The present invention relates to a surgical device. More specifically, the present invention relates to a linear clamping, cutting and stapling device for clamping, cutting and stapling tissue.
One type of surgical device is a linear clamping, cutting and stapling device. Such a device may be employed in a surgical procedure to resect a cancerous or anomalous tissue from a gastrointestinal tract. One conventional linear clamping, cutting and stapling instrument is shown in
In addition to the scissoring device, the distal portion also includes a stapling mechanism. The fixed gripping element of the scissoring mechanism includes a staple cartridge receiving region and a mechanism for driving the staples up through the clamped end of the tissue against the anvil portion, thereby sealing the previously opened end. The scissoring elements may be integrally formed with the shaft or may be detachable such that various scissoring and stapling elements may be interchangeable.
One problem with the foregoing surgical devices, and in particular with the foregoing linear clamping, cutting and stapling devices such as that illustrated in
In accordance with one example embodiment of the present invention, a surgical device is provided that includes a first jaw having a distal end and a second jaw having a distal end. The second jaw is disposed in opposed correspondence with the first jaw. The first jaw is pivotably coupled to the second jaw. The surgical device also includes a biasing element that biases the distal end of the first jaw towards the distal end of the second jaw. The biasing element may include a spring coupling the proximal end of the first jaw and the proximal end of the second jaw.
The device may also include a first driver disposed in the second jaw and coupled to the first jaw. The first driver is configured to cause separation of the first jaw and the second jaw when the first driver is actuated for opening the jaws and to close the first jaw and the second jaw when the first driver is actuated for closing the jaws. The device may also include at least one of a cutting element and a stapling element disposed within the second jaw, preferably a blade rotatably mounted on a wedge. A second driver is configured to move the cutting element and/or the stapling element proximally from a distal end toward the proximal end of the second jaw to at least one of cut and staple a section of tissue disposed between the first and second jaws.
By biasing the distal ends of the first and second jaws towards each other, the surgical device may, in accordance with one example embodiment of the present invention, prevent a section of tissue which is disposed between the first and second jaws from escaping out from between the distal ends of the first and second jaws.
a) to 3(d) are side views of a linear clamping, cutting and stapling attachment, at various stages of its operation, according to one example embodiment of the present invention;
a) to 4(c) are side views of a linear clamping, cutting and stapling attachment, at various stages of its operation, according to another example embodiment of the present invention;
a) is a side view of a linear clamping, cutting and stapling attachment according to another example embodiment of the present invention;
b) is a partial top view of the linear clamping, cutting and stapling attachment illustrated in
a) is an exploded view of a replaceable staple cartridge for use in the linear clamping, cutting and stapling attachment illustrated in
b) is a cross-sectional view of the linear clamping, cutting and stapling attachment taken along the line 6-6 shown in
One example embodiment of a surgical device according to the present invention is schematically illustrated in
In addition, the first jaw 50 and the second jaw 80 are coupled to each other at a location between their respective distal ends 50a, 80a and proximal ends 50b, 80b by an externally threaded rod 90. In the example embodiment of the present invention illustrated in
The first jaw 50 includes a clamping surface 108 that has a distal end 108a and a proximal end 108b. Similarly, the second jaw 80 includes a clamping surface 106 that has a distal end 106a and a proximal end 106b. The second jaw 80 also includes a cutting and stapling element 104, which may form at least part of the clamping surface 106 of the second jaw 80. As explained in greater detail below, the cutting and stapling element 104 is configured to cut and staple a section of tissue when the first jaw 50 and the second jaw 80 are in the fully closed position illustrated in
a) illustrates the surgical device 11a in a fully open position, wherein the first jaw 50 and the second jaw 80 are fully separated. In the fully open position, the externally-threaded rod 90 of the first driver 88 is in a fully extended position relative to the second jaw 80. The upper slot surface 86a of the slot 86 contacts the pin 84 of the second jaw 80. Thus, the distal end 50a of the first jaw 50 is at a maximum distance from the distal end 80a of the second jaw 80, and the proximal end 50b of the first jaw 50 is at a maximum distance from the proximal end 80b of the second jaw 80.
When the first driver 88 is driven in a first direction, the surgical device 11a is moved into a first partially closed position, as illustrated in
Upon further engagement of the first driver 88, the surgical device 11a is moved into a second partially closed position, as illustrated in
Upon still further engagement of the first driver 88, the surgical device 11a is moved into a fully closed position, as illustrated in
a) to 4(c) are side views of a linear clamping, cutting and stapling attachment according to another example embodiment of the present invention. Specifically,
a) to 14 illustrate various views of a linear clamping, cutting and stapling attachment, according to another example embodiment of the present invention. Specifically,
a) is an exploded view of a replaceable staple cartridge 600, that is configured to be employed in the example embodiment of the present invention illustrated in
The replaceable staple cartridge 600 also includes a wedge 603 having an internally threaded bore 603a. The externally threaded region 605b of the wedge driver 605 is configured to extend through the internally threaded bore 603a of the wedge 603. The threads of the internally threaded bore 603a of the wedge 603 match the threads of the externally threaded region 605b of the wedge driver 605. As is discussed further below, upon rotation of the wedge driver 605, the wedge 603 is moved between the distal end 604c of the staple tray 604 and the proximal end 604d of the staple tray 604 through a central channel 604e.
The staple tray 604 also includes a plurality of vertically-disposed slots 604f in opposing walls 604g of the central channel 604e. On each side of the central channel 604e, a staple pusher 607 is configured to be slideably disposed within the slots 604f. More specifically, each of the staple pushers 607 has a top surface 607a running longitudinally between two rows 607b of staple pushing fingers 607c. The staple pushing fingers 607c are configured such that each staple pushing finger 607c in the row 607b that abuts the wall 604g of the staple tray 604 is retained within a corresponding slot 604f of the wall 604g so as to be vertically slideable therein. The staple pushing fingers 607c are positioned over slots 604h in the staple tray 604. The slots 604h in the staple tray 604 house a plurality of fasteners, e.g., staples 606. Each of the staples 606 includes a butt 606a and a pair of prongs 606b.
The wedge 603 also includes a pair of sloped edges 603b that slideably engage respective top surfaces 607a of the staple pushers 607. When the wedge 603 is moved from the distal end 604c to the proximal end 604d of the staple tray 604 through the central channel 604e, the pair of sloped edges 603b of the wedge 603 is configured to slideably engage the respective top surfaces 607a of the staple pushers 607 in order to successively push the staple pushing fingers 607c of the staple pushers 607 into, and thus the staples 606 out of, the slots 604h in the staple tray 604. A cartridge top 611 is configured to fit over the central channel 604a of the staple tray 604, while a staple retainer 610 is configured to cover the clamping surface 106 of the staple tray 604.
b) is a cross-sectional view of the linear clamping, cutting and stapling attachment taken along the line 6-6 shown in
As illustrated in
As illustrated in
In the position labeled A, the wedge 603 and the blade 51 are positioned at the distal end 604c of the staple tray 604. In the position labeled A, the wedge 603 and the blade 51 are housed within a housing 615 and the blade 51 is rotated relative to the wedge 603 so as to be in a retracted position, e.g., the cutting edge 51a facing upwards and is not exposed. The contact face 653 initially faces the proximal end 604d of the staple tray 604.
In operation, the second driver 98 causes the wedge 603 and the blade 51 to advance to the position labeled B, via, for example, rotation of the wedge driver 605. In the position labeled B, the wedge 603 and the blade 51 are positioned proximally relative to the distal end 604c of the staple tray 604. Specifically, in the position labeled B, the wedge 603 and the blade 51 are positioned such that the contact face 653 of the blade 51 begins to contact an actuating lip of the housing 615. As the contact face 653 of the blade 51 begins to contact the actuating lip of the housing 615, the blade 51 begins to rotate relative to the wedge 603.
Further operation of the second driver 98 causes the wedge 603 and the blade 51 to advance to the position labeled C. In the position labeled C, the wedge 603 and the blade 51 are positioned still further proximally relative to the distal end 604c of the staple tray 604. Specifically, in the position labeled C, the wedge 603 and the blade 51 are positioned such that the contact face 653 of the blade 51 has fully contacted the actuating lip of the housing 615. When the contact face 653 of the blade 51 has fully contacted the actuating lip of the housing 615, the blade 51 is fully rotated relative to the wedge 603 such that the cutting edge 51a of the blade 51 is in an extended position, e.g., the cutting edge 51a faces the proximal end 604d of the staple tray 604.
Further operation of the second driver 98 causes the wedge 603 and the blade 51 to advance to the position labeled D. In the position labeled D, the wedge 603 and the blade 51 are positioned approximately at the midpoint between the distal end 604c and the proximal end 604d of the staple tray 604. In the position labeled D, the blade 51 is maintained in the extended position having the cutting edge 51a facing the proximal end 604d of the staple tray 604 so as to cut a section of tissue (not shown) that is clamped between the first jaw 50 and the second jaw 80.
