 7960 is axially advanced within the elongated channel 7902, it drives the surgical fasteners 7920 supported in the cartridge body 7912 on the right side of the slot 7914 out of their respective pockets 7916 and as the left sled assembly 7970 is axially advanced within the elongated channel 7902, it drives the surgical fasteners 7920 supported within the cartridge body 7912 on the left side of the slot 7914 out of their respective pockets 7916.
The central firing beam 7874 has a distal end 7880 that may be configured to be received within a slot 7951 provided in the knife assembly 7954 and retained therein by, for example, a frictional fit, adhesive, welding, etc. A bottom window 7905 may be formed in a distal end 7903 of the elongated channel 7902 to enable the knife assembly 7950 to be inserted therethrough. In at least one form, the elongated channel 7902 is formed with a right upstanding wall 7907 and a left upstanding wall 7908 that define a centrally-disposed channel slot 7909. Once the knife assembly 7950 is inserted into the bottom window 7905 in the elongated channel 7902, the body portion 7951 of the knife assembly 7950 may be inserted into the channel slot 7909 and advanced proximally in the elongated channel 7902 to be coupled with the distal end 7980 of the central firing beam 7874. A lower channel cover 7911 may be attached to the bottom of the elongated channel 7902 to prevent tissue, body fluids, etc. from entering into the elongated channel 7902 which might hamper the movement of the knife assembly 7950 therein.
In one form, the anvil assembly 7930 may be installed onto the elongate channel 7902 as follows. To commence the installation process, the anvil assembly 7930 is positioned over the elongated channel 7902 such that the trunnions 7938 may be inserted into notches 7913 in the proximal mounting portion 7904 of the elongated channel 7902 which enable the trunnions 7938 to enter the corresponding trunnion slots 7906 in the elongated channel 7902. See
Referring to
In various arrangements, for example, the articulation control system 8260 may include a nozzle assembly 8262 that is supported for rotational travel relative to the handle 7822. As can be seen in
Still referring to
Referring now to
As can be most particularly seen in
In various arrangements, each of the right rib neck portions 8016 serves to define a right articulation passage 8318 for movably receiving the right articulation band 8290 therethrough. The right articulation band 8290 may extend through the right articulation passage 8318 and be coupled to the proximal mounting portion 7904 of the elongate channel 7902. For example, the distal end 8294 of the right articulation band 8290 may have a right hook portion 8296 that is adapted to be coupled to a right attachment portion 8297 of the elongated channel 7902. See
One method of operating the articulation system 8200 will now be described. When the clinician wishes to articulate the end effector 7900 to the right relative to the longitudinal tool axis LT-LT (the right direction is represented by arrow “RD” in
Upon application of the above-described articulation motions to the surgical end effector 7900, it may be desirable to avoid twisting or torquing the flexible articulation portion 8060 of the intermediate tube segment 8050. If such torque or twisting were to occur, the possibility exists for hampering or, in instances of severe twisting, completely jamming the operation of the central firing beam 7874 and the right and left sled pusher beams 7876, 7878. To avoid this problem, the right and left ribs 8310, 8320 may be uniquely configured to prevent twisting between the ribs.
In at least one arrangement, for example, each rib body 8312 has lateral ends that are arranged in spaced, confronting relationship with the lateral ends of the rib bodies of adjacent ribs. Referring again to
Still referring to
As the flexible articulation portion 8060 is articulated in the right direction “RD”, at least some of the protrusions 8332 on the right ribs 8310 will frictionally engage a portion of a corresponding recess 8332 in an adjacent right rib 8310 to prevent the flexible portion 8060 from twisting. Similarly, as the flexible articulation portion 8060 is articulated in the left direction “LD”, at least some of the protrusions 8332 on the left ribs 8320 will engage a portion of the recess 8332 in an adjacent left rib 8320 in a “twist-preventing orientation” to prevent the flexible portion 8060 from twisting. This engagement/orientation between the protrusion 8332 and the bottom of the cavity 8334 in an adjacent left rib 8320, for example, is illustrated in
Various alternative anti-twist arrangements are also contemplated. For example, the anti-twist features may not provided on, for example, the proximal-most four ribs. In still other arrangements, the anti-twist features may be provided in a plurality of ribs comprising a central area of the flexible segment, but not in the proximal-most and distal most ribs. In, other arrangements, the anti-twist features may be employed on every other pair of ribs along the length of the flexible segment. For example, the proximal-most pair of adjacent ribs may have anti-twist features, then the next rib or ribs (distal to those ribs) may not have anti-twist features and the next ribs (distal thereto) may have the anti-twist features and so on. These alternative arrangements may be applied only to the ribs on one side of the articulation spine or they may be employed on the ribs on both sides of the articulation spine. By altering the number, location and/or spacing of the ribs with the anti-twist features, as well as the space widths between the ribs (with and without anti-twist features), as well as the geometric shape of the articulation spine, one can advantageously adjust the overall flexibility of the flexible segment, its degree of articulation, its degree of stiffness and its rate of articulation.
Referring to
Further, in one arrangement, when the flexible portion 8060 is in an unarticulated or flexed position, all of the right rib spaces 8315 and left rib spaces 8325 have the same starting width. Thus, in that configuration, SWR=SWL.
Referring now to
In various arrangements, the end effector 8412 may be configured to be selectively articulated about a longitudinal tool axis LT-LT that is defined by the elongated shaft assembly 8500. For example, the elongated shaft assembly 8500 may include a flexible neck assembly 8510 that enables the end effector 8412 to articulate in a first direction “FD” that is essentially the same direction that the anvil 8420 moves in when the anvil 8420 is moved from an open position to a closed position (hereinafter referred to as the anvil closing direction “CD”). See
Various flexible neck assemblies are disclosed in U.S. Provisional Patent Application Ser. No. 61/386,117, filed Sep. 24, 2010, the entire disclosure of which is herein incorporated by reference. Other flexible neck assemblies are disclosed in U.S. Patent Application Publication No. 2012/0074200, entitled SURGICAL INSTRUMENT WITH SELECTIVELY ARTICULATABLE END EFFECTOR, filed Sep. 23, 2011, the entire disclosure of which is hereby incorporated by reference herein. The flexible neck assembly 110 may, for example, be composed of rigid thermoplastic polyurethane sold commercially as ISOPLAST grade 2510 by the Dow Chemical Company. The flexible neck assembly 8510 may have a flexible neck segment 8511 that comprises a first or upper flexible neck portion 8512 and a second or lower flexible neck portion 8514. These neck portions 8512, 8514 may be separated by a longitudinal rib portion 8516. The neck portions 8512, 8514 may each have a plurality of neck ribs 8518 that are configured essentially as semi-circular disks which together generally form a cylindrical configuration. An upper slot 8520 extends through each of the neck ribs 8518 of the first or upper flexible neck portion 8512 to form a passage through the first flexible neck portion 8512 for receiving a first flexible transmission band assembly 8550 therethrough. Similarly, a lower slot 8521 extends through each of the neck ribs 8518 in the second or lower flexible neck portion 8514 to form a passage for receiving a second flexible transmission band assembly 8570 therethrough. See, for example,
As can be seen in
Referring again to
In at least one implementation, the proximal end of the elongated cartridge channel 8414 is provided with a pair of upper and lower band connector ears 8450. See
In various arrangements, the distal closure tube segment 8590 is slid over the channel guide 8528 of the flexible neck assembly 8510. The proximal end 8591 of the distal closure tube segment 8590 has a pair of diametrically opposed slots 8592 therein (only one can be seen in
Movement of the first and second transmission bands 8552, 8572 may be controlled by an articulation transmission assembly 8600. The component parts of one form of articulation transmission assembly 8600 are illustrated in
Still referring to
The nozzle 8650 of the articulation transmission assembly 8600 may include a nozzle body 8652. The nozzle body 8652 may have an axial bore 8654 therethrough that facilitates the passage of the first transmission band assembly 8550 and the second transmission band assembly 8570 as well as for the firing rod 8930 and other operative components of the instrument 8410 including a the proximal end 8706 of a proximal outer shaft segment 8700. See
Referring again to
Ratcheting rotation of the actuator 8610 causes articulation of the end effector 8412 in the first or second directions relative to the longitudinal tool axis LT-LT.
As can be seen in
Still referring to
Referring now to
In various implementations, the housing assembly 8800 comprises a pistol-shaped handle housing that may be fabricated in two or more pieces for assembly purposes. For example, the housing assembly 8800 as shown comprises a right hand case member 8802 and a left hand case member 8804 (
The trigger assembly 8830 may, for example, comprise a primary trigger 8840 and a secondary trigger 8860. The primary and secondary triggers 8840 and 8860 are pivotally journaled on a pivot pin assembly 8831 formed in the housing assembly 8800 such that the triggers 8840 and 8860 may essentially move relative to each other. Such arrangement permits the trigger assembly 8830 to pivot relative to the housing assembly 8800 about a pivot axis PA-PA. See
As can be seen in
In various implementations, the actuation system 8810 may further include an actuation bar 8870. The actuation bar 8870 has a first actuation rack 8872 formed thereon that is configured for meshing engagement with the primary gear segment 8846 on the primary trigger 8840. Thus, when the primary gear segment 8846 is in meshing engagement with the first actuation rack 8872, the actuation bar 8870 is driven in the distal direction “DD” when the primary trigger 8840 is pivoted toward the pistol grip 8806. The actuation bar 8870 has a second actuation rack 8874 formed thereon configured to meshingly engage clutch teeth 8884 on a clutch shaft 8882 of a clutch assembly 8880. In various embodiments, the clutch shaft 8882 is rotatably is supported within the housing assembly 8800 and is also laterally movable therein. The clutch shaft 8882 has a hub portion 8886 that has a plurality of spaced teeth 8888 that are configured to drivingly engage teeth openings 8892 in a drive gear 8890 that is rotatably supported on the clutch shaft 8882. The drive gear 8890 has a segment of drive gears 8894 thereon that are adapted for meshing engagement with a firing rack 8900 that is movably supported in the housing assembly 8800.
Various embodiments of the clutch assembly 8880 may further comprise a clutch plate 8910 that is slidably journaled on a clutch pin 8849 provided on the primary drive portion 8844 of the primary trigger 8840. The clutch pin 8849 may be movably received within a vertical slot 8912 in the clutch plate 8910. The clutch plate 8910 also has a distally-extending clutch arm 8914 that is adapted to actuatably engage a bevel plate 8889 formed on the clutch shaft 8882. In addition, a clutch spring 8920 is employed to bias the clutch shaft 8880 laterally such that the teeth 8888 on the clutch shaft 8882 are brought into meshing engagement with the teeth openings 8892 in the drive gear 8890.
As can be seen in
Referring to
In various arrangements, each staple cartridge 8430 includes a cartridge body 8431 that has a sled assembly 8985 operably supported therein. The sled assembly 8985 may have a mounting portion 8986 that is configured to extend into a sled slot 8987 formed in the vertically oriented body portion 8974 of the cutting head 8973. See
The end effector 8412 may also employ a cutting head lockout system, generally designated as 8991 that serves to prevent distal advancement of the cutting head 8973 when a new staple cartridge 8430 is not present within the elongated channel 8414. In at least one arrangement, for example, the cutting head lockout system 8991 may comprise a lockout spring 8992 that is mounted to the bottom of elongated channel 8414. The lockout spring 8992 may be configured to contact the bottom foot 8977 of the cutting head assembly 8973 when the cutting head assembly 8974 is in the starting position. See
As can be seen in
In various arrangements, the firing rod 8930 extends through a closure bushing 8940 that is mounted within the housing assembly 8800. In at least one form, a pair of mounting studs 8807 protrude from the handle casings 8802, 8804 and extend through corresponding slots in the closure carriage 8820 to be received in a retaining slot in the bushing 8840. A closure spring 8950 that is attached to a retainer clip 8952 is journaled on the closure bushing 8940. The closure spring 8950 extends between the nozzle body 8652 and an internal wall 8825 in the closure carriage 8820. Thus, the closure spring 8950 serves to bias the closure carriage 8820 in the proximal direction “PD”.
Various embodiments may also include a releasable closure locking assembly 8960 that interfaces with the closure carriage 8820 to selectively retain the closure carriage 8820 in its distal-most closed or clamped position. In at least one form, the closure locking assembly 8960 includes a locking button 8962 that is pivotally supported in the housing assembly 8800. The locking button 8862 has a latch arm 8964 that is configured to abut a locking ledge 8826 formed on the closure carriage 8820 when the button 8962 is in the locked position. In addition, the latch arm 8964 has a catch 8966 formed thereon that is configured to releasably latch with a locking latch 8902 on the proximal end of the firing rack 8900. A locking spring 8968 serves to bias the locking button 8962 into the locked position.
Operation of the surgical instrument 8410 will now be described.
To initiate the closure process, a first stroke is applied to the trigger assembly 8830. That is, the trigger assembly 8830 is initially pivoted toward the pistol grip 8806. Such pivoting action serves to drive the closure carriage 8820 in the distal direction “DD” by virtue of the meshing engagement between the closure gear segment 8866 on the secondary trigger 8860 and the carriage rack 8823 formed on the underside of the closure carriage 8820. Such distal movement of the closure carriage 8820 also axially advances the proximal outer shaft segment 8700 and the distal closure tube segment 8590 in the distal direction “DD”. As the distal closure tube segment 8590 moves distally, the pin 8419 which extends through the slots 8423 in the anvil mounting portion 8422, travels from the position illustrated in
Those of ordinary skill in the art will understand that, as the trigger assembly 8830 is pivoted toward the pistol grip 8806, the actuation bar 8870 will necessarily also be driven distally by virtue of the meshing engagement between the primary gear segment 8846 on the primary trigger 8840 and the first actuation rack 8872 on the actuation bar 8870. The distal movement of the actuation bar 8870 will also result in the an application of a rotary actuation motion to the clutch shaft 8882 by virtue of the meshing engagement between the clutch teeth 484 on the clutch shaft 8882 and the second actuation rack 8874 on the actuation bar 8870. However, such rotary motion is not applied to the drive gear 8890 because the clutch arm 8914 of the clutch plate 8910, in contact with the clutch drive bevel 8889 on the clutch shaft 8882, prevents the axial movement of the clutch shaft 8882 into meshing engagement with the drive gear 8890. Thus, the clutch shaft 8882 freely rotates relative to the drive gear 8890. Accordingly, the clutch assembly 8880 automatically prevents the activation of the firing rack 8900 during the initial actuation of the trigger assembly 8830.
Once the trigger assembly 8830 has been initially fully compressed into the closed position, the anvil 8420 will be retained in the locked or clamped position by the closure locking assembly 8960 which prevents the proximal movement of the closure carriage 8820. To drive the knife bar assembly 8970 distally through the tissue clamped in the end effector 8412, the surgeon again pivots the primary trigger 8840 toward the pistol grip 8806 of the housing assembly 8800. As the primary trigger 8840 is pivoted, the firing rack 8900, the firing rod 8930, and the knife bar assembly 600 are driven in the distal direction “DD”. After the knife bar assembly 8970 has been driven through the tissue clamped in the end effector 8412, the surgeon then releases the primary trigger 8840 to thereby permit the primary trigger 8840 to pivot to its unactuated position under the bias of the firing spring 8832. As the primary trigger 8840 pivots back to the starting position, the firing rack 8900, firing rod 8930, and knife bar assembly 8970 are drawn proximally back to their respective starting positions. The end effector 12 remains in its clamped position as shown in
To unlock the closure carriage 8820 and the secondary trigger 8860, the surgeon depresses the locking button 8962. As the locking button 8962 is depressed, the locking arm 8964 is pivoted out of abutting engagement with the locking ledge 8826 on the closure carriage 8820. Further details regarding the operation of the firing and closure systems may be found in U.S. Patent Application Publication No. US 2012/0074200 which has been herein incorporated by reference in its entirety. As the closure carriage 8820 moves proximally, the proximal outer shaft segment 8700, the flexible neck assembly 8510, and the distal closure tube segment 8590 are drawn proximally. As the distal closure tube segment 8590 moves proximally, the shaft 8419 travels proximally within the slot 8423 in the anvil mounting portion 8422 to move the anvil 8420 to an open position.
As can be appreciated from the foregoing, the various surgical instruments disclosed herein afford the clinician with improved maneuverability and various other advantages that are not available when using prior surgical instruments that are configured to cut and fasten tissue. For example, in various implementations disclosed herein, the end effector is selectively articulatable in the same directions in which the jaws are movable relative to each other. Stated another way, the jaws of the surgical end effector are constrained to move in one plane. In various implementations disclosed herein, the end effector is also capable of moving in that same plane. Prior end effectors are commonly constrained to move in planes that differ from the plane in which the jaws move.
Another advantage provided by many of the present implementations is the use of a firing bar that comprises at least an upper firing bar and at least a lower firing bar that form a laminated structure. The upper and lower bars may at some point be attached to each other or they may be unattached and just be contiguous with each other. In either arrangement, the upper bar is attached to an upper end of the cutting head and the lower bar may be attached to the lower head such that they are spaced from each other at their points of attachment to the cutting head. Such arrangement serves to provide for a more stable cutting head arrangement that may be less likely to twist and/or buckle during actuation. In addition, the cutting head may be equipped with laterally protruding upper tab(s) that engage a portion of the anvil and lower tab(s) that engage the elongated channel. The upper firing bar may be attached directly behind the point where the upper tabs are attached such that it is axially aligned therewith. Likewise the lower firing bar may be attached to the bottom portion directly behind the points where the bottom tab(s) are attached such that it is axially aligned therewith. Such axial alignment facilitates transfer of the driving or actuation motions to the cutting head at the points where the cutting head engages the anvil and the elongated channel which may further prevent and buckling and/or twisting of the cutting head during actuation.
The various surgical instruments arrangements disclosed herein that employ tissue cutting and staple firing systems, jaw opening and closing systems and end effector articulation systems that essentially employ components that are axially reciprocated during actuation may be actuated by manually generated actuation motions, For example, the firing systems may be housed in a handle that includes trigger arrangements that are configured to generate actuation motions when the clinician manipulate the triggers. It will be appreciated, however, that such actuation motions may likewise be generated by motors that are supported in a handle or are supported or comprise a portion of a robotic system. Thus, the various surgical instruments disclosed herein should not be limited to use solely in connection with hand-held housings and manually generated actuation motions.
Powered surgical instruments are disclosed in U.S. Patent Application Publication No. 2009/0090763, entitled POWERED SURGICAL STAPLING DEVICE to Zemlok et al. (hereinafter “Zemlok '763”), the entire disclosure of which is hereby incorporated by reference herein. Powered surgical instruments are also disclosed in U.S. Patent Application Publication No. 2011/0278344, entitled POWERED SURGICAL INSTRUMENT to Zemlok et al. (hereinafter “Zemlok '344”), now U.S. Pat. No. 8,201,721, the entire disclosure of which is hereby incorporated by reference herein.
An elongated shaft assembly 9116 in the form of an endoscopic portion protrudes from the housing 9012 and is configured for operable attachment to a surgical end effector that is constructed to perform at least one surgical procedure in response to applications of firing motions thereto. The surgical end effector may comprise a device configured to cut and staple tissue such as a “loading unit” 9020 as shown in
The anvil assembly 9220 has a pair of trunnions 9221 formed thereon that are adapted to be pivotally received within trunnion slots 9242 in a proximal end 9241 of the carrier 9240 such that the anvil assembly 9220 may move or pivot between an open position and a closed position relative to the carrier 9240 about an anvil pivot axis ANV-ANV. The anvil pivot axis ANV-ANV is transverse to a longitudinally extending tool axis LA-LA defined by the elongated shaft assembly 9116. When the anvil assembly 9220 is pivoted from an open position to a closed position, the anvil assembly 9220 is moving in a closing direction “CD” about anvil pivot axis ANV-ANV. Conversely, when the anvil assembly 9220 is moving from a closed position to an open position, the anvil assembly 9220 is moving in an opening direction “OD” about anvil pivot axis ANV-ANV.
The loading unit 9020 employs a unique and novel articulation joint 9270 that facilitates articulation of the carrier 9240 and anvil assembly 9220 to pivot about an articulation axis “AA-AA” that is transverse to a longitudinal tool axis “LA-LA”. For example, the loading unit 9020 may include an end effector housing 9400 that is configured to be received within an outer casing 9450. The distal end 9402 of the end effector housing 9400 may have a clevis 9404 formed thereon by two distally protruding tabs 9406. Each tab 9406 has a pivot hole 9408 formed therein that is adapted to receive therein a corresponding pivot pin 9274 formed on an articulation ball assembly 9272. See
Still referring to
The loading unit 9020 may also be equipped with a drive assembly 9460 that is configured to axially move through the end effector housing 9400. In at least one implementation, the drive assembly 9460 includes a drive beam assembly 9461 that includes an upper drive beam 9462 and a lower drive beam 9464 that are attached to a cutting head 9470. The cutting head 9470 may include a body portion 9471 that has a tissue cutting edge 9472 formed thereon. An upper portion 9473 of the body portion 9471 has an upper tab 9474 formed thereon. A bottom foot or tab 9476 is formed on a lower portion 9475 of the body portion 9471. The vertically oriented body portion 9471 extends through a longitudinally extending slot 9245 in the carrier 9240 and a longitudinally extending slot 9222 in the anvil assembly 9220. When assembled, the bottom foot 9476 is configured to slide along the bottom of the carrier 9240. The, upper tab portion 9474 is arranged to be slidably received within an elongated channel 9223 formed in the anvil assembly 9220.
As can be seen in
The drive beam assembly 9460 may further include a proximal engagement member 9467 that includes a pair of engagement fingers 9468 that are configured to operably engage a distal end 9522 of a firing rod 9104 as will be discussed in further detail herein. As can be seen in
As can be seen in
As can be further seen in
In various embodiments, the surgical instrument can include at least one motor, which can apply firing motions to the loading unit 9020 and/or articulation motions to the articulation system 9109, as described elsewhere in greater detail. The motor 9100 may, for example, be powered by a power source 9200 of the type described in further detail in Zemlok '763. For example, the power source 9200 may comprise a rechargeable battery (e.g., lead-based, nickel-based, lithium-ion based, etc.). It is also envisioned that the power source 9200 may include at least one disposable battery. The disposable battery may, for example, be between about 9 volts and about 30 volts. However, other power sources may be employed.
Referring to
Surgical end effectors, such as a disposable loading unit 9020, for example, can be operably coupled to the elongated shaft assembly 9116 of the powered surgical instrument 10 (
Referring to
Referring primarily to
Referring primarily to
In various embodiments, the rotation ramp 9488 can affect rotation of a firing shaft 9104 positioned within the elongated shaft assembly 9116. For example, referring primarily to
Referring primarily to
In various embodiments, the rotatable coupling collar 9500 can be biased into the initial orientation relative to the elongated shaft assembly 9116 and/or the distal attachment portion 9032. For example, a spring 9514 can bias the coupling collar 9500 into the initial orientation. The spring 9514 can include a proximal end 9516 that can be secured relative to the elongated shaft assembly 9116, and a distal end 9550 that can be secured relative to the coupling collar 9500. For example, the proximal end 9516 of the spring 9514 can be retained in a proximal spring slot 9556 (
In various embodiments, the rotatable coupling collar 9500 can include a locking detent 9518 that releasably locks the loading unit 9020 to the elongated shaft assembly 9116. Referring primarily to
In various embodiments, the locking detent 9518 can engage the distal attachment portion 9480 of the loading unit 9020 to lock the loading unit 9020 relative to the elongated shaft assembly 9116. For example, referring again to
In various embodiments, rotation of the coupling collar 9500 can facilitate attachment and/or alignment of a firing assembly. For example, the firing shaft 9104 can extend between a proximal end 9524 and a distal end 9522. The proximal end 9524 can have a rotation joint, which can permit rotation of the firing shaft 9104 between the first configuration and the second configuration. Furthermore, the distal end 9522 can have a coupler for attaching the proximal engagement member 9467 of the drive beam assembly 9461 to the firing shaft 104. Rotation of the firing shaft 9104 can facilitate attachment of the proximal engagement member 9467. For example, as the coupler at the distal end 9522 of the firing shaft 9104 rotates, the distal end 9522 is operably coupled to the proximal engagement member 9467. In certain embodiments, the coupler can include a bayonet mount, which can engage a corresponding bayonet receiver of the cutting element in the loading unit 9020. Referring primarily to
In various embodiments, when the firing shaft 9104 rotates within the elongated shaft assembly 9116, the firing shaft 9104 can rotate into alignment with a firing shaft slot 528 in the loading unit 9020. For example, the firing shaft rotator 9600 can be aligned with the firing shaft slot 9528 when the loading unit 9020 is fully inserted and attached to the elongated shaft assembly 9116. However, in various embodiments, when the loading unit 9020 is only partially inserted into the elongated shaft assembly 9116, the firing shaft rotator 9600 can be rotated, via the rotation key 9486, out of alignment with the firing shaft slot 9528. In other words, the firing shaft rotator 9600 can be aligned with the firing shaft slot 9482 when the firing shaft 9104 is in the first orientation, and can be misaligned with the firing shaft slot 9482 when the firing shaft 9104 rotates toward the second orientation. In such embodiments, when the loading unit is only partially inserted into the elongated shaft assembly 9116 and/or before the loading unit 9020 is releasably locked to the elongated shaft assembly 9116 by the rotatable coupling collar 9500, the firing path of the firing shaft rotator 9600 can be blocked by the distal attachment portion 9480. Integration of the firing shaft 9104 and the coupling collar 9500 can ensure the loading unit 9020 is securely attached to the elongated shaft assembly 9116 before the firing shaft 9104 can fire and/or advance. For example, the surgical instrument may be unable to fire until the cutting element in the loading unit 9020 is coupled to the firing shaft 9104, and/or until the firing shaft 9104 is properly aligned within the elongated shaft assembly 9116, for example.
In certain embodiments, rotation of the coupling collar 9500 can facilitate attachment and/or alignment of an articulation assembly 9530. Referring primarily to
In various embodiments, referring again to
Referring primarily to
Referring now to
Referring primarily to
Referring primarily to
Referring now to the
Referring now to
As described herein, the rotatable coupling collar 9500 can releasably lock the loading unit 9020 relative to the elongated shaft assembly 9116. Furthermore, rotation of the coupling collar 9500 can facilitate simultaneous attachment and/or alignment of the articulation assembly 9530, as well as attachment and/or alignment of the firing shaft 9104 with a cutting head assembly in the loading unit 9020, for example. Furthermore, rotation of the coupling collar 9500 can also simultaneously unlock the loading unit 9020 from the elongated shaft assembly 9116, disconnect the articulation assembly 9530, and/or disconnect the firing shaft 104 from the cutting element in the loading unit 9020. For example, when the coupling collar 9500 is again rotated from the initial orientation toward the secondary orientation, the locking detent 9518 can disengage the lock notch 9489 in the distal attachment portion 9480. Accordingly, the distal attachment portion 9480 can be withdrawn from the distal attachment portion 9032 along the longitudinal axis defined by the elongated shaft assembly 9116, for example. In various embodiments, the loading unit 9020 can be unattached from the elongated shaft assembly 9116 without rotating the loading unit 9020 relative to the elongated shaft assembly 9116. However, the coupling collar 9500 can rotate relative to the elongated shaft assembly 9116, which can disconnect the distal articulation bar 9420 from the articulation connector 9532 in the coupling collar 9500, and can disconnect the firing shaft 9104 from the cutting element or drive beam assembly in the loading unit 9020, for example.
Thus, as can be appreciated from the foregoing, at least one surgical instrument embodiment of the present invention includes a surgical end effector that comprises a lower jaw and an upper jaw. In one implementation, the upper jaw comprises a proximal upper jaw portion that is pivotally coupled to the lower jaw for selective pivotal travel relative thereto about a pivot axis between open and closed positions upon application of closing and opening motions to the proximal upper jaw portion. A distal upper jaw portion may be movably coupled to the proximal upper jaw portion and is supported for parallel movement toward and away from the lower jaw when the proximal upper jaw portion is in the closed position. A firing member may be operably supported for operable travel within the surgical end effector relative to the upper and lower jaws when the proximal upper jaw portion is in the closed position and firing motions are applied to the firing member.
In at least one implementation, the surgical instrument may employ a lockout system that is configured to not only prevent actuation of the firing system or stated another way, advancement of the cutting head through the elongated channel when a cartridge is not present, but also to prevent such firing system actuation unless a new cartridge has been properly supported within the elongated channel. In such implementations, each new cartridge has a sled assembly supported in a starting position. When a cartridge has been properly installed within the elongated channel, the sled assembly interfaces with the lockout system to thereby enable the cutting head to be advanced distally through the cartridge. If, however, a spent cartridge has been inadvertently installed in the elongated channel, the lockout system will prevent actuation of the cutting head, because the sled assembly will be located in the distal end of the cartridge and thereby unable to interface with the lockout system. Such system will prevent re-actuation of the firing system, should the clinician fail to replace a spent cartridge and attempt to actuate the firing system.
