Surgical end effectors and adaptable firing members therefor

Information

  • Patent Grant
  • 10973516
  • Patent Number
    10,973,516
  • Date Filed
    Wednesday, December 21, 2016
    8 years ago
  • Date Issued
    Tuesday, April 13, 2021
    3 years ago
Abstract
Surgical end effectors are disclosed. The surgical end effectors can include a first jaw, a second jaw, and a firing member configured to translate relative to the first jaw and the second jaw during a firing stroke. The firing member can include at least one floating flange. The floating flange can be configured to shift or slide relative to a fixed portion of the firing member such as a fixed flange.
Description
BACKGROUND

The present invention relates to surgical instruments and, in various arrangements, to surgical stapling and cutting instruments and staple cartridges for use therewith that are designed to staple and cut tissue.





BRIEF DESCRIPTION OF THE DRAWINGS

Various features of the embodiments described herein, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows:



FIG. 1 is a perspective view of an interchangeable surgical tool assembly operably coupled to a handle assembly;



FIG. 1A is an elevation exploded assembly view of the handle assembly of FIG. 1 and a plurality of interchangeable surgical tool assemblies therefor;



FIG. 2 is a perspective exploded assembly view of the handle assembly and portions of the interchangeable surgical tool assembly of FIG. 1;



FIG. 3 is a perspective view of a distal portion of the interchangeable surgical tool assembly depicted in FIG. 1 with portions thereof omitted for clarity;



FIG. 4 is a perspective cross-sectional view of a distal portion of the interchangeable surgical tool assembly depicted in FIG. 1 taken along the longitudinal axis thereof with portions thereof omitted for clarity;



FIG. 5 is an exploded assembly view of a distal portion of the interchangeable surgical tool assembly of FIG. 1;



FIG. 6 is a perspective view of an anvil of the interchangeable surgical tool assembly depicted in FIG. 1;



FIG. 7 is a perspective view of an elongate channel of the interchangeable surgical tool assembly depicted in FIG. 1;



FIG. 8 is a perspective view of a pivot joint of the interchangeable surgical tool assembly of FIG. 1;



FIG. 9 is a plan view of the pivot joint of FIG. 8;



FIG. 10 is an elevation cross-sectional view of a distal portion of the interchangeable surgical tool assembly of FIG. 1 depicting a firing member at the pivot joint of FIG. 8 in an initial position;



FIG. 11 is an elevation cross-sectional view of a distal portion of the interchangeable surgical tool assembly of FIG. 1 depicting the firing member at the pivot joint of FIG. 8 in a proximally-retracted position from the initial position;



FIG. 12 is an elevation cross-sectional view of a distal portion of the interchangeable surgical tool assembly of FIG. 1 depicting the firing member at the pivot joint of FIG. 8 in a distally-advanced position from the initial position;



FIG. 13 is a perspective view of a distal portion of an interchangeable surgical tool assembly depicting a distal nose portion thereof in an initial configuration;



FIG. 14 is an elevation view of a distal portion of the interchangeable surgical tool assembly of FIG. 13 depicting the distal nose portion in the initial configuration;



FIG. 15 is a perspective view of a distal portion of the interchangeable surgical tool assembly of FIG. 13 depicting the distal nose portion in a pivoted configuration;



FIG. 16 is an elevation view of a distal portion of the interchangeable surgical tool assembly of FIG. 13 depicting the distal nose portion in the pivoted configuration;



FIG. 17 is an elevation cross-sectional view of the end effector of FIG. 13 depicting the distal nose portion in the pivoted configuration;



FIG. 18 is a perspective view of an upper portion of a firing member;



FIG. 18A is a perspective view of an upper flange of the firing member of FIG. 18;



FIG. 19 is an elevation view of an upper portion of the firing member of FIG. 18 depicting the firing member in a first configuration;



FIG. 20 is an elevation view of an upper portion of the firing member of FIG. 18 depicting the firing member in a stressed configuration;



FIG. 21 is an elevation view of an upper portion of the firing member of FIG. 18 depicting the firing member in an adapted configuration;



FIG. 21A is an elevation view of an upper portion of the firing member of FIG. 18 depicting the firing member in a loaded configuration;



FIG. 22 is an elevation view of an upper portion of a firing member depicting the firing member in a first configuration;



FIG. 23 is an elevation view of an upper portion of the firing member of FIG. 22 depicting the firing member in an adapted configuration;



FIG. 24 is an elevation partial cross-sectional view of a portion of an interchangeable surgical tool assembly depicting a firing member displaced distally from a home position to a first intermediate position and having a first load applied to an upper flange of the firing member;



FIG. 25 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 24 depicting the firing member displaced distally from the first intermediate position to a second intermediate position and having a decreased load applied to the upper flange;



FIG. 26 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 24 depicting the firing member displaced distally from the second intermediate position to a third intermediate position and having an increased load applied to the upper flange;



FIG. 27 is a perspective partial cross-sectional view of a distal portion of an interchangeable surgical tool assembly with portions thereof omitted for clarity;



FIG. 28 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 27 in which a staple cartridge is missing from the interchangeable surgical tool assembly;



FIG. 29 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 27 in which a staple cartridge is positioned in the interchangeable surgical tool assembly;



FIG. 30 is an elevation partial cross-sectional view of a portion of an interchangeable surgical tool assembly having a lockout, wherein the lockout arrangement is in a locked configuration;



FIG. 31 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 30 having a staple cartridge positioned therein, wherein the lockout arrangement is in an unlocked configuration and the staple cartridge is in a pre-fired state;