Further operation of the second driver 98 causes the wedge 603 and the blade 51 to advance to the position labeled E. In the position labeled E, the wedge 603 and the blade 51 are positioned at the proximal end 604d of the staple tray 604. In the position labeled E, the blade 51 is still maintained in the extended position with the cutting edge 51a facing the proximal end 604d of the staple tray 604. Here, however, the blade 51 is enclosed within a housing 616 so that the cutting edge 51a is not exposed.
As illustrated in
The surgical device 11 also includes a biasing element 82 that biases the proximal end 50b of the first jaw 50 apart from the proximal end 80b of the second jaw 80, and a stop member that limits the distance that the proximal end 50b of the first jaw 50 can be separated from the proximal end 80b of the second jaw 80. In the example embodiment of the present invention illustrated in
Similar to the embodiment discussed above with respect to
b) illustrates a bevel gear driver 620 that also forms a part of the first driver 88. The bevel gear driver 620 has a bevel gear 621 at one end that is rotatably seated within a bevel bearing 622. The bevel bearing 622 is non-rotatably seated within an orifice of a housing plate 623 that is vertically and fixedly disposed within the surgical device 11. The plurality of gear teeth 617b of the bevel gear nut 617 engage a corresponding plurality of gear teeth 621a of the bevel gear 621. The bevel gear driver 620 also includes a first longitudinal region 620b and a second longitudinal region 620c. The second longitudinal region 620b of the bevel gear driver 620 extends through an orifice in a housing plate 624 that is vertically and fixedly disposed within the surgical device 11.
In this embodiment, a gear cluster 625 also forms a part of the first driver. The gear cluster 625 has an interior central bore 626 through which the bevel gear driver 620 extends. The gear cluster 625 has several longitudinally disposed regions. A first region 625a of the gear cluster 625 has a smooth cylindrical outer surface with a circular cross-section. In addition, the first region 625a of the gear cluster 625 has a radially disposed bore 6251 through which is disposed a pin 6252. The pin 6252 extends through the bore 6251 of the first region 625a of the gear cluster 625 and into a corresponding radially disposed bore 6201 in the first longitudinal region 620b of the bevel gear driver 620 in order to non-rotatably couple the gear cluster 625 to the bevel gear driver 620. A second region 625b of the gear cluster 625 defines a spur gear 627 having a plurality of circumferentially-disposed spur gear teeth 6271. A third region 625c of the gear cluster 625 also defines a spur gear 628 having a plurality of circumferentially-disposed spur gear teeth 6281. A fourth region 625d of the gear cluster 625 also defines a spur gear 629 having a plurality of circumferentially-disposed spur gear teeth 6291.
Additionally, in this example embodiment, the first driver further includes a gear cluster 630. The gear cluster 630 has an interior central bore 630a through which a gear pin 631 extends. The gear pin 631 has a distal end 631a that is rotatably housed within an orifice 632a of a vertically-disposed housing plate 632 of a gearbox 6000 fixedly mounted within the surgical device 11, and a proximal end 631b that rotatably extends through an orifice 635a in a verticaly-disposed housing plate 635 of the gearbox 6000. The gear cluster 630 has several longitudinally disposed regions. A first region 630b of the gear cluster 630 defines a spur gear 633 having a plurality of circumferentially-disposed spur gear teeth 6331. A second region 630c of the gear cluster 630 also defines a spur gear 634 having a plurality of circumferentially-disposed spur gear teeth 6341. The surgical device 11 is configured such that the spur gear teeth 6331 of the spur gear 633 of the gear cluster 630 engage the spur gear teeth 6271 of the spur gear 627 of the gear cluster 625. Simultaneously, the spur gear teeth 6341 of the spur gear 634 of the gear cluster 630 engage the spur gear teeth 6281 of the spur gear 628 of the gear cluster 625.
The surgical device 11 also includes a keyplate assembly 710 that is connected to the proximal end of the surgical device 11. The keyplate 710 includes an internally threaded bore 710a that is aligned with an internally threaded bore 711a of a housing wall 711 of the gearbox 6000 of the surgical device 11. An externally threaded screw 712, the threads of which mate with the threads of internally threaded bores 710a and 711a, extends through the keyplate assembly 710 and the housing wall 711 so as to fixedly connect the keyplate assembly 710 to the housing wall 711. The keyplate assembly 710 also includes a quick connect sleeve 713 that has quick connect slots 713a that engage complementary quick connect elements 1664 of a flexible drive shaft 1620, which is described in further detail below. In order to retain the quick connect elements 1664 of the flexible drive shaft 1620 in the quick connect slots 713a of the quick connect sleeve 713, the keyplate assembly 710 also includes a keyplate spring 714.
Additional features of the keyplate assembly 710 are illustrated in
According to one example embodiment of the present invention, the surgical device 11 may be configured as an attachment to, or may be integral with, an electro-mechanical surgical system, such as electro-mechanical driver system 1610. In another embodiment, the surgical device 11 may be configured as an attachment to, or may integral with, a purely mechanical device driver system, such as that illustrated in
Referring to
The first rotatable drive shaft 94 and the second rotatable drive shaft 102 may be configured, for example, as highly flexible drive shafts, such as, for example, braided or helical drive cables. It should be understood that such highly flexible drive cables may have limited torque transmission characteristics and capabilities. It should also be understood that the surgical device 11, or other attachments connected to the flexible shaft 1620, may require a higher torque input than the torque transmittable by the drive shafts 94, 102. The drive shafts 94, 102 may thus be configured to transmit low torque but high speed, the high-speed/low-torque being converted to low-speed/high-torque by gearing arrangements disposed, for example, at the distal end and/or the proximal end of the drive flexible shaft 1620, in the surgical instrument or attachment and/or in the remote power console 1612. It should be appreciated that such gearing arrangement(s) may be provided at any suitable location along the power train between the motors disposed in the housing 1614 and the attached surgical instrument or other attachment connected to the flexible shaft 1620. Such gearing arrangement(s) may include, for example, a spur gear arrangement, a planetary gear arrangement, a harmonic gear arrangement, cycloidal drive arrangement, an epicyclic gear arrangement, etc.
Referring now to
One of the connectors 1644, 1648, 1652, 1656 is non-rotatably secured to the first drive shaft 94, and another one of the connectors 1644, 1648, 1652, 1656 is non-rotatably secured to the second drive shaft 102. The remaining two of the connectors 1644, 1648, 1652, 1656 engage with transmission elements configured to apply tensile forces on the steering cables 1634, 1635, 1636, 1637 to thereby steer the distal end 1624 of the flexible shaft 1620. The data transfer cable 1638 is electrically and logically connected with data connector 1660. The data connector 1660 includes, for example, electrical contacts 1662, corresponding to and equal in number to the number of individual wires contained in the data cable 1638. The first coupling 1622 includes a key structure 1642 configured to properly orient the first coupling 1622 to a mating and complementary coupling arrangement disposed on the housing 1612. The key structure 1642 may be provided on either one, or both, of the first coupling 1622 and the mating and complementary coupling arrangement disposed on the housing 1612. The first coupling 1622 may include a quick-connect type connector, which may engage the first coupling 1622 to the housing 1612 by a simple pushing motion. Seals may be provided in conjunction with any of the several connectors 1644, 1648, 1652, 1656, 1660 to provide a fluid-tight seal between the interior of first coupling 1622 and the environment.
Referring now to
Disposed within the housing 1614 of the remote power console 1612 are electro-mechanical driver elements configured to drive the drive shafts 94, 102 and the steering cables 1634, 1635, 1636, 1637 to thereby operate the electro-mechanical driver component 1610 and the surgical device 11 attached to the second coupling 1626. In the example embodiment illustrated schematically in
It should be appreciated that any one or more of the motors 96, 100, 1684, 1690, 1696 may be, for example, a high-speed/low-torque motor, a low-speed/high-torque motor, etc. As indicated above, the first rotatable drive shaft 94 and the second rotatable drive shaft 102 may be configured to transmit high speed and low torque. Thus, the first motor 96 and the second motor 100 may be configured as high-speed/low-torque motors. Alternatively, the first motor 96 and the second motor 100 may be configured as low-speed/high-torque motors with a torque-reducing/speed-increasing gear arrangement disposed between the first motor 96 and the second motor 100 and a respective one of the first rotatable drive shaft 94 and the second rotatable drive shaft 102. Such torque-reducing/speed-increasing gear arrangements may include, for example, a spur gear arrangement, a planetary gear arrangement, a harmonic gear arrangement, cycloidal drive arrangement, an epicyclic gear arrangement, etc. It should be appreciated that any such gear arrangement may be disposed within the remote power console 1612 or in the proximal end of the flexible shaft 1620, such as, for example, in the first coupling 1622. It should be appreciated that the gear arrangement(s) may be provided at the distal and/or proximal ends of the first rotatable drive shaft 94 and/or the second rotatable drive shaft 102 to prevent windup and breakage thereof.
