Endoscopy refers to looking inside a human body for medical reasons using an instrument called an endoscope. Endoscopy is a minimally invasive diagnostic medical procedure used to evaluate interior surfaces of an organ or other tissue by inserting a small tube into the body, often, but not necessarily, through a natural body opening of a patient or through a relatively small incision. Using the endoscope, a surgeon may view surface conditions of the organs or other tissue, including abnormal or diseased tissue such as lesions and other various surface conditions. The endoscope may have a rigid or a flexible tube and, in addition to providing an image for visual inspection and photography, the endoscope may be adapted and configured for taking biopsies, retrieving foreign objects, and introducing medical instruments to a tissue treatment region, referred to generally herein as a surgical site.
Laparoscopic surgery is a minimally invasive surgical technique in which operations are performed through small incisions (usually 0.5 cm to 1.5 cm) or keyholes, as compared to the larger incisions required in traditional open-type surgical procedures. Laparoscopic surgery includes operations within the abdominal or pelvic cavities, whereas keyhole surgery performed on the thoracic or chest cavity is called thoracoscopic surgery. Laparoscopic and thoracoscopic surgery belong to the broader field of endoscopy.
A key element in laparoscopic surgery is the use of a laparoscope: a telescopic rod lens system that is usually connected to a video camera (single-chip or three-chip). Also attached is a fiber-optic cable system connected to a “cold” light source (halogen or xenon) to illuminate the operative field and configured to be inserted through a 5 mm or 10 mm cannula to view the surgical site. The abdomen is usually insufflated with carbon dioxide gas to create a working and viewing space for a surgeon. Stated another way, the abdomen is essentially blown up like a balloon (i.e., insufflated) thereby elevating the abdominal wall above the internal organs like a dome. Carbon dioxide gas can be used for the insufflation because it is common to the patient's body and can be removed by the respiratory system if it is absorbed through tissue.
Minimally invasive therapeutic procedures used to treat diseased tissue by introducing medical instruments to the surgical site through a natural opening of a patient are known as Natural Orifice Translumenal Endoscopic Surgery (NOTES™). In general, there are a variety of systems for inserting an endoscope through a natural opening in the human body, dissecting a lumen, and then, treating the inside of the abdominal cavity. For example, in U.S. Pat. No. 5,297,536 to Wilk, issued on Mar. 29, 1994, which is hereby incorporated by reference in its entirety, a sample treatment system is disclosed. This system is comprised of a dissecting device for perforating a lumen wall, an endoscope insert member for inserting an endoscope, a tube, an endoscope, and a pneumoperitoneum device for deflating the abdominal cavity, and a closing device.
When transluminal endoscopic surgery is carried out using the above-referenced system, an overtube can first be inserted through a natural opening in the patient's body (e.g., mouth, anus, or vagina). A distal end of the overtube may be attached to an organ wall or other tissue by vacuum pressure, thus being temporarily fixed thereon such that the organ wall or other tissue can be punctured. An incising instrument, such as a needle, for example, may be passed through the overtube from a proximal end of the overtube to a distal end of the overtube, and/or through a working channel of the endoscope, and used to puncture and create an opening through the organ wall or other tissue. An inflatable member, such as a medical balloon, for example, may be positioned in the opening and then inflated to enlarge the opening. Once the opening has been enlarged by the inflatable member, the inflatable member can be at least partially deflated and removed from the body and the overtube may then be inserted into and partially through the opening to serve as a working channel for the endoscope and/or other surgical instruments or devices to the surgical site. After surgery of the inside of the organ or other tissue is complete, the overtube may be removed from the enlarged opening so that the opening can be closed by an O-ring or other suitable closure device and then the endoscope and the overtube may be withdrawn from the body.
The peritoneum may be accessed through the stomach wall or wall of other hollow body organs or internal body lumens, to achieve surgical therapy or diagnostic procedures therein. To minimize the potential for inadvertent damage to underlying organs or tissues, the piercing process required in the translumenal access of the peritoneum needs to be safe and controllable at the distal tip of an endoscope. Accordingly, in the field of endoscopy, there remains a need for improved methods and devices for translumenal access of internal body cavities using a needle and an inflatable member, to pierce the internal body lumens during an endoscopic surgical procedure.
The novel features of the various embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation may best be understood by reference to the following description, taken in conjunction with the accompanying figures as follows.
It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician, a surgeon, or a user (“surgeon”) manipulating one end of an instrument or device that protrudes out of a patient (i.e., a natural orifice). The term “proximal” refers to a portion of the instrument or device closest to the surgeon and the term “distal” refers to a portion of the instrument located furthest from the surgeon. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the figures. Surgical instruments or devices, however, may be used in many orientations and positions and, as such, these terms are not intended to be limiting and absolute.
During the course of various surgical procedures, such as in intralumenal and translumenal access procedures, for example, there often exists a need to pierce the wall of hollow body organs or internal body lumens (“lumen” or “access lumen” hereinafter) with a needle to access a cavity, organ, or other lumen. From inside the lumen, a target exit is selected and after suctioning the target exit site of the lumen onto the distal end of an endoscope, using a distal tip of an over-the-scope overtube/endotrocar conduit, or an end cap, an elongated guide wire with a needle formed integrally at the distal end may be introduced through a conduit, such as a catheter, to the target exit site. The wall of the lumen may be pierced with a needle, a needle knife, or other cutting, piercing, incising, or puncturing member (“needle”) in accordance with the described embodiments. In various embodiments, the needle may be solid or hollow such that the most distal end of the needle can puncture tissue. In one embodiment, the needle comprises an elongated member referred herein as a guide wire, a spiral, helical, or corkscrew shaped portion with a sharp metallic point or tip for piercing at a distal end (“helical portion” hereinafter), and in one embodiment, a tapered segment at the proximal end of the helical portion. Due to the nature of the helical portion, in one embodiment, the wall of the lumen may be pierced using a twisting motion (e.g., clockwise or counterclockwise) of the helical portion, of the needle, for example, which may be imparted by twisting the distal end of the guide wire, which extends outside the patient's body. The needle, including the guide wire, tapered segment, and helical portion, may be constructed of any suitable metals or alloys such as stainless steel, alloys of stainless steel, shape memory alloys such as nickel titanium (NiTi) commercially known as NITINOL, or any other materials suitable for piercing the walls of hollow organs or lumens.
As previously discussed, in one embodiment, a portion or segment of the elongated guide wire portion of the needle proximal to the helical portion may be tapered (necked down) to a smaller diameter to reduce the column strength of the guide wire, limiting the likelihood of damage to unintended anatomical structures once the guide wire is advanced through a catheter (e.g., a flexible or rigid hollow tube or conduit). This may allow a length of the guide wire to be fed into the peritoneum, or other hollow body cavity or lumen, outside the access lumen and left in place as a future path for repeated ingress/egress with an endoscope. In other embodiments, the helical portion may be formed separately from the guide wire portion and attached thereto using any known attachment technique. Once the helical portion and the guide wire are attached or formed integrally on a distal end thereof, the entire assembly may be referred to as a “needle” and/or guide wire, for example.
Once the wall of the access lumen is pierced with the helical needle, an inflatable member, such as a medical balloon, for example, may be used to enlarge the opening or incision in the wall or other tissue (“opening”) formed with the helical portion of the needle. The opening is enlarged to create surgical space for advancing overtubes and surgical instruments or devices and/or for allowing a surgeon to access the translumenal surgical site. These inflatable members are commercially available from Boston Scientific Corporation, C. R. Bard, Inc., and Cook Medical Inc., for example. The inflatable member is then pushed behind the helical needle and dilated to stretch the exit site in preparation for an over-the-scope overtube/endotrocar entry, providing an atraumatic ingress/egress path for the endoscope.
In various embodiments, an overtube comprising a hollow conduit, different from a guide tube or guide wire conduit, can be introduced into a natural opening in a patient's body. In one embodiment, a guide tube or guide wire conduit can be inserted into the overtube which has been inserted into the natural opening in the patient's body. In one embodiment, an endoscope can be inserted into the overtube through the proximal end of the overtube and extend through or near the distal end of the overtube. In such an embodiment, the conduit can be positioned within a working channel of the endoscope and can extend from a distal end thereof to allow the conduit and the needle to gain access to the tissue proximal to a surgical site or surgical access site.
In various embodiments, an inflatable member, such as a medical balloon, for example, can be attached to, positioned on, surround, or can be integrally formed on or with an outer surface of a distal portion of the guide wire conduit, for example, and can be introduced into the opening in the tissue created by advancing the needle distally through the tissue. The inflatable member can then be transitioned from an uninflated or a collapsed state to an inflated or an expanded state thereby radially or otherwise displacing side walls of the opening to create a larger opening or surgical space in the tissue such that the enlarged opening can receive a portion of the endoscope, a portion of the overtube, and/or portions of other surgical instruments or devices, for example, therethrough.
In various embodiments, an inflation conduit can surround a portion of a conduit and can extend from a fluid source to a proximal portion of the inflatable member such that the inflatable member can be expanded with fluid from the fluid source. In one embodiment, the inflation conduit can comprise an inner diameter or perimeter larger than the outer diameter or perimeter of the conduit to allow the fluid from the fluid source to flow or be pumped into and out of the inflatable member. The fluid from the fluid source can flow or be pumped through a void created between the outer diameter or perimeter of the conduit and the inner diameter or perimeter of the inflation conduit, for example. As such, a distal portion of the inflation conduit can be attached to and in fluid communication with the proximal portion of the inflatable member with a distal portion of the inflatable member sealed to a portion of the conduit or member positioned on the conduit such that the inflatable member can be inflated. In other various embodiments, the inflation conduit can be eliminated and end portions of the inflatable member can be sealed to the conduit. The conduit can be in fluid communication with the fluid source at its proximal portion and be in fluid communication with the inflatable member at its distal portion through an opening, aperture, slot, or perforation (not illustrated) in the conduit. As a result, the fluid from the fluid source can be flowed or pumped into the conduit and through the opening, aperture, slot, or perforation, which can be in fluid communication with an internal area of the inflatable member to inflate the inflatable member.
Because the inflatable member is made of a very thin material, such as polyethylene terephthalate glycol, polyurethane, plastic, nylon, or combinations thereof, for example, it can be somewhat susceptible to tearing or puncturing while it is being fed through the overtube, the working channel of the endoscope, and while it is being advanced through the opening in the tissue. Further, the inflatable member can sometimes at least partially inflate prior to being positioned within the opening in the tissue owing to subatmospheric pressure conditions within the overtube. These subatmospheric pressure conditions can cause the inflatable member to prematurely inflate if the inflatable member is in fluid communication with atmospheric pressure or with a space having a higher pressure than the subatmospheric pressure conditions within the overtube. Even if a valve is supplied between the inflatable member and an atmospheric pressure space external to the patient, any fluid within the conduit and/or the inflation conduit may cause the inflatable member to at least partially inflate owing to the fluid remaining within the conduit and/or the inflation conduit intermediate the valve and the inflatable member. Such premature inflation can cause delays during a surgical procedure as a partially inflated inflatable member may not fit properly into the opening in the tissue. To at least partially alleviate or eliminate the above-referenced difficulties, a surgical device is provided with a protective sleeve which can, in some circumstances, at least partially cover the inflatable member at appropriate times during a surgical procedure to prevent, inhibit, or at least minimize opportunities for tearing, puncturing, or premature inflation of the inflatable member. The protective sleeve also may be provided to protect the endoscope channel from sharp points, and to keep the inflatable member properly pleated during initial insertion as described in accordance with the disclosed embodiments.
With reference now to
The protective sleeve 18 optionally comprises a handle or handle 20 on its proximal portion to slidably located the protective sleeve 18 in one or more desired positions. The protective sleeve 18 is configured to be positioned at least partially over (i.e., cover) the helical element 14 and the inflatable member 16 to protect and shield the inflatable member 16 from tearing, puncturing, and/or premature inflation, for example, and to prevent or minimize opportunities for the helical element 14 to puncture undesired tissue or damage any of the instruments during deployment. As previously discussed, the protective sleeve 18 keeps the inflatable member 16 properly pleated during initial insertion. Using the handle 20, a clinician can be push the protective sleeve 18 distally in the direction indicated by arrow “A” to deploy the protective sleeve 18 as shown in
In various embodiments, the needle 5 may be formed in a variety of configurations. In one embodiment, the helical element 14, the tapered element 15, and the elongated portion of the needle may be formed integrally or as separate attachable elements. For example, the helical element 14 may be attachable to the tapered element 15, which may be attachable to the elongated portion of the needle 5. These elements may be attached using any suitable techniques, such as, for example, bolting, screwing, welding, crimping, gluing, epoxying, bonding, brazing, soldering, press fitting, snap fitting, riveting, heat shrinking, ultrasonic welding or any other suitable method. In other embodiments, the helical element 14 and/or the tapered element 15 may be attached to the distal end of the guide tube 13, thus eliminating the need for the elongated portion of the needle 5. In this respect, the terms guide tube 13 and needle 5 may be used interchangeably and the guide tube 13 may take the form of a solid or stranded wire and hence may be referred to as a guide wire, without limitation. In other embodiments, the helical element 14 and/or the tapered element 15 may be formed integrally on a distal end of the guide tube 13. Therefore, the term “needle” may encompass the guide tube 13 with an attached helical element 14 and/or tapered element 15 or the guide tube 13 with an integrally formed helical element 14 and/or tapered element 15, without limitation.
The helical element 14 portion of the needle 5 may be employed to penetrate, pierce, cut, incise, grasp, or puncture tissue in accordance with the described embodiments. In one embodiment, the helical element 14 comprises a spiral, helical, or corkscrew (“helical” hereinafter) shape with a sharp metallic point or tip at the distal end that is suitable for penetrating tissue. The helical element 14 can be formed with a wire or tube having an outside diameter suitable for penetrating, piercing, cutting, incising, grasping, or puncturing tissue. Accordingly, the wall of an internal body lumen may be pierced using a twisting motion of the helical element 14, for example. In the illustrated embodiment, an internal body lumen may be pierced by threading or twisting the helical element 14 in a clockwise direction as illustrated by arrow “CW,” in
For additional clarity,
An enlarged view of the tapered element 15 is shown in
In one embodiment, the protective sleeve 18 and the handle 20 may be attached using any suitable techniques, such as, for example, bolting, screwing, welding, crimping, gluing, epoxying, bonding, brazing, soldering, press fitting, snap fitting, riveting, heat shrinking, ultrasonic welding or any other suitable method. In one embodiment, the protective sleeve 18 and the handle 20 may be threadably connected, for example. The handle 20 can have female threads formed on an inner surface thereof and the protective sleeve 18 can have male threads formed on an outer surface thereof such that the threads on the outer surface of the protective sleeve 18 engage the threads on the inner surface of the handle 20. In another embodiment, the protective sleeve 18 and the inflation conduit 12 may be threadably connected, for example. The inflation conduit 12 can have male threads formed on an outer surface thereof and the protective sleeve 18 can have female threads formed on an inner surface thereof such that the threads on the inner surface of the protective sleeve 18 engage the threads on the outer surface of the inflation conduit 12.