FIG. 32 is a perspective view of a proximal portion of the staple cartridge of FIG. 31 depicting the pre-fired state of the staple cartridge;



FIG. 33 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 30 having the staple cartridge of FIG. 31 positioned therein, and depicting a firing assembly of the interchangeable surgical tool assembly advanced to an intermediate position during an initial portion of a firing stroke, wherein the staple cartridge is in a post-fired state;



FIG. 34 is a perspective view of a proximal portion of the staple cartridge of FIG. 31 depicting the post-fired state of the staple cartridge;



FIG. 35 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 30 after the completion of the firing stroke and having the staple cartridge of FIG. 31 positioned therein;



FIG. 36 is a perspective exploded assembly view of an anvil;



FIG. 37 is a perspective cross-sectional view of a portion of an interchangeable surgical tool assembly taken along a centerline of the interchangeable surgical tool assembly and depicting a portion of the anvil of FIG. 36, a portion of an elongate channel, and a lockout spring;



FIG. 38 is a perspective partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 37 taken along the centerline of the interchangeable surgical tool assembly;



FIG. 39 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 37 taken along the centerline of the interchangeable surgical tool assembly and depicting the anvil in an open position;



FIG. 40 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 37 taken along the plane indicated in FIG. 36 and depicting the anvil in the open position;



FIG. 41 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 37 taken along the centerline of the interchangeable surgical tool assembly and depicting a staple cartridge installed in the elongate channel and the anvil in the open position;



FIG. 42 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 37 taken along the plane indicated in FIG. 36 and depicting the staple cartridge installed in the elongate channel and the anvil in the open position;



FIG. 43 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 37 taken along the centerline of the interchangeable surgical tool assembly and depicting the staple cartridge installed in the elongate channel and the anvil moved to a closed position by the firing member;



FIG. 44 is an elevation partial cross-sectional view of a proximal portion of the interchangeable surgical tool assembly of FIG. 37 taken along the plane indicated in FIG. 36 and depicting the staple cartridge installed in the elongate channel and the anvil moved to the closed position by the firing member;



FIG. 45 is a perspective partial cross-sectional view of a portion of an interchangeable surgical tool assembly depicting an unfired staple cartridge installed therein and a firing member in a proximal position;



FIG. 46 is another perspective partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 45 depicting the unfired staple cartridge installed therein and the firing member in the proximal position;



FIG. 47 is a perspective exploded assembly view of a lockout arrangement in the interchangeable surgical tool assembly of FIG. 45;



FIG. 48 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 45 depicting the unfired staple cartridge installed therein and the firing member in a proximal, home position;



FIG. 49 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 45 depicting the firing member displaced distally from the proximal, home position during an initial portion of a firing stroke;



FIG. 50 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 45 depicting the firing member returning to the proximal, home position upon completion of the firing stroke;



FIG. 51 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 45 depicting the firing member returned to the proximal, home position;



FIG. 52 is an elevation partial cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 45 depicting the firing member displaced distally from the proximal, home position during a subsequent attempted firing stroke;



FIG. 53 is a perspective view of the lockout arrangement of FIG. 47;



FIG. 54 is an elevation partial cross-sectional detail view of the pivot joint of FIG. 8 depicting the firing member at the pivot joint in an advanced position and further depicting a spring assembly;



FIG. 55 is a perspective exploded assembly view of a distal portion of an interchangeable surgical tool assembly;



FIG. 56 is an elevation cross-sectional view of a distal portion of an interchangeable surgical tool assembly;



FIG. 57 is a plan view of a portion of the interchangeable surgical tool assembly of FIG. 56;



FIG. 58 is an elevation cross-sectional view of the interchangeable surgical tool assembly of FIG. 56 taken along the plane indicated in FIG. 56;



FIG. 59 is an elevation exploded assembly view of a pusher plate and a firing rod of the interchangeable surgical tool assembly of FIG. 56;



FIG. 60 is a plan cross-sectional view of the pusher plate and the firing rod of FIG. 59 taken along the plane indicated in FIG. 59;



FIG. 61 is an elevation view of the pusher plate of FIG. 59;



FIG. 62 is an elevation cross-sectional view of a distal portion of the interchangeable surgical tool assembly of FIG. 56 at the outset of a first firing stroke;



FIG. 63 is an elevation cross-sectional view of the interchangeable surgical tool assembly of FIG. 56 taken along the plane indicated in FIG. 62 at the outset of a first firing stroke;



FIG. 64 is an elevation cross-sectional view of a distal portion of the interchangeable surgical tool assembly of FIG. 56 at the completion of the first firing stroke;



FIG. 65 is an elevation cross-sectional view of a distal portion of the interchangeable surgical tool assembly of FIG. 56 at the completion of a second firing stroke;



FIG. 66 is a plan view of a portion of the interchangeable surgical tool assembly of FIG. 56 at the completion of the second firing stroke;



FIG. 67 is an elevation cross-sectional view of a distal portion of the interchangeable surgical tool assembly of FIG. 56 at the completion of a third firing stroke;



FIG. 68 is a plan view of a portion of the interchangeable surgical tool assembly of FIG. 56 at the completion of the third firing stroke;



FIG. 69 is an elevation cross-sectional view of the interchangeable surgical tool assembly of FIG. 56 taken along the plane indicated in FIG. 67 at the completion of the third firing stroke;



FIG. 70 is an elevation cross-sectional view of a distal portion of the interchangeable surgical tool assembly of FIG. 56 at the completion of a fourth firing stroke;



FIG. 71 is a perspective view of a distal portion of an interchangeable surgical tool assembly;