Referring now to
The controller 1122 is further connected to the front panel 1615 of the housing 1614 and, more particularly, to the display device 1616 via a line 1154 and the indicators 1618a, 1618b via respective lines 1156, 1158. The lines 1116, 1118, 1124, 1126, 1128 electrically and logically connect controller 1122 to first, second, third, fourth and fifth motors 96, 100, 1684, 1690, 1696, respectively. A wired remote control unit (“RCU”) 1150 is electrically and logically connected to the controller 1122 via a line 1152. A wireless RCU 1148 is also provided and communicates via a wireless link 1160 with a receiving/sending unit 1146 connected via a line 1144 to a transceiver 1140. The transceiver 1140 is electrically and logically connected to the controller 1122 via a line 1142. The wireless link 1160 may be, for example, an optical link, such as an infrared link, a radio link or any other form of wireless communication link.
A switch device 1186, which may include, for example, an array of DIP switches, may be connected to the controller 1122 via a line 1188. The switch device 1186 may be configured, for example, to select one of a plurality of languages used in displaying messages and prompts on the display device 1616. The messages and prompts may relate to, for example, the operation and/or the status of the electro-mechanical driver component 1610 and/or to the surgical device 11 attached thereto.
According to the example embodiment of the present invention, a first encoder 1106 is provided within the second coupling 1626 and is configured to output a signal in response to and in accordance with the rotation of the first drive shaft 94. A second encoder 1108 is also provided within the second coupling 626 and is configured to output a signal in response to and in accordance with the rotation of the second drive shaft 102. The signal output by each of the encoders 1106, 1108 may represent the rotational position of the respective drive shaft 94, 102 as well as the rotational direction thereof. Such encoders 1106, 1108 may include, for example, Hall-effect devices, optical devices, etc. Although the encoders 1106, 1108 are described as being disposed within the second coupling 1626, it should be appreciated that the encoders 1106, 1108 may be provided at any location between the motor system and the surgical device 11. It should be appreciated that providing the encoders 1106, 1108 within the second coupling 1626 or at the distal end of the flexible shaft 1620 may provide an accurate determination of the drive shaft rotation. If the encoders 1106, 1108 are disposed at the proximal end of the flexible shaft 1620, windup of the first and second rotatable drive shafts 94, 102 may result in measurement error.
For example, the advancement distance of the first jaw 50 relative to the second jaw 80 and of the wedge 603 may be functions of, and ascertainable on the basis of, the rotation of the respective drive shafts 94, 102. By ascertaining an absolute position of the first jaw 50 and the wedge 603 at a point in time, the relative displacement of the first jaw 50 and the wedge 603, based on the output signal from the encoders 1106, 1108 and the known pitches of the externally threaded rod 90 and of the wedge driver 605, may be used to ascertain the absolute position of the first jaw 50 and the wedge 603 at all times thereafter. The absolute position of the first jaw 50 and the wedge 603 may be fixed and ascertained at the time that the surgical device 11 is first coupled to the flexible shaft 1620. Alternatively, the position of the first jaw 50 and the wedge 603 relative to, for example, the second jaw 80 may be determined based on the output signal from the encoders 1106, 1108.
As discussed above in connection with
It should be appreciated that the attachment attachable to the distal end 1624 of the flexible shaft 1620, e.g., surgical device 11, may be designed and configured to be used a single time or multiple times. The attachment may also be designed and configured to be used a predetermined number of times. Accordingly, the usage data 1184 may be used to determine whether the surgical device 11 has been used and whether the number of uses has exceeded the maximum number of permitted uses. As more fully described below, an attempt to use the attachment after the maximum number of permitted uses has been reached will generate an ERROR condition.
Referring again to
Referring now to
The wireless RCU 1148 further includes a steering engage/disengage switch 1312, the operation of which controls the operation of fifth motor 696 to selectively engage and disengage the steering mechanism. The wireless RCU 1148 also includes a two-way rocker 1314 having first and second switches 1316, 1318 operable thereby. The operation of these switches 1316, 1318 controls certain functions of the electro-mechanical driver component 1610 and any surgical instrument or attachment, such as the surgical device 11, attached to the flexible shaft 1620 in accordance with the operating program or algorithm corresponding to the attached device. For example, operation of the two-way rocker 1314 may control the opening and closing of the first jaw 50 and the second jaw 80 of the surgical device 11. The wireless RCU 1148 is provided with yet another switch 1320, the operation of which may further control the operation of the electro-mechanical driver component 1610 and the device attached to the flexible shaft 1620 in accordance with the operating program or algorithm corresponding to the attached device. For example, operation of the switch 1320 may initiate the advancement of the wedge 603 of the surgical device 11.
The wireless RCU 1148 includes a controller 1322, which is electrically and logically connected with the switches 1302, 1304, 1306, 1308 via line 1324, with the switches 1316, 1318 via line 1326, with switch 1312 via line 1328 and with switch 1320 via line 1330. The wireless RCU 1148 may include indicators 1618a′, 1618b′, corresponding to the indicators 1618a, 1618b of front panel 1615, and a display device 1616′, corresponding to the display device 1616 of the front panel 1615. If provided, the indicators 1618a′, 1618b′ are electrically and logically connected to controller 1322 via respective lines 1332, 1334, and the display device 1616′ is electrically and logically connected to controller 1322 via line 1336. The controller 1322 is electrically and logically connected to a transceiver 1338 via line 1340, and the transceiver 1338 is electrically and logically connected to a receiver/transmitter 1342 via line 1344. A power supply, for example, a battery, may be provided in wireless RCU 1148 to power the same. Thus, the wireless RCU 1148 may be used to control the operation of the electro-mechanical driver component 1610 and the device 11 attached to the flexible shaft 1620 via wireless link 1160.
The wireless RCU 1148 may include a switch 1346 connected to a controller 1322 via line 1348. Operation of the switch 1346 transmits a data signal to the transmitter/receiver 1146 via wireless link 1160. The data signal includes identification data uniquely identifying the wireless RCU 1148. This identification data is used by the controller 1122 to prevent unauthorized operation of the electro-mechanical driver component 1610 and to prevent interference with the operation of the electro-mechanical driver component 610 by another wireless RCU. Each subsequent communication between the wireless RCU 1148 and the electro-mechanical device surgical 610 may include the identification data. Thus, the controller 1122 may discriminate between wireless RCUs and thereby allow only a single, identifiable wireless RCU 1148 to control the operation of the electro-mechanical driver component 1610 and the surgical device 11 attached to the flexible shaft 1620.
Based on the positions of the components of the surgical device attached to the flexible shaft 1620, as determined in accordance with the output signals from the encoders 1106, 1108, the controller 1122 may selectively enable or disable the functions of the electro-mechanical driver component 1610 as defined by the operating program or algorithm corresponding to the attached device. For example, for the surgical device 11, the firing function controlled by the operation of the switch 1320 may be disabled unless the space or gap between the first jaw 50 and the second jaw 80 is determined to be within an acceptable range.
Referring now to
As described hereinabove, the front panel 1615 of the housing 1614 includes the display device 1616 and the indicators 1618a, 1618b. The display device 1616 may include an alpha-numeric display device, such as an LCD display device. The display device 1616 may also include an audio output device, such as a speaker, a buzzer, etc. The display device 1616 is operated and controlled by controller 1122 in accordance with the operating program or algorithm corresponding to the device attached to the flexible shaft 1620, e.g., the surgical device 11. If no surgical instrument or attachment is so attached, a default operating program or algorithm may be read by or selected by or transmitted to controller 1122 to thereby control the operation of the display device 1616 as well as the other aspects and functions of the electro-mechanical driver component 1610. If the surgical device 11 is attached to the flexible shaft 1620, the display device 1616 may display, for example, data indicative of the gap between the first jaw 50 and the second jaw 80 as determined in accordance with the output signal of encoders 1106, 1108, as more fully described hereinabove.
Similarly, the indicators 1618a, 1618b are operated and controlled by the controller 1122 in accordance with the operating program or algorithm corresponding to the device attached to the flexible shaft 1620, e.g., the surgical device 11. The indicator 1618a and/or the indicator 1618b may include an audio output device, such as a speaker, a buzzer, etc., and/or a visual indicator device, such as an LED, a lamp, a light, etc. If the surgical device 11 is attached to the flexible shaft 1620, the indicator 1618a may indicate, for example, that the electro-mechanical driver component 1610 is in a power ON state, and the indicator 618b may, for example, indicate whether the gap between the first jaw 50 and the second jaw 80 is determined to be within the acceptable range. It should be appreciated that although two indicators 1618a, 1618b are described, any number of additional indicators may be provided as necessary. Additionally, it should be appreciated that although a single display device 1616 is described, any number of additional display devices may be provided as necessary.