With reference now to
In one embodiment, the various components of the surgical device 10 may have the following dimensions selected such that the various internal components are slidably movable within certain defined openings of the external components. Accordingly, in one embodiment, the protective sleeve 18 has an inside diameter ID1 of about 2.4 mm and an outside diameter OD1 of about 2.6 mm. The outside diameter OD1 of the protective sleeve 18 is selected such that it is slidably movable within a typical working channel of an endoscope, which typically may vary from about 2.8 mm to about 3.7 mm. The inflation conduit 12 has an inside diameter ID2 of about 1.8 mm and an outside diameter OD2 of about 2.3 mm. The outside diameter OD2 of the inflation conduit 12 is less than the inside diameter ID1 of the protective sleeve 18 such that the protective sleeve 18 can slidably move over the inflation conduit 12. The conduit 11 has an outside diameter OD3 of about 1.5 mm and an inside diameter ID3 of about 1.0 mm. The outside diameter OD3 of the conduit 11 is less than an inside diameter ID2 of the inflation conduit 12 such that the conduit 11 can be slidably received within the longitudinal opening defined by the inflation conduit 12. The guide tube 13 has an outside diameter OD4 of about 0.9 mm and an inside diameter ID4 of about 0.7 mm, which is less than the inside diameter ID3 of the conduit 11 such that the guide tube 13 can slidably move within the conduit 11. The needle 5 has an outside diameter OD5 ranging from about 0.4 mm to about 0.5 mm, which is less than the inside diameter ID4 of the guide tube 13 such that the needle 5 is slidably movable within the longitudinal opening defined by the guide tube 13. In one embodiment, the inflation conduit 12 and the conduit 11 are fixed and the needle 5 is configured to be slidably movable within the longitudinal opening defined by the guide tube 13. In another embodiment, the guide tube 13 may be slidably movable within the longitudinal opening defined by the conduit 11 and/or the inflation conduit 12. These dimensions are provided merely as examples and are not limited in this context.
In various embodiments, apertures, cut-outs, slots, and/or joints (not shown) may be formed on the protective sleeve 18 to make the device lighter and/or for various surgical reasons, such as, for example, to add flexibility to the protective sleeve 18 and/or to facilitate the steerability of the protective sleeve 18. Also, the protective sleeve 18 can be formed of or comprise a transparent or semi-transparent material. In one embodiment, the protective sleeve 18 may be formed of or may comprise a lubricious, low coefficient of friction material, such as polyethylene, polyetheretherketone (PEEK®), polytetrafluoroethylene (TEFLON®), plastic, nylon, ethylene, and/or a combination thereof, for example, to enable easy sliding movement of the protective sleeve 18 over the inflation conduit 12 and/or the inflatable member 16. In such an embodiment, the lubricious, low coefficient material can also help prevent, inhibit, or at least minimize any opportunities for the protective sleeve 18 from tearing or puncturing the inflatable member 16 when sliding over the inflatable member 16 and/or when sliding between the first position and the second position. In various embodiments, the protective sleeve 18 can be flexible as required for traveling along the tortuous path inside the patient's body to the surgical site. In other various embodiments, portions of the protective sleeve 18 can be flexible while other portions can be rigid or semi-rigid, for example. As previously discussed, the protective sleeve 18 may comprise additional features to enhance its flexibility and/or steerability.
With reference now to
As previously discussed, the inflation conduit 12 can extend at least from the proximal portion of the inflatable member 16 to the tube 21 (or the inflatable member 12 can extend directly to the fluid source 22) and can have an inner diameter or perimeter larger than the outer diameter or perimeter of the conduit 11. As such, a void can be formed intermediate the inner surface of the inflation conduit 12 and the outer surface of the conduit 11. The inflatable member 16 can also be sealed with the conduit 11 or other member on the conduit 11 at its distal portion and can be in fluid communication with the inflation conduit 12 on its proximal portion such that the inflatable member 16 can be inflated by the fluid source 22. The fluid from the fluid source 22 can then be flowed or pumped through the tube 21, through the void, and then into the inflatable member 16. In one embodiment, the inflatable member 16 may be inflated by controlling a control unit (not illustrated) external to the patient that can be operated by the surgeon. In other embodiments, the inflatable member 16 may be inflated by the surgeon activating a manual pump or another suitable inflation device, for example.
In various embodiments, the inflatable member 16 can be filled with a fluid, in liquid or gas form, such as saline or carbon dioxide, for example, as such fluids are common to the patient's body and can be easily absorbed and/or exhausted by the body. In various embodiments, as the inflatable member 16 is filled with the fluid, the inflatable member 16 can expand radially outward from the inflation conduit 12 to enlarge the size of the opening in the tissue. It will be appreciated that the inflatable member 16 can expand in any suitable fashion depending on the configuration of the inflatable member 16 and the particular surgical need.
As shown in more detail in
In various embodiments, the proximal end of the inflatable member 16 can be integrally formed with, integrally formed on, positioned on, or attached to an outer surface of the distal portion of the inflation conduit 12. In various embodiments, the proximal end of the inflatable member 16 partially surrounds the distal portion of the inflation conduit 12. As the inflatable member 16 can surround the distal portion of the inflation conduit 12, it may have a larger, or slightly larger, outer perimeter or diameter than the outer perimeter or diameter of the inflation conduit 12 in its uninflated state. Likewise, as the inflation conduit 12 can surround a portion of the conduit 11, it can have a larger, or slightly larger, outer perimeter or diameter than the outer perimeter or diameter of the conduit 11. It will be appreciated that more than one inflatable member can be used with the surgical device 10 as is recognized by those of ordinary skill in the art. Further, the inflatable member 16 may comprise any suitable inflatable member known to those of ordinary skill in the art.
As previously referenced, if the proximal end of the inflation conduit 12 and/or the conduit 11 is open to atmospheric pressure (i.e., not sealed), or even if the inflation conduit 12 and/or the conduit 11 has a valve at its proximal end, the inflatable member 16 could still, at least partially, prematurely inflate owing to the subatmospheric pressure conditions within the overtube 24. As previously discussed, premature inflation of the inflatable member 16 can cause the inflatable member 16 to be enlarged such that it may not fit within the opening in the tissue 32. To address this issue, the protective sleeve 18 may be located in the first position to prevent, inhibit, or at least minimize such premature inflation from occurring by containing the inflatable member 16 within the inflation conduit 12 and thus inhibiting, for example, the inflatable member from expanding outwardly relative to the inflation conduit 12 and/or the conduit 11 prior to an appropriate time during a surgical procedure. Stated another way, the protective sleeve 18 can surround the inflatable member 16 closely enough to at least inhibit the inflatable member 16 from prematurely inflating. Furthermore, to any extent that the inflatable member 16 may partially inflate due to the tolerances of manufacturing, the inflatable member 16 can be contained within the hollow elongate opening defined by the protective sleeve 18 and, thus, can be inhibited from inflation by the protective sleeve 18, for example.
With reference to
Referring to
As shown in
As shown in
As illustrated in
In various embodiments, the overtube 24 can generally be flexible so as to allow navigation through the tortuous pathway of a body lumen during an endoscopic procedure. The size of the overtube 24 can vary but, in various embodiments, it can have a length that allows it to be inserted translumenally through a patient's esophagus and an inner diameter or perimeter suitable to receive the endoscope 26 therein. The overtube 24 can be made flexible using various techniques. For example, the overtube 24 can be formed from a flexible material and/or it can include one or more features formed therein to facilitate flexibility, such as a plurality of cut-outs or slots, for example. In other embodiments, the overtube 24 can be formed from a plurality of linkages that are movably coupled to one another. The overtube 24 can also include regions that vary in flexibility. For example, certain portions of the overtube 24, such as the distal portion, can be more rigid than other portions of the overtube 24, such as the proximal portion, to correspond to the shape of a body lumen through which the overtube 24 is being inserted. This can be achieved by forming the overtube 24 from different materials, varying the diameter or thickness of the overtube 24, and/or using various other suitable techniques known to those of ordinary skill in the art. A person skilled in the art will appreciate that the overtube 24 can have virtually any configuration that allows the overtube 24 to flex as it is inserted through a tortuous body lumen. The overtube 24 can also include other features to facilitate use, such as one or more spiral wires embedded therein in a configuration to prevent kinking of the overtube 24 during flexure, for example. In various embodiments, the protective sleeve 18, the inflation conduit 12, and/or the conduit 11 may include any suitable features discussed above with respect to the overtube 24, for example.
The surgical device 10 as described herein can have many uses. A non-limiting example of one particular use is described below with reference to
In the embodiment illustrated in
In use, the surgical device 10 can be inserted into one of the working channels 138 through either working channel port 141 or 143 and then through either working channel tube 146 or 147 to working channel 138 and used to puncture, pierce, create, or incise an opening in tissue “T” proximal to the surgical site. As illustrated in
In various embodiments, again referring generally to the various stages of deployment illustrated in
To puncture the portion of the tissue 32, the surgeon can advance the distal end of the helical element 14 into and insert it into the tissue 32 by applying a proximal-to-distal (i.e., pushing) force, in the direction indicated by arrow “A,” to the proximal portion of the helical element 14. The helical element 14 is then threaded in a clockwise direction “CW” to pierce and penetrate the tissue 32 and create the opening 34. After the helical element 14 has created the opening 34 in the tissue 32, the surgeon can then advance the distal end of the inflation conduit 12 into and through the opening 34 by applying a proximal-to-distal (i.e., pushing) force, in direction “B,” to the proximal portion of the inflation conduit 12. In such an embodiment, the surgeon can also apply a proximal-to-distal (i.e., pushing) force to the handle 20 or proximal portion of the protective sleeve 18 to ensure that the protective sleeve 18 remains in the first position during insertion of the distal end of the inflation conduit 12 into and at least partially through the opening 34 in the tissue 32. In other various embodiments, a portion of the protective sleeve 18 can be releasably engaged with a portion of the inflation conduit 12 or a portion of the inflation conduit 12 to prevent, inhibit, or at least minimize sliding of the protective sleeve 18 at inappropriate times during the surgical procedure. As discussed previously, by maintaining the protective sleeve 18 in the first position during insertion into the opening 34 in the tissue 32, the inflatable member 16 can be substantially protected from puncturing, tearing, and/or premature inflation under subatmospheric pressure conditions within the overtube 24. Next, the surgeon can move and/or retract the protective sleeve 18 from the first position to a second position thereby exposing the inflatable member 16 to the sidewalls 36 of the opening 34. As previously discussed, the protective sleeve 18 can be moved using the handle 20 or by pushing or pulling the proximal portion of the protective sleeve 18, for example. Also, as discussed above, this movement of the protective sleeve 18 can be accomplished through the use of other mechanical members, such as threads, for example, or through suitable automated members, for example.
Once the protective sleeve 18 has been retracted into the second position, the surgeon can then activate the fluid source 22 to begin filling the inflatable member 16 via the inflation conduit 12 or the conduit 11. Filling the inflatable member 16 can cause the opening 34 in the tissue 32 to be enlarged as the inflatable member 16 applies a force to the sidewalls 36 of the opening 34 during expansion. Once the opening 34 has been sufficiently expanded, the overtube 24 and the endoscope 26 can be pushed or advanced through the opening 34 in the tissue 32. Subsequently, the inflatable member 16 can be deflated and the surgeon can remove the surgical device 10 from the overtube 24 or working channel 28 and insert appropriate surgical instruments or devices to begin or continue a surgical procedure.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the devices can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the devices, followed by the cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the devices can be disassembled, and any number of the particular pieces or parts of the devices can be selectively replaced or removed in any combination. Upon the cleaning and/or replacement of particular parts, the devices can be reassembled for subsequent use either at a reconditioning facility or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that the reconditioning of the devices can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. The use of such techniques, and the resulting reconditioned devices, are all within the scope of the present application.
Preferably, the various embodiments described herein will be processed before surgery. First, a new or used device is obtained and, if necessary, cleaned. The device can then be sterilized. In one sterilization technique, the device is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and device are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the device and in the container. The sterilized device can then be stored in the sterile container. The sealed container keeps the device sterile until it is opened in the medical facility. It is preferred that the device is sterilized. This can be done by any number of ways known to those skilled in the art, including beta or gamma radiation, ethylene oxide, or steam.