FIG. 72 is a perspective exploded assembly view of a distal portion of the interchangeable surgical tool assembly of FIG. 71;



FIG. 73 is a plan cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 71;



FIG. 74 is an elevation cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 71;



FIG. 75 is perspective view of a portion of another surgical instrument embodiment;



FIG. 76 is an exploded perspective assembly view of the surgical instrument portion of FIG. 75;



FIG. 77 is another exploded assembly view of the surgical instrument of FIGS. 75 and 76 with a channel portion thereof detached from a shaft assembly thereof;



FIG. 78 is another exploded assembly view of portions of the channel and shaft assembly of the surgical instrument of FIGS. 75-77;



FIG. 79 is a partial cross-sectional elevational view of portions of the surgical instrument of FIGS. 75-78 with the channel thereof supporting a surgical staple cartridge therein and being attached to the shaft assembly, with an anvil thereof in a closed position and a firing member being distally advanced to fire staples within the surgical staple cartridge;



FIG. 80 is a partial perspective view of a portion of another surgical instrument embodiment;



FIG. 81 is a cross-sectional elevational view of portions of the surgical instrument of FIGS. 75-79;



FIG. 82 is another cross-sectional elevational view of the portions of the surgical instrument depicted in FIG. 81;



FIG. 83 is a partial side elevational view of the surgical instrument of FIGS. 75-79 with an end effector thereof articulated within a first articulation plane relative to the shaft assembly;



FIG. 84 is a partial perspective view of the surgical instrument of FIG. 83 with the end effector thereof articulated in a second articulation plane relative to the shaft assembly;



FIG. 85 is another perspective view of the surgical instrument of FIGS. 83 and 84 showing the end effector r articulated in the first and second articulation planes;



FIG. 86 is perspective view of a portion of another surgical instrument embodiment;



FIG. 87 is an exploded perspective assembly view of the surgical instrument portion of FIG. 86;



FIG. 88 is a perspective view of a coupler arrangement for removably coupling an end effector portion to a shaft assembly portion of the surgical instrument of FIGS. 86 and 87;



FIG. 89 is a top view of the end effector attached to the shaft assembly of FIGS. 86-88 with portions of the end effector and shaft assembly shown in cross-section for clarity;



FIG. 90 is an elevation cross-sectional view of a portion of an interchangeable surgical tool assembly depicting an anvil thereof in an open position;



FIG. 91 is an elevation cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 90 depicting a staple cartridge installed in an elongate channel and the anvil in the open position; and



FIG. 92 is an elevation cross-sectional view of a portion of the interchangeable surgical tool assembly of FIG. 90 depicting the staple cartridge installed in the elongate channel and the anvil moved to a closed position.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION

Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/386,185, entitled SURGICAL STAPLING INSTRUMENTS AND REPLACEABLE TOOL ASSEMBLIES THEREOF;


U.S. patent application Ser. No. 15/386,230, entitled ARTICULATABLE SURGICAL STAPLING INSTRUMENTS;


U.S. patent application Ser. No. 15/386,221, entitled LOCKOUT ARRANGEMENTS FOR SURGICAL END EFFECTORS;


U.S. patent application Ser. No. 15/386,209, entitled SURGICAL END EFFECTORS AND FIRING MEMBERS THEREOF; and


U.S. patent application Ser. No. 15/386,198, entitled LOCKOUT ARRANGEMENTS FOR SURGICAL END EFFECTORS AND REPLACEABLE TOOL ASSEMBLIES.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/385,939, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN;


U.S. patent application Ser. No. 15/385,941, entitled SURGICAL TOOL ASSEMBLIES WITH CLUTCHING ARRANGEMENTS FOR SHIFTING BETWEEN CLOSURE SYSTEMS WITH CLOSURE STROKE REDUCTION FEATURES AND ARTICULATION AND FIRING SYSTEMS;


U.S. patent application Ser. No. 15/385,943, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS;


U.S. patent application Ser. No. 15/385,950, entitled SURGICAL TOOL ASSEMBLIES WITH CLOSURE STROKE REDUCTION FEATURES;


U.S. patent application Ser. No. 15/385,945, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN;


U.S. patent application Ser. No. 15/385,946, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS;


U.S. patent application Ser. No. 15/385,951, entitled SURGICAL INSTRUMENTS WITH JAW OPENING FEATURES FOR INCREASING A JAW OPENING DISTANCE;


U.S. patent application Ser. No. 15/385,953, entitled METHODS OF STAPLING TISSUE;


U.S. patent application Ser. No. 15/385,954, entitled FIRING MEMBERS WITH NON-PARALLEL JAW ENGAGEMENT FEATURES FOR SURGICAL END EFFECTORS;


U.S. patent application Ser. No. 15/385,955, entitled SURGICAL END EFFECTORS WITH EXPANDABLE TISSUE STOP ARRANGEMENTS;


U.S. patent application Ser. No. 15/385,948, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS;


U.S. patent application Ser. No. 15/385,956, entitled SURGICAL INSTRUMENTS WITH POSITIVE JAW OPENING FEATURES;


U.S. patent application Ser. No. 15/385,958, entitled SURGICAL INSTRUMENTS WITH LOCKOUT ARRANGEMENTS FOR PREVENTING FIRING SYSTEM ACTUATION UNLESS AN UNSPENT STAPLE CARTRIDGE IS PRESENT; and


U.S. patent application Ser. No. 15/385,947, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/385,896, entitled METHOD FOR RESETTING A FUSE OF A SURGICAL INSTRUMENT SHAFT;