The display device 1616′ and the indicators 1618a′, 1618b′ of wired RCU 1150 and the display device 1616″ and indicators 1618a″, 1618b″ of the wireless RCU 1148 are similarly operated and controlled by respective controller 1322, 1322′ in accordance with the operating program or algorithm of the device attached to the flexible shaft 1620.
As previously mentioned, the surgical device 11 may be employed to clamp, cut and staple a section of tissue. The operation of the surgical device 11 will now be described in connection with the removal of a cancerous or anomalous section of tissue in a patient's bowel, which is, of course, merely one type of tissue and one type of surgery that may be performed using the surgical device 11. Generally, in operation, after cancerous or anomalous section of tissue has been located in the gastrointestinal tract, the surgical device 11, which may initially be maintained in a closed position such as the position illustrated in
According to the example embodiment of the present invention, the surgical device 11 is coupled to the second coupling 1626 of the electro-mechanical driver component 1610 such that the first drive socket 654 engages the first drive shaft 94 of the electro-mechanical driver component 1610 and the second drive socket 694 engages the second drive shaft 102 of the electro-mechanical driver component 1610. Thus, rotation of the first driver 88 is effected by rotation of the first drive socket 654 which is effected by rotation of the first drive shaft 94 of the electro-mechanical driver component 1610. Clockwise or counter-clockwise rotation is achieved depending on the direction of the first motor 96. Similarly, rotation of the second driver 98 is effected by rotation of the second drive socket 694 which is effected by rotation of the second drive shaft 102 of the electro-mechanical driver component 1610. Again, clockwise or counter-clockwise rotation is achieved depending on the direction of the motor 100.
Once the surgical device 11 is inserted into the body of a patient, the first motor 96 corresponding to the first drive shaft 94 is activated, which engages the first drive socket 654 at the proximal end of the clamp shaft assembly 650, thereby causing the clamp shaft assembly 650 to turn in a first, e.g., clockwise, rotation direction. Since the spur gear teeth 6531 of the spur gear 653 of the clamp shaft assembly 650 are engaged with the spur gear teeth 6441 of the spur gear 644 of the gear cluster 640, the rotation of the clamp shaft assembly 650 causes the gear cluster 640 to rotate in a first direction, e.g., counter-clockwise, that is opposite to the direction of rotation of the clamp shaft assembly 650. Simultaneously, since the spur gear teeth 6431 of the spur gear 643 of the gear cluster 640 is engaged with the spur gear teeth 6291 of the spur gear 629 of the gear cluster 630, the rotation of the gear cluster 640 causes the gear cluster 630 to rotate in a first direction, e.g., clockwise, that is opposite to the direction of rotation of the clamp shaft assembly 640. At the same time, since the spur gear teeth 6331 of the spur gear 633 of the gear cluster 630 engage the spur gear teeth 6271 of the spur gear 627 of the gear cluster 625, and since the spur gear teeth 6341 of the spur gear 634 of the gear cluster 630 engage the spur gear teeth 6281 of the spur gear 628 of the gear cluster 625, the rotation of the gear cluster 630 causes the gear cluster 625 to rotate in a first direction, e.g., counter-clockwise, that is opposite to the direction of rotation of the clamp shaft assembly 630. The rotation of the gear cluster 625 causes the bevel gear 621, which, like the gear cluster 625 is also mounted on the bevel gear driver 620, to rotate in a first direction, e.g., counter-clockwise, that is the same as the direction of rotation of the gear cluster 625. Since the beveled gear teeth 621a of the bevel gear 621 are engaged with the beveled gear teeth 617b of the bevel gear nut 617, the rotation of the bevel gear 621 causes the bevel gear nut 617 to rotate within the bevel bearing 622 in a first, e.g., clockwise when viewed from the top, direction. The threads of the internally-threaded bore 617a of the bevel gear nut 617 engage the threads of the externally-threaded rod 90, such that rotation of the bevel gear nut 617 causes the externally-threaded rod 90, which does not rotate about its axis, to move in a downward direction, e.g., such that the stopper 90c at the upper end 90b of the externally threaded rod 90 moves away from the surface 8010 of the second jaw 80. Since the externally threaded rod 90 is coupled at its lower end 90a by a pin 92 to the first jaw 50, the first jaw 50 is thereby caused to separate from the second jaw 80. Continuous operation of the first motor 96 in this manner eventually places the surgical device 11 in a fully open position, e.g., whereby the externally-threaded rod 90 is in a fully extended position relative to the second jaw 80 and whereby the second end 707b of the stop member 707 is biased by the spring 705 so as to contact the cylindrical housing wall 708. In this fully open position, a space is provided between the first jaw 50 and the second jaw 80, as illustrated in
A section of the tissue is then placed between the first jaw 50 and the second jaw 80. Thereafter, the first motor 96 is operated in reverse such that the first drive shaft 94 engages the first drive socket 654 in order to cause the clamp shaft assembly 650 to turn in a second, e.g., counter-clockwise, rotation direction. The rotation of the clamp shaft assembly 650 causes the gear cluster 640 to rotate in a second direction, e.g., clockwise, which in turn causes the gear cluster 630 to rotate in a second direction, e.g., counter-clockwise. This rotation of the gear cluster 630 causes the gear cluster 625 to rotate in a second direction, e.g., clockwise, which in turn causes the bevel gear 621 to rotate in a second direction, e.g., clockwise. This rotation of the bevel gear 621 causes the bevel gear nut 617 to rotate within the bevel bearing 622 in a second, e.g., counter-clockwise when viewed from the top, direction, thereby causing the externally-threaded rod 90 to move in an upward direction and causing the first jaw 50 to move toward the second jaw 80. As the externally-threaded rod 90 is gradually retracted to a fully retracted position, e.g., the point at which the stopper 90c of the externally threaded rod 90 contacts the top surface of the second jaw 80, the surgical device 11 is gradually moved first into the partially closed position illustrated in
Next, the operator determines that it is safe and/or appropriate to begin the cutting and stapling procedure. To begin the stapling and cutting procedure, the second motor 100 of the electro-mechanical driver component 1610 corresponding to the second drive shaft 102 is activated, which engages the second drive socket 694 at a proximal end of the fire shaft assembly 690, thereby causing the fire shaft assembly 690 to turn in a first, e.g., clockwise, rotation direction. Since the spur gear teeth 6911 of the spur gear 691 of the fire shaft assembly 690 are engaged with the spur gear teeth 6811 of the spur gear 681 of the counter shaft assembly 680, this rotation of the first shaft assembly 690 causes rotation of the counter shaft assembly 680 in a direction that is opposite, e.g., counter-clockwise, to the direction of rotation of the fire shaft assembly 690. Since the female, hexagonally-shaped coupling 682 of the counter shaft assembly 680 is non-rotatably coupled to the male, hexagonally-shaped coupling 671 of the counter shaft assembly 670, rotation of the counter shaft assembly 680 in this direction, e.g., counter-clockwise, causes the counter shaft assembly 670 to rotate in the same direction, e.g., counter-clockwise, as the counter shaft assembly 680. Since the spur gear teeth 6721 of the spur gear 672 of the counter shaft assembly 670 are engaged with the spur gear teeth 6621 of the spur gear 662 of the shuttle idler gear 660, this rotation of the counter shaft assembly 670 causes rotation of the shuttle idler gear 660 in a direction that is opposite, e.g., clockwise, to the direction of rotation of the counter shaft assembly 670. Furthermore, since the spur gear teeth 6621 of the spur gear 662 of the shuttle idler gear 660 are engaged with the spur gear teeth 6051 of the spur gear 605d at the proximal end of the wedge driver 605 of the replaceable staple cartridge 600, this rotation of the shuttle idler gear 660 causes rotation of the wedge driver 605 in a direction that is opposite, e.g., counter-clockwise, to the direction of rotation of the shuttle idler gear 660. Preferably, and as illustrated in the example embodiment discussed herein, when the replaceable staple cartridge 600 is initially inserted in the second jaw 80 of the surgical device 11, the wedge 603 and the blade 51 associated therewith are positioned at the distal end 604c of the staple tray 604. Since the threads of the internally threaded bore 603a of the wedge 603 are engaged with the threads of the externally threaded region 605b of the wedge driver 605, this rotation of the wedge driver 605 causes the wedge 603 to move from the distal end 604c toward the proximal end 604d of the staple tray 604 through the central channel 604e of the staple tray 604. Continuous operation of the second motor 100 in this manner will move the wedge 603 fully through the central channel 604e. As previously discussed in connection with
Having cut and stapled the section of tissue, the surgical device 11 may be removed from the patient's body, again through a cannula. According to one embodiment of the present invention, the wedge 603 and the blade 51 may then be returned to their original position at the distal end 604c of the staple tray 604. Alternatively, the staple cartridge 600 is removed from the second jaw 80 without first retracting the wedge 603 and the blade 51, in order that a new staple cartridge 600 be loaded into the second jaw or that the surgical device 11 may be separated from the flexible drive shaft 1620 to be replaced by a new surgical device 11, as desired. In the former described embodiment, e.g., whereby the wedge 603 and the blade 51 are returned to their original position at the distal end 604c of the staple tray 604, the second motor 100 of the electro-mechanical driver component 1610 is engaged in reverse such that the second drive shaft 102, via the second drive socket 694, causes the fire shaft assembly 690 to turn in a second, e.g., counterclockwise, rotation direction. This rotation of the first shaft assembly 690 causes rotation of the counter shaft assembly 680 in a second direction, e.g., clockwise, which in turn causes the counter shaft assembly 670 to rotate in the same direction, e.g., clockwise. This rotation of the counter shaft assembly 670 causes rotation of the shuttle idler gear 660 in a second direction, e.g., counter-clockwise, which in turn causes rotation of the wedge driver 605 in a second direction, e.g., clockwise. This rotation of the wedge driver 605 causes the wedge 603 to move from the proximal end 604d toward the distal end 604c of the staple tray 604 through the central channel 604e of the staple tray 604. Continuous operation of the second motor 100 in this manner will move the wedge 603 fully through the central channel 604e and back to the distal end 604c of the staple tray 604.