Although the various embodiments have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modifications and variations.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Number | Name | Date | Kind |
---|---|---|---|
645576 | Telsa | Mar 1900 | A |
649621 | Tesla | May 1900 | A |
787412 | Tesla | Apr 1905 | A |
1127948 | Wappler | Feb 1915 | A |
1482653 | Lilly | Feb 1924 | A |
1625602 | Gould et al. | Apr 1927 | A |
2028635 | Wappler | Jan 1936 | A |
2031682 | Wappler et al. | Feb 1936 | A |
2113246 | Wappler | Apr 1938 | A |
2155365 | Rankin | Apr 1939 | A |
2191858 | Moore | Feb 1940 | A |
2196620 | Attarian | Apr 1940 | A |
2388137 | Graumlich | Oct 1945 | A |
2493108 | Casey, Jr. | Jan 1950 | A |
2504152 | Riker et al. | Apr 1950 | A |
2938382 | De Graaf | May 1960 | A |
2952206 | Becksted | Sep 1960 | A |
3069195 | Buck | Dec 1962 | A |
3170471 | Schnitzer | Feb 1965 | A |
3435824 | Gamponia | Apr 1969 | A |
3470876 | Barchilon | Oct 1969 | A |
3595239 | Petersen | Jul 1971 | A |
3669487 | Roberts et al. | Jun 1972 | A |
3746881 | Fitch et al. | Jul 1973 | A |
3799672 | Vurek | Mar 1974 | A |
3854473 | Matsuo | Dec 1974 | A |
3946740 | Bassett | Mar 1976 | A |
3948251 | Hosono | Apr 1976 | A |
3994301 | Agris | Nov 1976 | A |
4011872 | Komiya | Mar 1977 | A |
4012812 | Black | Mar 1977 | A |
4085743 | Yoon | Apr 1978 | A |
4164225 | Johnson et al. | Aug 1979 | A |
4178920 | Cawood, Jr. et al. | Dec 1979 | A |
4207873 | Kruy | Jun 1980 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4258716 | Sutherland | Mar 1981 | A |
4269174 | Adair | May 1981 | A |
4278077 | Mizumoto | Jul 1981 | A |
4285344 | Marshall | Aug 1981 | A |
4311143 | Komiya | Jan 1982 | A |
4329980 | Terada | May 1982 | A |
4396021 | Baumgartner | Aug 1983 | A |
4406656 | Hattler et al. | Sep 1983 | A |
4452246 | Bader et al. | Jun 1984 | A |
4461281 | Carson | Jul 1984 | A |
4491132 | Aikins | Jan 1985 | A |
4527331 | Lasner et al. | Jul 1985 | A |
4527564 | Eguchi et al. | Jul 1985 | A |
4538594 | Boebel et al. | Sep 1985 | A |
D281104 | Davison | Oct 1985 | S |
4569347 | Frisbie | Feb 1986 | A |
4580551 | Siegmund et al. | Apr 1986 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4653476 | Bonnet | Mar 1987 | A |
4655219 | Petruzzi | Apr 1987 | A |
4669470 | Brandfield | Jun 1987 | A |
4671477 | Cullen | Jun 1987 | A |
4685447 | Iversen et al. | Aug 1987 | A |
4711240 | Goldwasser et al. | Dec 1987 | A |
4712545 | Honkanen | Dec 1987 | A |
4721116 | Schintgen et al. | Jan 1988 | A |
4733662 | DeSatnick et al. | Mar 1988 | A |
D295894 | Sharkany et al. | May 1988 | S |
4763669 | Jaeger | Aug 1988 | A |
4770188 | Chikama | Sep 1988 | A |
4815450 | Patel | Mar 1989 | A |
4823794 | Pierce | Apr 1989 | A |
4829999 | Auth | May 1989 | A |
4867140 | Hovis et al. | Sep 1989 | A |
4873979 | Hanna | Oct 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4911148 | Sosnowski et al. | Mar 1990 | A |
4926860 | Stice et al. | May 1990 | A |
4938214 | Specht et al. | Jul 1990 | A |
4950273 | Briggs | Aug 1990 | A |
4950285 | Wilk | Aug 1990 | A |
4960133 | Hewson | Oct 1990 | A |
4977887 | Gouda | Dec 1990 | A |
4979950 | Transue et al. | Dec 1990 | A |
4984581 | Stice | Jan 1991 | A |
5007917 | Evans | Apr 1991 | A |
5010876 | Henley et al. | Apr 1991 | A |
5020514 | Heckele | Jun 1991 | A |
5020535 | Parker et al. | Jun 1991 | A |
5025778 | Silverstein et al. | Jun 1991 | A |
5033169 | Bindon | Jul 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5046513 | Gatturna et al. | Sep 1991 | A |
5050585 | Takahashi | Sep 1991 | A |
5052372 | Shapiro | Oct 1991 | A |
5065516 | Dulebohn | Nov 1991 | A |
5066295 | Kozak et al. | Nov 1991 | A |
5123913 | Wilk et al. | Jun 1992 | A |
5123914 | Cope | Jun 1992 | A |
5133727 | Bales et al. | Jul 1992 | A |
5147374 | Fernandez | Sep 1992 | A |
5174300 | Bales et al. | Dec 1992 | A |
5176126 | Chikama | Jan 1993 | A |
5190050 | Nitzsche | Mar 1993 | A |
5190555 | Wetter et al. | Mar 1993 | A |
5192284 | Pleatman | Mar 1993 | A |
5201752 | Brown et al. | Apr 1993 | A |
5201908 | Jones | Apr 1993 | A |
5203785 | Slater | Apr 1993 | A |
5203787 | Noblitt et al. | Apr 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5217453 | Wilk | Jun 1993 | A |
5219357 | Honkanen et al. | Jun 1993 | A |
5219358 | Bendel et al. | Jun 1993 | A |
5222362 | Maus et al. | Jun 1993 | A |
5222965 | Haughton | Jun 1993 | A |
5234437 | Sepetka | Aug 1993 | A |
5234453 | Smith et al. | Aug 1993 | A |
5235964 | Abenaim | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5246424 | Wilk | Sep 1993 | A |
5259366 | Reydel et al. | Nov 1993 | A |
5263958 | deGuillebon et al. | Nov 1993 | A |
5273524 | Fox et al. | Dec 1993 | A |
5275607 | Lo et al. | Jan 1994 | A |
5284128 | Hart | Feb 1994 | A |
5284162 | Wilk | Feb 1994 | A |
5287845 | Faul et al. | Feb 1994 | A |
5290299 | Fain et al. | Mar 1994 | A |
5290302 | Pericic | Mar 1994 | A |
5295977 | Cohen et al. | Mar 1994 | A |
5297536 | Wilk | Mar 1994 | A |
5301061 | Nakada et al. | Apr 1994 | A |
5312333 | Churinetz et al. | May 1994 | A |
5312351 | Gerrone | May 1994 | A |
5312416 | Spaeth et al. | May 1994 | A |
5312423 | Rosenbluth et al. | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5320636 | Slater | Jun 1994 | A |
5325845 | Adair | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5330488 | Goldrath | Jul 1994 | A |
5330496 | Alferness | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5331971 | Bales et al. | Jul 1994 | A |
5334198 | Hart et al. | Aug 1994 | A |
5344428 | Griffiths | Sep 1994 | A |
5350391 | Iacovelli | Sep 1994 | A |
5352184 | Goldberg et al. | Oct 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5354302 | Ko | Oct 1994 | A |
5354311 | Kambin et al. | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5364408 | Gordon | Nov 1994 | A |
5364410 | Failla et al. | Nov 1994 | A |
5366466 | Christian et al. | Nov 1994 | A |
5366467 | Lynch et al. | Nov 1994 | A |
5368605 | Miller, Jr. | Nov 1994 | A |
5370647 | Graber et al. | Dec 1994 | A |
5370679 | Atlee, III | Dec 1994 | A |
5374273 | Nakao et al. | Dec 1994 | A |
5374275 | Bradley et al. | Dec 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5377695 | An Haack | Jan 1995 | A |
5383877 | Clarke | Jan 1995 | A |
5383888 | Zvenyatsky et al. | Jan 1995 | A |
5386817 | Jones | Feb 1995 | A |
5391174 | Weston | Feb 1995 | A |
5392789 | Slater et al. | Feb 1995 | A |
5395386 | Slater | Mar 1995 | A |
5401248 | Bencini | Mar 1995 | A |
5403328 | Shallman | Apr 1995 | A |
5403342 | Tovey et al. | Apr 1995 | A |
5403348 | Bonutti | Apr 1995 | A |
5405073 | Porter | Apr 1995 | A |
5405359 | Pierce | Apr 1995 | A |
5409478 | Gerry et al. | Apr 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5423821 | Pasque | Jun 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5439471 | Kerr | Aug 1995 | A |
5439478 | Palmer | Aug 1995 | A |
5441059 | Dannan | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5449021 | Chikama | Sep 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458131 | Wilk | Oct 1995 | A |
5458583 | McNeely et al. | Oct 1995 | A |
5460168 | Masubuchi et al. | Oct 1995 | A |
5460629 | Shlain et al. | Oct 1995 | A |
5462561 | Voda | Oct 1995 | A |
5465731 | Bell et al. | Nov 1995 | A |
5467763 | McMahon et al. | Nov 1995 | A |
5468250 | Paraschac et al. | Nov 1995 | A |
5470308 | Edwards et al. | Nov 1995 | A |
5470320 | Tiefenbrun et al. | Nov 1995 | A |
5478347 | Aranyi | Dec 1995 | A |
5480404 | Kammerer et al. | Jan 1996 | A |
5482054 | Slater et al. | Jan 1996 | A |
5484451 | Akopov et al. | Jan 1996 | A |
5489256 | Adair | Feb 1996 | A |
5496347 | Hashiguchi et al. | Mar 1996 | A |
5499990 | Schülken et al. | Mar 1996 | A |
5499992 | Meade et al. | Mar 1996 | A |
5501692 | Riza | Mar 1996 | A |
5503616 | Jones | Apr 1996 | A |
5505686 | Willis et al. | Apr 1996 | A |
5507755 | Gresl et al. | Apr 1996 | A |
5511564 | Wilk | Apr 1996 | A |
5514157 | Nicholas et al. | May 1996 | A |
5522829 | Michalos | Jun 1996 | A |
5522830 | Aranyi | Jun 1996 | A |
5527321 | Hinchliffe | Jun 1996 | A |
5536248 | Weaver et al. | Jul 1996 | A |
5540648 | Yoon | Jul 1996 | A |
5554151 | Hinchliffe | Sep 1996 | A |
5555883 | Avitall | Sep 1996 | A |
5558133 | Bortoli et al. | Sep 1996 | A |
5562693 | Devlin et al. | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5569298 | Schnell | Oct 1996 | A |
5573540 | Yoon | Nov 1996 | A |
5578030 | Levin | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5584845 | Hart | Dec 1996 | A |
5591179 | Edelstein | Jan 1997 | A |
5593420 | Eubanks, Jr et al. | Jan 1997 | A |
5595562 | Grier | Jan 1997 | A |
5597378 | Jervis | Jan 1997 | A |
5601573 | Fogelberg et al. | Feb 1997 | A |
5601588 | Tonomura et al. | Feb 1997 | A |
5604531 | Iddan et al. | Feb 1997 | A |
5607389 | Edwards et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5613975 | Christy | Mar 1997 | A |
5618303 | Marlow et al. | Apr 1997 | A |
5620415 | Lucey et al. | Apr 1997 | A |
5624399 | Ackerman | Apr 1997 | A |
5624431 | Gerry et al. | Apr 1997 | A |
5626578 | Tihon | May 1997 | A |
5628732 | Antoon, Jr. et al. | May 1997 | A |
5630782 | Adair | May 1997 | A |
5643283 | Younker | Jul 1997 | A |
5643292 | Hart | Jul 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
5644798 | Shah | Jul 1997 | A |
5645083 | Essig et al. | Jul 1997 | A |
5645565 | Rudd et al. | Jul 1997 | A |
5649372 | Souza | Jul 1997 | A |
5653677 | Okada et al. | Aug 1997 | A |
5653690 | Booth et al. | Aug 1997 | A |
5653722 | Kieturakis | Aug 1997 | A |
5662663 | Shallman | Sep 1997 | A |
5669875 | van Eerdenburg | Sep 1997 | A |
5681324 | Kammerer et al. | Oct 1997 | A |
5681330 | Hughett et al. | Oct 1997 | A |
5685820 | Riek et al. | Nov 1997 | A |
5690656 | Cope et al. | Nov 1997 | A |
5690660 | Kauker et al. | Nov 1997 | A |
5695448 | Kimura et al. | Dec 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5695511 | Cano et al. | Dec 1997 | A |
5700275 | Bell et al. | Dec 1997 | A |
5702438 | Avitall | Dec 1997 | A |
5704892 | Adair | Jan 1998 | A |
5709708 | Thal | Jan 1998 | A |
5716326 | Dannan | Feb 1998 | A |
5730740 | Wales et al. | Mar 1998 | A |
5735849 | Baden et al. | Apr 1998 | A |
5741234 | Aboul-Hosn | Apr 1998 | A |
5741278 | Stevens | Apr 1998 | A |
5741285 | McBrayer et al. | Apr 1998 | A |
5746759 | Meade et al. | May 1998 | A |
5749881 | Sackier et al. | May 1998 | A |
5749889 | Bacich et al. | May 1998 | A |
5752951 | Yanik | May 1998 | A |
5755731 | Grinberg | May 1998 | A |
5766167 | Eggers et al. | Jun 1998 | A |
5766170 | Eggers | Jun 1998 | A |
5766205 | Zvenyatsky et al. | Jun 1998 | A |
5769849 | Eggers | Jun 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5779716 | Cano et al. | Jul 1998 | A |
5779727 | Orejola | Jul 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5782866 | Wenstrom, Jr. | Jul 1998 | A |
5791022 | Bohman | Aug 1998 | A |
5792113 | Kramer et al. | Aug 1998 | A |
5792153 | Swain et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5797835 | Green | Aug 1998 | A |
5797928 | Kogasaka | Aug 1998 | A |
5797939 | Yoon | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5803903 | Athas et al. | Sep 1998 | A |
5808665 | Green | Sep 1998 | A |
5810806 | Ritchart et al. | Sep 1998 | A |