In at least one other implementation, there is provided a surgical instrument that comprises an elongated shaft assembly and a surgical end effector that includes an elongated channel that is coupled to the elongated shaft assembly. A surgical staple cartridge may be operably supported in the elongated channel. The end effector may further comprise an anvil assembly that includes a proximal anvil portion that is pivotally coupled to the elongated channel about a pivot axis. The proximal anvil portion is selectively movable between open and closed positions upon application of closing and opening motions thereto. The anvil assembly may further comprise a distal anvil portion that is slidably coupled to the proximal anvil portion such that when the proximal anvil portion is in the closed position, the distal anvil portion is movable relative thereto while remaining parallel to the elongated channel. A firing member may be operably supported for operable movement within the surgical end effector upon application of firing and retraction motions thereto. A firing system may be configured to selectively apply the firing and retraction motions to the firing member. The instrument may further include a closure system for applying the opening and closing motions to the proximal anvil portion.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
In connection with another implementation, there is provided a surgical instrument that includes an elongated shaft assembly that defines a longitudinal tool axis. The instrument further includes a surgical end effector that has an elongated channel that is movably coupled to the elongated shaft assembly for selective pivotal travel about a pivot axis that is transverse to the longitudinal tool axis upon application of articulation motions thereto. The elongated channel may be configured to operably support a surgical staple cartridge. An anvil assembly is pivotally coupled to the elongated channel for selective pivotal travel relative thereto between open and closed positions about the pivot axis upon application of closing and opening motions thereto.
Preferably, the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.
This application is a continuation application claiming priority under 35 U.S.C. § 120 of U.S. patent application Ser. No. 14/138,485, entitled SURGICAL CUTTING AND STAPLING INSTRUMENTS WITH INDEPENDENT JAW CONTROL FEATURES, filed on Dec. 23, 2013, which issued on Dec. 12, 2017 as U.S. Pat. No. 9,839,428, the entire disclosure of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
66052 | Smith | Jun 1867 | A |
662587 | Blake | Nov 1900 | A |
670748 | Weddeler | Mar 1901 | A |
951393 | Hahn | Mar 1910 | A |
1306107 | Elliott | Jun 1919 | A |
1314601 | McCaskey | Sep 1919 | A |
1677337 | Grove | Jul 1928 | A |
1794907 | Kelly | Mar 1931 | A |
2037727 | La Chapelle | Apr 1936 | A |
2132295 | Hawkins | Oct 1938 | A |
2161632 | Nattenheimer | Jun 1939 | A |
2211117 | Hess | Aug 1940 | A |
2214870 | West | Sep 1940 | A |
2318379 | Davis et al. | May 1943 | A |
2441096 | Happe | May 1948 | A |
2475322 | Horton et al. | Jul 1949 | A |
2526902 | Rublee | Oct 1950 | A |
2578686 | Fish | Dec 1951 | A |
2674149 | Benson | Apr 1954 | A |
2711461 | Happe | Jun 1955 | A |
2804848 | O'Farrell et al. | Sep 1957 | A |
2808482 | Zanichkowsky et al. | Oct 1957 | A |
2853074 | Olson | Sep 1958 | A |
2886358 | Munchbach | May 1959 | A |
2959974 | Emrick | Nov 1960 | A |
3032769 | Palmer | May 1962 | A |
3060972 | Sheldon | Oct 1962 | A |
3075062 | Iaccarino | Jan 1963 | A |
3078465 | Bobrov | Feb 1963 | A |
3079606 | Bobrov et al. | Mar 1963 | A |
3166072 | Sullivan, Jr. | Jan 1965 | A |
3196869 | Scholl | Jul 1965 | A |
3204731 | Bent et al. | Sep 1965 | A |
3266494 | Brownrigg et al. | Aug 1966 | A |
3269630 | Fleischer | Aug 1966 | A |
3275211 | Hirsch et al. | Sep 1966 | A |
3317103 | Cullen et al. | May 1967 | A |
3499591 | Green | Mar 1970 | A |
3551987 | Wilkinson | Jan 1971 | A |
3583393 | Takahashi | Jun 1971 | A |
3662939 | Bryan | May 1972 | A |
3717294 | Green | Feb 1973 | A |
3799151 | Fukaumi et al. | Mar 1974 | A |
3940844 | Colby et al. | Mar 1976 | A |
RE28932 | Noiles et al. | Aug 1976 | E |
4014244 | Larson | Mar 1977 | A |
4060089 | Noiles | Nov 1977 | A |
4106446 | Yamada et al. | Aug 1978 | A |
4108211 | Tanaka | Aug 1978 | A |
4111206 | Vishnevsky et al. | Sep 1978 | A |
4129059 | Van Eck | Dec 1978 | A |
4169990 | Lerdman | Oct 1979 | A |
4180285 | Reneau | Dec 1979 | A |
4198734 | Brumlik | Apr 1980 | A |
4198982 | Fortner et al. | Apr 1980 | A |
4207898 | Becht | Jun 1980 | A |
4213562 | Garrett et al. | Jul 1980 | A |
4226242 | Jarvik | Oct 1980 | A |
4241861 | Fleischer | Dec 1980 | A |
4244372 | Kapitanov et al. | Jan 1981 | A |
4250436 | Weissman | Feb 1981 | A |
4261244 | Becht et al. | Apr 1981 | A |
4272002 | Moshofsky | Jun 1981 | A |
4272662 | Simpson | Jun 1981 | A |
4274304 | Curtiss | Jun 1981 | A |
4275813 | Noiles | Jun 1981 | A |
4289133 | Rothfuss | Sep 1981 | A |
4296654 | Mercer | Oct 1981 | A |
4304236 | Conta et al. | Dec 1981 | A |
4305539 | Korolkov et al. | Dec 1981 | A |
4312685 | Riedl | Jan 1982 | A |
4317451 | Cerwin et al. | Mar 1982 | A |
4319576 | Rothfuss | Mar 1982 | A |
4321002 | Froehlich | Mar 1982 | A |
4328839 | Lyons et al. | May 1982 | A |
4331277 | Green | May 1982 | A |
4340331 | Savino | Jul 1982 | A |
4347450 | Colligan | Aug 1982 | A |
4349028 | Green | Sep 1982 | A |
4353371 | Cosman | Oct 1982 | A |
4379457 | Gravener et al. | Apr 1983 | A |
4380312 | Landrus | Apr 1983 | A |
4382326 | Rabuse | May 1983 | A |
4383634 | Green | May 1983 | A |
4393728 | Larson et al. | Jul 1983 | A |
4396139 | Hall et al. | Aug 1983 | A |
4397311 | Kanshin et al. | Aug 1983 | A |
4402445 | Green | Sep 1983 | A |
4408692 | Sigel et al. | Oct 1983 | A |
4409057 | Molenda et al. | Oct 1983 | A |
4415112 | Green | Nov 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4428376 | Mericle | Jan 1984 | A |
4429695 | Green | Feb 1984 | A |
4434796 | Karapetian et al. | Mar 1984 | A |
4438659 | Desplats | Mar 1984 | A |
4442964 | Becht | Apr 1984 | A |
4448194 | DiGiovanni et al. | May 1984 | A |
4451743 | Suzuki et al. | May 1984 | A |
4454887 | Kruger | Jun 1984 | A |
4467805 | Fukuda | Aug 1984 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4475679 | Fleury, Jr. | Oct 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4486928 | Tucker et al. | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4489875 | Crawford et al. | Dec 1984 | A |
4499895 | Takayama | Feb 1985 | A |
4500024 | DiGiovanni et al. | Feb 1985 | A |
4505272 | Utyamyshev et al. | Mar 1985 | A |
4505273 | Braun et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4506671 | Green | Mar 1985 | A |
4520817 | Green | Jun 1985 | A |
4522327 | Korthoff et al. | Jun 1985 | A |
4526174 | Froehlich | Jul 1985 | A |
4527724 | Chow et al. | Jul 1985 | A |
4530453 | Green | Jul 1985 | A |
4531522 | Bedi et al. | Jul 1985 | A |
4532927 | Miksza, Jr. | Aug 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4565109 | Tsay | Jan 1986 | A |
4565189 | Mabuchi | Jan 1986 | A |
4566620 | Green et al. | Jan 1986 | A |
4569469 | Mongeon et al. | Feb 1986 | A |
4571213 | Ishimoto | Feb 1986 | A |
4573468 | Conta et al. | Mar 1986 | A |
4573469 | Golden et al. | Mar 1986 | A |
4573622 | Green et al. | Mar 1986 | A |
4576167 | Noiles | Mar 1986 | A |
4580712 | Green | Apr 1986 | A |
4585153 | Failla et al. | Apr 1986 | A |
4589416 | Green | May 1986 | A |
4591085 | Di Giovanni | May 1986 | A |
4597753 | Turley | Jul 1986 | A |
4600037 | Hatten | Jul 1986 | A |
4604786 | Howie, Jr. | Aug 1986 | A |
4605001 | Rothfuss et al. | Aug 1986 | A |
4605004 | Di Giovanni et al. | Aug 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4607638 | Crainich | Aug 1986 | A |
4608981 | Rothfuss et al. | Sep 1986 | A |
4610250 | Green | Sep 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4612933 | Brinkerhoff et al. | Sep 1986 | A |
D286180 | Korthoff | Oct 1986 | S |
D286441 | Korthoff et al. | Oct 1986 | S |
D286442 | Korthoff et al. | Oct 1986 | S |
4619262 | Taylor | Oct 1986 | A |
4619391 | Sharkany et al. | Oct 1986 | A |
4628459 | Shinohara et al. | Dec 1986 | A |
4629107 | Fedotov et al. | Dec 1986 | A |
4632290 | Green et al. | Dec 1986 | A |
4633874 | Chow et al. | Jan 1987 | A |
4634419 | Kreizman et al. | Jan 1987 | A |
4641076 | Linden | Feb 1987 | A |
4643731 | Eckenhoff | Feb 1987 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4652820 | Maresca | Mar 1987 | A |
4655222 | Florez et al. | Apr 1987 | A |
4662555 | Thornton | May 1987 | A |
4663874 | Sano et al. | May 1987 | A |
4664305 | Blake, III et al. | May 1987 | A |
4665916 | Green | May 1987 | A |
4667674 | Korthoff et al. | May 1987 | A |
4669647 | Storace | Jun 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4676245 | Fukuda | Jun 1987 | A |
4684051 | Akopov et al. | Aug 1987 | A |
4693248 | Failla | Sep 1987 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4708141 | Inoue et al. | Nov 1987 | A |
4709120 | Pearson | Nov 1987 | A |
4715520 | Roehr, Jr. et al. | Dec 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4727308 | Huljak et al. | Feb 1988 | A |
4728020 | Green et al. | Mar 1988 | A |
4728876 | Mongeon et al. | Mar 1988 | A |
4729260 | Dudden | Mar 1988 | A |
4730726 | Holzwarth | Mar 1988 | A |
4741336 | Failla et al. | May 1988 | A |
4743214 | Tai-Cheng | May 1988 | A |
4747820 | Hornlein et al. | May 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4767044 | Green | Aug 1988 | A |
D297764 | Hunt et al. | Sep 1988 | S |
4773420 | Green | Sep 1988 | A |
4777780 | Holzwarth | Oct 1988 | A |
4781186 | Simpson et al. | Nov 1988 | A |
4787387 | Burbank, III et al. | Nov 1988 | A |
4790225 | Moody et al. | Dec 1988 | A |
4802478 | Powell | Feb 1989 | A |
4805617 | Bedi et al. | Feb 1989 | A |
4805823 | Rothfuss | Feb 1989 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4815460 | Porat et al. | Mar 1989 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4819853 | Green | Apr 1989 | A |
4821939 | Green | Apr 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4830855 | Stewart | May 1989 | A |
4834720 | Blinkhorn | May 1989 | A |
4844068 | Arata et al. | Jul 1989 | A |
4848637 | Pruitt | Jul 1989 | A |
4865030 | Polyak | Sep 1989 | A |
4869414 | Green et al. | Sep 1989 | A |
4869415 | Fox | Sep 1989 | A |
4873977 | Avant et al. | Oct 1989 | A |
4874122 | Froelich et al. | Oct 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4887601 | Richards | Dec 1989 | A |
4887756 | Puchy | Dec 1989 | A |
4890613 | Golden et al. | Jan 1990 | A |
4892244 | Fox et al. | Jan 1990 | A |
4893622 | Green et al. | Jan 1990 | A |
4894051 | Shiber | Jan 1990 | A |
4896678 | Ogawa | Jan 1990 | A |
4900303 | Lemelson | Feb 1990 | A |
4903697 | Resnick et al. | Feb 1990 | A |
4915100 | Green | Apr 1990 | A |
4930503 | Pruitt | Jun 1990 | A |
4930674 | Barak | Jun 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4932960 | Green et al. | Jun 1990 | A |
4938408 | Bedi et al. | Jul 1990 | A |
4941623 | Pruitt | Jul 1990 | A |
4944443 | Oddsen et al. | Jul 1990 | A |
4951860 | Peters et al. | Aug 1990 | A |
4955898 | Matsutani et al. | Sep 1990 | A |
4955959 | Tompkins et al. | Sep 1990 | A |
4965709 | Ngo | Oct 1990 | A |
4973274 | Hirukawa | Nov 1990 | A |
4978049 | Green | Dec 1990 | A |
4978333 | Broadwin et al. | Dec 1990 | A |
4986808 | Broadwin et al. | Jan 1991 | A |
4988334 | Hornlein et al. | Jan 1991 | A |
5002543 | Bradshaw et al. | Mar 1991 | A |
5002553 | Shiber | Mar 1991 | A |
5005754 | Van Overloop | Apr 1991 | A |
5009661 | Michelson | Apr 1991 | A |
5014899 | Presty et al. | May 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5018515 | Gilman | May 1991 | A |
5018657 | Pedlick et al. | May 1991 | A |
5024671 | Tu et al. | Jun 1991 | A |
5027834 | Pruitt | Jul 1991 | A |
5031814 | Tompkins et al. | Jul 1991 | A |
5035040 | Kerrigan et al. | Jul 1991 | A |
5038109 | Goble et al. | Aug 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5053047 | Yoon | Oct 1991 | A |
5061269 | Muller | Oct 1991 | A |
5062563 | Green et al. | Nov 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5071052 | Rodak et al. | Dec 1991 | A |
5071430 | de Salis et al. | Dec 1991 | A |
5074454 | Peters | Dec 1991 | A |
5079006 | Urquhart | Jan 1992 | A |
5080556 | Carreno | Jan 1992 | A |
5083695 | Foslien et al. | Jan 1992 | A |
5084057 | Green et al. | Jan 1992 | A |
5088979 | Filipi et al. | Feb 1992 | A |
5088997 | Delahuerga et al. | Feb 1992 | A |
5089009 | Green | Feb 1992 | A |
5094247 | Hernandez et al. | Mar 1992 | A |
5100420 | Green et al. | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5104397 | Vasconcelos et al. | Apr 1992 | A |
5106008 | Tompkins et al. | Apr 1992 | A |
5108368 | Hammerslag et al. | Apr 1992 | A |
5111987 | Moeinzadeh et al. | May 1992 | A |
5116349 | Aranyi | May 1992 | A |
D327323 | Hunt | Jun 1992 | S |
5122156 | Granger et al. | Jun 1992 | A |
5125876 | Hirota | Jun 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5137198 | Nobis et al. | Aug 1992 | A |
5139513 | Segato | Aug 1992 | A |
5141144 | Foslien et al. | Aug 1992 | A |
5142932 | Moya et al. | Sep 1992 | A |
5155941 | Takahashi et al. | Oct 1992 | A |
5156315 | Green et al. | Oct 1992 | A |
5156609 | Nakao et al. | Oct 1992 | A |
5156614 | Green et al. | Oct 1992 | A |
5158567 | Green | Oct 1992 | A |
D330699 | Gill | Nov 1992 | S |
5163598 | Peters et al. | Nov 1992 | A |
5170925 | Madden et al. | Dec 1992 | A |
5171247 | Hughett et al. | Dec 1992 | A |
5171249 | Stefanchik et al. | Dec 1992 | A |
5171253 | Klieman | Dec 1992 | A |
5188111 | Yates et al. | Feb 1993 | A |
5190517 | Zieve et al. | Mar 1993 | A |
5190544 | Chapman et al. | Mar 1993 | A |
5190560 | Woods et al. | Mar 1993 | A |
5192288 | Thompson et al. | Mar 1993 | A |
5195968 | Lundquist et al. | Mar 1993 | A |
5197648 | Gingold | Mar 1993 | A |
5197649 | Bessler et al. | Mar 1993 | A |
5197966 | Sommerkamp | Mar 1993 | A |
5200280 | Karasa | Apr 1993 | A |
5201746 | Shichman | Apr 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5207697 | Carusillo et al. | May 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5211649 | Kohler et al. | May 1993 | A |
5211655 | Hasson | May 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217478 | Rexroth | Jun 1993 | A |
5219111 | Bilotti et al. | Jun 1993 | A |
5221036 | Takase | Jun 1993 | A |
5221281 | Klicek | Jun 1993 | A |
5222963 | Brinkerhoff et al. | Jun 1993 | A |
5222975 | Crainich | Jun 1993 | A |
5222976 | Yoon | Jun 1993 | A |
5223675 | Taft | Jun 1993 | A |
D338729 | Sprecklemeier et al. | Aug 1993 | S |
5234447 | Kaster et al. | Aug 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5239981 | Anapliotis | Aug 1993 | A |
5240163 | Stein et al. | Aug 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5246156 | Rothfuss et al. | Sep 1993 | A |
5246443 | Mai | Sep 1993 | A |
5253793 | Green et al. | Oct 1993 | A |
5258009 | Conners | Nov 1993 | A |
5258012 | Luscombe et al. | Nov 1993 | A |
5259366 | Reydel et al. | Nov 1993 | A |
5260637 | Pizzi | Nov 1993 | A |
5263629 | Trumbull et al. | Nov 1993 | A |
5263973 | Cook | Nov 1993 | A |
5264218 | Rogozinski | Nov 1993 | A |
5268622 | Philipp | Dec 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5275323 | Schulze et al. | Jan 1994 | A |
5275608 | Forman et al. | Jan 1994 | A |
5279416 | Malec et al. | Jan 1994 | A |
5281216 | Klicek | Jan 1994 | A |
5282806 | Haber et al. | Feb 1994 | A |
5282829 | Hermes | Feb 1994 | A |
5284128 | Hart | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5289963 | McGarry et al. | Mar 1994 | A |
5290271 | Jernberg | Mar 1994 | A |
5292053 | Bilotti et al. | Mar 1994 | A |
5297714 | Kramer | Mar 1994 | A |
5303539 | Neamtu | Apr 1994 | A |
5304204 | Bregen | Apr 1994 | A |
D347474 | Olson | May 1994 | S |
5307976 | Olson et al. | May 1994 | A |
5308576 | Green et al. | May 1994 | A |
5309927 | Welch | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312024 | Grant et al. | May 1994 | A |
5312329 | Beaty et al. | May 1994 | A |
5314424 | Nicholas | May 1994 | A |
5314445 | Heidmueller nee Degwitz et al. | May 1994 | A |
5314466 | Stern et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
D348930 | Olson | Jul 1994 | S |
5329923 | Lundquist | Jul 1994 | A |
5330487 | Thornton et al. | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5333422 | Warren et al. | Aug 1994 | A |
5333772 | Rothfuss et al. | Aug 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5336229 | Noda | Aug 1994 | A |
5336232 | Green et al. | Aug 1994 | A |
5339799 | Kami et al. | Aug 1994 | A |
5341724 | Vatel | Aug 1994 | A |
5341810 | Dardel | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5342396 | Cook | Aug 1994 | A |
5344060 | Gravener et al. | Sep 1994 | A |
5344454 | Clarke et al. | Sep 1994 | A |
5346504 | Ortiz et al. | Sep 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5350388 | Epstein | Sep 1994 | A |
5350391 | Iacovelli | Sep 1994 | A |
5350400 | Esposito et al. | Sep 1994 | A |
5352229 | Goble et al. | Oct 1994 | A |
5352235 | Koros et al. | Oct 1994 | A |
5352238 | Green et al. | Oct 1994 | A |
5354303 | Spaeth et al. | Oct 1994 | A |
5356006 | Alpern et al. | Oct 1994 | A |
5358506 | Green et al. | Oct 1994 | A |
5358510 | Luscombe et al. | Oct 1994 | A |
5359231 | Flowers et al. | Oct 1994 | A |
D352780 | Glaeser et al. | Nov 1994 | S |
5360305 | Kerrigan | Nov 1994 | A |
5360428 | Hutchinson, Jr. | Nov 1994 | A |
5364001 | Bryan | Nov 1994 | A |
5364003 | Williamson, IV | Nov 1994 | A |
5366133 | Geiste | Nov 1994 | A |
5366134 | Green et al. | Nov 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5368015 | Wilk | Nov 1994 | A |
5368592 | Stern et al. | Nov 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5372124 | Takayama et al. | Dec 1994 | A |
5372596 | Klicek et al. | Dec 1994 | A |
5372602 | Burke | Dec 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5376095 | Ortiz | Dec 1994 | A |
5379933 | Green et al. | Jan 1995 | A |
5381649 | Webb | Jan 1995 | A |
5381782 | DeLaRama et al. | Jan 1995 | A |
5381943 | Allen et al. | Jan 1995 | A |
5382247 | Cimino et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5383881 | Green et al. | Jan 1995 | A |
5383882 | Buess et al. | Jan 1995 | A |
5383888 | Zvenyatsky et al. | Jan 1995 | A |
5383895 | Holmes et al. | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5391180 | Tovey et al. | Feb 1995 | A |
5392978 | Velez et al. | Feb 1995 | A |
5392979 | Green et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395034 | Allen et al. | Mar 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395384 | Duthoit et al. | Mar 1995 | A |
5397046 | Savage et al. | Mar 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5403043 | Smet | Apr 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5405072 | Zlock et al. | Apr 1995 | A |
5405073 | Porter | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5405360 | Tovey | Apr 1995 | A |
5407293 | Crainich | Apr 1995 | A |
5409498 | Braddock et al. | Apr 1995 | A |
D357981 | Green et al. | May 1995 | S |
5411481 | Allen et al. | May 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413107 | Oakley et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5413268 | Green et al. | May 1995 | A |
5413272 | Green et al. | May 1995 | A |
5413573 | Koivukangas | May 1995 | A |
5415334 | Williamson et al. | May 1995 | A |
5415335 | Knodell, Jr. | May 1995 | A |
5417203 | Tovey et al. | May 1995 | A |
5417361 | Williamson, IV | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5422567 | Matsunaga | Jun 1995 | A |
5423471 | Mastri et al. | Jun 1995 | A |
5423809 | Klicek | Jun 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5431322 | Green et al. | Jul 1995 | A |
5431654 | Nic | Jul 1995 | A |
5431668 | Burbank, III et al. | Jul 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5439155 | Viola | Aug 1995 | A |
5439156 | Grant et al. | Aug 1995 | A |
5439479 | Shichman et al. | Aug 1995 | A |
5441191 | Linden | Aug 1995 | A |
5441193 | Gravener | Aug 1995 | A |
5441483 | Avitall | Aug 1995 | A |
5441494 | Ortiz | Aug 1995 | A |
5444113 | Sinclair et al. | Aug 1995 | A |
5445155 | Sieben | Aug 1995 | A |
5445304 | Plyley et al. | Aug 1995 | A |
5445644 | Pietrafitta et al. | Aug 1995 | A |
5447265 | Vidal et al. | Sep 1995 | A |
5447417 | Kuhl et al. | Sep 1995 | A |
5447513 | Davison et al. | Sep 1995 | A |
5449355 | Rhum et al. | Sep 1995 | A |
5449365 | Green et al. | Sep 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5452836 | Huitema et al. | Sep 1995 | A |
5452837 | Williamson, IV et al. | Sep 1995 | A |
5454378 | Palmer et al. | Oct 1995 | A |
5454822 | Schob et al. | Oct 1995 | A |
5454827 | Aust et al. | Oct 1995 | A |
5456401 | Green et al. | Oct 1995 | A |
5458579 | Chodorow et al. | Oct 1995 | A |
5462215 | Viola et al. | Oct 1995 | A |
5464013 | Lemelson | Nov 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5464300 | Crainich | Nov 1995 | A |
5465819 | Weilant et al. | Nov 1995 | A |
5465894 | Clark et al. | Nov 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5465896 | Allen et al. | Nov 1995 | A |
5466020 | Page et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5468253 | Bezwada et al. | Nov 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5470007 | Plyley et al. | Nov 1995 | A |
5470009 | Rodak | Nov 1995 | A |
5470010 | Rothfuss et al. | Nov 1995 | A |
5472132 | Savage et al. | Dec 1995 | A |
5472442 | Klicek | Dec 1995 | A |
5473204 | Temple | Dec 1995 | A |
5474057 | Makower et al. | Dec 1995 | A |
5474223 | Viola et al. | Dec 1995 | A |
5474566 | Alesi et al. | Dec 1995 | A |
5476206 | Green et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5478354 | Tovey et al. | Dec 1995 | A |
5480089 | Blewett | Jan 1996 | A |
5480409 | Riza | Jan 1996 | A |
5482197 | Green et al. | Jan 1996 | A |
5484095 | Green et al. | Jan 1996 | A |
5484398 | Stoddard | Jan 1996 | A |
5484451 | Akopov et al. | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5485952 | Fontayne | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5487500 | Knodel et al. | Jan 1996 | A |
5489058 | Plyley et al. | Feb 1996 | A |
5489256 | Adair | Feb 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5503635 | Sauer et al. | Apr 1996 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5505363 | Green et al. | Apr 1996 | A |
5507425 | Ziglioli | Apr 1996 | A |
5507426 | Young et al. | Apr 1996 | A |
5509596 | Green et al. | Apr 1996 | A |
5509916 | Taylor | Apr 1996 | A |
5511564 | Wilk | Apr 1996 | A |
5514129 | Smith | May 1996 | A |
5514157 | Nicholas et al. | May 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5520678 | Heckele et al. | May 1996 | A |
5520700 | Beyar et al. | May 1996 | A |
5522817 | Sander et al. | Jun 1996 | A |
5522831 | Sleister et al. | Jun 1996 | A |
5527320 | Carruthers et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
D372086 | Grasso et al. | Jul 1996 | S |
5531305 | Roberts et al. | Jul 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5533521 | Granger | Jul 1996 | A |
5533581 | Barth et al. | Jul 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535935 | Vidal et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5540375 | Bolanos et al. | Jul 1996 | A |
5541376 | Ladtkow et al. | Jul 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5542949 | Yoon | Aug 1996 | A |
5543119 | Sutter et al. | Aug 1996 | A |
5547117 | Hamblin et al. | Aug 1996 | A |
5549621 | Bessler et al. | Aug 1996 | A |
5549627 | Kieturakis | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5551622 | Yoon | Sep 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5553765 | Knodel et al. | Sep 1996 | A |
5554148 | Aebischer et al. | Sep 1996 | A |
5554169 | Green et al. | Sep 1996 | A |
5556416 | Clark et al. | Sep 1996 | A |