U.S. patent application Ser. No. 15/385,898, entitled STAPLE FORMING POCKET ARRANGEMENT TO ACCOMMODATE DIFFERENT TYPES OF STAPLES;


U.S. patent application Ser. No. 15/385,899, entitled SURGICAL INSTRUMENT COMPRISING IMPROVED JAW CONTROL;


U.S. patent application Ser. No. 15/385,901, entitled STAPLE CARTRIDGE AND STAPLE CARTRIDGE CHANNEL COMPRISING WINDOWS DEFINED THEREIN;


U.S. patent application Ser. No. 15/385,902, entitled SURGICAL INSTRUMENT COMPRISING A CUTTING MEMBER;


U.S. patent application Ser. No. 15/385,904, entitled STAPLE FIRING MEMBER COMPRISING A MISSING CARTRIDGE AND/OR SPENT CARTRIDGE LOCKOUT;


U.S. patent application Ser. No. 15/385,905, entitled FIRING ASSEMBLY COMPRISING A LOCKOUT;


U.S. patent application Ser. No. 15/385,907, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING AN END EFFECTOR LOCKOUT AND A FIRING ASSEMBLY LOCKOUT;


U.S. patent application Ser. No. 15/385,908, entitled FIRING ASSEMBLY COMPRISING A FUSE; and


U.S. patent application Ser. No. 15/385,909, entitled FIRING ASSEMBLY COMPRISING A MULTIPLE FAILED-STATE FUSE.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/385,920, entitled STAPLE FORMING POCKET ARRANGEMENTS;


U.S. patent application Ser. No. 15/385,913, entitled ANVIL ARRANGEMENTS FOR SURGICAL STAPLERS;


U.S. patent application Ser. No. 15/385,914, entitled METHOD OF DEFORMING STAPLES FROM TWO DIFFERENT TYPES OF STAPLE CARTRIDGES WITH THE SAME SURGICAL STAPLING INSTRUMENT;


U.S. patent application Ser. No. 15/385,893, entitled BILATERALLY ASYMMETRIC STAPLE FORMING POCKET PAIRS;


U.S. patent application Ser. No. 15/385,929, entitled CLOSURE MEMBERS WITH CAM SURFACE ARRANGEMENTS FOR SURGICAL INSTRUMENTS WITH SEPARATE AND DISTINCT CLOSURE AND FIRING SYSTEMS;


U.S. patent application Ser. No. 15/385,911, entitled SURGICAL STAPLERS WITH INDEPENDENTLY ACTUATABLE CLOSING AND FIRING SYSTEMS;


U.S. patent application Ser. No. 15/385,927, entitled SURGICAL STAPLING INSTRUMENTS WITH SMART STAPLE CARTRIDGES;


U.S. patent application Ser. No. 15/385,917, entitled STAPLE CARTRIDGE COMPRISING STAPLES WITH DIFFERENT CLAMPING BREADTHS;


U.S. patent application Ser. No. 15/385,900, entitled STAPLE FORMING POCKET ARRANGEMENTS COMPRISING PRIMARY SIDEWALLS AND POCKET SIDEWALLS;


U.S. patent application Ser. No. 15/385,931, entitled NO-CARTRIDGE AND SPENT CARTRIDGE LOCKOUT ARRANGEMENTS FOR SURGICAL STAPLERS;


U.S. patent application Ser. No. 15/385,915, entitled FIRING MEMBER PIN ANGLE;


U.S. patent application Ser. No. 15/385,897, entitled STAPLE FORMING POCKET ARRANGEMENTS COMPRISING ZONED FORMING SURFACE GROOVES;


U.S. patent application Ser. No. 15/385,922, entitled SURGICAL INSTRUMENT WITH MULTIPLE FAILURE RESPONSE MODES;


U.S. patent application Ser. No. 15/385,924, entitled SURGICAL INSTRUMENT WITH PRIMARY AND SAFETY PROCESSORS;


U.S. patent application Ser. No. 15/385,912, entitled SURGICAL INSTRUMENTS WITH JAWS THAT ARE PIVOTABLE ABOUT A FIXED AXIS AND INCLUDE SEPARATE AND DISTINCT CLOSURE AND FIRING SYSTEMS;


U.S. patent application Ser. No. 15/385,910, entitled ANVIL HAVING A KNIFE SLOT WIDTH;


U.S. patent application Ser. No. 15/385,903, entitled CLOSURE MEMBER ARRANGEMENTS FOR SURGICAL INSTRUMENTS; and


U.S. patent application Ser. No. 15/385,906, entitled FIRING MEMBER PIN CONFIGURATIONS.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/386,188, entitled STEPPED STAPLE CARTRIDGE WITH ASYMMETRICAL STAPLES;


U.S. patent application Ser. No. 15/386,192, entitled STEPPED STAPLE CARTRIDGE WITH TISSUE RETENTION AND GAP SETTING FEATURES;


U.S. patent application Ser. No. 15,386,206, entitled STAPLE CARTRIDGE WITH DEFORMABLE DRIVER RETENTION FEATURES;


U.S. patent application Ser. No. 15/386,226, entitled DURABILITY FEATURES FOR END EFFECTORS AND FIRING ASSEMBLIES OF SURGICAL STAPLING INSTRUMENTS;


U.S. patent application Ser. No. 15/386,222, entitled SURGICAL STAPLING INSTRUMENTS HAVING END EFFECTORS WITH POSITIVE OPENING FEATURES; and