5810849 | Kontos | Sep 1998 | A |
5810865 | Koscher et al. | Sep 1998 | A |
5810876 | Kelleher | Sep 1998 | A |
5810877 | Roth et al. | Sep 1998 | A |
5813976 | Filipi et al. | Sep 1998 | A |
5814058 | Carlson et al. | Sep 1998 | A |
5817061 | Goodwin et al. | Oct 1998 | A |
5817107 | Schaller | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5819736 | Avny et al. | Oct 1998 | A |
5824071 | Nelson et al. | Oct 1998 | A |
5827281 | Levin | Oct 1998 | A |
5827299 | Thomason et al. | Oct 1998 | A |
5830231 | Geiges, Jr. | Nov 1998 | A |
5833700 | Fogelberg et al. | Nov 1998 | A |
5833703 | Manushakian | Nov 1998 | A |
5843017 | Yoon | Dec 1998 | A |
5843121 | Yoon | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5853374 | Hart et al. | Dec 1998 | A |
5855585 | Kontos | Jan 1999 | A |
5860913 | Yamaya et al. | Jan 1999 | A |
5860995 | Berkelaar | Jan 1999 | A |
5868762 | Cragg et al. | Feb 1999 | A |
5876411 | Kontos | Mar 1999 | A |
5882331 | Sasaki | Mar 1999 | A |
5882344 | Stouder, Jr. | Mar 1999 | A |
5893846 | Bales et al. | Apr 1999 | A |
5893874 | Bourque et al. | Apr 1999 | A |
5893875 | O'Connor et al. | Apr 1999 | A |
5899919 | Eubanks, Jr. et al. | May 1999 | A |
5902254 | Magram | May 1999 | A |
5904702 | Ek et al. | May 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5911737 | Lee et al. | Jun 1999 | A |
5916147 | Boury | Jun 1999 | A |
5921993 | Yoon | Jul 1999 | A |
5921997 | Fogelberg et al. | Jul 1999 | A |
5922008 | Gimpelson | Jul 1999 | A |
5925052 | Simmons | Jul 1999 | A |
5928255 | Meade et al. | Jul 1999 | A |
5928266 | Kontos | Jul 1999 | A |
5936536 | Morris | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
5954720 | Wilson et al. | Sep 1999 | A |
5954731 | Yoon | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5957953 | DiPoto et al. | Sep 1999 | A |
5971995 | Rousseau | Oct 1999 | A |
5976074 | Moriyama | Nov 1999 | A |
5976075 | Beane et al. | Nov 1999 | A |
5976130 | McBrayer et al. | Nov 1999 | A |
5976131 | Guglielmi et al. | Nov 1999 | A |
5980539 | Kontos | Nov 1999 | A |
5980556 | Giordano et al. | Nov 1999 | A |
5984938 | Yoon | Nov 1999 | A |
5984939 | Yoon | Nov 1999 | A |
5989182 | Hori et al. | Nov 1999 | A |
5993447 | Blewett et al. | Nov 1999 | A |
5997555 | Kontos | Dec 1999 | A |
6001120 | Levin | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6004330 | Middleman et al. | Dec 1999 | A |
6007566 | Wenstrom, Jr. | Dec 1999 | A |
6010515 | Swain et al. | Jan 2000 | A |
6012494 | Balazs | Jan 2000 | A |
6017356 | Frederick et al. | Jan 2000 | A |
6019770 | Christoudias | Feb 2000 | A |
6024708 | Bales et al. | Feb 2000 | A |
6024747 | Kontos | Feb 2000 | A |
6027522 | Palmer | Feb 2000 | A |
6030365 | Laufer | Feb 2000 | A |
6030634 | Wu et al. | Feb 2000 | A |
6033399 | Gines | Mar 2000 | A |
6036685 | Mueller | Mar 2000 | A |
6053927 | Hamas | Apr 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6068603 | Suzuki | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6071233 | Ishikawa et al. | Jun 2000 | A |
6074408 | Freeman | Jun 2000 | A |
6086530 | Mack | Jul 2000 | A |
6090108 | McBrayer et al. | Jul 2000 | A |
6096046 | Weiss | Aug 2000 | A |
6102926 | Tartaglia et al. | Aug 2000 | A |
6106473 | Violante et al. | Aug 2000 | A |
6109852 | Shahinpoor et al. | Aug 2000 | A |
6110154 | Shimomura et al. | Aug 2000 | A |
6110183 | Cope | Aug 2000 | A |
6113593 | Tu et al. | Sep 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6139555 | Hart et al. | Oct 2000 | A |
6146391 | Cigaina | Nov 2000 | A |
6148222 | Ramsey, III | Nov 2000 | A |
6149653 | Deslauriers | Nov 2000 | A |
6149662 | Pugliesi et al. | Nov 2000 | A |
6159200 | Verdura et al. | Dec 2000 | A |
6165184 | Verdura et al. | Dec 2000 | A |
6168570 | Ferrera | Jan 2001 | B1 |
6168605 | Measamer et al. | Jan 2001 | B1 |
6170130 | Hamilton et al. | Jan 2001 | B1 |
6179776 | Adams et al. | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6183420 | Douk et al. | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6190384 | Ouchi | Feb 2001 | B1 |
6190399 | Palmer et al. | Feb 2001 | B1 |
6203533 | Ouchi | Mar 2001 | B1 |
6206872 | Lafond et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6214007 | Anderson | Apr 2001 | B1 |
6228096 | Marchand | May 2001 | B1 |
6234958 | Snoke et al. | May 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6246914 | de la Rama et al. | Jun 2001 | B1 |
6258064 | Smith et al. | Jul 2001 | B1 |
6261242 | Roberts et al. | Jul 2001 | B1 |
6264664 | Avellanet | Jul 2001 | B1 |
6270497 | Sekino et al. | Aug 2001 | B1 |
6270505 | Yoshida et al. | Aug 2001 | B1 |
6277136 | Bonutti | Aug 2001 | B1 |
6283963 | Regula | Sep 2001 | B1 |
6293909 | Chu et al. | Sep 2001 | B1 |
6293952 | Brosens et al. | Sep 2001 | B1 |
6296630 | Altman et al. | Oct 2001 | B1 |
6322578 | Houle et al. | Nov 2001 | B1 |
6326177 | Schoenbach et al. | Dec 2001 | B1 |
6328730 | Harkrider, Jr. | Dec 2001 | B1 |
6350267 | Stefanchik | Feb 2002 | B1 |
6350278 | Lenker et al. | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6352543 | Cole | Mar 2002 | B1 |
6355035 | Manushakian | Mar 2002 | B1 |
6361534 | Chen et al. | Mar 2002 | B1 |
6371956 | Wilson et al. | Apr 2002 | B1 |
6379366 | Fleischman et al. | Apr 2002 | B1 |
6383195 | Richard | May 2002 | B1 |
6383197 | Conlon et al. | May 2002 | B1 |
6391029 | Hooven et al. | May 2002 | B1 |
6402735 | Langevin | Jun 2002 | B1 |
6406440 | Stefanchik | Jun 2002 | B1 |
6409727 | Bales et al. | Jun 2002 | B1 |
6409733 | Conlon et al. | Jun 2002 | B1 |
6427089 | Knowlton | Jul 2002 | B1 |
6431500 | Jacobs et al. | Aug 2002 | B1 |
6443970 | Schulze et al. | Sep 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6447511 | Slater | Sep 2002 | B1 |
6447523 | Middleman et al. | Sep 2002 | B1 |
6454783 | Piskun | Sep 2002 | B1 |
6454785 | De Hoyos Garza | Sep 2002 | B2 |
6458076 | Pruitt | Oct 2002 | B1 |
6464701 | Hooven et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6475104 | Lutz et al. | Nov 2002 | B1 |
6485411 | Konstorum et al. | Nov 2002 | B1 |
6489745 | Koreis | Dec 2002 | B1 |
6491626 | Stone et al. | Dec 2002 | B1 |
6491627 | Komi | Dec 2002 | B1 |
6491691 | Morley et al. | Dec 2002 | B1 |
6493590 | Wessman et al. | Dec 2002 | B1 |
6494893 | Dubrul et al. | Dec 2002 | B2 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6503192 | Ouchi | Jan 2003 | B1 |
6506190 | Walshe | Jan 2003 | B1 |
6508827 | Manhes | Jan 2003 | B1 |
6514239 | Shimmura et al. | Feb 2003 | B2 |
6520954 | Ouchi | Feb 2003 | B2 |
6543456 | Freeman | Apr 2003 | B1 |
6551270 | Bimbo et al. | Apr 2003 | B1 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558384 | Mayenberger | May 2003 | B2 |
6562035 | Levin | May 2003 | B1 |
6562052 | Nobles et al. | May 2003 | B2 |
6569159 | Edwards et al. | May 2003 | B1 |
6572629 | Kalloo et al. | Jun 2003 | B2 |
6572635 | Bonutti | Jun 2003 | B1 |
6575988 | Rousseau | Jun 2003 | B2 |
6579311 | Makower | Jun 2003 | B1 |
6585642 | Christopher | Jul 2003 | B2 |
6585717 | Wittenberger et al. | Jul 2003 | B1 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6592559 | Pakter et al. | Jul 2003 | B1 |
6592603 | Lasner | Jul 2003 | B2 |
6602262 | Griego et al. | Aug 2003 | B2 |
6605105 | Cuschieri et al. | Aug 2003 | B1 |
6610072 | Christy et al. | Aug 2003 | B1 |
6610074 | Santilli | Aug 2003 | B2 |
6620193 | Lau et al. | Sep 2003 | B1 |
6623448 | Slater | Sep 2003 | B2 |
6626919 | Swanstrom | Sep 2003 | B1 |
6632229 | Yamanouchi | Oct 2003 | B1 |
6638286 | Burbank et al. | Oct 2003 | B1 |
6652521 | Schulze | Nov 2003 | B2 |
6652551 | Heiss | Nov 2003 | B1 |
6656194 | Gannoe et al. | Dec 2003 | B1 |
6663641 | Kovac et al. | Dec 2003 | B1 |
6666854 | Lange | Dec 2003 | B1 |
6672338 | Esashi et al. | Jan 2004 | B1 |
6673058 | Snow | Jan 2004 | B2 |
6673087 | Chang et al. | Jan 2004 | B1 |
6679882 | Kornerup | Jan 2004 | B1 |
6685628 | Vu | Feb 2004 | B2 |
6685724 | Haluck | Feb 2004 | B1 |
6692445 | Roberts et al. | Feb 2004 | B2 |
6692462 | Mackenzie et al. | Feb 2004 | B2 |
6699180 | Kobayashi | Mar 2004 | B2 |
6699256 | Logan et al. | Mar 2004 | B1 |
6699263 | Cope | Mar 2004 | B2 |
6706018 | Westlund et al. | Mar 2004 | B2 |
6708066 | Herbst et al. | Mar 2004 | B2 |
6709445 | Boebel et al. | Mar 2004 | B2 |
6716226 | Sixto, Jr. et al. | Apr 2004 | B2 |
6736822 | McClellan et al. | May 2004 | B2 |
6740030 | Martone et al. | May 2004 | B2 |
6743240 | Smith et al. | Jun 2004 | B2 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6749609 | Lunsford et al. | Jun 2004 | B1 |
6752768 | Burdorff et al. | Jun 2004 | B2 |
6752811 | Chu et al. | Jun 2004 | B2 |
6752822 | Jespersen | Jun 2004 | B2 |
6761685 | Adams et al. | Jul 2004 | B2 |
6761718 | Madsen | Jul 2004 | B2 |
6761722 | Cole et al. | Jul 2004 | B2 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6780151 | Grabover et al. | Aug 2004 | B2 |
6780352 | Jacobson | Aug 2004 | B2 |
6783491 | Saadat et al. | Aug 2004 | B2 |
6786864 | Matsuura et al. | Sep 2004 | B2 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6795728 | Chornenky et al. | Sep 2004 | B2 |
6800056 | Tartaglia et al. | Oct 2004 | B2 |
6808491 | Kortenbach et al. | Oct 2004 | B2 |
6824548 | Smith et al. | Nov 2004 | B2 |
6836688 | Ingle et al. | Dec 2004 | B2 |
6837847 | Ewers et al. | Jan 2005 | B2 |
6843794 | Sixto, Jr. et al. | Jan 2005 | B2 |
6861250 | Cole et al. | Mar 2005 | B1 |
6866627 | Nozue | Mar 2005 | B2 |
6878106 | Herrmann | Apr 2005 | B1 |
6878110 | Yang et al. | Apr 2005 | B2 |
6881216 | Di Caprio et al. | Apr 2005 | B2 |
6884213 | Raz et al. | Apr 2005 | B2 |
6887255 | Shimm | May 2005 | B2 |
6889089 | Behl et al. | May 2005 | B2 |
6896683 | Gadberry et al. | May 2005 | B1 |
6896692 | Ginn et al. | May 2005 | B2 |
6908427 | Fleener et al. | Jun 2005 | B2 |
6908476 | Jud et al. | Jun 2005 | B2 |
6916284 | Moriyama | Jul 2005 | B2 |
6918871 | Schulze | Jul 2005 | B2 |
6926725 | Cooke et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6932824 | Roop et al. | Aug 2005 | B1 |
6932827 | Cole | Aug 2005 | B2 |
6932834 | Lizardi et al. | Aug 2005 | B2 |
6939327 | Hall et al. | Sep 2005 | B2 |
6942613 | Ewers et al. | Sep 2005 | B2 |
6945472 | Wuttke et al. | Sep 2005 | B2 |
6945979 | Kortenbach et al. | Sep 2005 | B2 |
6955683 | Bonutti | Oct 2005 | B2 |
6958035 | Friedman et al. | Oct 2005 | B2 |
6960162 | Saadat et al. | Nov 2005 | B2 |
6960163 | Ewers et al. | Nov 2005 | B2 |
6962587 | Johnson et al. | Nov 2005 | B2 |
6964662 | Kidooka | Nov 2005 | B2 |
6966909 | Marshall et al. | Nov 2005 | B2 |
6966919 | Sixto, Jr. et al. | Nov 2005 | B2 |
6967462 | Landis | Nov 2005 | B1 |
6971988 | Orban, III | Dec 2005 | B2 |
6972017 | Smith et al. | Dec 2005 | B2 |
6974411 | Belson | Dec 2005 | B2 |
6976992 | Sachatello et al. | Dec 2005 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6984205 | Gazdzinski | Jan 2006 | B2 |
6986774 | Middleman et al. | Jan 2006 | B2 |
6988987 | Ishikawa et al. | Jan 2006 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6991631 | Woloszko et al. | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7001341 | Gellman et al. | Feb 2006 | B2 |
7008375 | Weisel | Mar 2006 | B2 |
7009634 | Iddan et al. | Mar 2006 | B2 |
7010340 | Scarantino et al. | Mar 2006 | B2 |