5558665 | Kieturakis | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560530 | Bolanos et al. | Oct 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5562241 | Knodel et al. | Oct 1996 | A |
5562682 | Oberlin et al. | Oct 1996 | A |
5562690 | Green et al. | Oct 1996 | A |
5562701 | Huitema et al. | Oct 1996 | A |
5562702 | Huitema et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5569161 | Ebling et al. | Oct 1996 | A |
5569270 | Weng | Oct 1996 | A |
5569284 | Young et al. | Oct 1996 | A |
5571090 | Sherts | Nov 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5571285 | Chow et al. | Nov 1996 | A |
5573541 | Green et al. | Nov 1996 | A |
5573543 | Akopov et al. | Nov 1996 | A |
5574431 | McKeown et al. | Nov 1996 | A |
5575054 | Klinzing et al. | Nov 1996 | A |
5575789 | Bell et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5575805 | Li | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5579978 | Green et al. | Dec 1996 | A |
5580067 | Hamblin et al. | Dec 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5584425 | Savage et al. | Dec 1996 | A |
5586711 | Plyley et al. | Dec 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5588580 | Paul et al. | Dec 1996 | A |
5588581 | Conlon et al. | Dec 1996 | A |
5591170 | Spievack et al. | Jan 1997 | A |
5591187 | Dekel | Jan 1997 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5599151 | Daum et al. | Feb 1997 | A |
5599279 | Slotman et al. | Feb 1997 | A |
5599344 | Paterson | Feb 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5599852 | Scopelianos et al. | Feb 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5603443 | Clark et al. | Feb 1997 | A |
5605272 | Witt et al. | Feb 1997 | A |
5605273 | Hamblin et al. | Feb 1997 | A |
5607094 | Clark et al. | Mar 1997 | A |
5607095 | Smith et al. | Mar 1997 | A |
5607433 | Polla et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5609285 | Grant et al. | Mar 1997 | A |
5609601 | Kolesa et al. | Mar 1997 | A |
5611709 | McAnulty | Mar 1997 | A |
5613966 | Makower et al. | Mar 1997 | A |
5615820 | Viola | Apr 1997 | A |
5618294 | Aust et al. | Apr 1997 | A |
5618303 | Marlow et al. | Apr 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5619992 | Guthrie et al. | Apr 1997 | A |
5620289 | Curry | Apr 1997 | A |
5620452 | Yoon | Apr 1997 | A |
5624398 | Smith et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5626595 | Sklar et al. | May 1997 | A |
5628446 | Geiste et al. | May 1997 | A |
5628743 | Cimino | May 1997 | A |
5628745 | Bek | May 1997 | A |
5630539 | Plyley et al. | May 1997 | A |
5630540 | Blewett | May 1997 | A |
5630541 | Williamson, IV et al. | May 1997 | A |
5630782 | Adair | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5634584 | Okorocha et al. | Jun 1997 | A |
5636779 | Palmer | Jun 1997 | A |
5636780 | Green et al. | Jun 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
D381077 | Hunt | Jul 1997 | S |
5643291 | Pier et al. | Jul 1997 | A |
5645209 | Green et al. | Jul 1997 | A |
5647526 | Green et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5649956 | Jensen et al. | Jul 1997 | A |
5651491 | Heaton et al. | Jul 1997 | A |
5653373 | Green et al. | Aug 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5653677 | Okada et al. | Aug 1997 | A |
5653721 | Knodel et al. | Aug 1997 | A |
5655698 | Yoon | Aug 1997 | A |
5657921 | Young et al. | Aug 1997 | A |
5658238 | Suzuki et al. | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5658307 | Exconde | Aug 1997 | A |
5662258 | Knodel et al. | Sep 1997 | A |
5662260 | Yoon | Sep 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5669904 | Platt, Jr. et al. | Sep 1997 | A |
5669907 | Platt, Jr. et al. | Sep 1997 | A |
5669918 | Balazs et al. | Sep 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5673842 | Bittner et al. | Oct 1997 | A |
5674286 | D'Alessio et al. | Oct 1997 | A |
5678748 | Plyley et al. | Oct 1997 | A |
5680981 | Mililli et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5680983 | Plyley et al. | Oct 1997 | A |
5683349 | Makower et al. | Nov 1997 | A |
5685474 | Seeber | Nov 1997 | A |
5686090 | Schilder et al. | Nov 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5693020 | Rauh | Dec 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5695494 | Becker | Dec 1997 | A |
5695502 | Pier et al. | Dec 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5695524 | Kelley et al. | Dec 1997 | A |
5697542 | Knodel et al. | Dec 1997 | A |
5697543 | Burdorff | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5697943 | Sauer et al. | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5702387 | Arts et al. | Dec 1997 | A |
5702408 | Wales et al. | Dec 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5704087 | Strub | Jan 1998 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5706997 | Green et al. | Jan 1998 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5707392 | Kortenbach | Jan 1998 | A |
5709334 | Sorrentino et al. | Jan 1998 | A |
5709335 | Heck | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5709706 | Kienzle et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713128 | Schrenk et al. | Feb 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5713895 | Lontine et al. | Feb 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5713920 | Bezwada et al. | Feb 1998 | A |
5715604 | Lanzoni | Feb 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5715988 | Palmer | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5718359 | Palmer et al. | Feb 1998 | A |
5718360 | Green et al. | Feb 1998 | A |
5718548 | Cotellessa | Feb 1998 | A |
5718706 | Roger | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
D393067 | Geary et al. | Mar 1998 | S |
5725536 | Oberlin et al. | Mar 1998 | A |
5725554 | Simon et al. | Mar 1998 | A |
5728110 | Vidal et al. | Mar 1998 | A |
5728121 | Bimbo et al. | Mar 1998 | A |
5730758 | Allgeyer | Mar 1998 | A |
5732821 | Stone et al. | Mar 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5733308 | Daugherty et al. | Mar 1998 | A |
5735445 | Vidal et al. | Apr 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5735874 | Measamer et al. | Apr 1998 | A |
5738474 | Blewett | Apr 1998 | A |
5738648 | Lands et al. | Apr 1998 | A |
5743456 | Jones et al. | Apr 1998 | A |
5747953 | Philipp | May 1998 | A |
5749889 | Bacich et al. | May 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5752965 | Francis et al. | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5766205 | Zvenyatsky et al. | Jun 1998 | A |
5769892 | Kingwell | Jun 1998 | A |
5772379 | Evensen | Jun 1998 | A |
5772578 | Heimberger et al. | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5778939 | Hok-Yin | Jul 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5779131 | Knodel et al. | Jul 1998 | A |
5779132 | Knodel et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5782748 | Palmer et al. | Jul 1998 | A |
5782749 | Riza | Jul 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5784934 | Izumisawa | Jul 1998 | A |
5785232 | Vidal et al. | Jul 1998 | A |
5785647 | Tompkins et al. | Jul 1998 | A |
5787897 | Kieturakis | Aug 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5794834 | Hamblin et al. | Aug 1998 | A |
5796188 | Bays | Aug 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5797906 | Rhum et al. | Aug 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5797959 | Castro et al. | Aug 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5800379 | Edwards | Sep 1998 | A |
5800423 | Jensen | Sep 1998 | A |
5806676 | Wasgien | Sep 1998 | A |
5807376 | Viola et al. | Sep 1998 | A |
5807378 | Jensen et al. | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5809441 | McKee | Sep 1998 | A |
5810721 | Mueller et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810846 | Virnich et al. | Sep 1998 | A |
5810855 | Rayburn et al. | Sep 1998 | A |
5813813 | Daum et al. | Sep 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5814057 | Oi et al. | Sep 1998 | A |
5816471 | Plyley et al. | Oct 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817091 | Nardella et al. | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5817109 | McGarry et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5823066 | Huitema et al. | Oct 1998 | A |
5826776 | Schulze et al. | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827298 | Hart et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5830598 | Patterson | Nov 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5836960 | Kolesa et al. | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5843021 | Edwards et al. | Dec 1998 | A |
5843096 | Igaki et al. | Dec 1998 | A |
5843097 | Mayenberger et al. | Dec 1998 | A |
5843122 | Riza | Dec 1998 | A |
5843132 | Ilvento | Dec 1998 | A |
5843169 | Taheri | Dec 1998 | A |
5846254 | Schulze et al. | Dec 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5849023 | Mericle | Dec 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5855583 | Wang et al. | Jan 1999 | A |
5860581 | Robertson et al. | Jan 1999 | A |
5860975 | Goble et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5868790 | Vincent et al. | Feb 1999 | A |
5871135 | Williamson, IV et al. | Feb 1999 | A |
5873885 | Weidenbenner | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5878937 | Green et al. | Mar 1999 | A |
5878938 | Bittner et al. | Mar 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5893506 | Powell | Apr 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5893863 | Yoon | Apr 1999 | A |
5893878 | Pierce | Apr 1999 | A |
5894979 | Powell | Apr 1999 | A |
5897552 | Edwards et al. | Apr 1999 | A |
5897562 | Bolanos et al. | Apr 1999 | A |
5899914 | Zirps et al. | May 1999 | A |
5901895 | Heaton et al. | May 1999 | A |
5902312 | Frater et al. | May 1999 | A |
5904647 | Ouchi | May 1999 | A |
5904693 | Dicesare et al. | May 1999 | A |
5904702 | Ek et al. | May 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5908402 | Blythe | Jun 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5911353 | Bolanos et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5916225 | Kugel | Jun 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5919198 | Graves, Jr. et al. | Jul 1999 | A |
5919202 | Yoon | Jul 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5928256 | Riza | Jul 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5931853 | McEwen et al. | Aug 1999 | A |
5937951 | Izuchukwu et al. | Aug 1999 | A |
5938667 | Peyser et al. | Aug 1999 | A |
5941442 | Geiste et al. | Aug 1999 | A |
5941890 | Voegele et al. | Aug 1999 | A |
5944172 | Hannula | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5947984 | Whipple | Sep 1999 | A |
5947996 | Logeman | Sep 1999 | A |
5948030 | Miller et al. | Sep 1999 | A |
5951516 | Bunyan | Sep 1999 | A |
5951552 | Long et al. | Sep 1999 | A |
5951574 | Stefanchik et al. | Sep 1999 | A |
5951581 | Saadat et al. | Sep 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5964394 | Robertson | Oct 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5971916 | Koren | Oct 1999 | A |
5973221 | Collyer et al. | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5984949 | Levin | Nov 1999 | A |
5988479 | Palmer | Nov 1999 | A |
5997528 | Bisch et al. | Dec 1999 | A |
5997552 | Person et al. | Dec 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6010513 | Tormala et al. | Jan 2000 | A |
6012494 | Balazs | Jan 2000 | A |
6013076 | Goble et al. | Jan 2000 | A |
6015406 | Goble et al. | Jan 2000 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6017322 | Snoke et al. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6017356 | Frederick et al. | Jan 2000 | A |
6022352 | Vandewalle | Feb 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6033378 | Lundquist et al. | Mar 2000 | A |
6033399 | Gines | Mar 2000 | A |
6033427 | Lee | Mar 2000 | A |
6037724 | Buss et al. | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6042601 | Smith | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6047861 | Vidal et al. | Apr 2000 | A |
6050172 | Corves et al. | Apr 2000 | A |
6050472 | Shibata | Apr 2000 | A |
6050990 | Tankovich et al. | Apr 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053390 | Green et al. | Apr 2000 | A |
6053922 | Krause et al. | Apr 2000 | A |
RE36720 | Green et al. | May 2000 | E |
6056735 | Okada et al. | May 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6062360 | Shields | May 2000 | A |
6063097 | Oi et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6065919 | Peck | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6068627 | Orszulak et al. | May 2000 | A |
6071233 | Ishikawa et al. | Jun 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6077286 | Cuschieri et al. | Jun 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6080181 | Jensen et al. | Jun 2000 | A |
6082577 | Coates et al. | Jul 2000 | A |
6083191 | Rose | Jul 2000 | A |
6083234 | Nicholas et al. | Jul 2000 | A |
6083242 | Cook | Jul 2000 | A |
6086544 | Hibner et al. | Jul 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
6093186 | Goble | Jul 2000 | A |
6099537 | Sugai et al. | Aug 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6102271 | Longo et al. | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6117148 | Ravo et al. | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6120433 | Mizuno et al. | Sep 2000 | A |
6123241 | Walter et al. | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126058 | Adams et al. | Oct 2000 | A |
6126359 | Dittrich et al. | Oct 2000 | A |
6126670 | Walker et al. | Oct 2000 | A |
6131789 | Schulze et al. | Oct 2000 | A |
6131790 | Piraka | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6139546 | Koenig et al. | Oct 2000 | A |
6149660 | Laufer et al. | Nov 2000 | A |
6152935 | Kammerer et al. | Nov 2000 | A |
6153292 | Bell et al. | Nov 2000 | A |
6155473 | Tompkins et al. | Dec 2000 | A |
6156056 | Kearns et al. | Dec 2000 | A |
6159146 | El Gazayerli | Dec 2000 | A |
6159200 | Verdura et al. | Dec 2000 | A |
6159224 | Yoon | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6165175 | Wampler et al. | Dec 2000 | A |
6165184 | Verdura et al. | Dec 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6168605 | Measamer et al. | Jan 2001 | B1 |
6171305 | Sherman | Jan 2001 | B1 |
6171316 | Kovac et al. | Jan 2001 | B1 |
6171330 | Benchetrit | Jan 2001 | B1 |
6174308 | Goble et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6179194 | Morton | Jan 2001 | B1 |
6179195 | Adams et al. | Jan 2001 | B1 |
6179776 | Adams et al. | Jan 2001 | B1 |
6179849 | Yencho et al. | Jan 2001 | B1 |
6181105 | Cutolo et al. | Jan 2001 | B1 |
6182673 | Kindermann et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
6197042 | Ginn et al. | Mar 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6202914 | Geiste et al. | Mar 2001 | B1 |
6206897 | Jamiolkowski et al. | Mar 2001 | B1 |
6206904 | Ouchi | Mar 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6213999 | Platt, Jr. et al. | Apr 2001 | B1 |
6214028 | Yoon et al. | Apr 2001 | B1 |
6220368 | Ark et al. | Apr 2001 | B1 |
6223100 | Green | Apr 2001 | B1 |
6223835 | Habedank et al. | May 2001 | B1 |
6224617 | Saadat et al. | May 2001 | B1 |
6228081 | Goble | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6228084 | Kirwan, Jr. | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6234178 | Goble et al. | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6241140 | Adams et al. | Jun 2001 | B1 |
6241723 | Heim et al. | Jun 2001 | B1 |
6245084 | Mark et al. | Jun 2001 | B1 |
6248117 | Blatter | Jun 2001 | B1 |
6249076 | Madden et al. | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
6273876 | Klima et al. | Aug 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6296640 | Wampler et al. | Oct 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6305891 | Burlingame | Oct 2001 | B1 |
6306134 | Goble et al. | Oct 2001 | B1 |
6306149 | Meade | Oct 2001 | B1 |
6309403 | Minor et al. | Oct 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6320123 | Reimers | Nov 2001 | B1 |
6322284 | Bonardo et al. | Nov 2001 | B1 |
6322494 | Bullivant et al. | Nov 2001 | B1 |
6324339 | Hudson et al. | Nov 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6331761 | Kumar et al. | Dec 2001 | B1 |
6333029 | Vyakarnam et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
6336926 | Goble | Jan 2002 | B1 |
6338737 | Toledano | Jan 2002 | B1 |
6343731 | Adams et al. | Feb 2002 | B1 |
6346077 | Taylor et al. | Feb 2002 | B1 |
6348061 | Whitman | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6355699 | Vyakarnam et al. | Mar 2002 | B1 |
6356072 | Chass | Mar 2002 | B1 |
6358224 | Tims et al. | Mar 2002 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6370981 | Watarai | Apr 2002 | B2 |
6373152 | Wang et al. | Apr 2002 | B1 |
6383201 | Dong | May 2002 | B1 |
6383958 | Swanson et al. | May 2002 | B1 |
6387113 | Hawkins et al. | May 2002 | B1 |
6387114 | Adams | May 2002 | B2 |
6391038 | Vargas et al. | May 2002 | B2 |
6398781 | Goble et al. | Jun 2002 | B1 |
6398797 | Bombard et al. | Jun 2002 | B2 |
6402766 | Bowman et al. | Jun 2002 | B2 |
6406440 | Stefanchik | Jun 2002 | B1 |
6406472 | Jensen | Jun 2002 | B1 |
6409724 | Penny et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6413274 | Pedros | Jul 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6419695 | Gabbay | Jul 2002 | B1 |
6423079 | Blake, III | Jul 2002 | B1 |
RE37814 | Allgeyer | Aug 2002 | E |
6428070 | Takanashi et al. | Aug 2002 | B1 |
6429611 | Li | Aug 2002 | B1 |
6436097 | Nardella | Aug 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6436110 | Bowman et al. | Aug 2002 | B2 |
6436122 | Frank et al. | Aug 2002 | B1 |
6439439 | Rickard et al. | Aug 2002 | B1 |
6439446 | Perry et al. | Aug 2002 | B1 |
6440146 | Nicholas et al. | Aug 2002 | B2 |
6443973 | Whitman | Sep 2002 | B1 |
6447518 | Krause et al. | Sep 2002 | B1 |
6447864 | Johnson et al. | Sep 2002 | B2 |
6450391 | Kayan et al. | Sep 2002 | B1 |
6450989 | Dubrul et al. | Sep 2002 | B2 |
6454781 | Witt et al. | Sep 2002 | B1 |
6468275 | Wampler et al. | Oct 2002 | B1 |
6471106 | Reining | Oct 2002 | B1 |
6478210 | Adams et al. | Nov 2002 | B2 |
6482200 | Shippert | Nov 2002 | B2 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6485503 | Jacobs et al. | Nov 2002 | B2 |
6485667 | Tan | Nov 2002 | B1 |
6488196 | Fenton, Jr. | Dec 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6491690 | Goble et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6492785 | Kasten et al. | Dec 2002 | B1 |
6494896 | D'Alessio et al. | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500194 | Benderev et al. | Dec 2002 | B2 |
6503257 | Grant et al. | Jan 2003 | B2 |
6503259 | Huxel et al. | Jan 2003 | B2 |
6505768 | Whitman | Jan 2003 | B2 |
6510854 | Goble | Jan 2003 | B2 |
6511468 | Cragg et al. | Jan 2003 | B1 |
6512360 | Goto et al. | Jan 2003 | B1 |
6517528 | Pantages et al. | Feb 2003 | B1 |
6517535 | Edwards | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6522101 | Malackowski | Feb 2003 | B2 |
6527782 | Hogg et al. | Mar 2003 | B2 |
6527785 | Sancoff et al. | Mar 2003 | B2 |
6533157 | Whitman | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6535764 | Imran et al. | Mar 2003 | B2 |
6543456 | Freeman | Apr 2003 | B1 |
6545384 | Pelrine et al. | Apr 2003 | B1 |
6547786 | Goble | Apr 2003 | B1 |
6550546 | Thurler et al. | Apr 2003 | B2 |
6551333 | Kuhns et al. | Apr 2003 | B2 |
6554861 | Knox et al. | Apr 2003 | B2 |
6555770 | Kawase | Apr 2003 | B2 |
6558378 | Sherman et al. | May 2003 | B2 |
6558379 | Batchelor et al. | May 2003 | B1 |
6565560 | Goble et al. | May 2003 | B1 |
6569085 | Kortenbach et al. | May 2003 | B2 |
6569171 | DeGuillebon et al. | May 2003 | B2 |
6578751 | Hartwick | Jun 2003 | B2 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582441 | He et al. | Jun 2003 | B1 |
6583533 | Pelrine et al. | Jun 2003 | B2 |
6585144 | Adams et al. | Jul 2003 | B2 |
6588643 | Bolduc et al. | Jul 2003 | B2 |
6589118 | Soma et al. | Jul 2003 | B1 |
6589164 | Flaherty | Jul 2003 | B1 |
6592538 | Hotchkiss et al. | Jul 2003 | B1 |
6592597 | Grant et al. | Jul 2003 | B2 |
6596296 | Nelson et al. | Jul 2003 | B1 |
6596304 | Bayon et al. | Jul 2003 | B1 |
6596432 | Kawakami et al. | Jul 2003 | B2 |
D478665 | Isaacs et al. | Aug 2003 | S |
D478986 | Johnston et al. | Aug 2003 | S |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6602262 | Griego et al. | Aug 2003 | B2 |
6605078 | Adams | Aug 2003 | B2 |
6605669 | Awokola et al. | Aug 2003 | B2 |
6607475 | Doyle et al. | Aug 2003 | B2 |
6613069 | Boyd et al. | Sep 2003 | B2 |
6616686 | Coleman et al. | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6620166 | Wenstrom, Jr. et al. | Sep 2003 | B1 |
6626834 | Dunne et al. | Sep 2003 | B2 |
6629630 | Adams | Oct 2003 | B2 |
6629974 | Penny et al. | Oct 2003 | B2 |
6629988 | Weadock | Oct 2003 | B2 |
6636412 | Smith | Oct 2003 | B2 |
6638108 | Tachi | Oct 2003 | B2 |
6638285 | Gabbay | Oct 2003 | B2 |
6638297 | Huitema | Oct 2003 | B1 |
RE38335 | Aust et al. | Nov 2003 | E |
6641528 | Torii | Nov 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6645201 | Utley et al. | Nov 2003 | B1 |
6646307 | Yu et al. | Nov 2003 | B1 |
6648816 | Irion et al. | Nov 2003 | B2 |
6652595 | Nicolo | Nov 2003 | B1 |
D484243 | Ryan et al. | Dec 2003 | S |
D484595 | Ryan et al. | Dec 2003 | S |
D484596 | Ryan et al. | Dec 2003 | S |
6656177 | Truckai | Dec 2003 | B2 |
6656193 | Grant et al. | Dec 2003 | B2 |
6663623 | Oyama et al. | Dec 2003 | B1 |
6663641 | Kovac et al. | Dec 2003 | B1 |
6666854 | Lange | Dec 2003 | B1 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6667825 | Lu et al. | Dec 2003 | B2 |
6669073 | Milliman et al. | Dec 2003 | B2 |
6670806 | Wendt et al. | Dec 2003 | B2 |
6671185 | Duval | Dec 2003 | B2 |
D484977 | Ryan et al. | Jan 2004 | S |
6676660 | Wampler et al. | Jan 2004 | B2 |
6679269 | Swanson | Jan 2004 | B2 |
6679410 | Wursch et al. | Jan 2004 | B2 |
6681978 | Geiste et al. | Jan 2004 | B2 |
6681979 | Whitman | Jan 2004 | B2 |
6682527 | Strul | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6685727 | Fisher et al. | Feb 2004 | B2 |
6689153 | Skiba | Feb 2004 | B1 |
6692507 | Pugsley et al. | Feb 2004 | B2 |
6695198 | Adams et al. | Feb 2004 | B2 |
6695199 | Whitman | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6699235 | Wallace et al. | Mar 2004 | B2 |
6704210 | Myers | Mar 2004 | B1 |
6705503 | Pedicini et al. | Mar 2004 | B1 |
6709445 | Boebel et al. | Mar 2004 | B2 |
6712773 | Viola | Mar 2004 | B1 |
6716223 | Leopold et al. | Apr 2004 | B2 |
6716232 | Vidal et al. | Apr 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6723087 | O'Neill et al. | Apr 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
6723109 | Solingen | Apr 2004 | B2 |
6726697 | Nicholas et al. | Apr 2004 | B2 |
6729119 | Schnipke et al. | May 2004 | B2 |
6736825 | Blatter et al. | May 2004 | B2 |
6736854 | Vadurro et al. | May 2004 | B2 |
6740030 | Martone et al. | May 2004 | B2 |
6747121 | Gogolewski | Jun 2004 | B2 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6752768 | Burdorff et al. | Jun 2004 | B2 |
6752816 | Culp et al. | Jun 2004 | B2 |
6755195 | Lemke et al. | Jun 2004 | B1 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6758846 | Goble et al. | Jul 2004 | B2 |
6761685 | Adams et al. | Jul 2004 | B2 |
6762339 | Klun et al. | Jul 2004 | B1 |
6767352 | Field et al. | Jul 2004 | B2 |
6767356 | Kanner et al. | Jul 2004 | B2 |
6769590 | Vresh et al. | Aug 2004 | B2 |
6769594 | Orban, III | Aug 2004 | B2 |
6770027 | Banik et al. | Aug 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773437 | Ogilvie et al. | Aug 2004 | B2 |
6773438 | Knodel et al. | Aug 2004 | B1 |
6777838 | Miekka et al. | Aug 2004 | B2 |
6780151 | Grabover et al. | Aug 2004 | B2 |
6780180 | Goble et al. | Aug 2004 | B1 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786864 | Matsuura et al. | Sep 2004 | B2 |
6786896 | Madhani et al. | Sep 2004 | B1 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6793661 | Hamilton et al. | Sep 2004 | B2 |