When the surgical device 11 is removed from the patient's body, the first driver 88 may again be engaged, according to some example embodiments of the present invention, to drive the first jaw 50 of the surgical device 11 into the open position relative to the second jaw 80, enabling the spent replaceable staple cartridge 600 to be removed from the second jaw 80 of the surgical device 11 and a new replaceable staple cartridge 600 to be inserted into the second jaw 80. These steps, e.g., inserting the surgical device 11 into the body of the patient, opening the first and second jaws, clamping the first and second jaws onto a section of tissue, cutting and stapling the section of tissue, returning the wedge and the blade to their initial positions and removing the surgical device 11 from the patient's body, are then repeated on the other side of the cancerous tissue, thereby transecting the cancerous section of tissue, which is stapled on both ends to prevent spilling of bowel material into the abdomen.
The reloadability of the surgical device 11, as described above, permits the operator to perform useful steps during the operation of the surgical device 11. For example, once the surgical device 11 is initially placed in the open position, the staple cartridge 600 may be accessed by the operator and may be inspected to determine whether the staples 606 are ready for the procedure and/or whether the need exists to replace the staple cartridge 600 with a more suitable staple cartridge 600. Similarly, once a clamping, cutting and stapling operation has been performed and the set of staples 606 has been used, the staple cartridge 600 may be accessed by the operator again in order to replace the staple cartridge 600 with another staple cartridge 600 or to insert another set of staples 606 into the same staple cartridge 600. Advantageously, the replaceable staple cartridge 600 is removable when the upper jaw 80 and the lower jaw 50 are in the open position, so as to prevent the staple cartridge 600 from being inadvertently removed when the upper jaw 80 and the lower jaw 50 are clamped onto a section of tissue to be cut and stapled.
According to an alternative embodiment of the present invention, the surgical device 11 is non-reloadable, e.g., the staple cartridge 600 is not removable from the second jaw 80 by an operator. Thus, after the surgical device 11 has been actuated once to staple a section of tissue using the staples 606 in the staple cartridge 600, the surgical device 11 cannot be actuated again to staple another section of tissue using a new set of staples 606 or a new staple cartridge 600. By configuring the surgical device 11 so as to be non-reloadable, the risk of contamination or infection is reduced, since the surgical device 11 may not be intentionally or unintentionally used on two different patients and may not be re-used on a single patient. Once a first surgical device 11 has been used, the first surgical device 11 may be separated from the electro-mechanical driver component 1610 and replaced with a second surgical device 11 so that the same clamping, cutting and stapling procedure may be performed on a different section of the tissue, e.g., on the opposite side of the anomalous or cancerous tissue. Once the second end of the bowel is also clamped, cut and stapled, the second surgical device 11 may be separated from the electro-mechanical driver component 1610, and the operator may discard the devices. In an alternative example embodiment, the staple cartridge 600 is configured such that, when a first set of staples 606 in the staple cartridge 600 has been used, the operator may replace the staples 606 in the same staple cartridge 600 and reuse the same staple cartridge 600.
In accordance with still another example embodiment of the present invention, the surgical device 11 may provide limited reloadability, whereby, for example, the surgical device 11 is configured to permit the staple cartridge 600 to be replaced once, so that the clamping, cutting and stapling operation may be performed twice on a single patient, e.g., on opposite sides of a cancerous section of tissue, but does not permit the staple cartridge 600 to be replaced more than twice. In still another example embodiment of the present invention, the surgical device 11 is configured to maintain within the staple cartridge 600 two sets of staples 606, a first set of which is used on one side of a cancerous section of tissue and a second set of which is used on the other side of the cancerous section of tissue. It should be understood that the surgical device 11 may be configured for any predetermined number of uses and that usage may be determined in accordance with the usage data 1184.
According to an alternative example embodiments of the present invention, the surgical device 11 may be configured to provide more than one range of operation. This feature may provide the advantage that sections of tissue having different thicknesses may be more appropriately accommodated by the surgical device 11. For example, according to one example embodiment of the invention, the surgical device 11 may be configured to vary the distance between the first jaw 50 and the second jaw 80 when the surgical device 11 is in the closed position, or to vary the distance that the wedge 603 is moved in the second jaw 80 in order for the wedge 603 to reach a fully extended position. According to one example embodiment, the surgical device 11 may be reloadable so as to use two or more different sizes of staple cartridge, e.g., staple cartridges that have different thicknesses or that house staples 606 having different lengths. In this embodiment, an operator may select to employ one of two or more different staple cartridges 600 having different size staples 606 disposed therein. Accordingly, the memory module 6401 may include data that is readable by the controller 1122 in order that the controller 1122 may recognize the staple cartridge 600 as being of a particular size. The controller 1122 may then vary the number of turns of the first drive shaft 94 during operation so that the distance between the first jaw 50 and the second jaw 80 when the surgical device 11 is moved into the closed position corresponds to the thickness of the tissue to be cut and stapled. Similarly, the controller 1122 may then vary the number of turns of the second drive shaft 102 during operation so that the position of the wedge 603 and the blade 51 when moved into the extended position corresponds to the thickness of the tissue to be cut and stapled. In accordance with another example embodiment of the invention, different sizes of a non-reloadable surgical device 11 may be used, wherein each size of the non-reloadable surgical device 11 corresponds to a different thickness of tissue to be cut and stapled. In this embodiment, the memory module 6401 of the surgical device 11 may include data readable by the controller 1122 in order that the controller 1122 may recognize the surgical device 11 as corresponding to a particular thickness of tissue to be cut and stapled. In still another example embodiment of the invention, the controller 1122 is configured to provide more than one range of operation by enabling an operator to select settings that correspond to different thicknesses of tissue to be cut or stapled. For example, according to one example embodiment, the controller 1122 is configured to actuate the first drive shaft 94 to close first jaw 50 to a first position relative to the second jaw 80 in order to clamp a section of tissue disposed therebetween. The operator may then select whether to actuate the second drive shaft 102 in order to cut and staple the tissue, or whether to actuate the first drive shaft 94 again in order to close the first jaw 50 to a second position relative to the second jaw 80. This embodiment may provide the advantage that an operator is not required to pre-select a particular size of the surgical device 11, or to pre-select a replaceable cartridge for the surgical device 11, before the section of tissue to be cut and stapled has been exposed and its thickness determined. This may prevent an operator from pre-selecting a wrong size or from needing to keep an inventory of more than one size available for use.
As previously mentioned, one problem of conventional cutting and stapling devices is that the opposing jaws of the mechanism do not adequately prevent a section of tissue clamped therebetween from escaping out from between the distal ends of the jaws during the operation of the device. This follows because the scissor-type gripping elements of conventional clamping, cutting and stapling devices, such as the device illustrated in
In contrast, and as previously described in detail in connection with
Thus, the several aforementioned objects and advantages of the present invention are most effectively attained. Those skilled in the art will appreciate that numerous modifications of the exemplary embodiment described hereinabove may be made without departing from the spirit and scope of the invention. Although a single exemplary embodiment of the present invention has been described and disclosed in detail herein, it should be understood that this invention is in no sense limited thereby.