7020531 | Colliou et al. | Mar 2006 | B1 |
7025580 | Heagy et al. | Apr 2006 | B2 |
7029435 | Nakao | Apr 2006 | B2 |
7029438 | Morin et al. | Apr 2006 | B2 |
7029450 | Gellman | Apr 2006 | B2 |
7035680 | Partridge et al. | Apr 2006 | B2 |
7037290 | Gardeski et al. | May 2006 | B2 |
7041052 | Saadat et al. | May 2006 | B2 |
7052489 | Griego et al. | May 2006 | B2 |
7060024 | Long et al. | Jun 2006 | B2 |
7060025 | Long et al. | Jun 2006 | B2 |
7063697 | Slater | Jun 2006 | B2 |
7063715 | Onuki et al. | Jun 2006 | B2 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070602 | Smith et al. | Jul 2006 | B2 |
7076305 | Imran et al. | Jul 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7083629 | Weller et al. | Aug 2006 | B2 |
7083635 | Ginn | Aug 2006 | B2 |
7087071 | Nicholas et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090685 | Kortenbach et al. | Aug 2006 | B2 |
7093518 | Gmeilbauer | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7105000 | McBrayer | Sep 2006 | B2 |
7105005 | Blake | Sep 2006 | B2 |
7108703 | Danitz et al. | Sep 2006 | B2 |
7112208 | Morris et al. | Sep 2006 | B2 |
7115092 | Park et al. | Oct 2006 | B2 |
7117703 | Kato et al. | Oct 2006 | B2 |
7118531 | Krill | Oct 2006 | B2 |
7118578 | West, Jr. et al. | Oct 2006 | B2 |
7118587 | Dycus et al. | Oct 2006 | B2 |
7128708 | Saadat et al. | Oct 2006 | B2 |
RE39415 | Bales et al. | Nov 2006 | E |
7131978 | Sancoff et al. | Nov 2006 | B2 |
7131979 | DiCarlo et al. | Nov 2006 | B2 |
7131980 | Field et al. | Nov 2006 | B1 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7137981 | Long | Nov 2006 | B2 |
7146984 | Stack et al. | Dec 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7150097 | Sremcich et al. | Dec 2006 | B2 |
7150655 | Mastrototaro et al. | Dec 2006 | B2 |
7152488 | Hedrich et al. | Dec 2006 | B2 |
7153321 | Andrews | Dec 2006 | B2 |
7163525 | Franer | Jan 2007 | B2 |
7172714 | Jacobson | Feb 2007 | B2 |
7179254 | Pendekanti et al. | Feb 2007 | B2 |
7188627 | Nelson et al. | Mar 2007 | B2 |
7195612 | Van Sloten et al. | Mar 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
7204820 | Akahoshi | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7211092 | Hughett | May 2007 | B2 |
7220227 | Sasaki et al. | May 2007 | B2 |
7223272 | Francere et al. | May 2007 | B2 |
7232414 | Gonzalez | Jun 2007 | B2 |
7232445 | Kortenbach et al. | Jun 2007 | B2 |
7241290 | Doyle et al. | Jul 2007 | B2 |
7244228 | Lubowski | Jul 2007 | B2 |
7250027 | Barry | Jul 2007 | B2 |
7252660 | Kunz | Aug 2007 | B2 |
7255675 | Gertner et al. | Aug 2007 | B2 |
7270663 | Nakao | Sep 2007 | B2 |
7294139 | Gengler | Nov 2007 | B1 |
7301250 | Cassel | Nov 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7308828 | Hashimoto | Dec 2007 | B2 |
7318802 | Suzuki et al. | Jan 2008 | B2 |
7320695 | Carroll | Jan 2008 | B2 |
7322934 | Miyake et al. | Jan 2008 | B2 |
7323006 | Andreas et al. | Jan 2008 | B2 |
7329256 | Johnson et al. | Feb 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7329383 | Stinson | Feb 2008 | B2 |
7344536 | Lunsford et al. | Mar 2008 | B1 |
7352387 | Yamamoto | Apr 2008 | B2 |
7364582 | Lee | Apr 2008 | B2 |
7371215 | Colliou et al. | May 2008 | B2 |
7381216 | Buzzard et al. | Jun 2008 | B2 |
7393322 | Wenchell | Jul 2008 | B2 |
7402162 | Ouchi | Jul 2008 | B2 |
7404791 | Linares et al. | Jul 2008 | B2 |
7413563 | Corcoran et al. | Aug 2008 | B2 |
7416554 | Lam et al. | Aug 2008 | B2 |
7422590 | Kupferschmid et al. | Sep 2008 | B2 |
7435257 | Lashinski et al. | Oct 2008 | B2 |
7452327 | Durgin et al. | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7468066 | Vargas et al. | Dec 2008 | B2 |
7488295 | Burbank et al. | Feb 2009 | B2 |
7497867 | Lasner et al. | Mar 2009 | B2 |
7507200 | Okada | Mar 2009 | B2 |
7524281 | Chu et al. | Apr 2009 | B2 |
7534228 | Williams | May 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7544203 | Chin et al. | Jun 2009 | B2 |
7548040 | Lee et al. | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7553278 | Kucklick | Jun 2009 | B2 |
7553298 | Hunt et al. | Jun 2009 | B2 |
7559887 | Dannan | Jul 2009 | B2 |
7559916 | Smith et al. | Jul 2009 | B2 |
7560006 | Rakos et al. | Jul 2009 | B2 |
7561916 | Hunt et al. | Jul 2009 | B2 |
7566334 | Christian et al. | Jul 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7575548 | Takemoto et al. | Aug 2009 | B2 |
7579550 | Dayton et al. | Aug 2009 | B2 |
7582096 | Gellman et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7588557 | Nakao | Sep 2009 | B2 |
7618398 | Holman et al. | Nov 2009 | B2 |
7632250 | Smith et al. | Dec 2009 | B2 |
7635373 | Ortiz | Dec 2009 | B2 |
7637903 | Lentz et al. | Dec 2009 | B2 |
7651483 | Byrum et al. | Jan 2010 | B2 |
7651509 | Bojarski et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7662089 | Okada et al. | Feb 2010 | B2 |
7666180 | Holsten et al. | Feb 2010 | B2 |
7674259 | Shadduck | Mar 2010 | B2 |
7713189 | Hanke | May 2010 | B2 |
7713270 | Suzuki | May 2010 | B2 |
7736374 | Vaughan et al. | Jun 2010 | B2 |
7744615 | Couture | Jun 2010 | B2 |
7758577 | Nobis et al. | Jul 2010 | B2 |
7762998 | Birk et al. | Jul 2010 | B2 |
7771416 | Spivey et al. | Aug 2010 | B2 |
7780683 | Roue et al. | Aug 2010 | B2 |
7780691 | Stefanchik | Aug 2010 | B2 |
7794409 | Damarati | Sep 2010 | B2 |
7794475 | Hess et al. | Sep 2010 | B2 |
7828186 | Wales | Nov 2010 | B2 |
7837615 | Le et al. | Nov 2010 | B2 |
7846171 | Kullas et al. | Dec 2010 | B2 |
7850660 | Uth et al. | Dec 2010 | B2 |
7857183 | Shelton, IV | Dec 2010 | B2 |
7862546 | Conlon et al. | Jan 2011 | B2 |
7867216 | Wahr et al. | Jan 2011 | B2 |
7892220 | Faller et al. | Feb 2011 | B2 |
7896887 | Rimbaugh et al. | Mar 2011 | B2 |
7909809 | Scopton et al. | Mar 2011 | B2 |
7914513 | Voorhees, Jr. | Mar 2011 | B2 |
7918869 | Saadat et al. | Apr 2011 | B2 |
7931624 | Smith et al. | Apr 2011 | B2 |
7945332 | Schechter | May 2011 | B2 |
7947000 | Vargas et al. | May 2011 | B2 |
7955298 | Carroll et al. | Jun 2011 | B2 |
7963975 | Criscuolo | Jun 2011 | B2 |
7988685 | Ziaie et al. | Aug 2011 | B2 |
8029504 | Long | Oct 2011 | B2 |
8037591 | Spivey et al. | Oct 2011 | B2 |
8075587 | Ginn | Dec 2011 | B2 |
20010049497 | Kalloo et al. | Dec 2001 | A1 |
20020022771 | Diokno et al. | Feb 2002 | A1 |
20020022857 | Goldsteen et al. | Feb 2002 | A1 |
20020023353 | Ting-Kung | Feb 2002 | A1 |
20020029055 | Bonutti | Mar 2002 | A1 |
20020042562 | Meron et al. | Apr 2002 | A1 |
20020049439 | Mulier et al. | Apr 2002 | A1 |
20020068945 | Sixto, Jr. et al. | Jun 2002 | A1 |
20020078967 | Sixto, Jr. et al. | Jun 2002 | A1 |
20020082516 | Stefanchik | Jun 2002 | A1 |
20020095164 | Andreas et al. | Jul 2002 | A1 |
20020107530 | Sauer et al. | Aug 2002 | A1 |
20020133115 | Gordon et al. | Sep 2002 | A1 |
20020138086 | Sixto, Jr. et al. | Sep 2002 | A1 |
20020147456 | Diduch et al. | Oct 2002 | A1 |
20020183591 | Matsuura et al. | Dec 2002 | A1 |
20030023255 | Miles et al. | Jan 2003 | A1 |
20030036679 | Kortenbach et al. | Feb 2003 | A1 |
20030069602 | Jacobs et al. | Apr 2003 | A1 |
20030083681 | Moutafis et al. | May 2003 | A1 |
20030114732 | Webler et al. | Jun 2003 | A1 |
20030120257 | Houston et al. | Jun 2003 | A1 |
20030124009 | Ravi et al. | Jul 2003 | A1 |
20030130564 | Martone et al. | Jul 2003 | A1 |
20030130656 | Levin | Jul 2003 | A1 |
20030158521 | Ameri | Aug 2003 | A1 |
20030167062 | Gambale et al. | Sep 2003 | A1 |
20030171651 | Page et al. | Sep 2003 | A1 |
20030176880 | Long et al. | Sep 2003 | A1 |
20030216611 | Vu | Nov 2003 | A1 |
20030216615 | Ouchi | Nov 2003 | A1 |
20030220545 | Ouchi | Nov 2003 | A1 |
20030225312 | Suzuki et al. | Dec 2003 | A1 |
20030225332 | Okada et al. | Dec 2003 | A1 |
20030229269 | Humphrey | Dec 2003 | A1 |
20030229371 | Whitworth | Dec 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040002683 | Nicholson et al. | Jan 2004 | A1 |
20040034369 | Sauer et al. | Feb 2004 | A1 |
20040098007 | Heiss | May 2004 | A1 |
20040101456 | Kuroshima et al. | May 2004 | A1 |
20040116948 | Sixto, Jr. et al. | Jun 2004 | A1 |
20040127940 | Ginn et al. | Jul 2004 | A1 |
20040133077 | Obenchain et al. | Jul 2004 | A1 |
20040133089 | Kilcoyne et al. | Jul 2004 | A1 |
20040136779 | Bhaskar | Jul 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138529 | Wiltshire et al. | Jul 2004 | A1 |
20040138587 | Lyons, IV | Jul 2004 | A1 |
20040161451 | Pierce et al. | Aug 2004 | A1 |
20040186350 | Brenneman et al. | Sep 2004 | A1 |
20040193009 | Jaffe et al. | Sep 2004 | A1 |
20040193146 | Lee et al. | Sep 2004 | A1 |
20040193186 | Kortenbach et al. | Sep 2004 | A1 |
20040193188 | Francese | Sep 2004 | A1 |
20040193189 | Kortenbach et al. | Sep 2004 | A1 |
20040193200 | Dworschak et al. | Sep 2004 | A1 |
20040199052 | Banik et al. | Oct 2004 | A1 |
20040206859 | Chong et al. | Oct 2004 | A1 |
20040210245 | Erickson et al. | Oct 2004 | A1 |
20040215058 | Zirps et al. | Oct 2004 | A1 |
20040225183 | Michlitsch et al. | Nov 2004 | A1 |
20040225186 | Horne, Jr. et al. | Nov 2004 | A1 |
20040230095 | Stefanchik et al. | Nov 2004 | A1 |
20040230096 | Stefanchik et al. | Nov 2004 | A1 |
20040230097 | Stefanchik et al. | Nov 2004 | A1 |
20040230161 | Zeiner | Nov 2004 | A1 |
20040249246 | Campos | Dec 2004 | A1 |
20040249367 | Saadat et al. | Dec 2004 | A1 |
20040249394 | Morris et al. | Dec 2004 | A1 |
20040249443 | Shanley et al. | Dec 2004 | A1 |
20050004515 | Hart et al. | Jan 2005 | A1 |
20050033265 | Engel et al. | Feb 2005 | A1 |
20050033277 | Clague et al. | Feb 2005 | A1 |
20050033319 | Gambale et al. | Feb 2005 | A1 |
20050033333 | Smith et al. | Feb 2005 | A1 |
20050043690 | Todd | Feb 2005 | A1 |
20050049616 | Rivera et al. | Mar 2005 | A1 |
20050065397 | Saadat et al. | Mar 2005 | A1 |
20050065517 | Chin | Mar 2005 | A1 |
20050070754 | Nobis et al. | Mar 2005 | A1 |
20050070763 | Nobis et al. | Mar 2005 | A1 |
20050070764 | Nobis et al. | Mar 2005 | A1 |
20050080413 | Canady | Apr 2005 | A1 |
20050085693 | Belson et al. | Apr 2005 | A1 |
20050085832 | Sancoff et al. | Apr 2005 | A1 |
20050090837 | Sixto, Jr. et al. | Apr 2005 | A1 |
20050090838 | Sixto, Jr. et al. | Apr 2005 | A1 |
20050101837 | Kalloo et al. | May 2005 | A1 |
20050101838 | Camillocci et al. | May 2005 | A1 |
20050101984 | Chanduszko et al. | May 2005 | A1 |
20050107663 | Saadat et al. | May 2005 | A1 |
20050107664 | Kalloo et al. | May 2005 | A1 |
20050110881 | Glukhovsky et al. | May 2005 | A1 |
20050113847 | Gadberry et al. | May 2005 | A1 |
20050119613 | Moenning et al. | Jun 2005 | A1 |
20050124855 | Jaffe et al. | Jun 2005 | A1 |
20050125010 | Smith et al. | Jun 2005 | A1 |
20050131279 | Boulais et al. | Jun 2005 | A1 |
20050131457 | Douglas et al. | Jun 2005 | A1 |
20050137454 | Saadat et al. | Jun 2005 | A1 |
20050143647 | Minai et al. | Jun 2005 | A1 |
20050143690 | High | Jun 2005 | A1 |
20050143774 | Polo | Jun 2005 | A1 |
20050143803 | Watson et al. | Jun 2005 | A1 |
20050148880 | Tower | Jul 2005 | A1 |
20050149087 | Ahlberg et al. | Jul 2005 | A1 |
20050149096 | Hilal et al. | Jul 2005 | A1 |
20050159648 | Freed | Jul 2005 | A1 |
20050165272 | Okada et al. | Jul 2005 | A1 |
20050165378 | Heinrich et al. | Jul 2005 | A1 |
20050165411 | Orban, III | Jul 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050182429 | Yamanouchi | Aug 2005 | A1 |