6793663 | Kneifel et al. | Sep 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6805273 | Bilotti et al. | Oct 2004 | B2 |
6806808 | Watters et al. | Oct 2004 | B1 |
6808525 | Latterell et al. | Oct 2004 | B2 |
6814741 | Bowman et al. | Nov 2004 | B2 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6817509 | Geiste et al. | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6818018 | Sawhney | Nov 2004 | B1 |
6820791 | Adams | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6821282 | Perry et al. | Nov 2004 | B2 |
6821284 | Sturtz et al. | Nov 2004 | B2 |
6827246 | Sullivan et al. | Dec 2004 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6827725 | Batchelor et al. | Dec 2004 | B2 |
6828902 | Casden | Dec 2004 | B2 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6831629 | Nishino et al. | Dec 2004 | B2 |
6832998 | Goble | Dec 2004 | B2 |
6834001 | Myono | Dec 2004 | B2 |
6835173 | Couvillon, Jr. | Dec 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6835336 | Watt | Dec 2004 | B2 |
6837846 | Jaffe et al. | Jan 2005 | B2 |
6838493 | Williams et al. | Jan 2005 | B2 |
6840423 | Adams et al. | Jan 2005 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6843789 | Goble | Jan 2005 | B2 |
6843793 | Brock et al. | Jan 2005 | B2 |
6846307 | Whitman et al. | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6850817 | Green | Feb 2005 | B1 |
6858005 | Ohline et al. | Feb 2005 | B2 |
RE38708 | Bolanos et al. | Mar 2005 | E |
D502994 | Blake, III | Mar 2005 | S |
6861142 | Wilkie et al. | Mar 2005 | B1 |
6863668 | Gillespie et al. | Mar 2005 | B2 |
6863694 | Boyce et al. | Mar 2005 | B1 |
6866178 | Adams et al. | Mar 2005 | B2 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6867248 | Martin et al. | Mar 2005 | B1 |
6869435 | Blake, III | Mar 2005 | B2 |
6872214 | Sonnenschein et al. | Mar 2005 | B2 |
6874669 | Adams et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6878106 | Herrmann | Apr 2005 | B1 |
6889116 | Jinno | May 2005 | B2 |
6893435 | Goble | May 2005 | B2 |
6899538 | Matoba | May 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6911033 | de Guillebon et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6913608 | Liddicoat et al. | Jul 2005 | B2 |
6913613 | Schwarz et al. | Jul 2005 | B2 |
6921397 | Corcoran et al. | Jul 2005 | B2 |
6921412 | Black et al. | Jul 2005 | B1 |
6923093 | Ullah | Aug 2005 | B2 |
6923803 | Goble | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929641 | Goble et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6931830 | Liao | Aug 2005 | B2 |
6932218 | Kosann et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6936042 | Wallace et al. | Aug 2005 | B2 |
D509297 | Wells | Sep 2005 | S |
D509589 | Wells | Sep 2005 | S |
6939358 | Palacios et al. | Sep 2005 | B2 |
6942662 | Goble et al. | Sep 2005 | B2 |
6942674 | Belef et al. | Sep 2005 | B2 |
6945444 | Gresham et al. | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6958035 | Friedman et al. | Oct 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6960107 | Schaub et al. | Nov 2005 | B1 |
6960163 | Ewers et al. | Nov 2005 | B2 |
6960220 | Marino et al. | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6966907 | Goble | Nov 2005 | B2 |
6966909 | Marshall et al. | Nov 2005 | B2 |
6971988 | Orban, III | Dec 2005 | B2 |
6972199 | Lebouitz et al. | Dec 2005 | B2 |
6974462 | Sater | Dec 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6978922 | Bilotti et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6981978 | Gannoe | Jan 2006 | B2 |
6981983 | Rosenblatt et al. | Jan 2006 | B1 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6984231 | Goble et al. | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
6988650 | Schwemberger et al. | Jan 2006 | B2 |
6990731 | Haytayan | Jan 2006 | B2 |
6990796 | Schnipke et al. | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6995729 | Govari et al. | Feb 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7000819 | Swayze et al. | Feb 2006 | B2 |
7001380 | Goble | Feb 2006 | B2 |
7001408 | Knodel et al. | Feb 2006 | B2 |
7008435 | Cummins | Mar 2006 | B2 |
7009039 | Yayon et al. | Mar 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7018357 | Emmons | Mar 2006 | B2 |
7018390 | Turovskiy et al. | Mar 2006 | B2 |
7023159 | Gorti et al. | Apr 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7029435 | Nakao | Apr 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7032799 | Viola et al. | Apr 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7036680 | Flannery | May 2006 | B1 |
7037344 | Kagan et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7041868 | Greene et al. | May 2006 | B2 |
7043852 | Hayashida et al. | May 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7048745 | Tierney et al. | May 2006 | B2 |
7052494 | Goble et al. | May 2006 | B2 |
7052499 | Steger et al. | May 2006 | B2 |
7055730 | Ehrenfels et al. | Jun 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7056284 | Martone et al. | Jun 2006 | B2 |
7056330 | Gayton | Jun 2006 | B2 |
7059331 | Adams et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7063671 | Couvillon, Jr. | Jun 2006 | B2 |
7063712 | Vargas et al. | Jun 2006 | B2 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066944 | Laufer et al. | Jun 2006 | B2 |
7067038 | Trokhan et al. | Jun 2006 | B2 |
7070083 | Jankowski | Jul 2006 | B2 |
7070559 | Adams et al. | Jul 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7071287 | Rhine et al. | Jul 2006 | B2 |
7075770 | Smith | Jul 2006 | B1 |
7077856 | Whitman | Jul 2006 | B2 |
7080769 | Vresh et al. | Jul 2006 | B2 |
7081114 | Rashidi | Jul 2006 | B2 |
7083073 | Yoshie et al. | Aug 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7083571 | Wang et al. | Aug 2006 | B2 |
7083615 | Peterson et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7087049 | Nowlin et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7087071 | Nicholas et al. | Aug 2006 | B2 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7090684 | McGuckin, Jr. et al. | Aug 2006 | B2 |
7094202 | Nobis et al. | Aug 2006 | B2 |
7094247 | Monassevitch et al. | Aug 2006 | B2 |
7097089 | Marczyk | Aug 2006 | B2 |
7097644 | Long | Aug 2006 | B2 |
7097650 | Weller et al. | Aug 2006 | B2 |
7098794 | Lindsay et al. | Aug 2006 | B2 |
7100949 | Williams et al. | Sep 2006 | B2 |
7104741 | Krohn | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7108701 | Evens et al. | Sep 2006 | B2 |
7108709 | Cummins | Sep 2006 | B2 |
7111768 | Cummins et al. | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7112214 | Peterson et al. | Sep 2006 | B2 |
RE39358 | Goble | Oct 2006 | E |
7114642 | Whitman | Oct 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7119534 | Butzmann | Oct 2006 | B2 |
7121446 | Arad et al. | Oct 2006 | B2 |
7122028 | Looper et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7126303 | Farritor et al. | Oct 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7131445 | Amoah | Nov 2006 | B2 |
7133601 | Phillips et al. | Nov 2006 | B2 |
7134587 | Schwemberger et al. | Nov 2006 | B2 |
7137981 | Long | Nov 2006 | B2 |
7140527 | Ehrenfels et al. | Nov 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143924 | Scirica et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7147139 | Schwemberger et al. | Dec 2006 | B2 |
7147140 | Wukusick et al. | Dec 2006 | B2 |
7147637 | Goble | Dec 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7150748 | Ebbutt et al. | Dec 2006 | B2 |
7153300 | Goble | Dec 2006 | B2 |
7156824 | Rosenman | Jan 2007 | B2 |
7156863 | Sonnenschein et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7161036 | Oikawa et al. | Jan 2007 | B2 |
7168604 | Milliman et al. | Jan 2007 | B2 |
7172104 | Scirica et al. | Feb 2007 | B2 |
7172593 | Trieu et al. | Feb 2007 | B2 |
7179223 | Motoki et al. | Feb 2007 | B2 |
7179267 | Nolan et al. | Feb 2007 | B2 |
7182239 | Myers | Feb 2007 | B1 |
7182763 | Nardella | Feb 2007 | B2 |
7183737 | Kitagawa | Feb 2007 | B2 |
7188758 | Viola et al. | Mar 2007 | B2 |
7189207 | Viola | Mar 2007 | B2 |
7195627 | Amoah et al. | Mar 2007 | B2 |
7199537 | Okamura et al. | Apr 2007 | B2 |
7202653 | Pai | Apr 2007 | B2 |
7204404 | Nguyen et al. | Apr 2007 | B2 |
7204835 | Latterell et al. | Apr 2007 | B2 |
7207233 | Wadge | Apr 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7207472 | Wukusick et al. | Apr 2007 | B2 |
7207556 | Saitoh et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7210609 | Leiboff et al. | May 2007 | B2 |
7211081 | Goble | May 2007 | B2 |
7211084 | Goble et al. | May 2007 | B2 |
7211092 | Hughett | May 2007 | B2 |
7213736 | Wales et al. | May 2007 | B2 |
7214224 | Goble | May 2007 | B2 |
7214232 | Bowman et al. | May 2007 | B2 |
7217285 | Vargas et al. | May 2007 | B2 |
7220260 | Fleming et al. | May 2007 | B2 |
7220272 | Weadock | May 2007 | B2 |
7225963 | Scirica | Jun 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7234624 | Gresham et al. | Jun 2007 | B2 |
7235089 | McGuckin, Jr. | Jun 2007 | B1 |
7235302 | Jing et al. | Jun 2007 | B2 |
7237708 | Guy et al. | Jul 2007 | B1 |
7238195 | Viola | Jul 2007 | B2 |
7241288 | Braun | Jul 2007 | B2 |
7241289 | Braun | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7247161 | Johnston et al. | Jul 2007 | B2 |
7252660 | Kunz | Aug 2007 | B2 |
7255696 | Goble et al. | Aug 2007 | B2 |
7256695 | Hamel et al. | Aug 2007 | B2 |
7258262 | Mastri et al. | Aug 2007 | B2 |
7258546 | Beier et al. | Aug 2007 | B2 |
7260431 | Libbus et al. | Aug 2007 | B2 |
7265374 | Lee et al. | Sep 2007 | B2 |
7267679 | McGuckin, Jr. et al. | Sep 2007 | B2 |
7267682 | Bender et al. | Sep 2007 | B1 |
7273483 | Wiener et al. | Sep 2007 | B2 |
7278562 | Mastri et al. | Oct 2007 | B2 |
7278563 | Green | Oct 2007 | B1 |
7278949 | Bader | Oct 2007 | B2 |
7278994 | Goble | Oct 2007 | B2 |
7282048 | Goble et al. | Oct 2007 | B2 |
7286850 | Frielink et al. | Oct 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7289139 | Amling et al. | Oct 2007 | B2 |
7293685 | Ehrenfels et al. | Nov 2007 | B2 |
7295907 | Lu et al. | Nov 2007 | B2 |
7296722 | Ivanko | Nov 2007 | B2 |
7296724 | Green et al. | Nov 2007 | B2 |
7297149 | Vitali et al. | Nov 2007 | B2 |
7300373 | Jinno et al. | Nov 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303106 | Milliman et al. | Dec 2007 | B2 |
7303107 | Milliman et al. | Dec 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7303502 | Thompson | Dec 2007 | B2 |
7303556 | Metzger | Dec 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7308998 | Mastri et al. | Dec 2007 | B2 |
7322975 | Goble et al. | Jan 2008 | B2 |
7322994 | Nicholas et al. | Jan 2008 | B2 |
7324572 | Chang | Jan 2008 | B2 |
7326203 | Papineau et al. | Feb 2008 | B2 |
7326213 | Benderev et al. | Feb 2008 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7328829 | Arad et al. | Feb 2008 | B2 |
7330004 | DeJonge et al. | Feb 2008 | B2 |
7331340 | Barney | Feb 2008 | B2 |
7331969 | Inganas et al. | Feb 2008 | B1 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7334718 | McAlister et al. | Feb 2008 | B2 |
7335199 | Goble et al. | Feb 2008 | B2 |
7336048 | Lohr | Feb 2008 | B2 |
7336184 | Smith et al. | Feb 2008 | B2 |
7338513 | Lee et al. | Mar 2008 | B2 |
7341591 | Grinberg | Mar 2008 | B2 |
7343920 | Toby et al. | Mar 2008 | B2 |
7344532 | Goble et al. | Mar 2008 | B2 |
7348763 | Reinhart et al. | Mar 2008 | B1 |
RE40237 | Bilotti et al. | Apr 2008 | E |
7351258 | Ricotta et al. | Apr 2008 | B2 |
7354447 | Shelton, IV et al. | Apr 2008 | B2 |
7354502 | Polat et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7357806 | Rivera et al. | Apr 2008 | B2 |
7361195 | Schwartz et al. | Apr 2008 | B2 |
7364060 | Milliman | Apr 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7367973 | Manzo et al. | May 2008 | B2 |
7377918 | Amoah | May 2008 | B2 |
7377928 | Zubik et al. | May 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7384417 | Cucin | Jun 2008 | B2 |
7386730 | Uchikubo | Jun 2008 | B2 |
7388217 | Buschbeck et al. | Jun 2008 | B2 |
7391173 | Schena | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7397364 | Govari | Jul 2008 | B2 |
7398907 | Racenet et al. | Jul 2008 | B2 |
7398908 | Holsten et al. | Jul 2008 | B2 |
7400752 | Zacharias | Jul 2008 | B2 |
7401721 | Holsten et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7404509 | Ortiz et al. | Jul 2008 | B2 |
7404822 | Viart et al. | Jul 2008 | B2 |
7407074 | Ortiz et al. | Aug 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7407076 | Racenet et al. | Aug 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7410086 | Ortiz et al. | Aug 2008 | B2 |
7413563 | Corcoran et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7418078 | Blanz et al. | Aug 2008 | B2 |
RE40514 | Mastri et al. | Sep 2008 | E |
7419080 | Smith et al. | Sep 2008 | B2 |
7419081 | Ehrenfels et al. | Sep 2008 | B2 |
7419321 | Tereschouk | Sep 2008 | B2 |
7419495 | Menn et al. | Sep 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422138 | Bilotti et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7424965 | Racenet et al. | Sep 2008 | B2 |
7427607 | Suzuki | Sep 2008 | B2 |
7431188 | Marczyk | Oct 2008 | B1 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7431694 | Stefanchik et al. | Oct 2008 | B2 |
7431730 | Viola | Oct 2008 | B2 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7438718 | Milliman et al. | Oct 2008 | B2 |
7439354 | Lenges et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7441685 | Boudreaux | Oct 2008 | B1 |
7442201 | Pugsley et al. | Oct 2008 | B2 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7451904 | Shelton, IV | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7455676 | Holsten et al. | Nov 2008 | B2 |
7455682 | Viola | Nov 2008 | B2 |
7461767 | Viola et al. | Dec 2008 | B2 |
7462187 | Johnston et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7467740 | Shelton, IV et al. | Dec 2008 | B2 |
7467849 | Silverbrook et al. | Dec 2008 | B2 |
7472814 | Mastri et al. | Jan 2009 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7472816 | Holsten et al. | Jan 2009 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7473263 | Johnston et al. | Jan 2009 | B2 |
7476237 | Taniguchi et al. | Jan 2009 | B2 |
7479608 | Smith | Jan 2009 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7481348 | Marczyk | Jan 2009 | B2 |
7481349 | Holsten et al. | Jan 2009 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7485133 | Cannon et al. | Feb 2009 | B2 |
7485142 | Milo | Feb 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7490749 | Schall et al. | Feb 2009 | B2 |
7494039 | Racenet et al. | Feb 2009 | B2 |
7494499 | Nagase et al. | Feb 2009 | B2 |
7494501 | Ahlberg et al. | Feb 2009 | B2 |
7500979 | Hueil et al. | Mar 2009 | B2 |
7501198 | Barlev et al. | Mar 2009 | B2 |
7503474 | Hillstead et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7507202 | Schoellhorn | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7510566 | Jacobs et al. | Mar 2009 | B2 |
7513408 | Shelton, IV et al. | Apr 2009 | B2 |
7517356 | Heinrich | Apr 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7530984 | Sonnenschein et al. | May 2009 | B2 |
7530985 | Takemoto et al. | May 2009 | B2 |
7533906 | Luettgen et al. | May 2009 | B2 |
7534259 | Lashinski et al. | May 2009 | B2 |
7543730 | Marczyk | Jun 2009 | B1 |
7546939 | Adams et al. | Jun 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7549998 | Braun | Jun 2009 | B2 |
7552854 | Wixey et al. | Jun 2009 | B2 |
7556185 | Viola | Jul 2009 | B2 |
7556186 | Milliman | Jul 2009 | B2 |
7556647 | Drews et al. | Jul 2009 | B2 |
7559449 | Viola | Jul 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7563862 | Sieg et al. | Jul 2009 | B2 |
7565993 | Milliman et al. | Jul 2009 | B2 |
7566300 | Devierre et al. | Jul 2009 | B2 |
7567045 | Fristedt | Jul 2009 | B2 |
7568604 | Ehrenfels et al. | Aug 2009 | B2 |
7568619 | Todd et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7588174 | Holsten et al. | Sep 2009 | B2 |
7588175 | Timm et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7591783 | Boulais et al. | Sep 2009 | B2 |
7597229 | Boudreaux et al. | Oct 2009 | B2 |
7597230 | Racenet et al. | Oct 2009 | B2 |
7600663 | Green | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7607557 | Shelton, IV et al. | Oct 2009 | B2 |
7611038 | Racenet et al. | Nov 2009 | B2 |
7611474 | Hibner et al. | Nov 2009 | B2 |
7615003 | Stefanchik et al. | Nov 2009 | B2 |
7615067 | Lee et al. | Nov 2009 | B2 |
7617961 | Viola | Nov 2009 | B2 |
D605762 | Nalagatla et al. | Dec 2009 | S |
7624902 | Marczyk et al. | Dec 2009 | B2 |
7624903 | Green et al. | Dec 2009 | B2 |
7625370 | Hart et al. | Dec 2009 | B2 |
7631793 | Rethy et al. | Dec 2009 | B2 |
7631794 | Rethy et al. | Dec 2009 | B2 |
7635074 | Olson et al. | Dec 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7638958 | Philipp et al. | Dec 2009 | B2 |
7641091 | Olson et al. | Jan 2010 | B2 |
7641092 | Kruszynski et al. | Jan 2010 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7641095 | Viola | Jan 2010 | B2 |
7644783 | Roberts et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645230 | Mikkaichi et al. | Jan 2010 | B2 |
7648457 | Stefanchik et al. | Jan 2010 | B2 |
7648519 | Lee et al. | Jan 2010 | B2 |
7651017 | Ortiz et al. | Jan 2010 | B2 |
7651498 | Shifrin et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7655288 | Bauman et al. | Feb 2010 | B2 |
7656131 | Embrey et al. | Feb 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7658312 | Vidal et al. | Feb 2010 | B2 |
7659219 | Biran et al. | Feb 2010 | B2 |
7662161 | Briganti et al. | Feb 2010 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7669746 | Shelton, IV | Mar 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7673780 | Shelton, IV et al. | Mar 2010 | B2 |
7673781 | Swayze et al. | Mar 2010 | B2 |
7673782 | Hess et al. | Mar 2010 | B2 |
7673783 | Morgan et al. | Mar 2010 | B2 |
7674253 | Fisher et al. | Mar 2010 | B2 |
7674255 | Braun | Mar 2010 | B2 |
7674263 | Ryan | Mar 2010 | B2 |
7674270 | Layer | Mar 2010 | B2 |
7682307 | Danitz et al. | Mar 2010 | B2 |
7682367 | Shah et al. | Mar 2010 | B2 |
7686201 | Csiky | Mar 2010 | B2 |
7686826 | Lee et al. | Mar 2010 | B2 |
7688028 | Phillips et al. | Mar 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7691106 | Schenberger et al. | Apr 2010 | B2 |
7694865 | Scirica | Apr 2010 | B2 |
7695485 | Whitman et al. | Apr 2010 | B2 |
7699204 | Viola | Apr 2010 | B2 |
7699835 | Lee et al. | Apr 2010 | B2 |
7699844 | Utley et al. | Apr 2010 | B2 |
7699846 | Ryan | Apr 2010 | B2 |
7699856 | Van Wyk et al. | Apr 2010 | B2 |
7699859 | Bombard et al. | Apr 2010 | B2 |
7699860 | Huitema et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7708180 | Murray et al. | May 2010 | B2 |
7708181 | Cole et al. | May 2010 | B2 |
7708182 | Viola | May 2010 | B2 |
7708758 | Lee et al. | May 2010 | B2 |
7714239 | Smith | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7717846 | Zirps et al. | May 2010 | B2 |
7718180 | Karp | May 2010 | B2 |
7718556 | Matsuda et al. | May 2010 | B2 |
7721930 | McKenna et al. | May 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7721933 | Ehrenfels et al. | May 2010 | B2 |
7721934 | Shelton, IV et al. | May 2010 | B2 |
7721936 | Shalton, IV et al. | May 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
7722610 | Viola et al. | May 2010 | B2 |
7726537 | Olson et al. | Jun 2010 | B2 |
7726538 | Holsten et al. | Jun 2010 | B2 |
7726539 | Holsten et al. | Jun 2010 | B2 |
7727954 | McKay | Jun 2010 | B2 |
7729742 | Govari | Jun 2010 | B2 |
7731072 | Timm et al. | Jun 2010 | B2 |
7731073 | Wixey et al. | Jun 2010 | B2 |
7731724 | Huitema et al. | Jun 2010 | B2 |
7735703 | Morgan et al. | Jun 2010 | B2 |
7736374 | Vaughan et al. | Jun 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7744624 | Bettuchi | Jun 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7744628 | Viola | Jun 2010 | B2 |
7748587 | Haramiishi et al. | Jul 2010 | B2 |
7749204 | Dhanaraj et al. | Jul 2010 | B2 |
7751870 | Whitman | Jul 2010 | B2 |
7753245 | Boudreaux et al. | Jul 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7758612 | Shipp | Jul 2010 | B2 |
7766207 | Mather et al. | Aug 2010 | B2 |
7766209 | Baxter, III et al. | Aug 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7766821 | Brunnen et al. | Aug 2010 | B2 |
7766894 | Weitzner et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7770776 | Chen et al. | Aug 2010 | B2 |
7771396 | Stefanchik et al. | Aug 2010 | B2 |
7772720 | McGee et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7778004 | Nerheim et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780055 | Scirica et al. | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7780685 | Hunt et al. | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7789875 | Brock et al. | Sep 2010 | B2 |
7789883 | Takashino et al. | Sep 2010 | B2 |
7789889 | Zubik et al. | Sep 2010 | B2 |
7793812 | Moore et al. | Sep 2010 | B2 |
7794475 | Hess et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7799039 | Shelton, IV et al. | Sep 2010 | B2 |
7799044 | Johnston et al. | Sep 2010 | B2 |
7799965 | Patel et al. | Sep 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7806871 | Li et al. | Oct 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810690 | Bilotti et al. | Oct 2010 | B2 |
7810691 | Boyden et al. | Oct 2010 | B2 |
7810692 | Hall et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7815092 | Whitman et al. | Oct 2010 | B2 |
7815565 | Stefanchik et al. | Oct 2010 | B2 |
7819296 | Hueil et al. | Oct 2010 | B2 |
7819297 | Doll et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7819884 | Lee et al. | Oct 2010 | B2 |
7819886 | Whitfield et al. | Oct 2010 | B2 |
7819896 | Racenet | Oct 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7823760 | Zemlok et al. | Nov 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7824426 | Racenet et al. | Nov 2010 | B2 |
7828189 | Holsten et al. | Nov 2010 | B2 |
7828794 | Sartor | Nov 2010 | B2 |
7828808 | Hinman et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832611 | Boyden et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7833234 | Bailly et al. | Nov 2010 | B2 |
7836400 | May et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837080 | Schwemberger | Nov 2010 | B2 |
7837081 | Holsten et al. | Nov 2010 | B2 |
7837694 | Tethrake et al. | Nov 2010 | B2 |
7838789 | Stoffers et al. | Nov 2010 | B2 |
7841503 | Sonnenschein et al. | Nov 2010 | B2 |
7842025 | Coleman et al. | Nov 2010 | B2 |
7842028 | Lee | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7845535 | Scircia | Dec 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846149 | Jankowski | Dec 2010 | B2 |
7850623 | Griffin et al. | Dec 2010 | B2 |
7850642 | Moll et al. | Dec 2010 | B2 |
7850982 | Stopek et al. | Dec 2010 | B2 |
7854736 | Ryan | Dec 2010 | B2 |
7857183 | Shelton, IV | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7857186 | Baxter, III et al. | Dec 2010 | B2 |
7857813 | Schmitz et al. | Dec 2010 | B2 |
7861906 | Doll et al. | Jan 2011 | B2 |
7862579 | Ortiz et al. | Jan 2011 | B2 |
7866525 | Scirica | Jan 2011 | B2 |
7866527 | Hall et al. | Jan 2011 | B2 |
7866528 | Olson et al. | Jan 2011 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7871418 | Thompson et al. | Jan 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7883465 | Donofrio et al. | Feb 2011 | B2 |
7886951 | Hessler | Feb 2011 | B2 |
7886952 | Scirica et al. | Feb 2011 | B2 |
7887530 | Zemlok et al. | Feb 2011 | B2 |
7887535 | Lands et al. | Feb 2011 | B2 |
7887563 | Cummins | Feb 2011 | B2 |
7891531 | Ward | Feb 2011 | B1 |
7891532 | Mastri et al. | Feb 2011 | B2 |
7892245 | Liddicoat et al. | Feb 2011 | B2 |
7893586 | West et al. | Feb 2011 | B2 |
7896214 | Farascioni | Mar 2011 | B2 |
7896215 | Adams et al. | Mar 2011 | B2 |
7896877 | Hall et al. | Mar 2011 | B2 |
7896895 | Boudreaux et al. | Mar 2011 | B2 |
7900805 | Shelton, IV et al. | Mar 2011 | B2 |
7905380 | Shelton, IV et al. | Mar 2011 | B2 |