U.S. patent application Ser. No. 15/386,236, entitled CONNECTION PORTIONS FOR DISPOSABLE LOADING UNITS FOR SURGICAL STAPLING INSTRUMENTS.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/385,887, entitled METHOD FOR ATTACHING A SHAFT ASSEMBLY TO A SURGICAL INSTRUMENT AND, ALTERNATIVELY, TO A SURGICAL ROBOT;


U.S. patent application Ser. No. 15/385,889, entitled SHAFT ASSEMBLY COMPRISING A MANUALLY-OPERABLE RETRACTION SYSTEM FOR USE WITH A MOTORIZED SURGICAL INSTRUMENT SYSTEM;


U.S. patent application Ser. No. 15/385,890, entitled SHAFT ASSEMBLY COMPRISING SEPARATELY ACTUATABLE AND RETRACTABLE SYSTEMS;


U.S. patent application Ser. No. 15/385,891, entitled SHAFT ASSEMBLY COMPRISING A CLUTCH CONFIGURED TO ADAPT THE OUTPUT OF A ROTARY FIRING MEMBER TO TWO DIFFERENT SYSTEMS;


U.S. patent application Ser. No. 15/385,892, entitled SURGICAL SYSTEM COMPRISING A FIRING MEMBER ROTATABLE INTO AN ARTICULATION STATE TO ARTICULATE AN END EFFECTOR OF THE SURGICAL SYSTEM;


U.S. patent application Ser. No. 15/385,894, entitled SHAFT ASSEMBLY COMPRISING A LOCKOUT; and


U.S. patent application Ser. No. 15/385,895, entitled SHAFT ASSEMBLY COMPRISING FIRST AND SECOND ARTICULATION LOCKOUTS.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/385,916, entitled SURGICAL STAPLING SYSTEMS;


U.S. patent application Ser. No. 15/385,918, entitled SURGICAL STAPLING SYSTEMS;


U.S. patent application Ser. No. 15/385,919, entitled SURGICAL STAPLING SYSTEMS;


U.S. patent application Ser. No. 15/385,921, entitled SURGICAL STAPLE CARTRIDGE WITH MOVABLE CAMMING MEMBER CONFIGURED TO DISENGAGE FIRING MEMBER LOCKOUT FEATURES;


U.S. patent application Ser. No. 15/385,923, entitled SURGICAL STAPLING SYSTEMS;


U.S. patent application Ser. No. 15/385,925, entitled JAW ACTUATED LOCK ARRANGEMENTS FOR PREVENTING ADVANCEMENT OF A FIRING MEMBER IN A SURGICAL END EFFECTOR UNLESS AN UNFIRED CARTRIDGE IS INSTALLED IN THE END EFFECTOR;


U.S. patent application Ser. No. 15/385,926, entitled AXIALLY MOVABLE CLOSURE SYSTEM ARRANGEMENTS FOR APPLYING CLOSURE MOTIONS TO JAWS OF SURGICAL INSTRUMENTS;


U.S. patent application Ser. No. 15/385,928, entitled PROTECTIVE COVER ARRANGEMENTS FOR A JOINT INTERFACE BETWEEN A MOVABLE JAW AND ACTUATOR SHAFT OF A SURGICAL INSTRUMENT;


U.S. patent application Ser. No. 15/385,930, entitled SURGICAL END EFFECTOR WITH TWO SEPARATE COOPERATING OPENING FEATURES FOR OPENING AND CLOSING END EFFECTOR JAWS;


U.S. patent application Ser. No. 15/385,932, entitled ARTICULATABLE SURGICAL END EFFECTOR WITH ASYMMETRIC SHAFT ARRANGEMENT;


U.S. patent application Ser. No. 15/385,933, entitled ARTICULATABLE SURGICAL INSTRUMENT WITH INDEPENDENT PIVOTABLE LINKAGE DISTAL OF AN ARTICULATION LOCK;


U.S. patent application Ser. No. 15/385,934, entitled ARTICULATION LOCK ARRANGEMENTS FOR LOCKING AN END EFFECTOR IN AN ARTICULATED POSITION IN RESPONSE TO ACTUATION OF A JAW CLOSURE SYSTEM;


U.S. patent application Ser. No. 15/385,935, entitled LATERALLY ACTUATABLE ARTICULATION LOCK ARRANGEMENTS FOR LOCKING AN END EFFECTOR OF A SURGICAL INSTRUMENT IN AN ARTICULATED CONFIGURATION; and


U.S. patent application Ser. No. 15/385,936, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH ARTICULATION STROKE AMPLIFICATION FEATURES.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Jun. 24, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/191,775, entitled STAPLE CARTRIDGE COMPRISING WIRE STAPLES AND STAMPED STAPLES;


U.S. patent application Ser. No. 15/191,807, entitled STAPLING SYSTEM FOR USE WITH WIRE STAPLES AND STAMPED STAPLES;


U.S. patent application Ser. No. 15/191,834, entitled STAMPED STAPLES AND STAPLE CARTRIDGES USING THE SAME;


U.S. patent application Ser. No. 15/191,788, entitled STAPLE CARTRIDGE COMPRISING OVERDRIVEN STAPLES; and


U.S. patent application Ser. No. 15/191,818, entitled STAPLE CARTRIDGE COMPRISING OFFSET LONGITUDINAL STAPLE ROWS.


Applicant of the present application owns the following U.S. Patent Applications that were filed on Jun. 24, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. Design patent application Ser. No. 29/569,218, entitled SURGICAL FASTENER; U.S. Design patent application Ser. No. 29/569,227, entitled SURGICAL FASTENER;


U.S. Design patent application Ser. No. 29/569,259, entitled SURGICAL FASTENER CARTRIDGE; and


U.S. Design patent application Ser. No. 29/569,264, entitled SURGICAL FASTENER CARTRIDGE.