20050192478 | Williams et al. | Sep 2005 | A1 |
20050192598 | Johnson et al. | Sep 2005 | A1 |
20050192602 | Manzo | Sep 2005 | A1 |
20050192654 | Chanduszko et al. | Sep 2005 | A1 |
20050209624 | Vijay | Sep 2005 | A1 |
20050215858 | Vail, III | Sep 2005 | A1 |
20050216050 | Sepetka et al. | Sep 2005 | A1 |
20050228406 | Bose | Oct 2005 | A1 |
20050234297 | Devierre et al. | Oct 2005 | A1 |
20050250983 | Tremaglio et al. | Nov 2005 | A1 |
20050250990 | Le et al. | Nov 2005 | A1 |
20050250993 | Jaeger | Nov 2005 | A1 |
20050251166 | Vaughan et al. | Nov 2005 | A1 |
20050251176 | Swanstrom et al. | Nov 2005 | A1 |
20050261674 | Nobis et al. | Nov 2005 | A1 |
20050267492 | Poncet et al. | Dec 2005 | A1 |
20050272975 | McWeeney et al. | Dec 2005 | A1 |
20050272977 | Saadat et al. | Dec 2005 | A1 |
20050273084 | Hinman et al. | Dec 2005 | A1 |
20050277945 | Saadat et al. | Dec 2005 | A1 |
20050277951 | Smith et al. | Dec 2005 | A1 |
20050277952 | Arp et al. | Dec 2005 | A1 |
20050277954 | Smith et al. | Dec 2005 | A1 |
20050277955 | Palmer et al. | Dec 2005 | A1 |
20050277956 | Francese et al. | Dec 2005 | A1 |
20050277957 | Kuhns et al. | Dec 2005 | A1 |
20050283118 | Uth et al. | Dec 2005 | A1 |
20050283119 | Uth et al. | Dec 2005 | A1 |
20050288555 | Binmoeller | Dec 2005 | A1 |
20060004406 | Wehrstein et al. | Jan 2006 | A1 |
20060004409 | Nobis et al. | Jan 2006 | A1 |
20060004410 | Nobis et al. | Jan 2006 | A1 |
20060015009 | Jaffe et al. | Jan 2006 | A1 |
20060020167 | Sitzmann | Jan 2006 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060025654 | Suzuki et al. | Feb 2006 | A1 |
20060025781 | Young et al. | Feb 2006 | A1 |
20060025812 | Shelton, IV | Feb 2006 | A1 |
20060025819 | Nobis et al. | Feb 2006 | A1 |
20060036267 | Saadat et al. | Feb 2006 | A1 |
20060041188 | Dirusso et al. | Feb 2006 | A1 |
20060058582 | Maahs et al. | Mar 2006 | A1 |
20060058776 | Bilsbury | Mar 2006 | A1 |
20060069396 | Meade et al. | Mar 2006 | A1 |
20060069424 | Acosta et al. | Mar 2006 | A1 |
20060069425 | Hillis et al. | Mar 2006 | A1 |
20060074413 | Behzadian | Apr 2006 | A1 |
20060079890 | Guerra | Apr 2006 | A1 |
20060089528 | Tartaglia et al. | Apr 2006 | A1 |
20060095031 | Ormsby | May 2006 | A1 |
20060095060 | Mayenberger et al. | May 2006 | A1 |
20060100687 | Fahey et al. | May 2006 | A1 |
20060106423 | Weisel et al. | May 2006 | A1 |
20060111209 | Hinman et al. | May 2006 | A1 |
20060111210 | Hinman et al. | May 2006 | A1 |
20060111704 | Brenneman et al. | May 2006 | A1 |
20060129166 | Lavelle | Jun 2006 | A1 |
20060135962 | Kick et al. | Jun 2006 | A1 |
20060135971 | Swanstrom et al. | Jun 2006 | A1 |
20060135984 | Kramer et al. | Jun 2006 | A1 |
20060142644 | Mulac et al. | Jun 2006 | A1 |
20060142652 | Keenan | Jun 2006 | A1 |
20060142790 | Gertner | Jun 2006 | A1 |
20060142798 | Holman et al. | Jun 2006 | A1 |
20060149131 | Or | Jul 2006 | A1 |
20060149132 | Iddan | Jul 2006 | A1 |
20060149135 | Paz | Jul 2006 | A1 |
20060161190 | Gadberry et al. | Jul 2006 | A1 |
20060167416 | Mathis et al. | Jul 2006 | A1 |
20060167482 | Swain et al. | Jul 2006 | A1 |
20060178560 | Saadat et al. | Aug 2006 | A1 |
20060183975 | Saadat et al. | Aug 2006 | A1 |
20060184161 | Maahs et al. | Aug 2006 | A1 |
20060189844 | Tien | Aug 2006 | A1 |
20060189845 | Maahs et al. | Aug 2006 | A1 |
20060190027 | Downey | Aug 2006 | A1 |
20060195084 | Slater | Aug 2006 | A1 |
20060200005 | Bjork et al. | Sep 2006 | A1 |
20060200169 | Sniffin | Sep 2006 | A1 |
20060200170 | Aranyi | Sep 2006 | A1 |
20060200199 | Bonutti et al. | Sep 2006 | A1 |
20060217665 | Prosek | Sep 2006 | A1 |
20060217697 | Lau et al. | Sep 2006 | A1 |
20060217742 | Messerly et al. | Sep 2006 | A1 |
20060217743 | Messerly et al. | Sep 2006 | A1 |
20060229639 | Whitfield | Oct 2006 | A1 |
20060229640 | Whitfield | Oct 2006 | A1 |
20060237022 | Chen et al. | Oct 2006 | A1 |
20060237023 | Cox et al. | Oct 2006 | A1 |
20060241570 | Wilk | Oct 2006 | A1 |
20060247576 | Poncet | Nov 2006 | A1 |
20060247673 | Voegele et al. | Nov 2006 | A1 |
20060253004 | Frisch et al. | Nov 2006 | A1 |
20060253039 | McKenna et al. | Nov 2006 | A1 |
20060258907 | Stefanchik et al. | Nov 2006 | A1 |
20060258908 | Stefanchik et al. | Nov 2006 | A1 |
20060258910 | Stefanchik et al. | Nov 2006 | A1 |
20060258954 | Timberlake et al. | Nov 2006 | A1 |
20060258955 | Hoffman et al. | Nov 2006 | A1 |
20060259010 | Stefanchik et al. | Nov 2006 | A1 |
20060264752 | Rubinsky et al. | Nov 2006 | A1 |
20060264904 | Kerby et al. | Nov 2006 | A1 |
20060264930 | Nishimura | Nov 2006 | A1 |
20060270902 | Igarashi et al. | Nov 2006 | A1 |
20060271102 | Bosshard et al. | Nov 2006 | A1 |
20060276835 | Uchida | Dec 2006 | A1 |
20060281970 | Stokes et al. | Dec 2006 | A1 |
20060282106 | Cole et al. | Dec 2006 | A1 |
20060285732 | Horn et al. | Dec 2006 | A1 |
20060287644 | Inganas et al. | Dec 2006 | A1 |
20060287666 | Saadat et al. | Dec 2006 | A1 |
20060293626 | Byrum et al. | Dec 2006 | A1 |
20070002135 | Glukhovsky | Jan 2007 | A1 |
20070005019 | Okishige | Jan 2007 | A1 |
20070010801 | Chen et al. | Jan 2007 | A1 |
20070015965 | Cox et al. | Jan 2007 | A1 |
20070016255 | Korb et al. | Jan 2007 | A1 |
20070032700 | Fowler et al. | Feb 2007 | A1 |
20070032701 | Fowler et al. | Feb 2007 | A1 |
20070043261 | Watanabe et al. | Feb 2007 | A1 |
20070043345 | Davalos et al. | Feb 2007 | A1 |
20070049800 | Boulais | Mar 2007 | A1 |
20070049902 | Griffin et al. | Mar 2007 | A1 |
20070051375 | Milliman | Mar 2007 | A1 |
20070060880 | Gregorich et al. | Mar 2007 | A1 |
20070067017 | Trapp | Mar 2007 | A1 |
20070073102 | Matsuno et al. | Mar 2007 | A1 |
20070073269 | Becker | Mar 2007 | A1 |
20070079924 | Saadat et al. | Apr 2007 | A1 |
20070088370 | Kahle et al. | Apr 2007 | A1 |
20070100375 | Mikkaichi et al. | May 2007 | A1 |
20070100376 | Mikkaichi et al. | May 2007 | A1 |
20070106118 | Moriyama | May 2007 | A1 |
20070112251 | Nakhuda | May 2007 | A1 |
20070112331 | Weber et al. | May 2007 | A1 |
20070112342 | Pearson et al. | May 2007 | A1 |
20070112383 | Conlon et al. | May 2007 | A1 |
20070112384 | Conlon et al. | May 2007 | A1 |
20070112385 | Conlon | May 2007 | A1 |
20070112417 | Shanley et al. | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070123840 | Cox | May 2007 | A1 |
20070129605 | Schaaf | Jun 2007 | A1 |
20070129719 | Kendale et al. | Jun 2007 | A1 |
20070129760 | Demarais et al. | Jun 2007 | A1 |
20070135709 | Rioux et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070142706 | Matsui et al. | Jun 2007 | A1 |
20070142780 | Van Lue | Jun 2007 | A1 |
20070154460 | Kraft et al. | Jul 2007 | A1 |
20070156028 | Van Lue et al. | Jul 2007 | A1 |
20070156127 | Rioux et al. | Jul 2007 | A1 |
20070161855 | Mikkaichi et al. | Jul 2007 | A1 |
20070162101 | Burgermeister et al. | Jul 2007 | A1 |
20070173691 | Yokoi et al. | Jul 2007 | A1 |
20070173869 | Gannoe et al. | Jul 2007 | A1 |
20070173870 | Zacharias | Jul 2007 | A2 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070179525 | Frecker et al. | Aug 2007 | A1 |
20070179530 | Tieu et al. | Aug 2007 | A1 |
20070197865 | Miyake et al. | Aug 2007 | A1 |
20070198057 | Gelbart et al. | Aug 2007 | A1 |
20070203487 | Sugita | Aug 2007 | A1 |
20070208336 | Kim et al. | Sep 2007 | A1 |
20070208364 | Smith et al. | Sep 2007 | A1 |
20070213754 | Mikkaichi et al. | Sep 2007 | A1 |
20070225554 | Maseda et al. | Sep 2007 | A1 |
20070233040 | Macnamara et al. | Oct 2007 | A1 |
20070244358 | Lee | Oct 2007 | A1 |
20070250038 | Boulais | Oct 2007 | A1 |
20070250057 | Nobis et al. | Oct 2007 | A1 |
20070255096 | Stefanchik et al. | Nov 2007 | A1 |
20070255100 | Barlow et al. | Nov 2007 | A1 |
20070255273 | Fernandez et al. | Nov 2007 | A1 |
20070255303 | Bakos et al. | Nov 2007 | A1 |
20070255306 | Conlon et al. | Nov 2007 | A1 |
20070260112 | Rahmani | Nov 2007 | A1 |
20070260117 | Zwolinski et al. | Nov 2007 | A1 |
20070260121 | Bakos et al. | Nov 2007 | A1 |
20070260273 | Cropper et al. | Nov 2007 | A1 |
20070270629 | Charles | Nov 2007 | A1 |
20070270889 | Conlon et al. | Nov 2007 | A1 |
20070270895 | Nobis et al. | Nov 2007 | A1 |
20070270907 | Stokes et al. | Nov 2007 | A1 |
20070282371 | Lee et al. | Dec 2007 | A1 |
20070293727 | Goldfarb et al. | Dec 2007 | A1 |
20070299387 | Williams et al. | Dec 2007 | A1 |
20080004650 | George | Jan 2008 | A1 |
20080015409 | Barlow et al. | Jan 2008 | A1 |
20080015552 | Doyle et al. | Jan 2008 | A1 |
20080021416 | Arai et al. | Jan 2008 | A1 |
20080022927 | Zhang et al. | Jan 2008 | A1 |
20080027387 | Grabinsky | Jan 2008 | A1 |
20080033451 | Rieber et al. | Feb 2008 | A1 |
20080051629 | Sugiyama et al. | Feb 2008 | A1 |
20080051735 | Measamer et al. | Feb 2008 | A1 |
20080058586 | Karpiel | Mar 2008 | A1 |
20080065169 | Colliou et al. | Mar 2008 | A1 |
20080071264 | Azure | Mar 2008 | A1 |
20080086172 | Martin et al. | Apr 2008 | A1 |
20080097159 | Ishiguro | Apr 2008 | A1 |
20080097472 | Agmon et al. | Apr 2008 | A1 |
20080097483 | Ortiz et al. | Apr 2008 | A1 |
20080103527 | Martin et al. | May 2008 | A1 |
20080114384 | Chang et al. | May 2008 | A1 |
20080119870 | Williams | May 2008 | A1 |
20080119891 | Miles et al. | May 2008 | A1 |
20080125796 | Graham | May 2008 | A1 |
20080132892 | Lunsford et al. | Jun 2008 | A1 |
20080139882 | Fujimori | Jun 2008 | A1 |
20080147113 | Nobis et al. | Jun 2008 | A1 |
20080171907 | Long et al. | Jul 2008 | A1 |
20080177135 | Muyari et al. | Jul 2008 | A1 |
20080188868 | Weitzner et al. | Aug 2008 | A1 |
20080200755 | Bakos | Aug 2008 | A1 |
20080200762 | Stokes et al. | Aug 2008 | A1 |
20080200911 | Long | Aug 2008 | A1 |
20080200912 | Long | Aug 2008 | A1 |
20080200933 | Bakos et al. | Aug 2008 | A1 |
20080200934 | Fox | Aug 2008 | A1 |
20080208213 | Benjamin et al. | Aug 2008 | A1 |
20080221587 | Schwartz | Sep 2008 | A1 |
20080221619 | Spivey et al. | Sep 2008 | A1 |
20080228213 | Blakeney et al. | Sep 2008 | A1 |
20080230972 | Ganley | Sep 2008 | A1 |
20080234696 | Taylor et al. | Sep 2008 | A1 |
20080243106 | Coe et al. | Oct 2008 | A1 |
20080243148 | Mikkaichi et al. | Oct 2008 | A1 |
20080243176 | Weitzner et al. | Oct 2008 | A1 |
20080249567 | Kaplan | Oct 2008 | A1 |
20080262540 | Bangera et al. | Oct 2008 | A1 |
20080269782 | Stefanchik et al. | Oct 2008 | A1 |
20080269783 | Griffith | Oct 2008 | A1 |
20080275474 | Martin et al. | Nov 2008 | A1 |
20080275475 | Schwemberger et al. | Nov 2008 | A1 |
20080287737 | Dejima | Nov 2008 | A1 |
20080287983 | Smith et al. | Nov 2008 | A1 |
20080300461 | Shaw et al. | Dec 2008 | A1 |
20080300547 | Bakos | Dec 2008 | A1 |
20080309758 | Karasawa et al. | Dec 2008 | A1 |
20080312496 | Zwolinski | Dec 2008 | A1 |
20080312499 | Handa et al. | Dec 2008 | A1 |
20080312500 | Asada et al. | Dec 2008 | A1 |
20080312506 | Spivey et al. | Dec 2008 | A1 |
20080319436 | Daniel et al. | Dec 2008 | A1 |
20080319439 | Ootsubu | Dec 2008 | A1 |
20090054728 | Trusty | Feb 2009 | A1 |
20090062788 | Long et al. | Mar 2009 | A1 |
20090062792 | Vakharia et al. | Mar 2009 | A1 |
20090062795 | Vakharia et al. | Mar 2009 | A1 |
20090069634 | Larkin | Mar 2009 | A1 |
20090076499 | Azure | Mar 2009 | A1 |
20090078736 | Van Lue | Mar 2009 | A1 |