7905381 | Baxter, III et al. | Mar 2011 | B2 |
7905889 | Catanese, III et al. | Mar 2011 | B2 |
7905893 | Kuhns et al. | Mar 2011 | B2 |
7905902 | Huitema et al. | Mar 2011 | B2 |
7909039 | Hur | Mar 2011 | B2 |
7909191 | Baker et al. | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7909221 | Viola et al. | Mar 2011 | B2 |
7913891 | Doll et al. | Mar 2011 | B2 |
7913893 | Mastri et al. | Mar 2011 | B2 |
7914543 | Roth et al. | Mar 2011 | B2 |
7914551 | Ortiz et al. | Mar 2011 | B2 |
7918230 | Whitman et al. | Apr 2011 | B2 |
7918376 | Knodel et al. | Apr 2011 | B1 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7918845 | Saadat et al. | Apr 2011 | B2 |
7918848 | Lau et al. | Apr 2011 | B2 |
7918867 | Dana et al. | Apr 2011 | B2 |
7918873 | Cummins | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7922743 | Heinrich et al. | Apr 2011 | B2 |
7926691 | Viola et al. | Apr 2011 | B2 |
7927328 | Orszulak et al. | Apr 2011 | B2 |
7928281 | Augustine | Apr 2011 | B2 |
7931660 | Aranyi et al. | Apr 2011 | B2 |
7931695 | Ringeisen | Apr 2011 | B2 |
7934630 | Shelton, IV et al. | May 2011 | B2 |
7934631 | Balbierz et al. | May 2011 | B2 |
7935773 | Hadba et al. | May 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7941865 | Seman, Jr. et al. | May 2011 | B2 |
7942301 | Sater | May 2011 | B2 |
7942303 | Shah | May 2011 | B2 |
7942890 | D'Agostino et al. | May 2011 | B2 |
7944175 | Mori et al. | May 2011 | B2 |
7946453 | Voegele et al. | May 2011 | B2 |
7950560 | Zemlok et al. | May 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7951071 | Whitman et al. | May 2011 | B2 |
7951166 | Orban, III et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7954684 | Boudreaux | Jun 2011 | B2 |
7954686 | Baxter, III et al. | Jun 2011 | B2 |
7954687 | Zemlok et al. | Jun 2011 | B2 |
7954688 | Argentine et al. | Jun 2011 | B2 |
7955257 | Frasier et al. | Jun 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959051 | Smith et al. | Jun 2011 | B2 |
7959052 | Sonnenschein et al. | Jun 2011 | B2 |
7963432 | Knodel et al. | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7963964 | Santilli et al. | Jun 2011 | B2 |
7966799 | Morgan et al. | Jun 2011 | B2 |
7967178 | Scirica et al. | Jun 2011 | B2 |
7967179 | Olson et al. | Jun 2011 | B2 |
7967180 | Scirica | Jun 2011 | B2 |
7967181 | Viola et al. | Jun 2011 | B2 |
7967839 | Flock et al. | Jun 2011 | B2 |
7972298 | Wallace et al. | Jul 2011 | B2 |
7976563 | Summerer | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7988015 | Mason, II et al. | Aug 2011 | B2 |
7988026 | Knodel et al. | Aug 2011 | B2 |
7988027 | Olson et al. | Aug 2011 | B2 |
7988028 | Farascioni et al. | Aug 2011 | B2 |
7988779 | Disalvo et al. | Aug 2011 | B2 |
7992757 | Wheeler et al. | Aug 2011 | B2 |
7993360 | Hacker et al. | Aug 2011 | B2 |
7997468 | Farascioni | Aug 2011 | B2 |
7997469 | Olson et al. | Aug 2011 | B2 |
8002696 | Suzuki | Aug 2011 | B2 |
8002784 | Jinno et al. | Aug 2011 | B2 |
8002785 | Weiss et al. | Aug 2011 | B2 |
8002795 | Beetel | Aug 2011 | B2 |
8006365 | Levin et al. | Aug 2011 | B2 |
8006885 | Marczyk | Aug 2011 | B2 |
8006889 | Adams et al. | Aug 2011 | B2 |
8007511 | Brock et al. | Aug 2011 | B2 |
8007513 | Nalagatla et al. | Aug 2011 | B2 |
8011550 | Aranyi et al. | Sep 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8011553 | Mastri et al. | Sep 2011 | B2 |
8011555 | Tarinelli et al. | Sep 2011 | B2 |
8012170 | Whitman et al. | Sep 2011 | B2 |
8016176 | Kasvikis et al. | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8016849 | Wenchell | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8016858 | Whitman | Sep 2011 | B2 |
8016881 | Furst | Sep 2011 | B2 |
8020742 | Marczyk | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8021375 | Aldrich et al. | Sep 2011 | B2 |
8021377 | Eskuri | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8028884 | Sniffin et al. | Oct 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8033438 | Scirica | Oct 2011 | B2 |
8033442 | Racenet et al. | Oct 2011 | B2 |
8034077 | Smith et al. | Oct 2011 | B2 |
8034363 | Li et al. | Oct 2011 | B2 |
8035487 | Malackowski | Oct 2011 | B2 |
8037591 | Spivey et al. | Oct 2011 | B2 |
8038045 | Bettuchi et al. | Oct 2011 | B2 |
8038046 | Smith et al. | Oct 2011 | B2 |
8038686 | Huitema et al. | Oct 2011 | B2 |
8043207 | Adams | Oct 2011 | B2 |
8043328 | Hahnen et al. | Oct 2011 | B2 |
8047236 | Perry | Nov 2011 | B2 |
8048503 | Farnsworth et al. | Nov 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8056788 | Mastri et al. | Nov 2011 | B2 |
8056789 | White et al. | Nov 2011 | B1 |
8057508 | Shelton, IV | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8061576 | Cappola | Nov 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8066168 | Vidal | Nov 2011 | B2 |
D650074 | Hunt et al. | Dec 2011 | S |
8070033 | Milliman et al. | Dec 2011 | B2 |
8070035 | Holsten et al. | Dec 2011 | B2 |
8070036 | Knodel | Dec 2011 | B1 |
8070743 | Kagan et al. | Dec 2011 | B2 |
8075571 | Vitali et al. | Dec 2011 | B2 |
8083118 | Milliman et al. | Dec 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8083120 | Shelton, IV et al. | Dec 2011 | B2 |
8084001 | Burns et al. | Dec 2011 | B2 |
8085013 | Wei et al. | Dec 2011 | B2 |
8087563 | Milliman et al. | Jan 2012 | B2 |
8091756 | Viola | Jan 2012 | B2 |
8092443 | Bischoff | Jan 2012 | B2 |
8092932 | Phillips et al. | Jan 2012 | B2 |
8096458 | Hessler | Jan 2012 | B2 |
8096459 | Ortiz et al. | Jan 2012 | B2 |
8097017 | Viola | Jan 2012 | B2 |
8100310 | Zemlok | Jan 2012 | B2 |
8100872 | Patel | Jan 2012 | B2 |
8102278 | Deck et al. | Jan 2012 | B2 |
8105350 | Lee et al. | Jan 2012 | B2 |
8108072 | Zhao et al. | Jan 2012 | B2 |
8109426 | Milliman et al. | Feb 2012 | B2 |
8110208 | Hen | Feb 2012 | B1 |
8113405 | Milliman | Feb 2012 | B2 |
8113410 | Hall et al. | Feb 2012 | B2 |
8114100 | Smith et al. | Feb 2012 | B2 |
8123103 | Milliman | Feb 2012 | B2 |
8123766 | Bauman et al. | Feb 2012 | B2 |
8123767 | Bauman et al. | Feb 2012 | B2 |
8127975 | Olson et al. | Mar 2012 | B2 |
8127976 | Scirica et al. | Mar 2012 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8128643 | Aranyi et al. | Mar 2012 | B2 |
8128645 | Sonnenschein et al. | Mar 2012 | B2 |
8132703 | Milliman et al. | Mar 2012 | B2 |
8132706 | Marczyk et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8136713 | Hathaway et al. | Mar 2012 | B2 |
8140417 | Shibata | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8141763 | Milliman | Mar 2012 | B2 |
8146790 | Milliman | Apr 2012 | B2 |
8147485 | Wham et al. | Apr 2012 | B2 |
8152041 | Kostrzewski | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8157148 | Scirica | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8157152 | Holsten et al. | Apr 2012 | B2 |
8157153 | Shelton, IV et al. | Apr 2012 | B2 |
8157793 | Omori et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162138 | Bettenhausen et al. | Apr 2012 | B2 |
8162197 | Mastri et al. | Apr 2012 | B2 |
8167185 | Shelton, IV et al. | May 2012 | B2 |
8167895 | D'Agostino et al. | May 2012 | B2 |
8167898 | Schaller et al. | May 2012 | B1 |
8170241 | Roe et al. | May 2012 | B2 |
8172120 | Boyden et al. | May 2012 | B2 |
8172122 | Kasvikis et al. | May 2012 | B2 |
8172124 | Shelton, IV et al. | May 2012 | B2 |
8177797 | Shimoji et al. | May 2012 | B2 |
8180458 | Kane et al. | May 2012 | B2 |
8181840 | Milliman | May 2012 | B2 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8186556 | Viola | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8191752 | Scirica | Jun 2012 | B2 |
8192460 | Orban, III et al. | Jun 2012 | B2 |
8196795 | Moore et al. | Jun 2012 | B2 |
8196796 | Shelton, IV et al. | Jun 2012 | B2 |
8201720 | Hessler | Jun 2012 | B2 |
8201721 | Zemlok et al. | Jun 2012 | B2 |
8202549 | Stucky et al. | Jun 2012 | B2 |
8205779 | Ma et al. | Jun 2012 | B2 |
8205780 | Sorrentino et al. | Jun 2012 | B2 |
8205781 | Baxter, III et al. | Jun 2012 | B2 |
8206291 | Fischvogt et al. | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8210414 | Bettuchi et al. | Jul 2012 | B2 |
8210415 | Ward | Jul 2012 | B2 |
8210416 | Milliman et al. | Jul 2012 | B2 |
8211123 | Gross et al. | Jul 2012 | B2 |
8211125 | Spivey | Jul 2012 | B2 |
8214019 | Govari et al. | Jul 2012 | B2 |
8215531 | Shelton, IV et al. | Jul 2012 | B2 |
8215533 | Viola et al. | Jul 2012 | B2 |
8220468 | Cooper et al. | Jul 2012 | B2 |
8220688 | Laurent et al. | Jul 2012 | B2 |
8220690 | Hess et al. | Jul 2012 | B2 |
8221424 | Cha | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225980 | Rivera | Jul 2012 | B1 |
8226715 | Hwang et al. | Jul 2012 | B2 |
8227946 | Kim | Jul 2012 | B2 |
8231040 | Zemlok et al. | Jul 2012 | B2 |
8231042 | Hessler et al. | Jul 2012 | B2 |
8231043 | Tarinelli et al. | Jul 2012 | B2 |
8236010 | Ortiz et al. | Aug 2012 | B2 |
8241271 | Millman et al. | Aug 2012 | B2 |
8241308 | Kortenbach et al. | Aug 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8245594 | Rogers et al. | Aug 2012 | B2 |
8245898 | Smith et al. | Aug 2012 | B2 |
8245899 | Swensgard et al. | Aug 2012 | B2 |
8245900 | Scirica | Aug 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8246637 | Viola et al. | Aug 2012 | B2 |
8256654 | Bettuchi et al. | Sep 2012 | B2 |
8256655 | Sniffin et al. | Sep 2012 | B2 |
8256656 | Milliman et al. | Sep 2012 | B2 |
8257251 | Shelton, IV et al. | Sep 2012 | B2 |
8257356 | Bleich et al. | Sep 2012 | B2 |
8257391 | Orban, III et al. | Sep 2012 | B2 |
8257634 | Scirica | Sep 2012 | B2 |
8261958 | Knodel | Sep 2012 | B1 |
8262655 | Ghabrial et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8267924 | Zemlok et al. | Sep 2012 | B2 |
8267946 | Whitfield et al. | Sep 2012 | B2 |
8267951 | Whayne et al. | Sep 2012 | B2 |
8269121 | Smith | Sep 2012 | B2 |
8272553 | Mastri et al. | Sep 2012 | B2 |
8272554 | Whitman et al. | Sep 2012 | B2 |
8272918 | Lam | Sep 2012 | B2 |
8273404 | Dave et al. | Sep 2012 | B2 |
8276801 | Zemlok et al. | Oct 2012 | B2 |
8276802 | Kostrzewski | Oct 2012 | B2 |
8281973 | Wenchell et al. | Oct 2012 | B2 |
8281974 | Hessler et al. | Oct 2012 | B2 |
8285367 | Hyde et al. | Oct 2012 | B2 |
8286845 | Perry et al. | Oct 2012 | B2 |
8286846 | Smith et al. | Oct 2012 | B2 |
8287561 | Nunez et al. | Oct 2012 | B2 |
8292147 | Viola | Oct 2012 | B2 |
8292150 | Bryant | Oct 2012 | B2 |
8292151 | Viola | Oct 2012 | B2 |
8292152 | Milliman et al. | Oct 2012 | B2 |
8292155 | Shelton, IV et al. | Oct 2012 | B2 |
8292157 | Smith et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8298161 | Vargas | Oct 2012 | B2 |
8298677 | Wiesner et al. | Oct 2012 | B2 |
8302323 | Fortier et al. | Nov 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8308043 | Bindra et al. | Nov 2012 | B2 |
8308046 | Prommersberger | Nov 2012 | B2 |
8308659 | Scheibe et al. | Nov 2012 | B2 |
8313496 | Sauer et al. | Nov 2012 | B2 |
8313509 | Kostrzewski | Nov 2012 | B2 |
8317070 | Hueil et al. | Nov 2012 | B2 |
8317071 | Knodel | Nov 2012 | B1 |
8317074 | Ortiz et al. | Nov 2012 | B2 |
8317790 | Bell et al. | Nov 2012 | B2 |
8319002 | Daniels et al. | Nov 2012 | B2 |
8322455 | Shelton, IV et al. | Dec 2012 | B2 |
8322589 | Boudreaux | Dec 2012 | B2 |
8322590 | Patel et al. | Dec 2012 | B2 |
8323314 | Blier | Dec 2012 | B2 |
8323789 | Rozhin et al. | Dec 2012 | B2 |
8328061 | Kasvikis | Dec 2012 | B2 |
8328062 | Viola | Dec 2012 | B2 |
8328063 | Milliman et al. | Dec 2012 | B2 |
8328064 | Racenet et al. | Dec 2012 | B2 |
8328802 | Deville et al. | Dec 2012 | B2 |
8328823 | Aranyi et al. | Dec 2012 | B2 |
8333313 | Boudreaux et al. | Dec 2012 | B2 |
8333691 | Schaaf | Dec 2012 | B2 |
8333764 | Francischelli et al. | Dec 2012 | B2 |
8336753 | Olson et al. | Dec 2012 | B2 |
8336754 | Cappola et al. | Dec 2012 | B2 |
8342377 | Milliman et al. | Jan 2013 | B2 |
8342378 | Marczyk et al. | Jan 2013 | B2 |
8342379 | Whitman et al. | Jan 2013 | B2 |
8348123 | Scirica et al. | Jan 2013 | B2 |
8348125 | Viola et al. | Jan 2013 | B2 |
8348126 | Olson et al. | Jan 2013 | B2 |
8348127 | Marczyk | Jan 2013 | B2 |
8348129 | Bedi et al. | Jan 2013 | B2 |
8348130 | Shah et al. | Jan 2013 | B2 |
8348131 | Omaits et al. | Jan 2013 | B2 |
8348972 | Soltz et al. | Jan 2013 | B2 |
8353437 | Boudreaux | Jan 2013 | B2 |
8353438 | Baxter, III et al. | Jan 2013 | B2 |
8353439 | Baxter, III et al. | Jan 2013 | B2 |
8356740 | Knodel | Jan 2013 | B1 |
8357144 | Whitman et al. | Jan 2013 | B2 |
8360296 | Zingman | Jan 2013 | B2 |
8360297 | Shelton, IV et al. | Jan 2013 | B2 |
8360298 | Farascioni et al. | Jan 2013 | B2 |
8360299 | Zemlok et al. | Jan 2013 | B2 |
8361501 | DiTizio et al. | Jan 2013 | B2 |
8365973 | White et al. | Feb 2013 | B1 |
8365975 | Manoux et al. | Feb 2013 | B1 |
8365976 | Hess et al. | Feb 2013 | B2 |
8366559 | Papenfuss et al. | Feb 2013 | B2 |
8366787 | Brown et al. | Feb 2013 | B2 |
8371491 | Huitema et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8371493 | Aranyi et al. | Feb 2013 | B2 |
8372094 | Bettuchi et al. | Feb 2013 | B2 |
8376865 | Forster et al. | Feb 2013 | B2 |
8377029 | Nagao et al. | Feb 2013 | B2 |
8377044 | Coe et al. | Feb 2013 | B2 |
8382761 | Holsten et al. | Feb 2013 | B2 |
8387848 | Johnson et al. | Mar 2013 | B2 |
8388633 | Rousseau et al. | Mar 2013 | B2 |
8393513 | Jankowski | Mar 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8393516 | Kostrzewski | Mar 2013 | B2 |
8397971 | Yates et al. | Mar 2013 | B2 |
8397973 | Hausen | Mar 2013 | B1 |
8398633 | Mueller | Mar 2013 | B2 |
8398673 | Hinchliffe et al. | Mar 2013 | B2 |
8403138 | Weisshaupt et al. | Mar 2013 | B2 |
8403197 | Vidal et al. | Mar 2013 | B2 |
8403198 | Sorrentino et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8403950 | Palmer et al. | Mar 2013 | B2 |
8408439 | Huang et al. | Apr 2013 | B2 |
8408442 | Racenet et al. | Apr 2013 | B2 |
8409079 | Okamoto et al. | Apr 2013 | B2 |
8409174 | Omori | Apr 2013 | B2 |
8409222 | Whitfield et al. | Apr 2013 | B2 |
8409223 | Sorrentino et al. | Apr 2013 | B2 |
8413870 | Pastorelli et al. | Apr 2013 | B2 |
8413871 | Racenet et al. | Apr 2013 | B2 |
8413872 | Patel | Apr 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8418908 | Beardsley | Apr 2013 | B1 |
8418909 | Kostrzewski | Apr 2013 | B2 |
8424737 | Scirica | Apr 2013 | B2 |
8424739 | Racenet et al. | Apr 2013 | B2 |
8424740 | Shelton, IV et al. | Apr 2013 | B2 |
8424741 | McGuckin, Jr. et al. | Apr 2013 | B2 |
8425600 | Maxwell | Apr 2013 | B2 |
8430292 | Patel et al. | Apr 2013 | B2 |
8430892 | Bindra et al. | Apr 2013 | B2 |
8430898 | Wiener et al. | Apr 2013 | B2 |
8439246 | Knodel | May 2013 | B1 |
8444036 | Shelton, IV | May 2013 | B2 |
8444100 | Takahashi et al. | May 2013 | B2 |
8444549 | Viola et al. | May 2013 | B2 |
8453904 | Eskaros et al. | Jun 2013 | B2 |
8453906 | Huang et al. | Jun 2013 | B2 |
8453907 | Laurent et al. | Jun 2013 | B2 |
8453908 | Bedi et al. | Jun 2013 | B2 |
8453912 | Mastri et al. | Jun 2013 | B2 |
8453914 | Laurent et al. | Jun 2013 | B2 |
8454628 | Smith et al. | Jun 2013 | B2 |
8454640 | Johnston et al. | Jun 2013 | B2 |
8457757 | Cauller et al. | Jun 2013 | B2 |
8459520 | Giordano et al. | Jun 2013 | B2 |
8459525 | Yates et al. | Jun 2013 | B2 |
8464922 | Marczyk | Jun 2013 | B2 |
8464923 | Shelton, IV | Jun 2013 | B2 |
8464924 | Gresham et al. | Jun 2013 | B2 |
8464925 | Hull et al. | Jun 2013 | B2 |
8465502 | Zergiebel | Jun 2013 | B2 |
8469973 | Meade et al. | Jun 2013 | B2 |
8470355 | Skalla et al. | Jun 2013 | B2 |
8474677 | Woodard, Jr. et al. | Jul 2013 | B2 |
8475453 | Marczyk et al. | Jul 2013 | B2 |
8475454 | Alshemari | Jul 2013 | B1 |
8475474 | Bombard et al. | Jul 2013 | B2 |
8475491 | Milo | Jul 2013 | B2 |
8479969 | Shelton, IV | Jul 2013 | B2 |
8480703 | Nicholas et al. | Jul 2013 | B2 |
8485412 | Shelton, IV et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8490853 | Criscuolo et al. | Jul 2013 | B2 |
8491603 | Yeung et al. | Jul 2013 | B2 |
8496153 | Demmy et al. | Jul 2013 | B2 |
8496154 | Marczyk et al. | Jul 2013 | B2 |
8496155 | Knodel | Jul 2013 | B2 |
8496156 | Sniffin et al. | Jul 2013 | B2 |
8496683 | Prommersberger et al. | Jul 2013 | B2 |
8499992 | Whitman et al. | Aug 2013 | B2 |
8499993 | Shelton, IV et al. | Aug 2013 | B2 |
8500762 | Sholev et al. | Aug 2013 | B2 |
8505227 | Barrett et al. | Aug 2013 | B2 |
8506555 | Ruiz Morales | Aug 2013 | B2 |
8506557 | Zemlok et al. | Aug 2013 | B2 |
8506580 | Zergiebel et al. | Aug 2013 | B2 |
8506581 | Wingardner, III et al. | Aug 2013 | B2 |
8512359 | Whitman et al. | Aug 2013 | B2 |
8517239 | Scheib et al. | Aug 2013 | B2 |
8517241 | Nicholas et al. | Aug 2013 | B2 |
8517243 | Giordano et al. | Aug 2013 | B2 |
8517244 | Shelton, IV et al. | Aug 2013 | B2 |
8521273 | Kliman | Aug 2013 | B2 |
8523042 | Masiakos et al. | Sep 2013 | B2 |
8523043 | Ullrich et al. | Sep 2013 | B2 |
8523881 | Cabiri et al. | Sep 2013 | B2 |
8523900 | Jinno et al. | Sep 2013 | B2 |
8529588 | Ahlberg et al. | Sep 2013 | B2 |
8529600 | Woodard, Jr. et al. | Sep 2013 | B2 |
8529819 | Ostapoff et al. | Sep 2013 | B2 |
8532747 | Nock et al. | Sep 2013 | B2 |
8534528 | Shelton, IV | Sep 2013 | B2 |
8535304 | Sklar et al. | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8540129 | Baxter, III et al. | Sep 2013 | B2 |
8540130 | Moore et al. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8540133 | Bedi et al. | Sep 2013 | B2 |
8540733 | Whitman et al. | Sep 2013 | B2 |
8540735 | Mitelberg et al. | Sep 2013 | B2 |
8550984 | Takemoto | Oct 2013 | B2 |
8551076 | Duval et al. | Oct 2013 | B2 |
8556151 | Viola | Oct 2013 | B2 |
8556918 | Bauman et al. | Oct 2013 | B2 |
8556935 | Knodel et al. | Oct 2013 | B1 |
8561870 | Baxter, III et al. | Oct 2013 | B2 |
8561873 | Ingmanson et al. | Oct 2013 | B2 |
8567656 | Shelton, IV et al. | Oct 2013 | B2 |
8568425 | Ross et al. | Oct 2013 | B2 |
8573459 | Smith et al. | Nov 2013 | B2 |
8573461 | Shelton, IV et al. | Nov 2013 | B2 |
8573462 | Smith et al. | Nov 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8574263 | Mueller | Nov 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8579178 | Holsten et al. | Nov 2013 | B2 |
8579937 | Gresham | Nov 2013 | B2 |
8579938 | Heinrich et al. | Nov 2013 | B2 |
8584919 | Hueil et al. | Nov 2013 | B2 |
8585721 | Kirsch | Nov 2013 | B2 |
8590760 | Cummins et al. | Nov 2013 | B2 |
8590762 | Hess et al. | Nov 2013 | B2 |
8590764 | Hartwick et al. | Nov 2013 | B2 |
8596515 | Okoniewski | Dec 2013 | B2 |
8602287 | Yates et al. | Dec 2013 | B2 |
8602288 | Shelton, IV et al. | Dec 2013 | B2 |
8603135 | Mueller | Dec 2013 | B2 |
8608043 | Scirica | Dec 2013 | B2 |
8608044 | Hueil et al. | Dec 2013 | B2 |
8608046 | Laurent et al. | Dec 2013 | B2 |
8608745 | Guzman et al. | Dec 2013 | B2 |
8613383 | Beckman et al. | Dec 2013 | B2 |
8613384 | Pastorelli et al. | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8622275 | Baxter, III et al. | Jan 2014 | B2 |
8627993 | Smith et al. | Jan 2014 | B2 |
8627995 | Smith et al. | Jan 2014 | B2 |
8628518 | Blumenkranz et al. | Jan 2014 | B2 |
8628544 | Farascioni | Jan 2014 | B2 |
8631987 | Shelton, IV et al. | Jan 2014 | B2 |
8631992 | Hausen et al. | Jan 2014 | B1 |
8631993 | Kostrzewski | Jan 2014 | B2 |
8632462 | Yoo et al. | Jan 2014 | B2 |
8632525 | Kerr et al. | Jan 2014 | B2 |
8632535 | Shelton, IV et al. | Jan 2014 | B2 |
8632563 | Nagase et al. | Jan 2014 | B2 |
8636187 | Hueil et al. | Jan 2014 | B2 |
8636191 | Meagher | Jan 2014 | B2 |
8636193 | Whitman et al. | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8636766 | Milliman et al. | Jan 2014 | B2 |
8640788 | Dachs, II et al. | Feb 2014 | B2 |
8646674 | Schulte et al. | Feb 2014 | B2 |
8647258 | Aranyi et al. | Feb 2014 | B2 |
8647350 | Mohan et al. | Feb 2014 | B2 |
8652120 | Giordano et al. | Feb 2014 | B2 |
8652151 | Lehman et al. | Feb 2014 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8657176 | Shelton, IV et al. | Feb 2014 | B2 |
8657177 | Scirica et al. | Feb 2014 | B2 |
8657178 | Hueil et al. | Feb 2014 | B2 |
8657814 | Werneth et al. | Feb 2014 | B2 |
8662370 | Takei | Mar 2014 | B2 |
8663192 | Hester et al. | Mar 2014 | B2 |
8663224 | Overes et al. | Mar 2014 | B2 |
8664792 | Rebsdorf | Mar 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8668130 | Hess et al. | Mar 2014 | B2 |
8672206 | Aranyi et al. | Mar 2014 | B2 |
8672207 | Shelton, IV et al. | Mar 2014 | B2 |
8672208 | Hess et al. | Mar 2014 | B2 |
8672951 | Smith et al. | Mar 2014 | B2 |
8678263 | Viola | Mar 2014 | B2 |
8679093 | Farra | Mar 2014 | B2 |
8679137 | Bauman et al. | Mar 2014 | B2 |
8679154 | Smith et al. | Mar 2014 | B2 |
8679156 | Smith et al. | Mar 2014 | B2 |
8679454 | Guire et al. | Mar 2014 | B2 |
8684250 | Bettuchi et al. | Apr 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8685020 | Weizman et al. | Apr 2014 | B2 |
8695866 | Leimbach et al. | Apr 2014 | B2 |
8696665 | Hunt et al. | Apr 2014 | B2 |
8701958 | Shelton, IV et al. | Apr 2014 | B2 |
8701959 | Shah | Apr 2014 | B2 |
8701960 | Manoux | Apr 2014 | B1 |
8708210 | Zemlok et al. | Apr 2014 | B2 |
8708211 | Zemlok et al. | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8714429 | Demmy | May 2014 | B2 |
8715226 | Webster et al. | May 2014 | B2 |
8720766 | Hess et al. | May 2014 | B2 |
8721630 | Ortiz et al. | May 2014 | B2 |
8721646 | Fox | May 2014 | B2 |
8721666 | Schroeder et al. | May 2014 | B2 |
8727197 | Hess et al. | May 2014 | B2 |
8728119 | Cummins | May 2014 | B2 |
8728120 | Blier | May 2014 | B2 |
8733612 | Ma | May 2014 | B2 |
8733613 | Huitema et al. | May 2014 | B2 |
8733614 | Ross et al. | May 2014 | B2 |
8734478 | Widenhouse et al. | May 2014 | B2 |
D706927 | Cheney et al. | Jun 2014 | S |
8740034 | Morgan et al. | Jun 2014 | B2 |
8740037 | Shelton, IV et al. | Jun 2014 | B2 |
8740038 | Shelton, IV et al. | Jun 2014 | B2 |
8746529 | Shelton, IV et al. | Jun 2014 | B2 |
8746530 | Giordano et al. | Jun 2014 | B2 |
8746533 | Whitman et al. | Jun 2014 | B2 |
8746535 | Shelton, IV et al. | Jun 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8752264 | Ackley et al. | Jun 2014 | B2 |
8752699 | Morgan et al. | Jun 2014 | B2 |
8752747 | Shelton, IV et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8757287 | Mak et al. | Jun 2014 | B2 |
8757465 | Woodard, Jr. et al. | Jun 2014 | B2 |
8757467 | Racenet et al. | Jun 2014 | B2 |
8758235 | Jaworek | Jun 2014 | B2 |
8758366 | McLean et al. | Jun 2014 | B2 |
8758391 | Swayze et al. | Jun 2014 | B2 |
8758438 | Boyce et al. | Jun 2014 | B2 |
8763875 | Morgan et al. | Jul 2014 | B2 |
8763877 | Schall et al. | Jul 2014 | B2 |
8763879 | Shelton, IV et al. | Jul 2014 | B2 |
8770458 | Scirica | Jul 2014 | B2 |
8770459 | Racenet et al. | Jul 2014 | B2 |
8770460 | Belzer | Jul 2014 | B2 |
8771169 | Whitman et al. | Jul 2014 | B2 |
8771312 | Knodel et al. | Jul 2014 | B1 |
8777004 | Shelton, IV et al. | Jul 2014 | B2 |
8783541 | Shelton, IV et al. | Jul 2014 | B2 |
8783542 | Riestenberg et al. | Jul 2014 | B2 |
8783543 | Shelton, IV et al. | Jul 2014 | B2 |
8784304 | Mikkaichi et al. | Jul 2014 | B2 |
8784404 | Doyle et al. | Jul 2014 | B2 |
8784415 | Malackowski et al. | Jul 2014 | B2 |
8789737 | Hodgkinson et al. | Jul 2014 | B2 |
8789739 | Swensgard | Jul 2014 | B2 |
8789740 | Baxter, III et al. | Jul 2014 | B2 |
8789741 | Baxter, III et al. | Jul 2014 | B2 |
8790684 | Dave et al. | Jul 2014 | B2 |
8794496 | Scirica | Aug 2014 | B2 |
8794497 | Zingman | Aug 2014 | B2 |
8795276 | Dietz et al. | Aug 2014 | B2 |
8795308 | Valin | Aug 2014 | B2 |
8800837 | Zemlok | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8800840 | Jankowski | Aug 2014 | B2 |
8800841 | Ellerhorst et al. | Aug 2014 | B2 |
8801732 | Harris et al. | Aug 2014 | B2 |
8801734 | Shelton, IV et al. | Aug 2014 | B2 |
8801735 | Shelton, IV et al. | Aug 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8806973 | Ross et al. | Aug 2014 | B2 |
8808294 | Fox et al. | Aug 2014 | B2 |
8808311 | Heinrich et al. | Aug 2014 | B2 |
8808325 | Hess et al. | Aug 2014 | B2 |