Applicant of the present application owns the following patent applications that were filed on Apr. 1, 2016 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/089,325, entitled METHOD FOR OPERATING A SURGICAL STAPLING SYSTEM;


U.S. patent application Ser. No. 15/089,321, entitled MODULAR SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY;


U.S. patent application Ser. No. 15/089,326, entitled SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY INCLUDING A RE-ORIENTABLE DISPLAY FIELD;


U.S. patent application Ser. No. 15/089,263, entitled SURGICAL INSTRUMENT HANDLE ASSEMBLY WITH RECONFIGURABLE GRIP PORTION;


U.S. patent application Ser. No. 15/089,262, entitled ROTARY POWERED SURGICAL INSTRUMENT WITH MANUALLY ACTUATABLE BAILOUT SYSTEM;


U.S. patent application Ser. No. 15/089,277, entitled SURGICAL CUTTING AND STAPLING END EFFECTOR WITH ANVIL CONCENTRIC DRIVE MEMBER;


U.S. patent application Ser. No. 15/089,296, entitled INTERCHANGEABLE SURGICAL TOOL ASSEMBLY WITH A SURGICAL END EFFECTOR THAT IS SELECTIVELY ROTATABLE ABOUT A SHAFT AXIS;


U.S. patent application Ser. No. 15/089,258, entitled SURGICAL STAPLING SYSTEM COMPRISING A SHIFTABLE TRANSMISSION;


U.S. patent application Ser. No. 15/089,278, entitled SURGICAL STAPLING SYSTEM CONFIGURED TO PROVIDE SELECTIVE CUTTING OF TISSUE;


U.S. patent application Ser. No. 15/089,284, entitled SURGICAL STAPLING SYSTEM COMPRISING A CONTOURABLE SHAFT;


U.S. patent application Ser. No. 15/089,295, entitled SURGICAL STAPLING SYSTEM COMPRISING A TISSUE COMPRESSION LOCKOUT;


U.S. patent application Ser. No. 15/089,300, entitled SURGICAL STAPLING SYSTEM COMPRISING AN UNCLAMPING LOCKOUT;


U.S. patent application Ser. No. 15/089,196, entitled SURGICAL STAPLING SYSTEM COMPRISING A JAW CLOSURE LOCKOUT;


U.S. patent application Ser. No. 15/089,203, entitled SURGICAL STAPLING SYSTEM COMPRISING A JAW ATTACHMENT LOCKOUT;


U.S. patent application Ser. No. 15/089,210, entitled SURGICAL STAPLING SYSTEM COMPRISING A SPENT CARTRIDGE LOCKOUT;


U.S. patent application Ser. No. 15/089,324, entitled SURGICAL INSTRUMENT COMPRISING A SHIFTING MECHANISM;


U.S. patent application Ser. No. 15/089,335, entitled SURGICAL STAPLING INSTRUMENT COMPRISING MULTIPLE LOCKOUTS;


U.S. patent application Ser. No. 15/089,339, entitled SURGICAL STAPLING INSTRUMENT;


U.S. patent application Ser. No. 15/089,253, entitled SURGICAL STAPLING SYSTEM CONFIGURED TO APPLY ANNULAR ROWS OF STAPLES HAVING DIFFERENT HEIGHTS;


U.S. patent application Ser. No. 15/089,304, entitled SURGICAL STAPLING SYSTEM COMPRISING A GROOVED FORMING POCKET;


U.S. patent application Ser. No. 15/089,331, entitled ANVIL MODIFICATION MEMBERS FOR SURGICAL STAPLERS;


U.S. patent application Ser. No. 15/089,336, entitled STAPLE CARTRIDGES WITH ATRAUMATIC FEATURES;


U.S. patent application Ser. No. 15/089,312, entitled CIRCULAR STAPLING SYSTEM COMPRISING AN INCISABLE TISSUE SUPPORT;


U.S. patent application Ser. No. 15/089,309, entitled CIRCULAR STAPLING SYSTEM COMPRISING ROTARY FIRING SYSTEM; and


U.S. patent application Ser. No. 15/089,349, entitled CIRCULAR STAPLING SYSTEM COMPRISING LOAD CONTROL.


Applicant of the present application also owns the U.S. Patent Applications identified below which were filed on Dec. 31, 2015 which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/984,488, entitled MECHANISMS FOR COMPENSATING FOR BATTERY PACK FAILURE IN POWERED SURGICAL INSTRUMENTS;


U.S. patent application Ser. No. 14/984,525, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS; and


U.S. patent application Ser. No. 14/984,552, entitled SURGICAL INSTRUMENTS WITH SEPARABLE MOTORS AND MOTOR CONTROL CIRCUITS.