20090082776 | Cresina | Mar 2009 | A1 |
20090082779 | Nakao | Mar 2009 | A1 |
20090105654 | Kurth et al. | Apr 2009 | A1 |
20090112059 | Nobis | Apr 2009 | A1 |
20090112062 | Bakos | Apr 2009 | A1 |
20090112063 | Bakos et al. | Apr 2009 | A1 |
20090125042 | Mouw | May 2009 | A1 |
20090131751 | Spivey et al. | May 2009 | A1 |
20090131932 | Vakharia et al. | May 2009 | A1 |
20090131933 | Ghabrial et al. | May 2009 | A1 |
20090143639 | Stark | Jun 2009 | A1 |
20090143649 | Rossi | Jun 2009 | A1 |
20090143794 | Conlon et al. | Jun 2009 | A1 |
20090143818 | Faller et al. | Jun 2009 | A1 |
20090149710 | Stefanchik et al. | Jun 2009 | A1 |
20090177031 | Surti et al. | Jul 2009 | A1 |
20090177219 | Conlon | Jul 2009 | A1 |
20090182332 | Long et al. | Jul 2009 | A1 |
20090192344 | Bakos et al. | Jul 2009 | A1 |
20090192534 | Ortiz et al. | Jul 2009 | A1 |
20090198231 | Esser et al. | Aug 2009 | A1 |
20090198253 | Omori | Aug 2009 | A1 |
20090216248 | Uenohara et al. | Aug 2009 | A1 |
20090227828 | Swain et al. | Sep 2009 | A1 |
20090248055 | Spivey et al. | Oct 2009 | A1 |
20090281559 | Swain et al. | Nov 2009 | A1 |
20090287206 | Jun | Nov 2009 | A1 |
20090287236 | Bakos et al. | Nov 2009 | A1 |
20090292164 | Yamatani | Nov 2009 | A1 |
20090299135 | Spivey | Dec 2009 | A1 |
20090299143 | Conlon et al. | Dec 2009 | A1 |
20090299362 | Long et al. | Dec 2009 | A1 |
20090299385 | Stefanchik et al. | Dec 2009 | A1 |
20090299406 | Swain et al. | Dec 2009 | A1 |
20090299409 | Coe et al. | Dec 2009 | A1 |
20090306658 | Nobis et al. | Dec 2009 | A1 |
20090306683 | Zwolinski et al. | Dec 2009 | A1 |
20090322864 | Karasawa et al. | Dec 2009 | A1 |
20090326561 | Carroll, II et al. | Dec 2009 | A1 |
20100010294 | Conlon et al. | Jan 2010 | A1 |
20100010298 | Bakos et al. | Jan 2010 | A1 |
20100010299 | Bakos et al. | Jan 2010 | A1 |
20100010303 | Bakos | Jan 2010 | A1 |
20100010510 | Stefanchik | Jan 2010 | A1 |
20100010511 | Harris et al. | Jan 2010 | A1 |
20100023032 | Granja Filho | Jan 2010 | A1 |
20100036198 | Tacchino et al. | Feb 2010 | A1 |
20100042045 | Splvey | Feb 2010 | A1 |
20100048990 | Bakos | Feb 2010 | A1 |
20100049190 | Long et al. | Feb 2010 | A1 |
20100049223 | Granja Filho | Feb 2010 | A1 |
20100056861 | Spivey | Mar 2010 | A1 |
20100056862 | Bakos | Mar 2010 | A1 |
20100057085 | Holcomb et al. | Mar 2010 | A1 |
20100057108 | Spivey et al. | Mar 2010 | A1 |
20100063538 | Spivey et al. | Mar 2010 | A1 |
20100076451 | Zwolinski et al. | Mar 2010 | A1 |
20100081877 | Vakharia | Apr 2010 | A1 |
20100113872 | Asada et al. | May 2010 | A1 |
20100121362 | Clague et al. | May 2010 | A1 |
20100130817 | Conlon | May 2010 | A1 |
20100130975 | Long | May 2010 | A1 |
20100131005 | Conlon | May 2010 | A1 |
20100152539 | Ghabrial et al. | Jun 2010 | A1 |
20100152609 | Zwolinski et al. | Jun 2010 | A1 |
20100152746 | Ceniccola et al. | Jun 2010 | A1 |
20100179510 | Fox et al. | Jul 2010 | A1 |
20100179530 | Long et al. | Jul 2010 | A1 |
20100191050 | Zwolinski | Jul 2010 | A1 |
20100191267 | Fox | Jul 2010 | A1 |
20100198005 | Fox | Aug 2010 | A1 |
20100198248 | Vakharia | Aug 2010 | A1 |
20100249700 | Spivey | Sep 2010 | A1 |
20100286791 | Goldsmith | Nov 2010 | A1 |
20100298642 | Trusty et al. | Nov 2010 | A1 |
20100312056 | Galperin et al. | Dec 2010 | A1 |
20100331622 | Conlon | Dec 2010 | A2 |
20100331774 | Spivey | Dec 2010 | A2 |
20110093009 | Fox | Apr 2011 | A1 |
20110098694 | Long | Apr 2011 | A1 |
20110098704 | Long et al. | Apr 2011 | A1 |
20110105850 | Voegele et al. | May 2011 | A1 |
20110112434 | Ghabrial et al. | May 2011 | A1 |
20110115891 | Trusty | May 2011 | A1 |
20110124964 | Nobis | May 2011 | A1 |
20110152609 | Trusty et al. | Jun 2011 | A1 |
20110152610 | Trusty et al. | Jun 2011 | A1 |
20110152612 | Trusty et al. | Jun 2011 | A1 |
20110152858 | Long et al. | Jun 2011 | A1 |
20110152859 | Long et al. | Jun 2011 | A1 |
20110152878 | Trusty et al. | Jun 2011 | A1 |
20110152923 | Fox | Jun 2011 | A1 |
20110160514 | Long et al. | Jun 2011 | A1 |
20110190659 | Long et al. | Aug 2011 | A1 |
20110190764 | Long et al. | Aug 2011 | A1 |
20110245619 | Holcomb | Oct 2011 | A1 |
20110306971 | Long | Dec 2011 | A1 |
20120004502 | Weitzner et al. | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
666310 | Feb 1996 | AU |
3008120 | Sep 1980 | DE |
4323585 | Jan 1995 | DE |
19713797 | Oct 1997 | DE |
19757056 | Aug 2008 | DE |
102006027873 | Oct 2009 | DE |
0086338 | Aug 1983 | EP |
0286415 | Oct 1988 | EP |
0589454 | Mar 1994 | EP |
0464479 | Mar 1995 | EP |
0529675 | Feb 1996 | EP |
0724863 | Jul 1999 | EP |
0760629 | Nov 1999 | EP |
0818974 | Jul 2001 | EP |
1281356 | Feb 2003 | EP |
0947166 | May 2003 | EP |
0836832 | Dec 2003 | EP |
1402837 | Mar 2004 | EP |
0744918 | Apr 2004 | EP |
0931515 | Aug 2004 | EP |
0941128 | Oct 2004 | EP |
1411843 | Oct 2004 | EP |
1150614 | Nov 2004 | EP |
1477104 | Nov 2004 | EP |
1481642 | Dec 2004 | EP |
1493391 | Jan 2005 | EP |
0848598 | Feb 2005 | EP |
1281360 | Mar 2005 | EP |
1568330 | Aug 2005 | EP |
1452143 | Sep 2005 | EP |
1616527 | Jan 2006 | EP |
1006888 | Mar 2006 | EP |
1629764 | Mar 2006 | EP |
1013229 | Jun 2006 | EP |
1721561 | Nov 2006 | EP |
1153578 | Mar 2007 | EP |
1334696 | Mar 2007 | EP |
1769766 | Apr 2007 | EP |
1836971 | Sep 2007 | EP |
1836980 | Sep 2007 | EP |
1854421 | Nov 2007 | EP |
1857061 | Nov 2007 | EP |
1875876 | Jan 2008 | EP |
1891881 | Feb 2008 | EP |
1902663 | Mar 2008 | EP |
1477106 | Jun 2008 | EP |
1949844 | Jul 2008 | EP |
1518499 | Aug 2008 | EP |
1709918 | Oct 2008 | EP |
1985226 | Oct 2008 | EP |
1994904 | Nov 2008 | EP |
1707130 | Dec 2008 | EP |
0723462 | Mar 2009 | EP |
1769749 | Nov 2009 | EP |
1493397 | Sep 2011 | EP |
2731610 | Sep 1996 | FR |
330629 | Jun 1930 | GB |
2335860 | Oct 1999 | GB |
2403909 | Jan 2005 | GB |
2421190 | Jun 2006 | GB |
2443261 | Apr 2008 | GB |
56-46674 | Apr 1981 | JP |
63309252 | Dec 1988 | JP |
4038960 | Feb 1992 | JP |
8-29699 | Feb 1996 | JP |
2000245683 | Sep 2000 | JP |
2002-369791 | Dec 2002 | JP |
2003-088494 | Mar 2003 | JP |
2003-235852 | Aug 2003 | JP |
2004-33525 | Feb 2004 | JP |
2004-065745 | Mar 2004 | JP |
2005-121947 | May 2005 | JP |
2005-261514 | Sep 2005 | JP |
2006297005 | Nov 2006 | JP |
1021295 | Feb 2004 | NL |
194230 | May 1967 | SU |
980703 | Dec 1982 | SU |
WO 8401707 | May 1984 | WO |
WO 9213494 | Aug 1992 | WO |
WO 9310850 | Jun 1993 | WO |
WO 9320760 | Oct 1993 | WO |
WO 9320765 | Oct 1993 | WO |
WO 9509666 | Apr 1995 | WO |
WO 9622056 | Jul 1996 | WO |
WO 9627331 | Sep 1996 | WO |
WO 9639946 | Dec 1996 | WO |
WO 9712557 | Apr 1997 | WO |
WO 9801080 | Jan 1998 | WO |
WO 9900060 | Jan 1999 | WO |
WO 9909919 | Mar 1999 | WO |
WO 9917661 | Apr 1999 | WO |
WO 9930622 | Jun 1999 | WO |
WO 0035358 | Jun 2000 | WO |
WO 0110319 | Feb 2001 | WO |
WO 0126708 | Apr 2001 | WO |
WO 0141627 | Jun 2001 | WO |
WO 0158360 | Aug 2001 | WO |
WO 0211621 | Feb 2002 | WO |
WO 0234122 | May 2002 | WO |
WO 02094082 | Nov 2002 | WO |
WO 03045260 | Jun 2003 | WO |
WO 03047684 | Jun 2003 | WO |
WO 03059412 | Jul 2003 | WO |
WO 03078721 | Sep 2003 | WO |
WO 03081761 | Oct 2003 | WO |
WO 03082129 | Oct 2003 | WO |
WO 2004006789 | Jan 2004 | WO |
WO 2004028613 | Apr 2004 | WO |
WO 2004037123 | May 2004 | WO |
WO 2004037149 | May 2004 | WO |
WO 2004052221 | Jun 2004 | WO |
WO 2004086984 | Oct 2004 | WO |
WO 2005009211 | Feb 2005 | WO |
WO 2005018467 | Mar 2005 | WO |
WO 2005037088 | Apr 2005 | WO |
WO 2005048827 | Jun 2005 | WO |
WO 2005065284 | Jul 2005 | WO |
WO 2005097019 | Oct 2005 | WO |
WO 2005097234 | Oct 2005 | WO |
WO 2005112810 | Dec 2005 | WO |
WO 2005120363 | Dec 2005 | WO |
WO 2006007399 | Jan 2006 | WO |
WO 2006012630 | Feb 2006 | WO |
WO 2006040109 | Apr 2006 | WO |
WO 2006041881 | Apr 2006 | WO |
WO 2006060405 | Jun 2006 | WO |
WO 2006110733 | Oct 2006 | WO |
WO 2006113216 | Oct 2006 | WO |
WO 2007013059 | Feb 2007 | WO |
WO 2007014063 | Feb 2007 | WO |
WO 2007048085 | Apr 2007 | WO |
WO 2007063550 | Jun 2007 | WO |
WO 2007100067 | Sep 2007 | WO |
WO 2007109171 | Sep 2007 | WO |
WO 2008005433 | Jan 2008 | WO |
WO 2008033356 | Mar 2008 | WO |
WO 2008041225 | Apr 2008 | WO |
WO 2008076337 | Jun 2008 | WO |
WO 2008076800 | Jun 2008 | WO |
WO 2008079440 | Jul 2008 | WO |
WO 2008101075 | Aug 2008 | WO |
WO 2008102154 | Aug 2008 | WO |
WO 2008108863 | Sep 2008 | WO |
WO 2008151237 | Dec 2008 | WO |
WO 2009021030 | Feb 2009 | WO |
WO 2009027065 | Mar 2009 | WO |
WO 2009029065 | Mar 2009 | WO |
WO 2009032623 | Mar 2009 | WO |
WO 2009121017 | Oct 2009 | WO |
WO 2010027688 | Mar 2010 | WO |
WO 2010080974 | Jul 2010 | WO |
WO 2010088481 | Aug 2010 | WO |
Entry |
---|
Michael S. Kavic, M.D., “Natural Orifice Translumenal Endoscopic Surgery: “NOTES””, JSLS, vol. 10, pp. 133-134 (2006). |
Ethicon, Inc., “Wound Closure Manual: Chapter 3 (The Surgical Needle),” 15 pages, (publication date unknown). |
Guido M. Sclabas, M.D., et al., “Endoluminal Methods for Gastrotomy Closure in Natural Orifice TransEnteric Surgery (NOTES),” Surgical Innovation, vol. 13, No. 1, pp. 23-30, Mar. 2006. |
Fritscher-Ravens, et al., “Transgastric Gastropexy and Hiatal Hernia Repair for GERD Under EUS Control: a Porcine Model,” Gastrointestinal Endoscopy, vol. 59, No. 1, pp. 89-95, 2004. |
Ogando, “Prototype Tools That Go With the Flow,” Design News, 2 pages, Jul. 17, 2006. |
Edd, et al., “In Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation,” IEEE Trans Biomed Eng, vol. 53, pp. 1409-1415, 2006. |
Kennedy, et al., “High-Burst-Strength, Feedback-Controlled Bipolar Vessel Sealing,” Surgical Endoscopy, vol. 12, pp. 876-878 (1998). |
Collins et al., “Local Gene Therapy of Solid Tumors with GM-CSF and B7-1 Eradicates Both Treated and Distal Tumors,” Cancer Gene Therapy, vol. 13, pp. 1061-1071 (2006). |
K. Sumiyama et al., “Transesophageal Mediastinoscopy by Submucosal Endoscopy With Mucosal Flap Safety Value Technique,” Gastrointest Endosc., Apr. 2007, vol. 65(4), pp. 679-683 (Abstract). |
K. Sumiyama et al., “Submucosal Endoscopy with Mucosal Flap Safety Valve,” Gastrointest Endosc. Apr. 2007, vol. 65(4) pp. 694-695 (Abstract). |
K. Sumiyama et al., “Transgastric Cholecystectomy: Transgastric Accessibility to the Gallbladder Improved with the SEMF Method and a Novel Multibending Therapeutic Endoscope,” Gastrointest Endosc., Jun. 2007, vol. 65(7), pp. 1028-1034 (Abstract). |
K. Sumiyama et al., “Endoscopic Caps,” Tech. Gastrointest. Endosc., vol. 8, pp. 28-32, 2006. |
“Z-Offset Technique Used in the Introduction of Trocar During Laparoscopic Surgery,” M.S. Hershey NOTES Presentation to EES NOTES Development Team, Sep. 27, 2007. |
F.N. Denans, Nouveau Procede Pour La Guerison Des Plaies Des Intestines. Extrait Des Seances De La Societe Royale De Medecine De Marseille, Pendant Le Mois De Dec. 1825, et le Premier Tremestre De 1826, Séance Du Feb. 24, 1826. Recueil De La Societe Royale De Medecin De Marseille. Marseille: Impr. D'Achard, 1826; 1:127-31. (with English translation). |
I. Fraser, “An Historical Perspective on Mechanical Aids in Intestinal Anastamosis,” Surg. Gynecol. Obstet. (Oct. 1982), vol. 155, pp. 566-574. |
M.E. Ryan et al., “Endoscopic Intervention for Biliary Leaks After Laparoscopic Cholecystectomy: A Multicenter Review,” Gastrointest. Endosc., vol. 47(3), 1998, pp. 261-266. |