8814024 | Woodard, Jr. et al. | Aug 2014 | B2 |
8814025 | Miller et al. | Aug 2014 | B2 |
8820603 | Shelton, IV et al. | Sep 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8820606 | Hodgkinson | Sep 2014 | B2 |
8827133 | Shelton, IV et al. | Sep 2014 | B2 |
8827134 | Viola et al. | Sep 2014 | B2 |
8827903 | Shelton, IV et al. | Sep 2014 | B2 |
8833632 | Swensgard | Sep 2014 | B2 |
8834498 | Byrum et al. | Sep 2014 | B2 |
8834518 | Faller et al. | Sep 2014 | B2 |
8840003 | Morgan et al. | Sep 2014 | B2 |
8840603 | Shelton, IV et al. | Sep 2014 | B2 |
8840609 | Stuebe | Sep 2014 | B2 |
8844789 | Shelton, IV et al. | Sep 2014 | B2 |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8852185 | Twomey | Oct 2014 | B2 |
8852199 | Deslauriers et al. | Oct 2014 | B2 |
8857693 | Schuckmann et al. | Oct 2014 | B2 |
8857694 | Shelton, IV et al. | Oct 2014 | B2 |
8858538 | Belson et al. | Oct 2014 | B2 |
8858571 | Shelton, IV et al. | Oct 2014 | B2 |
8858590 | Shelton, IV et al. | Oct 2014 | B2 |
8864007 | Widenhouse et al. | Oct 2014 | B2 |
8864009 | Shelton, IV et al. | Oct 2014 | B2 |
8870049 | Amid et al. | Oct 2014 | B2 |
8870050 | Hodgkinson | Oct 2014 | B2 |
8870912 | Brisson et al. | Oct 2014 | B2 |
8875971 | Hall et al. | Nov 2014 | B2 |
8875972 | Weisenburgh, II et al. | Nov 2014 | B2 |
8876857 | Burbank | Nov 2014 | B2 |
8876858 | Braun | Nov 2014 | B2 |
8888792 | Harris et al. | Nov 2014 | B2 |
8893946 | Boudreaux et al. | Nov 2014 | B2 |
8893949 | Shelton, IV et al. | Nov 2014 | B2 |
8894647 | Beardsley et al. | Nov 2014 | B2 |
8899462 | Kostrzewski et al. | Dec 2014 | B2 |
8899463 | Schall et al. | Dec 2014 | B2 |
8899464 | Hueil et al. | Dec 2014 | B2 |
8899465 | Shelton, IV et al. | Dec 2014 | B2 |
8899466 | Baxter, III et al. | Dec 2014 | B2 |
8905287 | Racenet et al. | Dec 2014 | B2 |
8905977 | Shelton et al. | Dec 2014 | B2 |
8911426 | Coppeta et al. | Dec 2014 | B2 |
8911471 | Spivey et al. | Dec 2014 | B2 |
8920433 | Barrier et al. | Dec 2014 | B2 |
8920435 | Smith et al. | Dec 2014 | B2 |
8920438 | Aranyi et al. | Dec 2014 | B2 |
8920443 | Hiles et al. | Dec 2014 | B2 |
8920444 | Hiles et al. | Dec 2014 | B2 |
8925782 | Shelton, IV | Jan 2015 | B2 |
8925783 | Zemlok et al. | Jan 2015 | B2 |
8925788 | Hess et al. | Jan 2015 | B2 |
8926598 | Mollere et al. | Jan 2015 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8939343 | Milliman et al. | Jan 2015 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8939974 | Boudreaux et al. | Jan 2015 | B2 |
8945163 | Voegele et al. | Feb 2015 | B2 |
8955732 | Zemlok et al. | Feb 2015 | B2 |
8956390 | Shah et al. | Feb 2015 | B2 |
8960519 | Whitman et al. | Feb 2015 | B2 |
8960520 | McCuen | Feb 2015 | B2 |
8960521 | Kostrzewski | Feb 2015 | B2 |
8967443 | McCuen | Mar 2015 | B2 |
8967446 | Beardsley et al. | Mar 2015 | B2 |
8967448 | Carter et al. | Mar 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8968355 | Malkowski et al. | Mar 2015 | B2 |
8968358 | Reschke | Mar 2015 | B2 |
8973803 | Hall et al. | Mar 2015 | B2 |
8973804 | Hess et al. | Mar 2015 | B2 |
8974440 | Farritor et al. | Mar 2015 | B2 |
8978954 | Shelton, IV et al. | Mar 2015 | B2 |
8978955 | Aronhalt et al. | Mar 2015 | B2 |
8978956 | Schall et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8982195 | Claus et al. | Mar 2015 | B2 |
8985428 | Natarajan et al. | Mar 2015 | B2 |
8991676 | Hess et al. | Mar 2015 | B2 |
8991677 | Moore et al. | Mar 2015 | B2 |
8991678 | Wellman et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
8996165 | Wang et al. | Mar 2015 | B2 |
8998058 | Moore et al. | Apr 2015 | B2 |
8998059 | Smith et al. | Apr 2015 | B2 |
8998061 | Williams et al. | Apr 2015 | B2 |
8998935 | Hart | Apr 2015 | B2 |
8998951 | Knodel et al. | Apr 2015 | B2 |
9004339 | Park | Apr 2015 | B1 |
9005230 | Yates et al. | Apr 2015 | B2 |
9005238 | DeSantis et al. | Apr 2015 | B2 |
9005243 | Stopek et al. | Apr 2015 | B2 |
9010608 | Casasanta, Jr. et al. | Apr 2015 | B2 |
9016540 | Whitman et al. | Apr 2015 | B2 |
9016541 | Viola et al. | Apr 2015 | B2 |
9016542 | Shelton, IV et al. | Apr 2015 | B2 |
9017331 | Fox | Apr 2015 | B2 |
9023014 | Chowaniec et al. | May 2015 | B2 |
9027817 | Milliman et al. | May 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9028495 | Mueller et al. | May 2015 | B2 |
9028519 | Yates et al. | May 2015 | B2 |
9033203 | Woodard, Jr. et al. | May 2015 | B2 |
9033204 | Shelton, IV et al. | May 2015 | B2 |
9038881 | Schaller et al. | May 2015 | B1 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044228 | Woodard, Jr. et al. | Jun 2015 | B2 |
9044229 | Scheib et al. | Jun 2015 | B2 |
9044230 | Morgan et al. | Jun 2015 | B2 |
9050083 | Yates et al. | Jun 2015 | B2 |
9050084 | Schmid et al. | Jun 2015 | B2 |
9050120 | Swarup et al. | Jun 2015 | B2 |
9055941 | Schmid et al. | Jun 2015 | B2 |
9055942 | Balbierz et al. | Jun 2015 | B2 |
9055943 | Zemlok et al. | Jun 2015 | B2 |
9055944 | Hodgkinson et al. | Jun 2015 | B2 |
9060769 | Coleman et al. | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9060894 | Wubbeling | Jun 2015 | B2 |
9072515 | Hall et al. | Jul 2015 | B2 |
9072523 | Houser et al. | Jul 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9078653 | Leimbach et al. | Jul 2015 | B2 |
9084601 | Moore et al. | Jul 2015 | B2 |
9084602 | Gleiman | Jul 2015 | B2 |
9089326 | Krumanaker et al. | Jul 2015 | B2 |
9089330 | Widenhouse et al. | Jul 2015 | B2 |
9089352 | Jeong | Jul 2015 | B2 |
9095339 | Moore et al. | Aug 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9096033 | Holop et al. | Aug 2015 | B2 |
9101358 | Kerr et al. | Aug 2015 | B2 |
9101385 | Shelton, IV et al. | Aug 2015 | B2 |
9107663 | Swensgard | Aug 2015 | B2 |
9110587 | Kim et al. | Aug 2015 | B2 |
9113862 | Morgan et al. | Aug 2015 | B2 |
9113864 | Morgan et al. | Aug 2015 | B2 |
9113865 | Shelton, IV et al. | Aug 2015 | B2 |
9113870 | Viola | Aug 2015 | B2 |
9113874 | Shelton, IV et al. | Aug 2015 | B2 |
9113880 | Zemlok et al. | Aug 2015 | B2 |
9113881 | Scirica | Aug 2015 | B2 |
9113883 | Aronhalt et al. | Aug 2015 | B2 |
9113884 | Shelton, IV et al. | Aug 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9119898 | Bayon et al. | Sep 2015 | B2 |
9119957 | Gantz et al. | Sep 2015 | B2 |
9123286 | Park | Sep 2015 | B2 |
9125649 | Bruewer et al. | Sep 2015 | B2 |
9125654 | Aronhalt et al. | Sep 2015 | B2 |
9125662 | Shelton, IV | Sep 2015 | B2 |
9131940 | Huitema et al. | Sep 2015 | B2 |
9138225 | Huang et al. | Sep 2015 | B2 |
9138226 | Racenet et al. | Sep 2015 | B2 |
9149274 | Spivey et al. | Oct 2015 | B2 |
9149324 | Huang et al. | Oct 2015 | B2 |
9149325 | Worrell et al. | Oct 2015 | B2 |
9155536 | Hausen et al. | Oct 2015 | B1 |
9168038 | Shelton, IV et al. | Oct 2015 | B2 |
9168039 | Knodel | Oct 2015 | B1 |
9179911 | Morgan et al. | Nov 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9186046 | Ramamurthy et al. | Nov 2015 | B2 |
9186137 | Farascioni et al. | Nov 2015 | B2 |
9186140 | Hiles et al. | Nov 2015 | B2 |
9186143 | Timm et al. | Nov 2015 | B2 |
9192377 | Schaller | Nov 2015 | B1 |
9192380 | (Tarinelli) Racenet et al. | Nov 2015 | B2 |
9192384 | Bettuchi | Nov 2015 | B2 |
9198661 | Swensgard | Dec 2015 | B2 |
9198662 | Barton et al. | Dec 2015 | B2 |
9204830 | Zand et al. | Dec 2015 | B2 |
9204877 | Whitman et al. | Dec 2015 | B2 |
9204878 | Hall et al. | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204880 | Baxter, III et al. | Dec 2015 | B2 |
9204923 | Manzo et al. | Dec 2015 | B2 |
9211120 | Scheib et al. | Dec 2015 | B2 |
9211121 | Hall et al. | Dec 2015 | B2 |
9211122 | Hagerty et al. | Dec 2015 | B2 |
9216019 | Schmid et al. | Dec 2015 | B2 |
9216020 | Zhang et al. | Dec 2015 | B2 |
9216062 | Duque et al. | Dec 2015 | B2 |
9220500 | Swayze et al. | Dec 2015 | B2 |
9220501 | Baxter, III et al. | Dec 2015 | B2 |
9220502 | Zemlok et al. | Dec 2015 | B2 |
9220559 | Worrell et al. | Dec 2015 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9232941 | Mandakolathur Vasudevan et al. | Jan 2016 | B2 |
9232945 | Zingman | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9237892 | Hodgkinson | Jan 2016 | B2 |
9241714 | Timm et al. | Jan 2016 | B2 |
9241758 | Franer et al. | Jan 2016 | B2 |
9254131 | Soltz et al. | Feb 2016 | B2 |
9265500 | Sorrentino et al. | Feb 2016 | B2 |
9271753 | Butler et al. | Mar 2016 | B2 |
9271799 | Shelton, IV et al. | Mar 2016 | B2 |
9272406 | Aronhalt et al. | Mar 2016 | B2 |
9277919 | Timmer et al. | Mar 2016 | B2 |
9277922 | Carter et al. | Mar 2016 | B2 |
9282962 | Schmid et al. | Mar 2016 | B2 |
9282963 | Bryant | Mar 2016 | B2 |
9282966 | Shelton, IV et al. | Mar 2016 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9283054 | Morgan et al. | Mar 2016 | B2 |
9289206 | Hess et al. | Mar 2016 | B2 |
9289207 | Shelton, IV | Mar 2016 | B2 |
9289210 | Baxter, III et al. | Mar 2016 | B2 |
9289212 | Shelton, IV et al. | Mar 2016 | B2 |
9289225 | Shelton, IV et al. | Mar 2016 | B2 |
9289256 | Shelton, IV et al. | Mar 2016 | B2 |
9295463 | Viola et al. | Mar 2016 | B2 |
9295464 | Shelton, IV et al. | Mar 2016 | B2 |
9295466 | Hodgkinson et al. | Mar 2016 | B2 |
9301752 | Mandakolathur Vasudevan et al. | Apr 2016 | B2 |
9301753 | Aldridge et al. | Apr 2016 | B2 |
9301755 | Shelton, IV et al. | Apr 2016 | B2 |
9301759 | Spivey et al. | Apr 2016 | B2 |
9307965 | Ming et al. | Apr 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9307987 | Swensgard et al. | Apr 2016 | B2 |
9307988 | Shelton, IV | Apr 2016 | B2 |
9307989 | Shelton, IV et al. | Apr 2016 | B2 |
9307994 | Gresham et al. | Apr 2016 | B2 |
9308009 | Madan et al. | Apr 2016 | B2 |
9314246 | Shelton, IV et al. | Apr 2016 | B2 |
9314247 | Shelton, IV et al. | Apr 2016 | B2 |
9314594 | Kirschenman | Apr 2016 | B2 |
9320518 | Henderson et al. | Apr 2016 | B2 |
9320520 | Shelton, IV et al. | Apr 2016 | B2 |
9320521 | Shelton, IV et al. | Apr 2016 | B2 |
9320523 | Shelton, IV et al. | Apr 2016 | B2 |
9326767 | Koch et al. | May 2016 | B2 |
9326768 | Shelton, IV | May 2016 | B2 |
9326769 | Shelton, IV et al. | May 2016 | B2 |
9326770 | Shelton, IV et al. | May 2016 | B2 |
9326771 | Baxter, III et al. | May 2016 | B2 |
9332974 | Henderson et al. | May 2016 | B2 |
9332984 | Weaner et al. | May 2016 | B2 |
9332987 | Leimbach et al. | May 2016 | B2 |
9333082 | Wei et al. | May 2016 | B2 |
9345477 | Anim et al. | May 2016 | B2 |
9345481 | Hall et al. | May 2016 | B2 |
9351726 | Leimbach et al. | May 2016 | B2 |
9351727 | Leimbach et al. | May 2016 | B2 |
9351730 | Schmid et al. | May 2016 | B2 |
9351731 | Carter et al. | May 2016 | B2 |
9358003 | Hall et al. | Jun 2016 | B2 |
9358005 | Shelton, IV et al. | Jun 2016 | B2 |
9358015 | Sorrentino et al. | Jun 2016 | B2 |
9364217 | Kostrzewski et al. | Jun 2016 | B2 |
9364219 | Olson et al. | Jun 2016 | B2 |
9364220 | Williams | Jun 2016 | B2 |
9364229 | D'Agostino et al. | Jun 2016 | B2 |
9364230 | Shelton, IV et al. | Jun 2016 | B2 |
9364233 | Alexander, III et al. | Jun 2016 | B2 |
9370341 | Ceniccola et al. | Jun 2016 | B2 |
9370358 | Shelton, IV et al. | Jun 2016 | B2 |
9370364 | Smith et al. | Jun 2016 | B2 |
9386983 | Swensgard et al. | Jul 2016 | B2 |
9386984 | Aronhalt et al. | Jul 2016 | B2 |
9386985 | Koch, Jr. et al. | Jul 2016 | B2 |
9386988 | Baxter, III et al. | Jul 2016 | B2 |
9393015 | Laurent et al. | Jul 2016 | B2 |
9393018 | Wang et al. | Jul 2016 | B2 |
9398911 | Auld | Jul 2016 | B2 |
9402604 | Williams et al. | Aug 2016 | B2 |
9402626 | Ortiz et al. | Aug 2016 | B2 |
9402628 | Beardsley | Aug 2016 | B2 |
9408604 | Shelton, IV et al. | Aug 2016 | B2 |
9408606 | Shelton, IV | Aug 2016 | B2 |
9408622 | Stulen et al. | Aug 2016 | B2 |
9414838 | Shelton, IV et al. | Aug 2016 | B2 |
9414848 | Edwards et al. | Aug 2016 | B2 |
9414880 | Monson et al. | Aug 2016 | B2 |
9421013 | Patel et al. | Aug 2016 | B2 |
9421014 | Ingmanson et al. | Aug 2016 | B2 |
9427223 | Park et al. | Aug 2016 | B2 |
9427232 | Gupta et al. | Aug 2016 | B2 |
9433411 | Racenet et al. | Sep 2016 | B2 |
9433419 | Gonzalez et al. | Sep 2016 | B2 |
9433420 | Hodgkinson | Sep 2016 | B2 |
9439649 | Shelton, IV et al. | Sep 2016 | B2 |
9439651 | Smith et al. | Sep 2016 | B2 |
9445808 | Woodard, Jr. et al. | Sep 2016 | B2 |
9445813 | Shelton, IV et al. | Sep 2016 | B2 |
9451956 | Balbierz et al. | Sep 2016 | B2 |
9451958 | Shelton, IV et al. | Sep 2016 | B2 |
9463260 | Stopek | Oct 2016 | B2 |
9468438 | Baber et al. | Oct 2016 | B2 |
9480476 | Aldridge et al. | Nov 2016 | B2 |
9480492 | Aranyi et al. | Nov 2016 | B2 |
9486213 | Altman et al. | Nov 2016 | B2 |
9486214 | Shelton, IV | Nov 2016 | B2 |
9486302 | Boey et al. | Nov 2016 | B2 |
9492146 | Kostrzewski et al. | Nov 2016 | B2 |
9492167 | Shelton, IV et al. | Nov 2016 | B2 |
9492170 | Bear et al. | Nov 2016 | B2 |
9492189 | Williams et al. | Nov 2016 | B2 |
9498211 | Cohn et al. | Nov 2016 | B2 |
9498215 | Duque et al. | Nov 2016 | B2 |
9498219 | Moore et al. | Nov 2016 | B2 |
D775336 | Shelton, IV et al. | Dec 2016 | S |
9510827 | Kostrzewski | Dec 2016 | B2 |
9510828 | Yates et al. | Dec 2016 | B2 |
9510830 | Shelton, IV et al. | Dec 2016 | B2 |
9510846 | Sholev et al. | Dec 2016 | B2 |
9510925 | Hotter et al. | Dec 2016 | B2 |
9517063 | Swayze et al. | Dec 2016 | B2 |
9517068 | Shelton, IV et al. | Dec 2016 | B2 |
9522029 | Yates et al. | Dec 2016 | B2 |
9526564 | Rusin | Dec 2016 | B2 |
9539020 | Conlon et al. | Jan 2017 | B2 |
9545258 | Smith et al. | Jan 2017 | B2 |
9549732 | Yates et al. | Jan 2017 | B2 |
9549735 | Shelton, IV et al. | Jan 2017 | B2 |
9554794 | Baber et al. | Jan 2017 | B2 |
9554796 | Kostrzewski | Jan 2017 | B2 |
9561032 | Shelton, IV et al. | Feb 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9561045 | Hinman et al. | Feb 2017 | B2 |
9566061 | Aronhalt et al. | Feb 2017 | B2 |
9572574 | Shelton, IV et al. | Feb 2017 | B2 |
9572577 | Lloyd et al. | Feb 2017 | B2 |
9574644 | Parihar | Feb 2017 | B2 |
9585657 | Shelton, IV et al. | Mar 2017 | B2 |
9585658 | Shelton, IV | Mar 2017 | B2 |
9585660 | Laurent et al. | Mar 2017 | B2 |
9585662 | Shelton, IV et al. | Mar 2017 | B2 |
9585663 | Shelton, IV et al. | Mar 2017 | B2 |
9592050 | Schmid et al. | Mar 2017 | B2 |
9592052 | Shelton, IV | Mar 2017 | B2 |
9592053 | Shelton, IV et al. | Mar 2017 | B2 |
9592054 | Schmid et al. | Mar 2017 | B2 |
9597073 | Sorrentino et al. | Mar 2017 | B2 |
9597074 | Felder et al. | Mar 2017 | B2 |
9597075 | Shelton, IV et al. | Mar 2017 | B2 |
9597080 | Milliman et al. | Mar 2017 | B2 |
9597104 | Nicholas et al. | Mar 2017 | B2 |
9603595 | Shelton, IV et al. | Mar 2017 | B2 |
9603598 | Shelton, IV et al. | Mar 2017 | B2 |
9603991 | Shelton, IV et al. | Mar 2017 | B2 |
9610080 | Whitfield et al. | Apr 2017 | B2 |
9615826 | Shelton, IV et al. | Apr 2017 | B2 |
9629623 | Lytle, IV et al. | Apr 2017 | B2 |
9629626 | Soltz et al. | Apr 2017 | B2 |
9629629 | Leimbach et al. | Apr 2017 | B2 |
9629814 | Widenhouse et al. | Apr 2017 | B2 |
9636113 | Wenchell | May 2017 | B2 |
9642620 | Baxter, III et al. | May 2017 | B2 |
9649096 | Sholev | May 2017 | B2 |
9649110 | Parihar et al. | May 2017 | B2 |
9649111 | Shelton, IV et al. | May 2017 | B2 |
9655613 | Schaller | May 2017 | B2 |
9655614 | Swensgard et al. | May 2017 | B2 |
9655615 | Knodel et al. | May 2017 | B2 |
9655624 | Shelton, IV et al. | May 2017 | B2 |
9656024 | Eggert et al. | May 2017 | B2 |
9658011 | Gomez | May 2017 | B2 |
9662110 | Huang et al. | May 2017 | B2 |
9662131 | Omori et al. | May 2017 | B2 |
9668729 | Williams et al. | Jun 2017 | B2 |
9668732 | Patel et al. | Jun 2017 | B2 |
9675344 | Combrowski et al. | Jun 2017 | B2 |
9675351 | Hodgkinson et al. | Jun 2017 | B2 |
9675355 | Shelton, IV et al. | Jun 2017 | B2 |
9675372 | Laurent et al. | Jun 2017 | B2 |
9675375 | Houser et al. | Jun 2017 | B2 |
9681870 | Baxter, III et al. | Jun 2017 | B2 |
9681873 | Smith et al. | Jun 2017 | B2 |
9687230 | Leimbach et al. | Jun 2017 | B2 |
9687231 | Baxter, III et al. | Jun 2017 | B2 |
9687232 | Shelton, IV et al. | Jun 2017 | B2 |
9687236 | Leimbach et al. | Jun 2017 | B2 |
9687237 | Schmid et al. | Jun 2017 | B2 |
9690362 | Leimbach et al. | Jun 2017 | B2 |
9693772 | Ingmanson et al. | Jul 2017 | B2 |
9693777 | Schellin et al. | Jul 2017 | B2 |
9693819 | Francischelli et al. | Jul 2017 | B2 |
9700309 | Jaworek et al. | Jul 2017 | B2 |
9700310 | Morgan et al. | Jul 2017 | B2 |
9700312 | Kostrzewski et al. | Jul 2017 | B2 |
9700317 | Aronhalt et al. | Jul 2017 | B2 |
9700319 | Motooka et al. | Jul 2017 | B2 |
9700321 | Shelton, IV et al. | Jul 2017 | B2 |
9706991 | Hess et al. | Jul 2017 | B2 |
9706993 | Hessler et al. | Jul 2017 | B2 |
9707043 | Bozung | Jul 2017 | B2 |
9724091 | Shelton, IV et al. | Aug 2017 | B2 |
9724092 | Baxter, III et al. | Aug 2017 | B2 |
9724094 | Baber et al. | Aug 2017 | B2 |
9724096 | Thompson et al. | Aug 2017 | B2 |
9724098 | Baxter, III et al. | Aug 2017 | B2 |
9730692 | Shelton, IV et al. | Aug 2017 | B2 |
9730695 | Leimbach et al. | Aug 2017 | B2 |
9730697 | Morgan et al. | Aug 2017 | B2 |
9733663 | Leimbach et al. | Aug 2017 | B2 |
9737301 | Baber et al. | Aug 2017 | B2 |
9737302 | Shelton, IV et al. | Aug 2017 | B2 |
9737303 | Shelton, IV et al. | Aug 2017 | B2 |
9737365 | Hegeman et al. | Aug 2017 | B2 |
9743928 | Shelton, IV et al. | Aug 2017 | B2 |
9743929 | Leimbach et al. | Aug 2017 | B2 |
9750498 | Timm et al. | Sep 2017 | B2 |
9750499 | Leimbach et al. | Sep 2017 | B2 |
9750501 | Shelton, IV et al. | Sep 2017 | B2 |
9750502 | Scirica et al. | Sep 2017 | B2 |
9757123 | Giordano et al. | Sep 2017 | B2 |
9757124 | Schellin et al. | Sep 2017 | B2 |
9757126 | Cappola | Sep 2017 | B2 |
9757128 | Baber et al. | Sep 2017 | B2 |
9757130 | Shelton, IV | Sep 2017 | B2 |
9763662 | Shelton, IV et al. | Sep 2017 | B2 |
9770245 | Swayze et al. | Sep 2017 | B2 |
9770317 | Nering | Sep 2017 | B2 |
9775608 | Aronhalt et al. | Oct 2017 | B2 |
9775609 | Shelton, IV et al. | Oct 2017 | B2 |
9775613 | Shelton, IV et al. | Oct 2017 | B2 |
9775614 | Shelton, IV et al. | Oct 2017 | B2 |
9782169 | Kimsey et al. | Oct 2017 | B2 |
9788834 | Schmid et al. | Oct 2017 | B2 |
9788836 | Overmyer et al. | Oct 2017 | B2 |
9795379 | Leimbach et al. | Oct 2017 | B2 |
9795380 | Shelton, IV et al. | Oct 2017 | B2 |
9795381 | Shelton, IV | Oct 2017 | B2 |
9795382 | Shelton, IV | Oct 2017 | B2 |
9795384 | Weaner et al. | Oct 2017 | B2 |
9801626 | Parihar et al. | Oct 2017 | B2 |
9801627 | Harris et al. | Oct 2017 | B2 |
9801628 | Harris et al. | Oct 2017 | B2 |
9801634 | Shelton, IV et al. | Oct 2017 | B2 |
9804618 | Leimbach et al. | Oct 2017 | B2 |
9808244 | Leimbach et al. | Nov 2017 | B2 |
9808246 | Shelton, IV et al. | Nov 2017 | B2 |
9808247 | Shelton, IV et al. | Nov 2017 | B2 |
9808249 | Shelton, IV | Nov 2017 | B2 |
9814460 | Kimsey et al. | Nov 2017 | B2 |
9814462 | Woodard, Jr. et al. | Nov 2017 | B2 |
9820738 | Lytle, IV et al. | Nov 2017 | B2 |
9820741 | Kostrzewski | Nov 2017 | B2 |
9820770 | Palermo | Nov 2017 | B2 |
9826976 | Parihar et al. | Nov 2017 | B2 |
9826977 | Leimbach et al. | Nov 2017 | B2 |
9826978 | Shelton, IV et al. | Nov 2017 | B2 |
9833236 | Shelton, IV et al. | Dec 2017 | B2 |
9833238 | Baxter, III et al. | Dec 2017 | B2 |
9833241 | Huitema et al. | Dec 2017 | B2 |
9833242 | Baxter, III et al. | Dec 2017 | B2 |
9839420 | Shelton, IV et al. | Dec 2017 | B2 |
9839421 | Zerkle et al. | Dec 2017 | B2 |
9839422 | Schellin et al. | Dec 2017 | B2 |
9839423 | Vendely et al. | Dec 2017 | B2 |
9839425 | Zergiebel et al. | Dec 2017 | B2 |
9839427 | Swayze et al. | Dec 2017 | B2 |
9839428 | Baxter, III et al. | Dec 2017 | B2 |
9839429 | Weisenburgh, II et al. | Dec 2017 | B2 |
9839480 | Pribanic et al. | Dec 2017 | B2 |
9844368 | Boudreaux et al. | Dec 2017 | B2 |
9844369 | Huitema et al. | Dec 2017 | B2 |
9844372 | Shelton, IV et al. | Dec 2017 | B2 |
9844373 | Swayze et al. | Dec 2017 | B2 |
9844374 | Lytle, IV et al. | Dec 2017 | B2 |
9844375 | Overmyer et al. | Dec 2017 | B2 |
9844376 | Baxter, III et al. | Dec 2017 | B2 |
9844379 | Shelton, IV et al. | Dec 2017 | B2 |
9848873 | Shelton, IV | Dec 2017 | B2 |
9848875 | Aronhalt et al. | Dec 2017 | B2 |
9848877 | Shelton, IV et al. | Dec 2017 | B2 |
9848898 | Friedman et al. | Dec 2017 | B2 |
9855040 | Kostrzewski | Jan 2018 | B2 |
9855041 | Nering et al. | Jan 2018 | B2 |
9861359 | Shelton, IV et al. | Jan 2018 | B2 |
9861361 | Aronhalt et al. | Jan 2018 | B2 |
9867612 | Parihar et al. | Jan 2018 | B2 |
9867613 | Marczyk et al. | Jan 2018 | B2 |
9867616 | Marczyk | Jan 2018 | B2 |
9867618 | Hall et al. | Jan 2018 | B2 |
9868198 | Nicholas et al. | Jan 2018 | B2 |
9872682 | Hess et al. | Jan 2018 | B2 |
9872683 | Hopkins et al. | Jan 2018 | B2 |
9872684 | Hall et al. | Jan 2018 | B2 |
9877721 | Schellin et al. | Jan 2018 | B2 |
9883860 | Leimbach | Feb 2018 | B2 |
9883861 | Shelton, IV et al. | Feb 2018 | B2 |
9884456 | Schellin et al. | Feb 2018 | B2 |
9888919 | Leimbach et al. | Feb 2018 | B2 |
9888924 | Ebersole et al. | Feb 2018 | B2 |
9889230 | Bennett et al. | Feb 2018 | B2 |
9895147 | Shelton, IV | Feb 2018 | B2 |
9895148 | Shelton, IV et al. | Feb 2018 | B2 |
9895813 | Blumenkranz et al. | Feb 2018 | B2 |
9901342 | Shelton, IV et al. | Feb 2018 | B2 |
9901343 | Vold et al. | Feb 2018 | B2 |
9907620 | Shelton, IV et al. | Mar 2018 | B2 |
9913642 | Leimbach et al. | Mar 2018 | B2 |
9913647 | Weisenburgh, II et al. | Mar 2018 | B2 |
9913648 | Shelton, IV et al. | Mar 2018 | B2 |
9913694 | Brisson | Mar 2018 | B2 |
9918704 | Shelton, IV et al. | Mar 2018 | B2 |
9918716 | Baxter, III et al. | Mar 2018 | B2 |
9918717 | Czernik | Mar 2018 | B2 |
9918778 | Walberg et al. | Mar 2018 | B2 |
9924942 | Swayze et al. | Mar 2018 | B2 |
9924944 | Shelton, IV et al. | Mar 2018 | B2 |
9924947 | Shelton, IV et al. | Mar 2018 | B2 |
9924961 | Shelton, IV et al. | Mar 2018 | B2 |
9931118 | Shelton, IV et al. | Apr 2018 | B2 |
9943309 | Shelton, IV et al. | Apr 2018 | B2 |
9943310 | Harris et al. | Apr 2018 | B2 |
9962158 | Hall et al. | May 2018 | B2 |
9962161 | Scheib et al. | May 2018 | B2 |
9968354 | Shelton, IV et al. | May 2018 | B2 |
9968355 | Shelton, IV et al. | May 2018 | B2 |
9968356 | Shelton, IV et al. | May 2018 | B2 |
9968397 | Taylor et al. | May 2018 | B2 |
9974529 | Shelton, IV et al. | May 2018 | B2 |
9974538 | Baxter et al. | May 2018 | B2 |
9980630 | Larkin et al. | May 2018 | B2 |
9980713 | Aronhalt et al. | May 2018 | B2 |
9980729 | Moore et al. | May 2018 | B2 |
9987000 | Shelton, IV et al. | Jun 2018 | B2 |
9987006 | Morgan et al. | Jun 2018 | B2 |
9987011 | Williams et al. | Jun 2018 | B2 |
9987012 | Shah | Jun 2018 | B2 |
9987095 | Chowaniec et al. | Jun 2018 | B2 |
9987099 | Chen et al. | Jun 2018 | B2 |
9993248 | Shelton, IV et al. | Jun 2018 | B2 |
9993258 | Shelton, IV et al. | Jun 2018 | B2 |
9999408 | Boudreaux et al. | Jun 2018 | B2 |
9999426 | Moore et al. | Jun 2018 | B2 |
9999431 | Shelton, IV et al. | Jun 2018 | B2 |
10004497 | Overmyer et al. | Jun 2018 | B2 |
10004498 | Morgan et al. | Jun 2018 | B2 |
10004501 | Shelton, IV et al. | Jun 2018 | B2 |
10004505 | Moore et al. | Jun 2018 | B2 |
D822206 | Shelton, IV et al. | Jul 2018 | S |
10010322 | Shelton, IV et al. | Jul 2018 | B2 |
10010324 | Huitema et al. | Jul 2018 | B2 |
10013049 | Leimbach et al. | Jul 2018 | B2 |
10016199 | Baber et al. | Jul 2018 | B2 |
10028742 | Shelton, IV et al. | Jul 2018 | B2 |
10028743 | Shelton, IV et al. | Jul 2018 | B2 |
10028744 | Shelton, IV et al. | Jul 2018 | B2 |
10028761 | Leimbach et al. | Jul 2018 | B2 |
D826405 | Shelton, IV et al. | Aug 2018 | S |
10039529 | Kerr et al. | Aug 2018 | B2 |
10045769 | Aronhalt et al. | Aug 2018 | B2 |
10045776 | Shelton, IV et al. | Aug 2018 | B2 |
10045779 | Savage et al. | Aug 2018 | B2 |
10045781 | Cropper et al. | Aug 2018 | B2 |
10052044 | Shelton, IV et al. | Aug 2018 | B2 |
10052099 | Morgan et al. | Aug 2018 | B2 |
10052100 | Morgan et al. | Aug 2018 | B2 |
10052102 | Baxter, III et al. | Aug 2018 | B2 |
10052104 | Shelton, IV et al. | Aug 2018 | B2 |