The present application expressly incorporates herein by reference each of the following in its entirety: U.S. Patent Application Ser. No. 60/388,644, filed on Jun. 14, 2002; U.S. patent application Ser. No. 09/999,546, filed on Nov. 30, 2001; U.S. patent application Ser. No. 09/887,789, filed on Jun. 22, 2001; U.S. patent application Ser. No. 09/836,781, filed on Apr. 17, 2001; U.S. patent application Ser. No. 09/723,715, filed on Nov. 28, 2000; U.S. patent application Ser. No. 09/324,451, filed on Jun. 2, 1999; U.S. patent application Ser. No. 09/324,452, filed on Jun. 2, 1999; U.S. patent application Ser. No. 09/351,534, filed on Jul. 12, 1999 and issued as U.S. Pat. No. 6,264,087 on Jul. 24, 2001; U.S. patent application Ser. No. 09/510,923, filed on Feb. 22, 2000; and U.S. patent application Ser. No. 09/510,927, filed on Feb. 22, 2000.
Number | Name | Date | Kind |
---|---|---|---|
1798902 | Raney | Mar 1931 | A |
1881250 | Tomlinson | Oct 1932 | A |
1881706 | Larsen | Oct 1932 | A |
2031682 | Wappler et al. | Feb 1936 | A |
2174219 | Balma | Sep 1939 | A |
2226789 | Tupy | Dec 1940 | A |
2229800 | Dean | Jan 1941 | A |
2246647 | Vancura | Jun 1941 | A |
2355086 | Lang | Aug 1944 | A |
2419045 | Whittaker | Apr 1947 | A |
2725628 | O'Neilly et al. | Dec 1955 | A |
3017637 | Sampson | Jan 1962 | A |
3079606 | Bobrov et al. | Mar 1963 | A |
3120845 | Horner | Feb 1964 | A |
3193165 | Akhalaya et al. | Jul 1965 | A |
3252643 | Strekopytov et al. | May 1966 | A |
3253643 | Gudheim | May 1966 | A |
3256875 | Tsepelev et al. | Jun 1966 | A |
3269631 | Takaro | Aug 1966 | A |
3275211 | Hirsch et al. | Sep 1966 | A |
3315863 | O'Dea | Apr 1967 | A |
3317105 | Astafiev et al. | May 1967 | A |
3388847 | Kasulin et al. | Jun 1968 | A |
3490576 | Alessi et al. | Jan 1970 | A |
3490675 | Green et al. | Jan 1970 | A |
3494533 | Green et al. | Feb 1970 | A |
3499591 | Green | Mar 1970 | A |
3552626 | Astafiev et al. | Jan 1971 | A |
3568659 | Karengis | Mar 1971 | A |
3589589 | Akopov | Jun 1971 | A |
3593903 | Astafiev, et al. | Jul 1971 | A |
3618842 | Bryan | Nov 1971 | A |
3638652 | Kelley | Feb 1972 | A |
3643851 | Green | Feb 1972 | A |
3662939 | Bryan | May 1972 | A |
3675688 | Bryan et al. | Jul 1972 | A |
3692224 | Astafiev et al. | Sep 1972 | A |
3717294 | Green | Feb 1973 | A |
3735762 | Bryan et al. | May 1973 | A |
3777538 | Weatherly et al. | Dec 1973 | A |
3788303 | Hall | Jan 1974 | A |
3795034 | Strekopytov et al. | Mar 1974 | A |
3815476 | Green et al. | Jun 1974 | A |
3819100 | Noiles et al. | Jun 1974 | A |
3837555 | Green | Sep 1974 | A |
3844289 | Noiles et al. | Oct 1974 | A |
3858577 | Bass et al. | Jan 1975 | A |
3859986 | Okada et al. | Jan 1975 | A |
3879104 | Shugarman et al. | Apr 1975 | A |
3882854 | Hulka et al. | May 1975 | A |
3892228 | Mitsui | Jul 1975 | A |
3902614 | Roberts et al. | Sep 1975 | A |
3935981 | Akopov et al. | Feb 1976 | A |
3949924 | Green | Apr 1976 | A |
3952748 | Kaliher et al. | Apr 1976 | A |
3952880 | Hill et al. | Apr 1976 | A |
RE28932 | Noiles et al. | Aug 1976 | E |
3985050 | Lurie | Oct 1976 | A |
4014492 | Rothfuss | Mar 1977 | A |
4027510 | Hiltebrandt | Jun 1977 | A |
4060089 | Noiles | Nov 1977 | A |
4064881 | Meredith | Dec 1977 | A |
4071029 | Richmond et al. | Jan 1978 | A |
4085756 | Weaver | Apr 1978 | A |
4086926 | Green et al. | May 1978 | A |
4092986 | Schneiderman | Jun 1978 | A |
4111206 | Vishnevsky et al. | Sep 1978 | A |
4169476 | Hiltebrandt | Oct 1979 | A |
4198960 | Utsugi | Apr 1980 | A |
4198982 | Fortner et al. | Apr 1980 | A |
4202479 | Razgulov et al. | May 1980 | A |
4202480 | Annett | May 1980 | A |
4207873 | Kruy | Jun 1980 | A |
4207898 | Becht | Jun 1980 | A |
4244372 | Kapitanov et al. | Jan 1981 | A |
4261244 | Becht et al. | Apr 1981 | A |
4273111 | Tsukaya | Jun 1981 | A |
4273129 | Boebel | Jun 1981 | A |
4286585 | Ogawa | Sep 1981 | A |
4289131 | Mueller | Sep 1981 | A |
4289133 | Rothfuss | Sep 1981 | A |
4296881 | Lee | Oct 1981 | A |
4304236 | Conta et al. | Dec 1981 | A |
4310115 | Inoue | Jan 1982 | A |
4319576 | Rothfuss | Mar 1982 | A |
4325377 | Boebel | Apr 1982 | A |
4334539 | Childs et al. | Jun 1982 | A |
4349028 | Green | Sep 1982 | A |
4351466 | Noiles | Sep 1982 | A |
4354628 | Green | Oct 1982 | A |
4360110 | Sigman et al. | Nov 1982 | A |
4367729 | Ogiu | Jan 1983 | A |
4379457 | Gravener et al. | Apr 1983 | A |
4383634 | Green | May 1983 | A |
4391401 | Moshofsky | Jul 1983 | A |
4402311 | Hattori | Sep 1983 | A |
4402445 | Green | Sep 1983 | A |
4429695 | Green | Feb 1984 | A |
4442964 | Becht | Apr 1984 | A |
4445509 | Auth | May 1984 | A |
4445892 | Hussein et al. | May 1984 | A |
4448188 | Loeb | May 1984 | A |
4461305 | Cibley | Jul 1984 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4476863 | Kanshin et al. | Oct 1984 | A |
4484775 | Norkus | Nov 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4487270 | Huber | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4489724 | Amegger | Dec 1984 | A |
4489875 | Crawford et al. | Dec 1984 | A |
4494057 | Hotta | Jan 1985 | A |
4494549 | Namba et al. | Jan 1985 | A |
4499895 | Takayama | Feb 1985 | A |
4505272 | Utyamyshev et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4506670 | Crossley | Mar 1985 | A |
4506671 | Green | Mar 1985 | A |
4513746 | Aranyi et al. | Apr 1985 | A |
4519532 | Foslien | May 1985 | A |
4520817 | Green | Jun 1985 | A |
4534352 | Korthoff | Aug 1985 | A |
4534420 | Goldelius | Aug 1985 | A |
4535773 | Yoon | Aug 1985 | A |
4559928 | Takayama | Dec 1985 | A |
4566620 | Green et al. | Jan 1986 | A |
4573468 | Conta et al. | Mar 1986 | A |
4573622 | Green et al. | Mar 1986 | A |
4573727 | Iikura | Mar 1986 | A |
4574806 | McCarthy | Mar 1986 | A |
4576167 | Noiles | Mar 1986 | A |
4589412 | Kensey | May 1986 | A |
4589416 | Green | May 1986 | A |
4589582 | Bilotti | May 1986 | A |
4591085 | Di Giovanni | May 1986 | A |
4592354 | Rothfuss | Jun 1986 | A |
4593679 | Collins | Jun 1986 | A |
4600357 | Coules | Jul 1986 | A |
4603693 | Conta et al. | Aug 1986 | A |
4605001 | Rothfuss et al. | Aug 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4607638 | Crainich | Aug 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
D286567 | Lichtman et al. | Nov 1986 | S |
4623183 | Aomori | Nov 1986 | A |
4631052 | Kensey | Dec 1986 | A |
4633861 | Chow et al. | Jan 1987 | A |
4633874 | Chow et al. | Jan 1987 | A |
4643190 | Heimberger | Feb 1987 | A |
4644952 | Patipa et al. | Feb 1987 | A |
4646745 | Noiles | Mar 1987 | A |
4655673 | Hawkes | Apr 1987 | A |
4657017 | Sorochenko | Apr 1987 | A |
4664305 | Blake, III et al. | May 1987 | A |
4667673 | Li | May 1987 | A |
4669471 | Hayashi | Jun 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4672961 | Davies | Jun 1987 | A |
4674515 | Andou et al. | Jun 1987 | A |
4676542 | Besold | Jun 1987 | A |
4688555 | Wardle | Aug 1987 | A |
4696667 | Masch | Sep 1987 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4703887 | Clanton et al. | Nov 1987 | A |
4705038 | Sjostrom et al. | Nov 1987 | A |
4708141 | Inoue et al. | Nov 1987 | A |
4714187 | Green | Dec 1987 | A |
4715502 | Salmon | Dec 1987 | A |
4728020 | Green et al. | Mar 1988 | A |
4732156 | Nakamura | Mar 1988 | A |
4733118 | Mihalko | Mar 1988 | A |
4742815 | Ninan et al. | May 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4756309 | Sachse et al. | Jul 1988 | A |
4760840 | Fournier, Jr. et al. | Aug 1988 | A |
4763669 | Jaeger | Aug 1988 | A |
4767044 | Green | Aug 1988 | A |