C. Cope, “Creation of Compression Gastroenterostomy by Means of the Oral, Percutaneous, or Surgical Introduction of Magnets: Feasibility Study in Swine,” J. Vasc Interv Radiol, (1995), vol. 6(4), pp. 539-545. |
J.W. Hazey et al., “Natural Orifice Transgastric Endoscopic Peritoneoscopy in Humans: Initial Clinical Trial,” Surg Endosc, (Jan. 2008), vol. 22(1), pp. 16-20. |
N. Chopita et al., “Endoscopic Gastroenteric Anastamosis Using Magnets,” Endoscopy, (2005), vol. 37(4), pp. 313-317. |
C. Cope et al., “Long Term Patency of Experimental Magnetic Compression Gastroenteric Anastomoses Achieved with Covered Stents,” Gastrointest Endosc, (2001), vol. 53, pp. 780-784. |
H. Okajima et al., “Magnet Compression Anastamosis for Bile Duct Stenosis After Duct to Duct Biliary Reconstruction in Living Donor Liver Transplantation,” Liver Transplantation (2005), pp. 473-475. |
A. Fritscher-Ravens et al., “Transluminal Endosurgery: Single Lumen Access Anastamotic Device for Flexible Endoscopy,” Gastrointestinal Endosc, (2003), vol. 58(4), pp. 585-591. |
G.A. Hallenbeck, M.D. et al., “An Instrument for Colorectal Anastomosis Without Sutrues,” Dis Col Rectum, (1963), vol. 5, pp. 98-101. |
T. Hardy, Jr., M.D. et al., “A Biofragmentable Ring for Sutureless Bowel Anastomosis. An Experimental Study,” Dis Col Rectum, (1985), vol. 28, pp. 484-490. |
P. O'Neill, M.D. et al., “Nonsuture Intestinal Anastomosis,” Am J. Surg, (1962), vol. 104, pp. 761-767. |
C.P. Swain, M.D. et al., “Anastomosis at Flexible Endoscopy: An Experimental Study of Compression Button Gastrojejunostomy,” Gastrointest Endosc, (1991), vol. 37, pp. 628-632. |
J.B. Murphy, M.D., “Cholecysto-Intestinal, Gastro-Intestinal, Entero-Intestinal Anastomosis, and Approximation Without Sutures (original research),” Med Rec, (Dec. 10, 1892), vol. 42(24), pp. 665-676. |
USGI® EndoSurgical Operating System—g-Prox® Tissue Grasper/Approximation Device; [online] URL: http://www.usgimedical.com/eos/components-gprox.htm—accessed May 30, 2008 (2 pages). |
Printout of web page—http://www.vacumed.com/zcom/product/Product.do?compid=27&prodid=852, #51XX Low-Cost Permanent Tubes 2MM ID, Smooth Interior Walls, VacuMed, Ventura, California, Accessed Jul. 24, 2007. |
Endoscopic Retrograde Cholangiopancreatogram (ERCP); [online] URL: http://www.webmd.com/digestive-disorders/endoscopic-retrograde-cholangiopancreatogram-ercp.htm; last updated: Apr. 30, 2007; accessed: Feb. 21, 2008 (6 pages). |
ERCP; Jackson Siegelbaum Gastroenterology; [online] URL: http://www.gicare.com/pated/epdgs20.htm; accessed Feb. 21, 2008 (3 pages). |
D.G. Fong et al., “Transcolonic Ventral Wall Hernia Mesh Fixation in a Porcine Model,” Endoscopy 2007; 39: 865-869. |
B. Rubinsky, Ph.D., “Irreversible Electroporation in Medicine,” Technology in Cancer Research and Treatment, vol. 6, No. 4, Aug. 2007, pp. 255-259. |
D.B. Nelson, MD et al., “Endoscopic Hemostatic Devices,” Gastrointestinal Endoscopy, vol. 54, No. 6, 2001, pp. 833-840. |
CRE™ Pulmonary Balloon Dilator; [online] URL: http://www.bostonscientific.com/Device.bsci?page=HCP—Overview&navRe1Id=1000.1003&method=D . . . , accessed Jul. 18, 2008 (4 pages). |
U.S. Appl. No. 11/894,358, filed Aug. 21, 2007. |
U.S. Appl. No. 11/968,810, filed Jan. 3, 2008. |
U.S. Appl. No. 11/981,070, filed Oct. 31, 2007. |
U.S. Appl. No. 11/981,078, filed Oct. 31, 2007. |
U.S. Appl. No. 11/981,134, filed Oct. 31, 2007. |
U.S. Appl. No. 11/986,084, filed Nov. 20, 2007. |
U.S. Appl. No. 11/986,420, filed Nov. 21, 2007. |
U.S. Appl. No. 11/986,489, filed Nov. 21, 2007. |
U.S. Appl. No. 11/998,370, filed Nov. 29, 2007. |
U.S. Appl. No. 12/014,417, filed Jan. 5, 2008. |
U.S. Appl. No. 12/019,461, filed Jan. 24, 2008. |
U.S. Appl. No. 12/045,318, filed Mar. 10, 2008. |
U.S. Appl. No. 12/115,916, filed May 6, 2008. |
U.S. Appl. No. 12/122,031, filed May 16, 2008. |
U.S. Appl. No. 12/129,784, filed May 30, 2008. |
U.S. Appl. No. 12/129,880, filed May 30, 2008. |
U.S. Appl. No. 12/130,010, filed May 30, 2008. |
U.S. Appl. No. 12/130,023, filed May 30, 2008. |
U.S. Appl. No. 12/130,224, filed May 30, 2008. |
U.S. Appl. No. 12/130,652, filed May 30, 2008. |
U.S. Appl. No. 12/133,109, filed Jun. 4, 2008. |
U.S. Appl. No. 12/133,953, filed Jun. 5, 2008. |
U.S. Appl. No. 12/163,255, filed Jun. 27, 2008. |
U.S. Appl. No. 12/169,868, filed Jul. 9, 2008. |
U.S. Appl. No. 12/170,862, filed Jul. 10, 2008. |
U.S. Appl. No. 12/172,752, filed Jul. 14, 2008. |
U.S. Appl. No. 12/172,766, filed Jul. 14, 2008. |
U.S. Appl. No. 12/172,782, filed Jul. 14, 2008. |
U.S. Appl. No. 12/192,372, filed Aug. 15, 2008. |
U.S. Appl. No. 12/203,330, filed Sep. 3, 2008. |
U.S. Appl. No. 12/197,749, filed Aug. 25, 2008. |
U.S. Appl. No. 12/197,653, filed Aug. 25, 2008. |
U.S. Appl. No. 12/202,740, filed Sep. 2, 2008. |
U.S. Appl. No. 12/203,458, filed Sep. 3, 2008. |
U.S. Appl. No. 12/201,812, filed Aug. 29, 2008. |
U.S. Appl. No. 12/207,306, filed Sep. 9, 2008. |
U.S. Appl. No. 12/243,334, filed Oct. 1, 2008. |
U.S. Appl. No. 12/234,425, filed Sep. 19, 2008. |
U.S. Appl. No. 12/060,601, filed Apr. 1, 2008. |
U.S. Appl. No. 11/952,475, filed Dec. 7, 2007. |
U.S. Appl. No. 12/277,975, filed Nov. 25, 2008. |
U.S. Appl. No. 12/277,957, filed Nov. 25, 2008. |
U.S. Appl. No. 12/332,938, filed Dec. 11, 2008. |
U.S. Appl. No. 12/337,340, filed Dec. 17, 2008. |
U.S. Appl. No. 12/352,451, filed Jan. 12, 2009. |
U.S. Appl. No. 12/359,824, filed Jan. 26, 2009. |
U.S. Appl. No. 12/352,375, filed Jan. 12, 2009. |
U.S. Appl. No. 12/359,053, filed Jan. 23, 2009. |
U.S. Appl. No. 12/362,826, filed Jan. 30, 2009. |
U.S. Appl. No. 12/364,172, filed Feb. 2, 2009. |
U.S. Appl. No. 12/364,256, filed Feb. 2, 2009. |
U.S. Appl. No. 12/413,479, filed Mar. 27, 2009. |
International Search Report and Written Opinion for PCT/US2010/022177, May 11, 2010 (14 pages). |
International Preliminary Report on Patentability for PCT/US2010/022177, Aug. 2, 2011 (7 pages). |
J.D. Paulson, M.D., et al., “Development of Flexible Culdoscopy,” The Journal of the American Association of Gynecologic Laparoscopists, Nov. 1999, vol. 6, No. 4, pp. 487-490. |
H. Seifert, et al., “Retroperitoneal Endoscopic Debridement for Infected Peripancreatic Necrosis,” The Lancet, Research Letters, vol. 356, Aug. 19, 2000, pp. 653-655. |
K.E. Mönkemüller, M.D., et al., “Transmural Drainage of Pancreatic Fluid Collections Without Electrocautery Using the Seldinger Technique,” Gastrointestinal Endoscopy, vol. 48, No. 2, 1998, pp. 195-200, (Received Oct. 3, 1997; Accepted Mar. 31, 1998). |
D. Wilhelm et al., “An Innovative, Safe and Sterile Sigmoid Access (ISSA) for NOTES,” Endoscopy 2007, vol. 39, pp. 401-406. |
Nakazawa et al., “Radiofrequency Ablation of Hepatocellular Carcinoma: Correlation Between Local Tumor Progression After Ablation and Ablative Margin,” AJR, 188, pp. 480-488 (Feb. 2007). |
Miklav{hacek over (c)}i{hacek over (c)} et al., “A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy,” Biochimica et Biophysica Acta, 1523, pp. 73-83 (2000). |
Evans, “Ablative and cathether-delivered therapies for colorectal liver metastases (CRLM),” EJSO, 33, pp. S64-S75 (2007). |
Wong et al., “Combined Percutaneous Radiofrequency Ablation and Ethanol Injection for Hepatocellular Carcinoma in High-Risk Locations,” AJR, 190, pp. W187-W195 (2008). |
Heller et al., “Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo,” Gene Therapy, 7, pp. 826-829 (2000). |
Widera et al., “Increased DNA Vaccine Delivery and Immunogenicity by Electroporation in Vivo,” The Journal of Immunology, 164, pp. 4635-4640 (2000). |
Weaver et al., “Theory of electroporation: A review,” Bioelectrochemistry and Bioenergetics, 41, pp. 135-160 (1996). |
Mulier et al., “Radiofrequency Ablation Versus Resection for Resectable Colorectal Liver Metastases: Time for a Randomized Trial?” Annals of Surgical Oncology, 15(1), pp. 144-157 (2008). |
Link et al., “Regional Chemotherapy of Nonresectable Colorectal Liver Metastases with Mitoxanthrone, 5-Fluorouracil, Folinic Acid, and Mitomycin C May Prolong Survival,” Cancer, 92, pp. 2746-2753 (2001). |
Guyton et al., “Membrane Potentials and Action Potentials,” W.B. Sanders, ed. Textbook of Medical Physiology, p. 56 (2000). |
Guyton et al., “Contraction of Skeletal Muscle,” Textbook of Medical Physiology, pp. 82-84 (2000). |
“Ethicon Endo-Surgery Novel Investigational Notes and SSL Devices Featured in 15 Presentations at Sages,” Apr. 22, 2009 Press Release; URL http://www.jnj.com/connect/news/a11/20090422—152000; accessed Aug. 28, 2009 (3 pages). |
“Ethicon Endo-Surgery Studies Presented At DDW Demonstrate Potential of Pure Notes Surgery With Company's Toolbox,” Jun. 3, 2009 Press Release; URL http://www.jnj.com/connect/news/product/20090603—120000; accessed Aug. 28, 2009 (3 pages). |
Castellvi et al., “Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using a Magnetically Anchored Camera and Novel Instrumentation,” Abstract submitted along with Poster at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page). |
Castellvi et al., “Hybrid Transvaginal Notes Sleeve Gastrectomy in a Porcine Model Using a Magnetically Anchored Camera and Novel Instrumentation,” Poster submitted along with Abstract at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page). |
OCTO Port Modular Laparoscopy System for Single Incision Access, Jan. 4, 2010; URL http://www.medgadget.com/archives/2010/01/octo—port—modular—laparo . . . ; accessed Jan. 5, 2010 (4 pages). |
Hakko Retractors, obtained Aug. 25, 2009 (5 pages). |
Zadno et al., “Linear Superelasticity in Cold-Worked NI-TI,” Engineering Aspects of Shape Memory Alloys, pp. 414-419 (1990). |
U.S. Appl. No. 13/218,221, filed Aug. 25, 2011. |
How Stuff Works “How Smart Structures Will Work,” http://science.howstuffworks.com/engineering/structural/smart-structure1.htm; accessed online Nov. 1, 2011 (3 pages). |
Instant Armor: Science Videos—Science News—ScienCentral; http://www.sciencentral.com/articles./view.php3?article—id=218392121; accessed online Nov. 1, 2011 (2 pages). |
Stanway, Smart Fluids: Current and Future Developments. Material Science and Technology, 20, pp. 931-939, 2004; accessed online Nov. 1, 2011 at http://www.dynamics.group.shef.ac.uk/smart/smart.html (7 pages). |
Jolly et al., Properties and Applications of Commercial Magnetorheological Fluids. SPIE 5th Annual Int. Symposium on Smart Structures and Materials, 1998 (18 pages). |
U.S. Appl. No. 13/013,131, filed Jan. 25, 2011. |
U.S. Appl. No. 13/013,147, filed Jan. 25, 2011. |
U.S. Appl. No. 12/900,132, filed Oct. 7, 2010. |
U.S. Appl. No. 12/939,441, filed Nov. 4, 2010. |
U.S. Appl. No. 12/902,531, filed Oct. 12, 2010. |
U.S. Appl. No. 12/902,550, filed Oct. 12, 2010. |
U.S. Appl. No. 13/036,895, filed Feb. 28, 2011. |
U.S. Appl. No. 13/036,908, filed Feb. 28, 2011. |
U.S. Appl. No. 13/267,251, filed Oct. 6, 2011. |
U.S. Appl. No. 13/325,791, filed Dec. 14, 2011. |
U.S. Appl. No. 13/352,495, filed Jan. 18, 2012. |
U.S. Appl. No. 13/399,358, filed Feb. 17, 2012. |
U.S. Appl. No. 13/420,805, filed Mar. 15, 2012. |
U.S. Appl. No. 13/420,818, filed Mar. 15, 2012. |
U.S. Appl. No. 13/425,103, filed Mar. 20, 2012. |
Number | Date | Country | |
---|---|---|---|
20100198149 A1 | Aug 2010 | US |