10058317 | Fan et al. | Aug 2018 | B2 |
10058327 | Weisenburgh, II et al. | Aug 2018 | B2 |
10058963 | Shelton, IV et al. | Aug 2018 | B2 |
10064618 | Allen | Sep 2018 | B2 |
10064621 | Kerr et al. | Sep 2018 | B2 |
10064624 | Shelton, IV et al. | Sep 2018 | B2 |
10064688 | Shelton, IV et al. | Sep 2018 | B2 |
10070861 | Spivey et al. | Sep 2018 | B2 |
10070863 | Swayze et al. | Sep 2018 | B2 |
10071452 | Shelton, IV et al. | Sep 2018 | B2 |
10076325 | Huang et al. | Sep 2018 | B2 |
10080552 | Nicholas et al. | Sep 2018 | B2 |
D831209 | Huitema et al. | Oct 2018 | S |
10085748 | Morgan et al. | Oct 2018 | B2 |
10085749 | Cappola et al. | Oct 2018 | B2 |
10085806 | Hagn et al. | Oct 2018 | B2 |
10092292 | Boudreaux et al. | Oct 2018 | B2 |
10098642 | Baxter, III et al. | Oct 2018 | B2 |
10111679 | Baber et al. | Oct 2018 | B2 |
10117649 | Baxter et al. | Nov 2018 | B2 |
10117652 | Schmid et al. | Nov 2018 | B2 |
10123798 | Baxter, III et al. | Nov 2018 | B2 |
10123799 | Zergiebel et al. | Nov 2018 | B2 |
10130352 | Widenhouse et al. | Nov 2018 | B2 |
10130363 | Huitema et al. | Nov 2018 | B2 |
10130366 | Shelton, IV et al. | Nov 2018 | B2 |
10135242 | Baber et al. | Nov 2018 | B2 |
10136887 | Shelton, IV et al. | Nov 2018 | B2 |
10136888 | Chen et al. | Nov 2018 | B2 |
10136890 | Shelton, IV et al. | Nov 2018 | B2 |
D836198 | Harris et al. | Dec 2018 | S |
10149679 | Shelton, IV et al. | Dec 2018 | B2 |
10149680 | Parihar et al. | Dec 2018 | B2 |
10149682 | Shelton, IV et al. | Dec 2018 | B2 |
10149683 | Smith et al. | Dec 2018 | B2 |
10159482 | Swayze et al. | Dec 2018 | B2 |
10159483 | Beckman et al. | Dec 2018 | B2 |
10166025 | Leimbach et al. | Jan 2019 | B2 |
10166026 | Shelton, IV et al. | Jan 2019 | B2 |
10172616 | Murray et al. | Jan 2019 | B2 |
10172619 | Harris et al. | Jan 2019 | B2 |
10178992 | Wise et al. | Jan 2019 | B2 |
10180463 | Beckman et al. | Jan 2019 | B2 |
10182816 | Shelton, IV et al. | Jan 2019 | B2 |
10182818 | Hensel et al. | Jan 2019 | B2 |
10182819 | Shelton, IV | Jan 2019 | B2 |
10188385 | Kerr et al. | Jan 2019 | B2 |
10188393 | Smith et al. | Jan 2019 | B2 |
10188394 | Shelton, IV et al. | Jan 2019 | B2 |
10194910 | Shelton, IV et al. | Feb 2019 | B2 |
10194913 | Nalagatla et al. | Feb 2019 | B2 |
10201364 | Leimbach et al. | Feb 2019 | B2 |
10206605 | Shelton, IV et al. | Feb 2019 | B2 |
10206677 | Harris et al. | Feb 2019 | B2 |
10206678 | Shelton, IV et al. | Feb 2019 | B2 |
10213198 | Aronhalt et al. | Feb 2019 | B2 |
10213201 | Shelton, IV et al. | Feb 2019 | B2 |
10213203 | Swayze et al. | Feb 2019 | B2 |
10213262 | Shelton, IV et al. | Feb 2019 | B2 |
10215318 | Gaspar et al. | Feb 2019 | B2 |
10226250 | Beckman et al. | Mar 2019 | B2 |
10226251 | Scheib et al. | Mar 2019 | B2 |
10231733 | Ehrenfels et al. | Mar 2019 | B2 |
10238385 | Yates et al. | Mar 2019 | B2 |
10238387 | Yates et al. | Mar 2019 | B2 |
10238390 | Harris et al. | Mar 2019 | B2 |
10238391 | Leimbach et al. | Mar 2019 | B2 |
10245027 | Shelton, IV et al. | Apr 2019 | B2 |
10245028 | Shelton, IV et al. | Apr 2019 | B2 |
10245029 | Hunter et al. | Apr 2019 | B2 |
10245030 | Hunter et al. | Apr 2019 | B2 |
10245032 | Shelton, IV | Apr 2019 | B2 |
10245033 | Overmyer et al. | Apr 2019 | B2 |
10245035 | Swayze et al. | Apr 2019 | B2 |
10245058 | Omori et al. | Apr 2019 | B2 |
10251648 | Harris et al. | Apr 2019 | B2 |
10258330 | Shelton, IV et al. | Apr 2019 | B2 |
10258331 | Shelton, IV et al. | Apr 2019 | B2 |
10258333 | Shelton, IV et al. | Apr 2019 | B2 |
10258336 | Baxter, III et al. | Apr 2019 | B2 |
10265065 | Shelton, IV et al. | Apr 2019 | B2 |
10265067 | Yates et al. | Apr 2019 | B2 |
10265068 | Harris et al. | Apr 2019 | B2 |
10265072 | Shelton, IV et al. | Apr 2019 | B2 |
10265073 | Scheib et al. | Apr 2019 | B2 |
10265074 | Shelton, IV et al. | Apr 2019 | B2 |
10271845 | Shelton, IV | Apr 2019 | B2 |
10271846 | Shelton, IV et al. | Apr 2019 | B2 |
10271851 | Shelton, IV et al. | Apr 2019 | B2 |
D847989 | Shelton, IV et al. | May 2019 | S |
10278697 | Shelton, IV et al. | May 2019 | B2 |
10278722 | Shelton, IV et al. | May 2019 | B2 |
10285700 | Scheib | May 2019 | B2 |
10285705 | Shelton, IV et al. | May 2019 | B2 |
10292702 | Cardinale et al. | May 2019 | B2 |
10292704 | Harris et al. | May 2019 | B2 |
10299792 | Huitema et al. | May 2019 | B2 |
10299817 | Shelton, IV et al. | May 2019 | B2 |
D850617 | Shelton, IV et al. | Jun 2019 | S |
10307159 | Harris et al. | Jun 2019 | B2 |
10314582 | Shelton, IV et al. | Jun 2019 | B2 |
10314587 | Harris et al. | Jun 2019 | B2 |
10314589 | Shelton, IV et al. | Jun 2019 | B2 |
10321907 | Shelton, IV et al. | Jun 2019 | B2 |
10321909 | Shelton, IV et al. | Jun 2019 | B2 |
10327764 | Harris et al. | Jun 2019 | B2 |
10327765 | Timm et al. | Jun 2019 | B2 |
10327776 | Harris et al. | Jun 2019 | B2 |
10335144 | Shelton, IV et al. | Jul 2019 | B2 |
10335148 | Shelton, IV et al. | Jul 2019 | B2 |
10335149 | Baxter, III et al. | Jul 2019 | B2 |
10335150 | Shelton, IV | Jul 2019 | B2 |
10335151 | Shelton, IV et al. | Jul 2019 | B2 |
10342533 | Shelton, IV et al. | Jul 2019 | B2 |
10342535 | Scheib et al. | Jul 2019 | B2 |
10342541 | Shelton, IV et al. | Jul 2019 | B2 |
10342543 | Shelton, IV et al. | Jul 2019 | B2 |
10349941 | Marczyk et al. | Jul 2019 | B2 |
10357246 | Shelton, IV et al. | Jul 2019 | B2 |
10357251 | Shelton, IV et al. | Jul 2019 | B2 |
10357252 | Harris et al. | Jul 2019 | B2 |
10363031 | Alexander, III et al. | Jul 2019 | B2 |
10363032 | Scheib et al. | Jul 2019 | B2 |
10368861 | Baxter, III et al. | Aug 2019 | B2 |
10368865 | Harris et al. | Aug 2019 | B2 |
10376263 | Morgan et al. | Aug 2019 | B2 |
10383628 | Kang et al. | Aug 2019 | B2 |
10383629 | Ross et al. | Aug 2019 | B2 |
10383633 | Shelton, IV et al. | Aug 2019 | B2 |
10390823 | Shelton, IV et al. | Aug 2019 | B2 |
10390825 | Shelton, IV et al. | Aug 2019 | B2 |
10390829 | Eckert et al. | Aug 2019 | B2 |
10398433 | Boudreaux et al. | Sep 2019 | B2 |
10398436 | Shelton, IV et al. | Sep 2019 | B2 |
10405854 | Schmid et al. | Sep 2019 | B2 |
10405857 | Shelton, IV et al. | Sep 2019 | B2 |
10405863 | Wise et al. | Sep 2019 | B2 |
10413291 | Worthington et al. | Sep 2019 | B2 |
10413293 | Shelton, IV et al. | Sep 2019 | B2 |
10413297 | Harris et al. | Sep 2019 | B2 |
10420552 | Shelton, IV et al. | Sep 2019 | B2 |
10420553 | Shelton, IV et al. | Sep 2019 | B2 |
10420558 | Nalagatla et al. | Sep 2019 | B2 |
10420559 | Marczyk et al. | Sep 2019 | B2 |
10420560 | Shelton, IV et al. | Sep 2019 | B2 |
10420561 | Shelton, IV et al. | Sep 2019 | B2 |
10426463 | Shelton, IV et al. | Oct 2019 | B2 |
10426471 | Shelton, IV et al. | Oct 2019 | B2 |
10426476 | Harris et al. | Oct 2019 | B2 |
10426477 | Harris et al. | Oct 2019 | B2 |
10426478 | Shelton, IV et al. | Oct 2019 | B2 |
10433837 | Worthington et al. | Oct 2019 | B2 |
10433844 | Shelton, IV et al. | Oct 2019 | B2 |
10433845 | Baxter, III et al. | Oct 2019 | B2 |
10433849 | Shelton, IV et al. | Oct 2019 | B2 |
10433918 | Shelton, IV et al. | Oct 2019 | B2 |
10441279 | Shelton, IV et al. | Oct 2019 | B2 |
10441280 | Timm et al. | Oct 2019 | B2 |
10441285 | Shelton, IV et al. | Oct 2019 | B2 |
10441369 | Shelton, IV et al. | Oct 2019 | B2 |
10448948 | Shelton, IV et al. | Oct 2019 | B2 |
10448950 | Shelton, IV et al. | Oct 2019 | B2 |
10456132 | Gettinger et al. | Oct 2019 | B2 |
10456133 | Yates et al. | Oct 2019 | B2 |
10456140 | Shelton, IV et al. | Oct 2019 | B2 |
10463367 | Kostrzewski et al. | Nov 2019 | B2 |
10463369 | Shelton, IV et al. | Nov 2019 | B2 |
10463383 | Shelton, IV et al. | Nov 2019 | B2 |
10470762 | Leimbach et al. | Nov 2019 | B2 |
10470763 | Yates et al. | Nov 2019 | B2 |
10470764 | Baxter, III et al. | Nov 2019 | B2 |
10470768 | Harris et al. | Nov 2019 | B2 |
10470769 | Shelton, IV et al. | Nov 2019 | B2 |
10478190 | Miller et al. | Nov 2019 | B2 |
10485536 | Ming et al. | Nov 2019 | B2 |
10485541 | Shelton, IV et al. | Nov 2019 | B2 |
10485542 | Shelton, IV et al. | Nov 2019 | B2 |
10485543 | Shelton, IV et al. | Nov 2019 | B2 |
10485546 | Shelton, IV et al. | Nov 2019 | B2 |
D869655 | Shelton, IV et al. | Dec 2019 | S |
10492785 | Overmyer et al. | Dec 2019 | B2 |
10492787 | Smith et al. | Dec 2019 | B2 |
10499890 | Shelton, IV et al. | Dec 2019 | B2 |
10499908 | Abbott et al. | Dec 2019 | B2 |
10499914 | Huang et al. | Dec 2019 | B2 |
10500309 | Shah et al. | Dec 2019 | B2 |
10517594 | Shelton, IV et al. | Dec 2019 | B2 |
10517595 | Hunter et al. | Dec 2019 | B2 |
10517596 | Hunter et al. | Dec 2019 | B2 |
10517599 | Baxter, III et al. | Dec 2019 | B2 |
10517682 | Giordano et al. | Dec 2019 | B2 |
10524789 | Swayze et al. | Jan 2020 | B2 |
10524795 | Nalagatla et al. | Jan 2020 | B2 |
10531874 | Morgan et al. | Jan 2020 | B2 |
10537324 | Shelton, IV et al. | Jan 2020 | B2 |
10537325 | Bakos et al. | Jan 2020 | B2 |
10542978 | Chowaniec et al. | Jan 2020 | B2 |
10542979 | Shelton, IV et al. | Jan 2020 | B2 |
10542982 | Beckman et al. | Jan 2020 | B2 |
10542988 | Schellin et al. | Jan 2020 | B2 |
10542991 | Shelton, IV et al. | Jan 2020 | B2 |
10548504 | Shelton, IV et al. | Feb 2020 | B2 |
10548599 | Marczyk et al. | Feb 2020 | B2 |
10561422 | Schellin et al. | Feb 2020 | B2 |
10568624 | Shelton, IV et al. | Feb 2020 | B2 |
10568625 | Harris et al. | Feb 2020 | B2 |
10568626 | Shelton, IV et al. | Feb 2020 | B2 |
10568632 | Miller et al. | Feb 2020 | B2 |
10568652 | Hess et al. | Feb 2020 | B2 |
10575868 | Hall et al. | Mar 2020 | B2 |
10582928 | Hunter et al. | Mar 2020 | B2 |
10588623 | Schmid et al. | Mar 2020 | B2 |
10588624 | Shelton, IV et al. | Mar 2020 | B2 |
10588625 | Weaner et al. | Mar 2020 | B2 |
10588629 | Malinouskas et al. | Mar 2020 | B2 |
10588630 | Shelton, IV et al. | Mar 2020 | B2 |
10588631 | Shelton, IV et al. | Mar 2020 | B2 |
10588632 | Shelton, IV et al. | Mar 2020 | B2 |
10595835 | Kerr et al. | Mar 2020 | B2 |
10610219 | Adams et al. | Apr 2020 | B2 |
D894389 | Shelton, IV et al. | Aug 2020 | S |
D896379 | Shelton, IV et al. | Sep 2020 | S |
D896380 | Shelton, IV et al. | Sep 2020 | S |
20010025183 | Shahidi | Sep 2001 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020029036 | Goble et al. | Mar 2002 | A1 |
20020095175 | Brock et al. | Jul 2002 | A1 |
20020103494 | Pacey | Aug 2002 | A1 |
20020117534 | Green et al. | Aug 2002 | A1 |
20020127265 | Bowman et al. | Sep 2002 | A1 |
20020134811 | Napier et al. | Sep 2002 | A1 |
20020143340 | Kaneko | Oct 2002 | A1 |
20030009193 | Corsaro | Jan 2003 | A1 |
20030039689 | Chen et al. | Feb 2003 | A1 |
20030078647 | Vallana et al. | Apr 2003 | A1 |
20030084983 | Rangachari et al. | May 2003 | A1 |
20030093103 | Malackowski et al. | May 2003 | A1 |
20030096158 | Takano et al. | May 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030153908 | Goble et al. | Aug 2003 | A1 |
20030163085 | Tanner et al. | Aug 2003 | A1 |
20030181900 | Long | Sep 2003 | A1 |
20030195387 | Kortenbach et al. | Oct 2003 | A1 |
20030205029 | Chapolini et al. | Nov 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030236505 | Bonadio et al. | Dec 2003 | A1 |
20040006335 | Garrison | Jan 2004 | A1 |
20040006340 | Latterell et al. | Jan 2004 | A1 |
20040028502 | Cummins | Feb 2004 | A1 |
20040030333 | Goble | Feb 2004 | A1 |
20040034357 | Beane et al. | Feb 2004 | A1 |
20040044364 | DeVries et al. | Mar 2004 | A1 |
20040068161 | Couvillon | Apr 2004 | A1 |
20040068224 | Couvillon et al. | Apr 2004 | A1 |
20040068307 | Goble | Apr 2004 | A1 |
20040070369 | Sakakibara | Apr 2004 | A1 |
20040073222 | Koseki | Apr 2004 | A1 |
20040078037 | Batchelor et al. | Apr 2004 | A1 |
20040093024 | Lousararian et al. | May 2004 | A1 |
20040098040 | Taniguchi et al. | May 2004 | A1 |
20040101822 | Wiesner et al. | May 2004 | A1 |
20040102783 | Sutterlin et al. | May 2004 | A1 |
20040108357 | Milliman et al. | Jun 2004 | A1 |
20040110439 | Chaikof et al. | Jun 2004 | A1 |
20040115022 | Albertson et al. | Jun 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040147909 | Johnston et al. | Jul 2004 | A1 |
20040164123 | Racenet et al. | Aug 2004 | A1 |
20040167572 | Roth et al. | Aug 2004 | A1 |
20040181219 | Goble et al. | Sep 2004 | A1 |
20040193189 | Kortenbach et al. | Sep 2004 | A1 |
20040199181 | Knodel et al. | Oct 2004 | A1 |
20040222268 | Bilotti et al. | Nov 2004 | A1 |
20040225186 | Horne et al. | Nov 2004 | A1 |
20040232201 | Wenchell et al. | Nov 2004 | A1 |
20040236352 | Wang et al. | Nov 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040243151 | Demmy et al. | Dec 2004 | A1 |
20040243163 | Casiano et al. | Dec 2004 | A1 |
20040247415 | Mangone | Dec 2004 | A1 |
20040254566 | Plicchi et al. | Dec 2004 | A1 |
20040254590 | Hoffman et al. | Dec 2004 | A1 |
20040260315 | Dell et al. | Dec 2004 | A1 |
20040267310 | Racenet et al. | Dec 2004 | A1 |
20050010213 | Stad et al. | Jan 2005 | A1 |
20050032511 | Malone et al. | Feb 2005 | A1 |
20050033352 | Zepf et al. | Feb 2005 | A1 |
20050054946 | Krzyzanowski | Mar 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050075561 | Golden | Apr 2005 | A1 |
20050080342 | Gilreath et al. | Apr 2005 | A1 |
20050085693 | Belson et al. | Apr 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096605 | Green et al. | May 2005 | A1 |
20050096683 | Ellins et al. | May 2005 | A1 |
20050124855 | Jaffe et al. | Jun 2005 | A1 |
20050125897 | Wyslucha et al. | Jun 2005 | A1 |
20050131173 | McDaniel et al. | Jun 2005 | A1 |
20050131211 | Bayley et al. | Jun 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050131436 | Johnston et al. | Jun 2005 | A1 |
20050131457 | Douglas et al. | Jun 2005 | A1 |
20050137454 | Saadat et al. | Jun 2005 | A1 |
20050137455 | Ewers et al. | Jun 2005 | A1 |
20050139636 | Schwemberger et al. | Jun 2005 | A1 |
20050143759 | Kelly | Jun 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050154258 | Tartaglia et al. | Jul 2005 | A1 |
20050154406 | Bombard et al. | Jul 2005 | A1 |
20050165419 | Sauer et al. | Jul 2005 | A1 |
20050169974 | Tenerz et al. | Aug 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050177181 | Kagan et al. | Aug 2005 | A1 |
20050182298 | Ikeda et al. | Aug 2005 | A1 |
20050187545 | Hooven et al. | Aug 2005 | A1 |
20050203550 | Laufer et al. | Sep 2005 | A1 |
20050216055 | Scirica et al. | Sep 2005 | A1 |
20050228224 | Okada et al. | Oct 2005 | A1 |
20050240178 | Morley et al. | Oct 2005 | A1 |
20050245965 | Orban, III et al. | Nov 2005 | A1 |
20050246881 | Kelly et al. | Nov 2005 | A1 |
20050256452 | DeMarchi et al. | Nov 2005 | A1 |
20050261676 | Hall et al. | Nov 2005 | A1 |
20050263563 | Racenet et al. | Dec 2005 | A1 |
20050267455 | Eggers et al. | Dec 2005 | A1 |
20050283188 | Loshakove et al. | Dec 2005 | A1 |
20060008787 | Hayman et al. | Jan 2006 | A1 |
20060015009 | Jaffe et al. | Jan 2006 | A1 |
20060020258 | Strauss et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025812 | Shelton | Feb 2006 | A1 |
20060041188 | Dirusso et al. | Feb 2006 | A1 |
20060047275 | Goble | Mar 2006 | A1 |
20060049229 | Milliman et al. | Mar 2006 | A1 |
20060052824 | Ransick et al. | Mar 2006 | A1 |
20060052825 | Ransick et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060079735 | Martone et al. | Apr 2006 | A1 |
20060086032 | Valencic et al. | Apr 2006 | A1 |
20060087746 | Lipow | Apr 2006 | A1 |
20060089535 | Raz et al. | Apr 2006 | A1 |
20060100649 | Hart | May 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060180634 | Shelton et al. | Aug 2006 | A1 |
20060185682 | Marczyk | Aug 2006 | A1 |
20060201989 | Ojeda | Sep 2006 | A1 |
20060212071 | Ginn et al. | Sep 2006 | A1 |
20060235368 | Oz | Oct 2006 | A1 |
20060252993 | Freed et al. | Nov 2006 | A1 |
20060271102 | Bosshard et al. | Nov 2006 | A1 |
20060287576 | Tsuji et al. | Dec 2006 | A1 |
20060289602 | Wales et al. | Dec 2006 | A1 |
20060291981 | Viola et al. | Dec 2006 | A1 |
20070010838 | Shelton et al. | Jan 2007 | A1 |
20070026039 | Drumheller et al. | Feb 2007 | A1 |
20070026040 | Crawley et al. | Feb 2007 | A1 |
20070027468 | Wales et al. | Feb 2007 | A1 |
20070027551 | Farnsworth et al. | Feb 2007 | A1 |
20070049951 | Menn | Mar 2007 | A1 |
20070049966 | Bonadio et al. | Mar 2007 | A1 |
20070051375 | Milliman | Mar 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070078484 | Talarico et al. | Apr 2007 | A1 |
20070084897 | Shelton et al. | Apr 2007 | A1 |
20070093869 | Bloom et al. | Apr 2007 | A1 |
20070102472 | Shelton | May 2007 | A1 |
20070106113 | Ravo | May 2007 | A1 |
20070106317 | Shelton et al. | May 2007 | A1 |
20070134251 | Ashkenazi et al. | Jun 2007 | A1 |
20070135686 | Pruitt et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070155010 | Farnsworth et al. | Jul 2007 | A1 |
20070170225 | Shelton et al. | Jul 2007 | A1 |
20070173687 | Shima et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070175950 | Shelton et al. | Aug 2007 | A1 |
20070175951 | Shelton et al. | Aug 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070175959 | Shelton, IV | Aug 2007 | A1 |
20070190110 | Pameijer et al. | Aug 2007 | A1 |
20070191868 | Theroux et al. | Aug 2007 | A1 |
20070194079 | Hueil et al. | Aug 2007 | A1 |
20070194082 | Morgan et al. | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070208359 | Hoffman | Sep 2007 | A1 |
20070213750 | Weadock | Sep 2007 | A1 |
20070225562 | Spivey et al. | Sep 2007 | A1 |
20070233163 | Bombard et al. | Oct 2007 | A1 |
20070243227 | Gertner | Oct 2007 | A1 |
20070244471 | Malackowski | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20070275035 | Herman et al. | Nov 2007 | A1 |
20070276409 | Ortiz et al. | Nov 2007 | A1 |
20070279011 | Jones et al. | Dec 2007 | A1 |
20070286892 | Herzberg et al. | Dec 2007 | A1 |
20080003196 | Jonn et al. | Jan 2008 | A1 |
20080015598 | Prommersberger | Jan 2008 | A1 |
20080021278 | Leonard et al. | Jan 2008 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080030170 | Dacquay et al. | Feb 2008 | A1 |
20080051833 | Gramuglia et al. | Feb 2008 | A1 |
20080065153 | Allard et al. | Mar 2008 | A1 |
20080078802 | Hess et al. | Apr 2008 | A1 |
20080082114 | McKenna et al. | Apr 2008 | A1 |
20080082125 | Murray et al. | Apr 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080085296 | Powell et al. | Apr 2008 | A1 |
20080086078 | Powell et al. | Apr 2008 | A1 |
20080091072 | Omori et al. | Apr 2008 | A1 |
20080108443 | Jinno et al. | May 2008 | A1 |
20080128469 | Dalessandro et al. | Jun 2008 | A1 |
20080129253 | Shiue et al. | Jun 2008 | A1 |
20080135600 | Hiranuma et al. | Jun 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080154299 | Livneh | Jun 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080172087 | Fuchs et al. | Jul 2008 | A1 |
20080190989 | Crews et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080200762 | Stokes et al. | Aug 2008 | A1 |
20080200835 | Monson et al. | Aug 2008 | A1 |
20080200933 | Bakos et al. | Aug 2008 | A1 |
20080249536 | Stahler et al. | Oct 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080262654 | Omori et al. | Oct 2008 | A1 |
20080287944 | Pearson et al. | Nov 2008 | A1 |
20080294179 | Balbierz et al. | Nov 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080297287 | Shachar et al. | Dec 2008 | A1 |
20080308602 | Timm et al. | Dec 2008 | A1 |
20080308603 | Shelton et al. | Dec 2008 | A1 |
20080315829 | Jones et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090004455 | Gravagna et al. | Jan 2009 | A1 |
20090005809 | Hess et al. | Jan 2009 | A1 |
20090012534 | Madhani et al. | Jan 2009 | A1 |
20090020958 | Soul | Jan 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090078736 | Van Lue | Mar 2009 | A1 |
20090081313 | Aghion et al. | Mar 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090099579 | Nentwick et al. | Apr 2009 | A1 |
20090099876 | Whitman | Apr 2009 | A1 |
20090119011 | Kondo et al. | May 2009 | A1 |
20090143855 | Weber et al. | Jun 2009 | A1 |
20090149871 | Kagan et al. | Jun 2009 | A9 |
20090171147 | Lee et al. | Jul 2009 | A1 |
20090177201 | Soltz et al. | Jul 2009 | A1 |
20090177226 | Reinprecht et al. | Jul 2009 | A1 |
20090188964 | Orlov | Jul 2009 | A1 |
20090198272 | Kerver et al. | Aug 2009 | A1 |
20090204108 | Steffen | Aug 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090206133 | Morgan et al. | Aug 2009 | A1 |
20090206137 | Hall et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090242610 | Shelton, IV et al. | Oct 2009 | A1 |
20090247901 | Zimmer | Oct 2009 | A1 |
20090255974 | Viola | Oct 2009 | A1 |
20090270895 | Churchill et al. | Oct 2009 | A1 |
20090275957 | Harris et al. | Nov 2009 | A1 |
20090292283 | Odom | Nov 2009 | A1 |
20090308907 | Nalagatla et al. | Dec 2009 | A1 |
20090318957 | Viola et al. | Dec 2009 | A1 |
20100016888 | Calabrese et al. | Jan 2010 | A1 |
20100023024 | Zeiner et al. | Jan 2010 | A1 |
20100023052 | Heinrich et al. | Jan 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100076483 | Imuta | Mar 2010 | A1 |
20100076489 | Stopek et al. | Mar 2010 | A1 |
20100089970 | Smith | Apr 2010 | A1 |
20100100124 | Calabrese et al. | Apr 2010 | A1 |
20100133316 | Lizee et al. | Jun 2010 | A1 |
20100133317 | Shelton, IV et al. | Jun 2010 | A1 |
20100145146 | Melder | Jun 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100179022 | Shirokoshi | Jul 2010 | A1 |
20100191262 | Harris et al. | Jul 2010 | A1 |
20100193566 | Scheib et al. | Aug 2010 | A1 |
20100204717 | Knodel | Aug 2010 | A1 |
20100222901 | Swayze et al. | Sep 2010 | A1 |
20100249497 | Peine et al. | Sep 2010 | A1 |
20100267662 | Fielder et al. | Oct 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20100292540 | Hess et al. | Nov 2010 | A1 |
20100298636 | Castro et al. | Nov 2010 | A1 |
20100312261 | Suzuki et al. | Dec 2010 | A1 |
20100318085 | Austin et al. | Dec 2010 | A1 |
20100331856 | Carlson et al. | Dec 2010 | A1 |
20110006101 | Hall et al. | Jan 2011 | A1 |
20110011916 | Levine | Jan 2011 | A1 |
20110022032 | Zemlok et al. | Jan 2011 | A1 |
20110024477 | Hall | Feb 2011 | A1 |
20110024478 | Shelton, IV | Feb 2011 | A1 |
20110036891 | Zemlok et al. | Feb 2011 | A1 |
20110046667 | Culligan et al. | Feb 2011 | A1 |
20110060363 | Hess | Mar 2011 | A1 |
20110082485 | Nohilly et al. | Apr 2011 | A1 |
20110082538 | Dahlgren et al. | Apr 2011 | A1 |
20110087276 | Bedi et al. | Apr 2011 | A1 |
20110091515 | Zilberman et al. | Apr 2011 | A1 |
20110114697 | Baxter, III et al. | May 2011 | A1 |
20110125176 | Yates et al. | May 2011 | A1 |
20110137340 | Cummins | Jun 2011 | A1 |
20110147433 | Shelton, IV et al. | Jun 2011 | A1 |
20110163146 | Ortiz et al. | Jul 2011 | A1 |
20110174861 | Shelton, IV et al. | Jul 2011 | A1 |
20110192882 | Hess et al. | Aug 2011 | A1 |
20110275901 | Shelton, IV | Nov 2011 | A1 |
20110276083 | Shelton, IV et al. | Nov 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110293690 | Griffin et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20110313894 | Dye et al. | Dec 2011 | A1 |
20110315413 | Fisher et al. | Dec 2011 | A1 |
20120004636 | Lo | Jan 2012 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120029272 | Shelton, IV et al. | Feb 2012 | A1 |
20120074200 | Schmid et al. | Mar 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120080344 | Shelton, IV | Apr 2012 | A1 |
20120080478 | Morgan et al. | Apr 2012 | A1 |
20120080497 | White et al. | Apr 2012 | A1 |
20120080498 | Shelton, IV et al. | Apr 2012 | A1 |
20120109186 | Parrott et al. | May 2012 | A1 |
20120125792 | Cassivi | May 2012 | A1 |
20120130421 | Hafez et al. | May 2012 | A1 |
20120175398 | Sandborn et al. | Jul 2012 | A1 |
20120234895 | O'Connor et al. | Sep 2012 | A1 |
20120234897 | Shelton, IV et al. | Sep 2012 | A1 |
20120248169 | Widenhouse et al. | Oct 2012 | A1 |
20120283707 | Giordano et al. | Nov 2012 | A1 |
20120289979 | Eskaros et al. | Nov 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20120298722 | Hess et al. | Nov 2012 | A1 |
20130006227 | Takashino | Jan 2013 | A1 |
20130012983 | Kleyman | Jan 2013 | A1 |
20130020375 | Shelton, IV et al. | Jan 2013 | A1 |
20130020376 | Shelton, IV et al. | Jan 2013 | A1 |