4771774 | Simpson et al. | Sep 1988 | A |
4776506 | Green | Oct 1988 | A |
4781186 | Simpson et al. | Nov 1988 | A |
4784137 | Kulik et al. | Nov 1988 | A |
4784422 | Jones et al. | Nov 1988 | A |
4789090 | Blake, III | Dec 1988 | A |
4796793 | Smith et al. | Jan 1989 | A |
4805823 | Rothfuss | Feb 1989 | A |
4815469 | Cohen et al. | Mar 1989 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4819632 | Davies | Apr 1989 | A |
4819853 | Green | Apr 1989 | A |
4841888 | Mills et al. | Jun 1989 | A |
4848637 | Pruitt | Jul 1989 | A |
4858608 | McQuilkin | Aug 1989 | A |
4863088 | Redmond et al. | Sep 1989 | A |
4867158 | Sugg | Sep 1989 | A |
4869415 | Fox | Sep 1989 | A |
4873977 | Avant et al. | Oct 1989 | A |
4887599 | Muller | Dec 1989 | A |
4887612 | Esser et al. | Dec 1989 | A |
4890602 | Hake | Jan 1990 | A |
4892244 | Fox et al. | Jan 1990 | A |
4893613 | Hake | Jan 1990 | A |
4893622 | Green et al. | Jan 1990 | A |
4903697 | Resnick et al. | Feb 1990 | A |
4907591 | Vasconcellos et al. | Mar 1990 | A |
4917114 | Green et al. | Apr 1990 | A |
4919152 | Ger | Apr 1990 | A |
4928699 | Sasai | May 1990 | A |
4930494 | Takehana et al. | Jun 1990 | A |
4932960 | Green et al. | Jun 1990 | A |
4936845 | Stevens | Jun 1990 | A |
4941454 | Wood et al. | Jul 1990 | A |
4941623 | Pruitt | Jul 1990 | A |
4944093 | Falk | Jul 1990 | A |
4944443 | Oddsen et al. | Jul 1990 | A |
4955882 | Hakky | Sep 1990 | A |
4955959 | Tompkins et al. | Sep 1990 | A |
4957499 | Lipatov et al. | Sep 1990 | A |
4962877 | Hervas | Oct 1990 | A |
4976688 | Rosenblum | Dec 1990 | A |
4976710 | Mackin | Dec 1990 | A |
4977900 | Fehling et al. | Dec 1990 | A |
4978049 | Green | Dec 1990 | A |
4982726 | Taira | Jan 1991 | A |
4991764 | Mericle | Feb 1991 | A |
4994060 | Rink et al. | Feb 1991 | A |
4995877 | Ams et al. | Feb 1991 | A |
5005749 | Aranyi | Apr 1991 | A |
5018657 | Pedlick et al. | May 1991 | A |
5031814 | Tompkins et al. | Jul 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5059203 | Husted | Oct 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
D322143 | Spreckelmeier | Dec 1991 | S |
5071430 | de Salis et al. | Dec 1991 | A |
5077506 | Krause | Dec 1991 | A |
5100041 | Storace | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5108391 | Flachenecker et al. | Apr 1992 | A |
5114065 | Storace | May 1992 | A |
5119983 | Green et al. | Jun 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5133359 | Kedem | Jul 1992 | A |
5133713 | Huang et al. | Jul 1992 | A |
5139513 | Segato | Aug 1992 | A |
5156315 | Rose | Oct 1992 | A |
5157837 | Green | Oct 1992 | A |
5158222 | Green | Oct 1992 | A |
5170925 | Madden et al. | Dec 1992 | A |
5171247 | Hughett et al. | Dec 1992 | A |
5171251 | Bregen et al. | Dec 1992 | A |
5173133 | Morin et al. | Dec 1992 | A |
5192292 | Cezana et al. | Mar 1993 | A |
5197649 | Bessler et al. | Mar 1993 | A |
5201325 | McEwen et al. | Apr 1993 | A |
5201501 | Fassler | Apr 1993 | A |
5201750 | Hocherl et al. | Apr 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5207691 | Nardella | May 1993 | A |
5207697 | Carusillo et al. | May 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5221279 | Cook et al. | Jun 1993 | A |
5224951 | Freitas | Jul 1993 | A |
5226426 | Yoon | Jul 1993 | A |
5237884 | Seto | Aug 1993 | A |
5243967 | Hibino | Sep 1993 | A |
5249583 | Mallaby | Oct 1993 | A |
5253793 | Green | Oct 1993 | A |
5254117 | Rigby et al. | Oct 1993 | A |
5258004 | Bales et al. | Nov 1993 | A |
5258007 | Spetzler et al. | Nov 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5261877 | Fine et al. | Nov 1993 | A |
5267997 | Farin et al. | Dec 1993 | A |
5268622 | Philipp | Dec 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5275322 | Brinkerhoff et al. | Jan 1994 | A |
5275323 | Schulze et al. | Jan 1994 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5279565 | Klein et al. | Jan 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5289963 | McGarry et al. | Mar 1994 | A |
5290299 | Fain et al. | Mar 1994 | A |
5290303 | Pingleton et al. | Mar 1994 | A |
5292053 | Bilotti et al. | Mar 1994 | A |
5295990 | Levin | Mar 1994 | A |
5300087 | Knoepfler | Apr 1994 | A |
5307976 | Olson et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312434 | Crainich | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5320627 | Sorensen et al. | Jun 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5324288 | Billings et al. | Jun 1994 | A |
5324300 | Elias et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5333772 | Rothfuss et al. | Aug 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5336229 | Noda | Aug 1994 | A |
5342299 | Snoke et al. | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342382 | Brinkerhoff et al. | Aug 1994 | A |
5344420 | Hilal et al. | Sep 1994 | A |
5350104 | Main et al. | Sep 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5352223 | McBrayer et al. | Oct 1994 | A |
5352235 | Koros et al. | Oct 1994 | A |
5354266 | Snoke | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5358506 | Green et al. | Oct 1994 | A |
5364001 | Bryan | Nov 1994 | A |
5364409 | Kuwabara et al. | Nov 1994 | A |
5366133 | Geiste | Nov 1994 | A |
5366476 | Noda | Nov 1994 | A |
5368015 | Wilk | Nov 1994 | A |
5368607 | Freitas | Nov 1994 | A |
5370294 | Bauer | Dec 1994 | A |
5380321 | Yoon | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5391156 | Hildwein et al. | Feb 1995 | A |
5392789 | Slater et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395369 | McBrayer et al. | Mar 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5397046 | Savage et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
D357535 | Grant et al. | Apr 1995 | S |
5403312 | Yates et al. | Apr 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5403327 | Thornton et al. | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5413268 | Green et al. | May 1995 | A |
5415334 | Williamson et al. | May 1995 | A |
5425705 | Evard et al. | Jun 1995 | A |
5425738 | Gustafson et al. | Jun 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5431322 | Green et al. | Jul 1995 | A |
5431645 | Smith et al. | Jul 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5437636 | Snoke et al. | Aug 1995 | A |
5437684 | Calabrese et al. | Aug 1995 | A |
5441507 | Wilk | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5447265 | Vidal et al. | Sep 1995 | A |
5454825 | Van Leeuwen et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5460182 | Goodman et al. | Oct 1995 | A |
5464404 | Abela et al. | Nov 1995 | A |
5465894 | Clark et al. | Nov 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5472132 | Savage et al. | Dec 1995 | A |
5474223 | Viola et al. | Dec 1995 | A |
5476206 | Green et al. | Dec 1995 | A |
5482054 | Slater et al. | Jan 1996 | A |
5482197 | Green et al. | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5487500 | Knodel et al. | Jan 1996 | A |
5496269 | Snoke | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5496333 | Sackier et al. | Mar 1996 | A |
5514134 | Rydell et al. | May 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5520634 | Fox et al. | May 1996 | A |
5524180 | Wang et al. | Jun 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5531687 | Snoke et al. | Jul 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5535935 | Vidal et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5549565 | Ryan et al. | Aug 1996 | A |
5553765 | Knodel et al. | Sep 1996 | A |
5554169 | Green et al. | Sep 1996 | A |
5562677 | Hildwein et al. | Oct 1996 | A |