Applicant of the present application also owns the U.S. Patent Applications identified below which were filed on Feb. 9, 2016 which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/019,220, entitled SURGICAL INSTRUMENT WITH ARTICULATING AND AXIALLY TRANSLATABLE END EFFECTOR;


U.S. patent application Ser. No. 15/019,228, entitled SURGICAL INSTRUMENTS WITH MULTIPLE LINK ARTICULATION ARRANGEMENTS;


U.S. patent application Ser. No. 15/019,196, entitled SURGICAL INSTRUMENT ARTICULATION MECHANISM WITH SLOTTED SECONDARY CONSTRAINT;


U.S. patent application Ser. No. 15/019,206, entitled SURGICAL INSTRUMENTS WITH AN END EFFECTOR THAT IS HIGHLY ARTICULATABLE RELATIVE TO AN ELONGATE SHAFT ASSEMBLY;


U.S. patent application Ser. No. 15/019,215, entitled SURGICAL INSTRUMENTS WITH NON-SYMMETRICAL ARTICULATION ARRANGEMENTS;


U.S. patent application Ser. No. 15/019,227, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH SINGLE ARTICULATION LINK ARRANGEMENTS;


U.S. patent application Ser. No. 15/019,235, entitled SURGICAL INSTRUMENTS WITH TENSIONING ARRANGEMENTS FOR CABLE DRIVEN ARTICULATION SYSTEMS;


U.S. patent application Ser. No. 15/019,230, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH OFF-AXIS FIRING BEAM ARRANGEMENTS; and


U.S. patent application Ser. No. 15/019,245, entitled SURGICAL INSTRUMENTS WITH CLOSURE STROKE REDUCTION ARRANGEMENTS.


Applicant of the present application also owns the U.S. Patent Applications identified below which were filed on Feb. 12, 2016 which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 15/043,254, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS;


U.S. patent application Ser. No. 15/043,259, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS;


U.S. patent application Ser. No. 15/043,275, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS; and


U.S. patent application Ser. No. 15/043,289, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS.


Applicant of the present application owns the following patent applications that were filed on Jun. 18, 2015 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/742,925, entitled SURGICAL END EFFECTORS WITH POSITIVE JAW OPENING ARRANGEMENTS;


U.S. patent application Ser. No. 14/742,941, entitled SURGICAL END EFFECTORS WITH DUAL CAM ACTUATED JAW CLOSING FEATURES;


U.S. patent application Ser. No. 14/742,914, entitled MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS;


U.S. patent application Ser. No. 14/742,900, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH COMPOSITE FIRING BEAM STRUCTURES WITH CENTER FIRING SUPPORT MEMBER FOR ARTICULATION SUPPORT;


U.S. patent application Ser. No. 14/742,885, entitled DUAL ARTICULATION DRIVE SYSTEM ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS; and


U.S. patent application Ser. No. 14/742,876, entitled PUSH/PULL ARTICULATION DRIVE SYSTEMS FOR ARTICULATABLE SURGICAL INSTRUMENTS.


Applicant of the present application owns the following patent applications that were filed on Mar. 6, 2015 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/640,746, entitled POWERED SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2016/0256184;


U.S. patent application Ser. No. 14/640,795, entitled MULTIPLE LEVEL THRESHOLDS TO MODIFY OPERATION OF POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/02561185;


U.S. patent application Ser. No. 14/640,832, entitled ADAPTIVE TISSUE COMPRESSION TECHNIQUES TO ADJUST CLOSURE RATES FOR MULTIPLE TISSUE TYPES, now U.S. Patent Application Publication No. 2016/0256154;


U.S. patent application Ser. No. 14/640,935, entitled OVERLAID MULTI SENSOR RADIO FREQUENCY (RF) ELECTRODE SYSTEM TO MEASURE TISSUE COMPRESSION, now U.S. Patent Application Publication No. 2016/0256071;


U.S. patent application Ser. No. 14/640,831, entitled MONITORING SPEED CONTROL AND PRECISION INCREMENTING OF MOTOR FOR POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/0256153;


U.S. patent application Ser. No. 14/640,859, entitled TIME DEPENDENT EVALUATION OF SENSOR DATA TO DETERMINE STABILITY, CREEP, AND VISCOELASTIC ELEMENTS OF MEASURES, now U.S. Patent Application Publication No. 2016/0256187;


U.S. patent application Ser. No. 14/640,817, entitled INTERACTIVE FEEDBACK SYSTEM FOR POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/0256186;


U.S. patent application Ser. No. 14/640,844, entitled CONTROL TECHNIQUES AND SUB-PROCESSOR CONTAINED WITHIN MODULAR SHAFT WITH SELECT CONTROL PROCESSING FROM HANDLE, now U.S. Patent Application Publication No. 2016/0256155;


U.S. patent application Ser. No. 14/640,837, entitled SMART SENSORS WITH LOCAL SIGNAL PROCESSING, now U.S. Patent Application Publication No. 2016/0256163;


U.S. patent application Ser. No. 14/640,765, entitled SYSTEM FOR DETECTING THE MIS-INSERTION OF A STAPLE CARTRIDGE INTO A SURGICAL STAPLER, now U.S. Patent Application Publication No. 2016/0256160;


U.S. patent application Ser. No. 14/640,799, entitled SIGNAL AND POWER COMMUNICATION SYSTEM POSITIONED ON A ROTATABLE SHAFT, now U.S. Patent Application Publication No. 2016/0256162; and


U.S. patent application Ser. No. 14/640,780, entitled SURGICAL INSTRUMENT COMPRISING A LOCKABLE BATTERY HOUSING, now U.S. Patent Application Publication No. 2016/0256161.