20130023861 | Shelton, IV et al. | Jan 2013 | A1 |
20130026208 | Shelton, IV et al. | Jan 2013 | A1 |
20130026210 | Shelton, IV et al. | Jan 2013 | A1 |
20130030462 | Keating et al. | Jan 2013 | A1 |
20130041406 | Bear et al. | Feb 2013 | A1 |
20130087597 | Shelton, IV et al. | Apr 2013 | A1 |
20130098970 | Racenet et al. | Apr 2013 | A1 |
20130116669 | Shelton, IV et al. | May 2013 | A1 |
20130131651 | Strobl et al. | May 2013 | A1 |
20130153641 | Shelton, IV et al. | Jun 2013 | A1 |
20130172929 | Hess | Jul 2013 | A1 |
20130175317 | Yates et al. | Jul 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130233906 | Hess et al. | Sep 2013 | A1 |
20130256373 | Schmid et al. | Oct 2013 | A1 |
20130256380 | Schmid et al. | Oct 2013 | A1 |
20130261661 | Piraka | Oct 2013 | A1 |
20130270322 | Scheib et al. | Oct 2013 | A1 |
20130317305 | Stevenson et al. | Nov 2013 | A1 |
20130334280 | Krehel et al. | Dec 2013 | A1 |
20130334283 | Swayze et al. | Dec 2013 | A1 |
20130334285 | Swayze et al. | Dec 2013 | A1 |
20130341374 | Shelton, IV et al. | Dec 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005678 | Shelton, IV et al. | Jan 2014 | A1 |
20140005702 | Timm et al. | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140012299 | Stoddard et al. | Jan 2014 | A1 |
20140014705 | Baxter, III | Jan 2014 | A1 |
20140018832 | Shelton, IV | Jan 2014 | A1 |
20140039549 | Belsky et al. | Feb 2014 | A1 |
20140041191 | Knodel | Feb 2014 | A1 |
20140048580 | Merchant et al. | Feb 2014 | A1 |
20140103098 | Choi et al. | Apr 2014 | A1 |
20140107640 | Yates et al. | Apr 2014 | A1 |
20140151433 | Shelton, IV et al. | Jun 2014 | A1 |
20140158747 | Measamer et al. | Jun 2014 | A1 |
20140166724 | Schellin et al. | Jun 2014 | A1 |
20140166725 | Schellin et al. | Jun 2014 | A1 |
20140166726 | Schellin et al. | Jun 2014 | A1 |
20140175152 | Hess et al. | Jun 2014 | A1 |
20140188159 | Steege | Jul 2014 | A1 |
20140224857 | Schmid | Aug 2014 | A1 |
20140243865 | Swayze et al. | Aug 2014 | A1 |
20140246475 | Hall et al. | Sep 2014 | A1 |
20140248167 | Sugimoto et al. | Sep 2014 | A1 |
20140249557 | Koch et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263552 | Hall et al. | Sep 2014 | A1 |
20140263558 | Hausen et al. | Sep 2014 | A1 |
20140284371 | Morgan et al. | Sep 2014 | A1 |
20140291379 | Schellin et al. | Oct 2014 | A1 |
20140291383 | Spivey et al. | Oct 2014 | A1 |
20140299648 | Shelton, IV et al. | Oct 2014 | A1 |
20140303645 | Morgan et al. | Oct 2014 | A1 |
20140330161 | Swayze et al. | Nov 2014 | A1 |
20150008248 | Giordano et al. | Jan 2015 | A1 |
20150053737 | Leimbach et al. | Feb 2015 | A1 |
20150053742 | Shelton, IV et al. | Feb 2015 | A1 |
20150053743 | Yates et al. | Feb 2015 | A1 |
20150053746 | Shelton, IV et al. | Feb 2015 | A1 |
20150053748 | Yates et al. | Feb 2015 | A1 |
20150060518 | Shelton, IV et al. | Mar 2015 | A1 |
20150060519 | Shelton, IV et al. | Mar 2015 | A1 |
20150060520 | Shelton, IV et al. | Mar 2015 | A1 |
20150060521 | Weisenburgh, II et al. | Mar 2015 | A1 |
20150076208 | Shelton, IV | Mar 2015 | A1 |
20150076209 | Shelton, IV et al. | Mar 2015 | A1 |
20150076210 | Shelton, IV et al. | Mar 2015 | A1 |
20150076212 | Shelton, IV | Mar 2015 | A1 |
20150083781 | Giordano et al. | Mar 2015 | A1 |
20150083782 | Scheib et al. | Mar 2015 | A1 |
20150090760 | Giordano et al. | Apr 2015 | A1 |
20150090762 | Giordano et al. | Apr 2015 | A1 |
20150122870 | Zemlok et al. | May 2015 | A1 |
20150144679 | Scirica et al. | May 2015 | A1 |
20150150620 | Miyamoto et al. | Jun 2015 | A1 |
20150173749 | Shelton, IV et al. | Jun 2015 | A1 |
20150173756 | Baxter, III et al. | Jun 2015 | A1 |
20150173789 | Baxter, III et al. | Jun 2015 | A1 |
20150196295 | Shelton, IV et al. | Jul 2015 | A1 |
20150196296 | Swayze et al. | Jul 2015 | A1 |
20150196299 | Swayze et al. | Jul 2015 | A1 |
20150201932 | Swayze et al. | Jul 2015 | A1 |
20150201936 | Swayze et al. | Jul 2015 | A1 |
20150201937 | Swayze et al. | Jul 2015 | A1 |
20150201938 | Swayze et al. | Jul 2015 | A1 |
20150201939 | Swayze et al. | Jul 2015 | A1 |
20150201940 | Swayze et al. | Jul 2015 | A1 |
20150201941 | Swayze et al. | Jul 2015 | A1 |
20150231409 | Racenet et al. | Aug 2015 | A1 |
20150272557 | Overmyer et al. | Oct 2015 | A1 |
20150272571 | Leimbach et al. | Oct 2015 | A1 |
20150272580 | Leimbach et al. | Oct 2015 | A1 |
20150272582 | Leimbach et al. | Oct 2015 | A1 |
20150297222 | Huitema et al. | Oct 2015 | A1 |
20150297223 | Huitema et al. | Oct 2015 | A1 |
20150297225 | Huitema et al. | Oct 2015 | A1 |
20150297228 | Huitema et al. | Oct 2015 | A1 |
20150297233 | Huitema et al. | Oct 2015 | A1 |
20150313594 | Shelton, IV et al. | Nov 2015 | A1 |
20150324317 | Collins et al. | Nov 2015 | A1 |
20150327864 | Hodgkinson et al. | Nov 2015 | A1 |
20150374369 | Yates et al. | Dec 2015 | A1 |
20150374378 | Giordano et al. | Dec 2015 | A1 |
20160000431 | Giordano et al. | Jan 2016 | A1 |
20160000437 | Giordano et al. | Jan 2016 | A1 |
20160000438 | Swayze et al. | Jan 2016 | A1 |
20160000442 | Shelton, IV | Jan 2016 | A1 |
20160000452 | Yates et al. | Jan 2016 | A1 |
20160000453 | Yates et al. | Jan 2016 | A1 |
20160051259 | Hopkins et al. | Feb 2016 | A1 |
20160058443 | Yates et al. | Mar 2016 | A1 |
20160066913 | Swayze et al. | Mar 2016 | A1 |
20160074040 | Widenhouse et al. | Mar 2016 | A1 |
20160089137 | Hess et al. | Mar 2016 | A1 |
20160095585 | Zergiebel et al. | Apr 2016 | A1 |
20160106431 | Shelton, IV et al. | Apr 2016 | A1 |
20160113653 | Zingman | Apr 2016 | A1 |
20160120545 | Shelton, IV et al. | May 2016 | A1 |
20160166256 | Baxter, III et al. | Jun 2016 | A1 |
20160183939 | Shelton, IV et al. | Jun 2016 | A1 |
20160183943 | Shelton, IV | Jun 2016 | A1 |
20160183944 | Swensgard et al. | Jun 2016 | A1 |
20160192916 | Shelton, IV et al. | Jul 2016 | A1 |
20160192918 | Shelton, IV et al. | Jul 2016 | A1 |
20160199063 | Mandakolathur Vasudevan et al. | Jul 2016 | A1 |
20160199956 | Shelton, IV et al. | Jul 2016 | A1 |
20160206314 | Scheib et al. | Jul 2016 | A1 |
20160235404 | Shelton, IV | Aug 2016 | A1 |
20160235409 | Shelton, IV et al. | Aug 2016 | A1 |
20160235494 | Shelton, IV et al. | Aug 2016 | A1 |
20160242783 | Shelton, IV et al. | Aug 2016 | A1 |
20160249910 | Shelton, IV et al. | Sep 2016 | A1 |
20160249922 | Morgan et al. | Sep 2016 | A1 |
20160256154 | Shelton, IV et al. | Sep 2016 | A1 |
20160256160 | Shelton, IV et al. | Sep 2016 | A1 |
20160256229 | Morgan et al. | Sep 2016 | A1 |
20160262745 | Morgan et al. | Sep 2016 | A1 |
20160262746 | Shelton, IV et al. | Sep 2016 | A1 |
20160270789 | Gupta et al. | Sep 2016 | A1 |
20160374678 | Becerra et al. | Dec 2016 | A1 |
20170027572 | Nalagatla et al. | Feb 2017 | A1 |
20170056000 | Nalagatla et al. | Mar 2017 | A1 |
20170056002 | Nalagatla et al. | Mar 2017 | A1 |
20170056005 | Shelton, IV et al. | Mar 2017 | A1 |
20170105727 | Scheib et al. | Apr 2017 | A1 |
20170105731 | Scheib et al. | Apr 2017 | A1 |
20170105733 | Scheib et al. | Apr 2017 | A1 |
20170119388 | Kostrzewski | May 2017 | A1 |
20170224331 | Worthington et al. | Aug 2017 | A1 |
20170224332 | Hunter et al. | Aug 2017 | A1 |
20170224334 | Worthington et al. | Aug 2017 | A1 |
20170231627 | Shelton, IV et al. | Aug 2017 | A1 |
20170231628 | Shelton, IV et al. | Aug 2017 | A1 |
20170245856 | Baxter, III et al. | Aug 2017 | A1 |
20170281164 | Harris et al. | Oct 2017 | A1 |
20170281169 | Harris et al. | Oct 2017 | A1 |
20170281171 | Shelton, IV et al. | Oct 2017 | A1 |
20170281173 | Shelton, IV et al. | Oct 2017 | A1 |
20170281174 | Harris et al. | Oct 2017 | A1 |
20170281186 | Shelton, IV et al. | Oct 2017 | A1 |
20170281187 | Shelton, IV et al. | Oct 2017 | A1 |
20170281189 | Nalagatla et al. | Oct 2017 | A1 |
20170360423 | Stevenson et al. | Dec 2017 | A1 |
20170367695 | Shelton, IV et al. | Dec 2017 | A1 |
20170367696 | Shelton, IV et al. | Dec 2017 | A1 |
20170367697 | Shelton, IV et al. | Dec 2017 | A1 |
20170367698 | Shelton, IV et al. | Dec 2017 | A1 |
20180103948 | Baxter, III et al. | Apr 2018 | A1 |
20180110513 | Baxter, III et al. | Apr 2018 | A1 |
20180125484 | Kostrzewski | May 2018 | A1 |
20180168575 | Simms et al. | Jun 2018 | A1 |
20180168577 | Aronhalt et al. | Jun 2018 | A1 |
20180168578 | Aronhalt et al. | Jun 2018 | A1 |
20180168579 | Aronhalt et al. | Jun 2018 | A1 |
20180168580 | Hunter et al. | Jun 2018 | A1 |
20180168584 | Harris et al. | Jun 2018 | A1 |
20180168586 | Shelton, IV et al. | Jun 2018 | A1 |
20180168589 | Swayze et al. | Jun 2018 | A1 |
20180168590 | Overmyer et al. | Jun 2018 | A1 |
20180168591 | Swayze et al. | Jun 2018 | A1 |
20180168592 | Overmyer et al. | Jun 2018 | A1 |
20180168593 | Overmyer et al. | Jun 2018 | A1 |
20180168594 | Shelton, IV et al. | Jun 2018 | A1 |
20180168597 | Fanelli et al. | Jun 2018 | A1 |
20180168598 | Shelton, IV et al. | Jun 2018 | A1 |
20180168600 | Shelton, IV et al. | Jun 2018 | A1 |
20180168601 | Bakos et al. | Jun 2018 | A1 |
20180168602 | Bakos et al. | Jun 2018 | A1 |
20180168603 | Morgan et al. | Jun 2018 | A1 |
20180168604 | Shelton, IV et al. | Jun 2018 | A1 |
20180168605 | Baber et al. | Jun 2018 | A1 |
20180168606 | Shelton, IV et al. | Jun 2018 | A1 |
20180168607 | Shelton, IV et al. | Jun 2018 | A1 |
20180168608 | Shelton, IV et al. | Jun 2018 | A1 |
20180168609 | Fanelli et al. | Jun 2018 | A1 |
20180168610 | Shelton, IV et al. | Jun 2018 | A1 |
20180168614 | Shelton, IV et al. | Jun 2018 | A1 |
20180168615 | Shelton, IV et al. | Jun 2018 | A1 |
20180168616 | Shelton, IV et al. | Jun 2018 | A1 |
20180168617 | Shelton, IV et al. | Jun 2018 | A1 |
20180168618 | Scott et al. | Jun 2018 | A1 |
20180168619 | Scott et al. | Jun 2018 | A1 |
20180168621 | Shelton, IV et al. | Jun 2018 | A1 |
20180168623 | Simms et al. | Jun 2018 | A1 |
20180168624 | Shelton, IV et al. | Jun 2018 | A1 |
20180168625 | Posada et al. | Jun 2018 | A1 |
20180168626 | Shelton, IV et al. | Jun 2018 | A1 |
20180168627 | Weaner et al. | Jun 2018 | A1 |
20180168628 | Hunter et al. | Jun 2018 | A1 |
20180168629 | Shelton, IV et al. | Jun 2018 | A1 |
20180168630 | Shelton, IV et al. | Jun 2018 | A1 |
20180168631 | Harris et al. | Jun 2018 | A1 |
20180168632 | Harris et al. | Jun 2018 | A1 |
20180168633 | Shelton, IV et al. | Jun 2018 | A1 |
20180168637 | Harris et al. | Jun 2018 | A1 |
20180168638 | Harris et al. | Jun 2018 | A1 |
20180168639 | Shelton, IV et al. | Jun 2018 | A1 |
20180168641 | Harris et al. | Jun 2018 | A1 |
20180168642 | Shelton, IV et al. | Jun 2018 | A1 |
20180168643 | Shelton, IV et al. | Jun 2018 | A1 |
20180168644 | Shelton, IV et al. | Jun 2018 | A1 |
20180168646 | Shelton, IV et al. | Jun 2018 | A1 |
20180168647 | Shelton, IV et al. | Jun 2018 | A1 |
20180168648 | Shelton, IV et al. | Jun 2018 | A1 |
20180168649 | Shelton, IV et al. | Jun 2018 | A1 |
20180168650 | Shelton, IV et al. | Jun 2018 | A1 |
20180168651 | Shelton, IV et al. | Jun 2018 | A1 |
20180296213 | Strobl | Oct 2018 | A1 |
20190059886 | Shelton, IV et al. | Feb 2019 | A1 |
20190059887 | Beardsley et al. | Feb 2019 | A1 |
20190105047 | Nalagatla et al. | Apr 2019 | A1 |
20190125344 | DiNardo et al. | May 2019 | A1 |
20190150927 | Aranyi et al. | May 2019 | A1 |
20190183503 | Shelton, IV et al. | Jun 2019 | A1 |
20190261992 | Shelton, IV et al. | Aug 2019 | A1 |
20190269402 | Murray et al. | Sep 2019 | A1 |
20190290279 | Harris et al. | Sep 2019 | A1 |
20190328390 | Harris et al. | Oct 2019 | A1 |
20190343526 | Harris et al. | Nov 2019 | A1 |
20190388093 | Shelton, IV et al. | Dec 2019 | A1 |
20200015822 | Marczyk et al. | Jan 2020 | A1 |
20200046355 | Harris et al. | Feb 2020 | A1 |
20200046356 | Baxter, III et al. | Feb 2020 | A1 |
20200069308 | Baxter, III et al. | Mar 2020 | A1 |
20200085425 | Baxter, III et al. | Mar 2020 | A1 |
20200222043 | Baxter, III et al. | Jul 2020 | A1 |
20200222044 | Baxter, III et al. | Jul 2020 | A1 |
20200222045 | Shelton, IV et al. | Jul 2020 | A1 |
20200345352 | Shelton, IV et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
2011218702 | Jun 2013 | AU |
2012200178 | Jul 2013 | AU |
2813230 | Apr 2012 | CA |
2795323 | May 2014 | CA |
1163558 | Oct 1997 | CN |
2488482 | May 2002 | CN |
1634601 | Jul 2005 | CN |
2716900 | Aug 2005 | CN |
2738962 | Nov 2005 | CN |
2868212 | Feb 2007 | CN |
201617885 | Nov 2010 | CN |
201949071 | Aug 2011 | CN |
101779977 | Dec 2011 | CN |
202397539 | Aug 2012 | CN |
202526242 | Nov 2012 | CN |
202982106 | Jun 2013 | CN |
203777011 | Aug 2014 | CN |
273689 | May 1914 | DE |
1775926 | Jan 1972 | DE |
3036217 | Apr 1982 | DE |
3210466 | Sep 1983 | DE |
3709067 | Sep 1988 | DE |
19851291 | Jan 2000 | DE |
19924311 | Nov 2000 | DE |
20016423 | Feb 2001 | DE |
20112837 | Oct 2001 | DE |
20121753 | Apr 2003 | DE |
202004012389 | Sep 2004 | DE |
10314072 | Oct 2004 | DE |
202007003114 | Jun 2007 | DE |
0000756 | Feb 1979 | EP |
0122046 | Oct 1984 | EP |
0129442 | Nov 1987 | EP |
0169044 | Jun 1991 | EP |
0548998 | Jun 1993 | EP |
0594148 | Apr 1994 | EP |
0646357 | Apr 1995 | EP |
0505036 | May 1995 | EP |
0669104 | Aug 1995 | EP |
0705571 | Apr 1996 | EP |
0528478 | May 1996 | EP |
0770355 | May 1997 | EP |
0625335 | Nov 1997 | EP |
0879742 | Nov 1998 | EP |
0650701 | Mar 1999 | EP |
0923907 | Jun 1999 | EP |
0484677 | Jul 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
1053719 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1080694 | Mar 2001 | EP |
1090592 | Apr 2001 | EP |
1095627 | May 2001 | EP |
0806914 | Sep 2001 | EP |
1284120 | Feb 2003 | EP |
0869742 | May 2003 | EP |
1374788 | Jan 2004 | EP |
1407719 | Apr 2004 | EP |
0996378 | Jun 2004 | EP |
1157666 | Sep 2005 | EP |
0880338 | Oct 2005 | EP |
1158917 | Nov 2005 | EP |
1344498 | Nov 2005 | EP |
1330989 | Dec 2005 | EP |
1632191 | Mar 2006 | EP |
1082944 | May 2006 | EP |
1253866 | Jul 2006 | EP |
1285633 | Dec 2006 | EP |
1011494 | Jan 2007 | EP |
1767163 | Mar 2007 | EP |
1837041 | Sep 2007 | EP |
0922435 | Oct 2007 | EP |
1599146 | Oct 2007 | EP |
1330201 | Jun 2008 | EP |
2039302 | Mar 2009 | EP |
1719461 | Jun 2009 | EP |
1769754 | Jun 2010 | EP |
1627605 | Dec 2010 | EP |
2316345 | May 2011 | EP |
1936253 | Oct 2011 | EP |
2486862 | Aug 2012 | EP |
2517638 | Oct 2012 | EP |
2649948 | Oct 2013 | EP |
2649949 | Oct 2013 | EP |
2713902 | Apr 2014 | EP |
2621364 | Jun 2017 | EP |
459743 | Nov 1913 | FR |
999646 | Feb 1952 | FR |
1112936 | Mar 1956 | FR |
2598905 | Nov 1987 | FR |
2765794 | Jan 1999 | FR |
2815842 | May 2002 | FR |
939929 | Oct 1963 | GB |
1210522 | Oct 1970 | GB |
1217159 | Dec 1970 | GB |
1339394 | Dec 1973 | GB |
2024012 | Jan 1980 | GB |
2109241 | Jun 1983 | GB |
2272159 | May 1994 | GB |
2336214 | Oct 1999 | GB |
930100110 | Nov 1993 | GR |
S4711908 | May 1972 | JP |
S5033988 | Apr 1975 | JP |
S56112235 | Sep 1981 | JP |
S62170011 | Oct 1987 | JP |
H04215747 | Aug 1992 | JP |
H04131860 | Dec 1992 | JP |
H0584252 | Apr 1993 | JP |
H05123325 | May 1993 | JP |
H05237126 | Sep 1993 | JP |
H0630945 | Feb 1994 | JP |
H06237937 | Aug 1994 | JP |
H06327684 | Nov 1994 | JP |
H079622 | Feb 1995 | JP |
H07124166 | May 1995 | JP |
H07255735 | Oct 1995 | JP |
H07285089 | Oct 1995 | JP |
H0833642 | Feb 1996 | JP |
H08159124 | Jun 1996 | JP |
H08164141 | Jun 1996 | JP |
H08182684 | Jul 1996 | JP |
H08507708 | Aug 1996 | JP |
H08229050 | Sep 1996 | JP |
H10118090 | May 1998 | JP |
2000014632 | Jan 2000 | JP |
2000033071 | Feb 2000 | JP |
2000112002 | Apr 2000 | JP |
2000166932 | Jun 2000 | JP |
2000171730 | Jun 2000 | JP |
2000287987 | Oct 2000 | JP |
2000325303 | Nov 2000 | JP |
2001087272 | Apr 2001 | JP |
2001514541 | Sep 2001 | JP |
2001276091 | Oct 2001 | JP |
2002051974 | Feb 2002 | JP |
2002085415 | Mar 2002 | JP |
2002143078 | May 2002 | JP |
2002528161 | Sep 2002 | JP |
2002314298 | Oct 2002 | JP |
2003135473 | May 2003 | JP |
2003521301 | Jul 2003 | JP |
2003300416 | Oct 2003 | JP |
2004147701 | May 2004 | JP |
2004162035 | Jun 2004 | JP |
2004229976 | Aug 2004 | JP |
2005013573 | Jan 2005 | JP |
2005080702 | Mar 2005 | JP |
2005131163 | May 2005 | JP |
2005131164 | May 2005 | JP |
2005131173 | May 2005 | JP |
2005131211 | May 2005 | JP |
2005131212 | May 2005 | JP |
2005137423 | Jun 2005 | JP |
2005328882 | Dec 2005 | JP |
2005335432 | Dec 2005 | JP |
2005342267 | Dec 2005 | JP |
2006187649 | Jul 2006 | JP |
2006281405 | Oct 2006 | JP |
2006346445 | Dec 2006 | JP |
2009507526 | Feb 2009 | JP |
2009189838 | Aug 2009 | JP |
2009539420 | Nov 2009 | JP |
2010069310 | Apr 2010 | JP |
2010098844 | Apr 2010 | JP |
2011524199 | Sep 2011 | JP |
2013541982 | Nov 2013 | JP |
2013541993 | Nov 2013 | JP |
2013542000 | Nov 2013 | JP |
20110003229 | Jan 2011 | KR |
2008830 | Mar 1994 | RU |
2052979 | Jan 1996 | RU |
94026118 | Jul 1996 | RU |
94014586 | Nov 1996 | RU |
2098025 | Dec 1997 | RU |
2141279 | Nov 1999 | RU |
2144791 | Jan 2000 | RU |
2152756 | Jul 2000 | RU |
2161450 | Jan 2001 | RU |
2181566 | Apr 2002 | RU |
2187249 | Aug 2002 | RU |
32984 | Oct 2003 | RU |
2225170 | Mar 2004 | RU |
42750 | Dec 2004 | RU |
2242183 | Dec 2004 | RU |
46916 | Aug 2005 | RU |
61114 | Feb 2007 | RU |
189517 | Jan 1967 | SU |
328636 | Sep 1972 | SU |
674747 | Jul 1979 | SU |
1009439 | Apr 1983 | SU |
1333319 | Aug 1987 | SU |
1377053 | Feb 1988 | SU |
1509051 | Sep 1989 | SU |
1561964 | May 1990 | SU |
1708312 | Jan 1992 | SU |
1722476 | Mar 1992 | SU |
1752361 | Aug 1992 | SU |
1814161 | May 1993 | SU |
WO-9315648 | Aug 1993 | WO |
WO-9420030 | Sep 1994 | WO |
WO-9517855 | Jul 1995 | WO |
WO-9520360 | Aug 1995 | WO |
WO-9623448 | Aug 1996 | WO |
WO-9635464 | Nov 1996 | WO |
WO-9639086 | Dec 1996 | WO |
WO-9639088 | Dec 1996 | WO |
WO-9724073 | Jul 1997 | WO |
WO-9734533 | Sep 1997 | WO |
WO-9903407 | Jan 1999 | WO |
WO-9903409 | Jan 1999 | WO |
WO-9948430 | Sep 1999 | WO |
WO-0024322 | May 2000 | WO |
WO-0024330 | May 2000 | WO |
WO-0053112 | Sep 2000 | WO |
WO-0057796 | Oct 2000 | WO |
WO-0105702 | Jan 2001 | WO |
WO-0154594 | Aug 2001 | WO |
WO-0158371 | Aug 2001 | WO |
WO-0162164 | Aug 2001 | WO |
WO-0162169 | Aug 2001 | WO |
WO-0191646 | Dec 2001 | WO |
WO-0219932 | Mar 2002 | WO |
WO-0226143 | Apr 2002 | WO |
WO-0236028 | May 2002 | WO |
WO-02065933 | Aug 2002 | WO |
WO-03055402 | Jul 2003 | WO |
WO-03094747 | Nov 2003 | WO |
WO-03079909 | Mar 2004 | WO |
WO-2004019803 | Mar 2004 | WO |
WO-2004032783 | Apr 2004 | WO |
WO-2004047626 | Jun 2004 | WO |
WO-2004047653 | Jun 2004 | WO |
WO-2004056277 | Jul 2004 | WO |
WO-2004078050 | Sep 2004 | WO |
WO-2004078051 | Sep 2004 | WO |
WO-2004096015 | Nov 2004 | WO |
WO-2006044581 | Apr 2006 | WO |
WO-2006051252 | May 2006 | WO |
WO-2006059067 | Jun 2006 | WO |
WO-2006085389 | Aug 2006 | WO |
WO-2007074430 | Jul 2007 | WO |
WO-2007129121 | Nov 2007 | WO |
WO-2007137304 | Nov 2007 | WO |
WO-2007142625 | Dec 2007 | WO |
WO-2008021969 | Feb 2008 | WO |
WO-2008089404 | Jul 2008 | WO |
WO-2009005969 | Jan 2009 | WO |
WO-2009067649 | May 2009 | WO |
WO-2009091497 | Jul 2009 | WO |
WO-2011008672 | Jan 2011 | WO |
WO-2011044343 | Apr 2011 | WO |
WO-2012006306 | Jan 2012 | WO |
WO-2012013577 | Feb 2012 | WO |
WO-2012044606 | Apr 2012 | WO |
WO-2012166503 | Dec 2012 | WO |
WO-2013151888 | Oct 2013 | WO |
WO-2015153340 | Oct 2015 | WO |
Entry |
---|
Fast, Versatile Blackfin Processors Handle Advanced RFID Reader Applications; Analog Dialogue: vol. 40—Sep. 2006; http://www.analog.com/library/analogDialogue/archives/40-09/rfid.pdf; Wayback Machine to Feb. 15, 2012. |
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages. |
Yan et al., “Comparison of the effects of Mg—6Zn and titanium on intestinal tract in vivo,” J Mater Sci: Mater Med (2013), 11 pages. |
Erdmann et al., “Evaluation of the Soft Tissue Biocompatibility of MgCa0.8 and Surgical Steel 316L In Vivo: A Comparative Study in Rabbits,” Biomed. Eng. OnLine 2010 9:63 (17 pages). |
Brar et al., “Investigation of the mechanical and degradation properties of Mg—Sr and Mg—Zn—Sr alloys for use as potential biodegradable implant materials,” J. Mech. Behavior of Biomed. Mater. 7 (2012) pp. 87-95. |
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, 2000, 3 pages. |
Yan et al, Comparison of the effects of Mg—6Zn and Ti—3Al-2.5V alloys on TGF-β/TNF-α/VEGF/b-FGF in the healing of the intestinal track in vivo, Biomed. Mater. 9 (2014), 11 pages. |
Pellicer et al. “On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materials,” J Biomed Mater Res Part A ,2013:101A:502-517. |
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001). |
Serial Communication Protocol; Michael Lemmon Feb. 1, 2009; http://www3.nd.edu/˜lemmon/courses/ee224/web-manual/web-manual/lab12/node2.html; Wayback Machine to Apr. 29, 2012. |
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98. |
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51. |
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages. |
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339. |
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12. |
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12. |
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246. |
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986. |
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986). |
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38 (2013), pp. 584-671. |
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345. |
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991). |
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161. |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page. |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages. |
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages. |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages. |
http://ninpgan.net/publications/51-100/89.pdf; 2004, Ning Pan, On Uniqueness of Fibrous Materials, Design & Nature II. Eds: Colins, M. and Brebbia, C. WIT Press, Boston, 493-504. |
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages). |
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20., pp. 1744-1748. |
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages. |
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages). |
Indian Standard: Automotive Vehicles—Brakes and Braking Systems (IS 11852-1:2001), Mar. 1, 2001. |
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008. |
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005). |
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005). |
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000). |
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010). |
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004. |
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523. |
Covidien iDrive™ Ultra in Service Reference Card, “iDrive™ Ultra Powered Stapling Device,” (4 pages). |
Covidien iDrive™ Ultra Powered Stapling System ibrochure, “The Power of iDrive™ Ultra Powered Stapling System and Tri-Staple™ Technology,” (23 pages). |
Covidien “iDrive™ Ultra Powered Stapling System, A Guide for Surgeons,” (6 pages). |
Covidien “iDrive™ Ultra Powered Stapling System, Cleaning and Sterilization Guide,” (2 pages). |
Covidien Brochure “iDrive™ Ultra Powered Stapling System,” (6 pages). |
Seils et al., Covidien Summary: Clinical Study “UCONN Biodynamics: Final Report on Results,” (2 pages). |
Biomedical Coatings, Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page). |
Anonymous: “Stamping (metalworking)—Wikipedia,” Jun. 6, 2016, Retrieved from the Internet: URL: https://en.wikipedia.org/w/index.php?title=Stamping_(metalworking)&oldid=723906245 [retrieved on May 15, 2018]. |
Allegro MicroSystems, LLC, Automotive Full Bridge MOSFET Driver, A3941-DS, Rev. 5, 21 pages, http://www.allegromicro.com/˜/media/Files/Datasheets/A3941-Datasheet.ashx?la=en. |
Li et al. “Mg—Zr—Sr Alloys as Biodegradable Implant Materials,” Acta Biomaterialia 8 (2012) 3177-3188 (12 pages). |
Number | Date | Country | |
---|---|---|---|
20180110517 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14138485 | Dec 2013 | US |
Child | 15795369 | US |