5562702 | Huitema et al. | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5573543 | Akopov et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5580067 | Hamblin et al. | Dec 1996 | A |
5582611 | Tsukagoshii et al. | Dec 1996 | A |
5584425 | Savage et al. | Dec 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5591186 | Wurster et al. | Jan 1997 | A |
5591196 | Marin et al. | Jan 1997 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5599347 | Hart et al. | Feb 1997 | A |
5603443 | Clark et al. | Feb 1997 | A |
5607094 | Clark et al. | Mar 1997 | A |
5609285 | Grant et al. | Mar 1997 | A |
5609381 | Thom et al. | Mar 1997 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5618303 | Marlow et al. | Apr 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
5651780 | Jackson et al. | Jul 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5667473 | Finn et al. | Sep 1997 | A |
5667478 | McFarcin et al. | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5676674 | Bolanos et al. | Oct 1997 | A |
5688269 | Newton et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5693031 | Ryan et al. | Dec 1997 | A |
5697542 | Knodel et al. | Dec 1997 | A |
5709335 | Heck | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5735849 | Baden et al. | Apr 1998 | A |
5735861 | Peifer et al. | Apr 1998 | A |
5741285 | McBrayer et al. | Apr 1998 | A |
5749885 | Sjostrom et al. | May 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5776147 | Dolendo | Jul 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5779132 | Knodel et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5797835 | Green | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5797944 | Nobles et al. | Aug 1998 | A |
5807377 | Madhani et al. | Sep 1998 | A |
5807402 | Yoon | Sep 1998 | A |
5814044 | Hooven | Sep 1998 | A |
5815640 | Wang et al. | Sep 1998 | A |
5817113 | Gifford, III et al. | Oct 1998 | A |
5823956 | Roth et al. | Oct 1998 | A |
5826776 | Schulze et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5846221 | Snoke et al. | Dec 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5855590 | Malecki et al. | Jan 1999 | A |
5857996 | Snoke | Jan 1999 | A |
5860953 | Snoke et al. | Jan 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5871471 | Ryan et al. | Feb 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5881943 | Heck et al. | Mar 1999 | A |
5893553 | Pinkous | Apr 1999 | A |
5893875 | O'Connor et al. | Apr 1999 | A |
5895084 | Mauro | Apr 1999 | A |
5897562 | Balanos et al. | Apr 1999 | A |
5907664 | Wang et al. | May 1999 | A |
5913842 | Boyd et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5925055 | Adrian et al. | Jul 1999 | A |
5931848 | Saadat | Aug 1999 | A |
5947363 | Bolduc et al. | Sep 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5954731 | Yoon | Sep 1999 | A |
5957363 | Heck | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957884 | Hooven | Sep 1999 | A |
5976159 | Bolduc et al. | Nov 1999 | A |
5984919 | Hilal et al. | Nov 1999 | A |
5989215 | Delmotte et al. | Nov 1999 | A |
5993378 | Lemelson | Nov 1999 | A |
5993454 | Longo | Nov 1999 | A |
5997510 | Schwemberger | Dec 1999 | A |
6001108 | Wang et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6007512 | Hooven | Dec 1999 | A |
6007531 | Snoke et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6010493 | Snoke | Jan 2000 | A |
6017322 | Snoke et al. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6068627 | Orzulak et al. | May 2000 | A |
6074402 | Peifer et al. | Jun 2000 | A |
6083163 | Wegner et al. | Jul 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6090120 | Wright et al. | Jul 2000 | A |
6099466 | Sano et al. | Aug 2000 | A |
6106512 | Cochran et al. | Aug 2000 | A |
6110188 | Narciso, Jr. | Aug 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6126058 | Adams et al. | Oct 2000 | A |
6126591 | McGarry et al. | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6162220 | Nezhat | Dec 2000 | A |
6165191 | Shibata et al. | Dec 2000 | A |
6174324 | Egan et al. | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
D438617 | Cooper et al. | Mar 2001 | S |
6201984 | Funda et al. | Mar 2001 | B1 |
6206903 | Ramans | Mar 2001 | B1 |
D441076 | Cooper et al. | Apr 2001 | S |
6209773 | Bolduc et al. | Apr 2001 | B1 |
6217591 | Egan et al. | Apr 2001 | B1 |
D441862 | Cooper et al. | May 2001 | S |
6231587 | Makower | May 2001 | B1 |
6244809 | Wang et al. | Jun 2001 | B1 |
6246200 | Blumenkranz et al. | Jun 2001 | B1 |
D444555 | Cooper et al. | Jul 2001 | S |
6264087 | Whitman | Jul 2001 | B1 |
6309397 | Julian et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6346072 | Cooper | Feb 2002 | B1 |
6348061 | Whitman | Feb 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6368340 | Malecki et al. | Apr 2002 | B2 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6398726 | Ramans et al. | Jun 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6505768 | Whitman | Jan 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6790217 | Schulze et al. | Sep 2004 | B2 |
20010016750 | Malecki et al. | Aug 2001 | A1 |
20010031975 | Whitman et al. | Oct 2001 | A1 |
20020032451 | Tierney et al. | Mar 2002 | A1 |
20020032452 | Tierney et al. | Mar 2002 | A1 |
20020042620 | Julian et al. | Apr 2002 | A1 |
20020045888 | Ramans et al. | Apr 2002 | A1 |
20020049454 | Whitman et al. | Apr 2002 | A1 |
20020055795 | Niemeyer et al. | May 2002 | A1 |
20020072736 | Tierney et al. | Jun 2002 | A1 |
20020165444 | Whitman | Nov 2002 | A1 |
20030105478 | Whitman et al. | Jun 2003 | A1 |
20030130677 | Whitman et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
33 00 768 | Jul 1984 | DE |
42 13 426 | Oct 1992 | DE |
4312147 | Oct 1992 | DE |
41022 | Dec 1981 | EP |
0 116 220 | Aug 1984 | EP |
0 121 474 | Oct 1984 | EP |
0 142 225 | May 1985 | EP |
0 156 774 | Oct 1985 | EP |
0 203 375 | Dec 1986 | EP |
0 216 532 | Apr 1987 | EP |
293123 | Jan 1988 | EP |
324637 | Jul 1989 | EP |
365153 | Apr 1990 | EP |
3693324 | May 1990 | EP |
373762 | Jun 1990 | EP |
0 399 701 | Nov 1990 | EP |
0 514 139 | Nov 1992 | EP |
0 536 903 | Apr 1993 | EP |
0 539 762 | May 1993 | EP |
0 552 050 | Jul 1993 | EP |
0 593 920 | Apr 1994 | EP |
0 598 579 | May 1994 | EP |
0 621 006 | Oct 1994 | EP |
630612 | Dec 1994 | EP |
0 634 144 | Jan 1995 | EP |
639349 | Feb 1995 | EP |
679367 | Nov 1995 | EP |
0 705 571 | Apr 1996 | EP |
552423 | Jan 1998 | EP |
0 878 169 | Nov 1998 | EP |
0 947 167 | Oct 1999 | EP |
0 653 922 | Dec 1999 | EP |
581400 | May 2000 | EP |
484677 | Jul 2000 | EP |
2660851 | Oct 1991 | FR |
1 082 821 | Sep 1967 | GB |
1352554 | May 1974 | GB |
1452185 | Oct 1976 | GB |
2048685 | Dec 1980 | GB |
2165559 | Apr 1986 | GB |
2180455 | Apr 1987 | GB |
WO 8203545 | Oct 1982 | WO |
WO 8300992 | Mar 1983 | WO |
WO 9005489 | May 1990 | WO |
WO 9005491 | May 1990 | WO |
WO 9006085 | Jun 1990 | WO |
WO 9107136 | May 1991 | WO |
WO 9216141 | Oct 1992 | WO |
WO 9308754 | May 1993 | WO |
WO 9314706 | Aug 1993 | WO |
WO 9535065 | Dec 1995 | WO |
WO 9518572 | Jul 1996 | WO |
WO 9712555 | Apr 1997 | WO |
WO 9814129 | Apr 1998 | WO |
WO 9920328 | Apr 1999 | WO |
WO 9958076 | Nov 1999 | WO |
WO 0072765 | Dec 2000 | WO |
WO 0103587 | Jan 2001 | WO |
WO 0108572 | Feb 2001 | WO |
WO 0117448 | Mar 2001 | WO |
WO 0135813 | May 2001 | WO |
WO 0162163 | Aug 2001 | WO |
WO 0258539 | Aug 2002 | WO |
WO 03077769 | Sep 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040094597 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
60388644 | Jun 2002 | US |