Applicant of the present application owns the following patent applications that were filed on Feb. 27, 2015, and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/633,576, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING AN INSPECTION STATION, now U.S. Patent Application Publication No. 2016/0249919;


U.S. patent application Ser. No. 14/633,546, entitled SURGICAL APPARATUS CONFIGURED TO ASSESS WHETHER A PERFORMANCE PARAMETER OF THE SURGICAL APPARATUS IS WITHIN AN ACCEPTABLE PERFORMANCE BAND, now U.S. Patent Application Publication No. 2016/0249915;


U.S. patent application Ser. No. 14/633,560, entitled SURGICAL CHARGING SYSTEM THAT CHARGES AND/OR CONDITIONS ONE OR MORE BATTERIES, now U.S. Patent Application Publication No. 2016/0249910;


U.S. patent application Ser. No. 14/633,566, entitled CHARGING SYSTEM THAT ENABLES EMERGENCY RESOLUTIONS FOR CHARGING A BATTERY, now U.S. Patent Application Publication No. 2016/0249918;


U.S. patent application Ser. No. 14/633,555, entitled SYSTEM FOR MONITORING WHETHER A SURGICAL INSTRUMENT NEEDS TO BE SERVICED, now U.S. Patent Application Publication No. 2016/0249916;


U.S. patent application Ser. No. 14/633,542, entitled REINFORCED BATTERY FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2016/0249908;


U.S. patent application Ser. No. 14/633,548, entitled POWER ADAPTER FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2016/0249909;


U.S. patent application Ser. No. 14/633,526, entitled ADAPTABLE SURGICAL INSTRUMENT HANDLE, now U.S. Patent Application Publication No. 2016/0249945;


U.S. patent application Ser. No. 14/633,541, entitled MODULAR STAPLING ASSEMBLY, now U.S. Patent Application Publication No. 2016/0249927; and


U.S. patent application Ser. No. 14/633,562, entitled SURGICAL APPARATUS CONFIGURED TO TRACK AN END-OF-LIFE PARAMETER, now U.S. Patent Application Publication No. 2016/0249917.


Applicant of the present application owns the following patent applications that were filed on Dec. 18, 2014 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/574,478, entitled SURGICAL INSTRUMENT SYSTEMS COMPRISING AN ARTICULATABLE END EFFECTOR AND MEANS FOR ADJUSTING THE FIRING STROKE OF A FIRING MEMBER, now U.S. Patent Application Publication No. 2016/0174977;


U.S. patent application Ser. No. 14/574,483, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING LOCKABLE SYSTEMS, now U.S. Patent Application Publication No. 2016/0174969;


U.S. patent application Ser. No. 14/575,139, entitled DRIVE ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/0174978;


U.S. patent application Ser. No. 14/575,148, entitled LOCKING ARRANGEMENTS FOR DETACHABLE SHAFT ASSEMBLIES WITH ARTICULATABLE SURGICAL END EFFECTORS, now U.S. Patent Application Publication No. 2016/0174976;


U.S. patent application Ser. No. 14/575,130, entitled SURGICAL INSTRUMENT WITH AN ANVIL THAT IS SELECTIVELY MOVABLE ABOUT A DISCRETE NON-MOVABLE AXIS RELATIVE TO A STAPLE CARTRIDGE, now U.S. Patent Application Publication No. 2016/0174972;


U.S. patent application Ser. No. 14/575,143, entitled SURGICAL INSTRUMENTS WITH IMPROVED CLOSURE ARRANGEMENTS, now U.S. Patent Application Publication No. 2016/0174983;


U.S. patent application Ser. No. 14/575,117, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS, now U.S. Patent Application Publication No. 2016/0174975;


U.S. patent application Ser. No. 14/575,154, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND IMPROVED FIRING BEAM SUPPORT ARRANGEMENTS, now U.S. Patent Application Publication No. 2016/0174973;


U.S. patent application Ser. No. 14/574,493, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A FLEXIBLE ARTICULATION SYSTEM, now U.S. Patent Application Publication No. 2016/0174970; and


U.S. patent application Ser. No. 14/574,500, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A LOCKABLE ARTICULATION SYSTEM, now U.S. Patent Application Publication No. 2016/0174971.


Applicant of the present application owns the following patent applications that were filed on Mar. 1, 2013 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 13/782,295, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH CONDUCTIVE PATHWAYS FOR SIGNAL COMMUNICATION, now U.S. Patent Application Publication No. 2014/0246471;


U.S. patent application Ser. No. 13/782,323, entitled ROTARY POWERED ARTICULATION JOINTS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246472;


U.S. patent application Ser. No. 13/782,338, entitled THUMBWHEEL SWITCH ARRANGEMENTS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0249557;


U.S. patent application Ser. No. 13/782,499, entitled ELECTROMECHANICAL SURGICAL DEVICE WITH SIGNAL RELAY ARRANGEMENT, now U.S. Pat. No. 9,358,003;


U.S. patent application Ser. No. 13/782,460, entitled MULTIPLE PROCESSOR MOTOR CONTROL FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246478;


U.S. patent application Ser. No. 13/782,358, entitled JOYSTICK SWITCH ASSEMBLIES FOR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,326,767;


U.S. patent application Ser. No. 13/782,481, entitled SENSOR STRAIGHTENED END EFFECTOR DURING REMOVAL THROUGH TROCAR, now U.S. Pat. No. 9,468,438;


U.S. patent application Ser. No. 13/782,518, entitled CONTROL METHODS FOR SURGICAL INSTRUMENTS WITH REMOVABLE IMPLEMENT PORTIONS, now U.S. Patent Application Publication No. 2014/0246475;


U.S. patent application Ser. No. 13/782,375, entitled ROTARY POWERED SURGICAL INSTRUMENTS WITH MULTIPLE DEGREES OF FREEDOM, now U.S. Pat. No. 9,398,911; and


U.S. patent application Ser. No. 13/782,536, entitled SURGICAL INSTRUMENT SOFT STOP, now U.S. Pat. No. 9,307,986.


Applicant of the present application also owns the following patent applications that were filed on Mar. 14, 2013 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 13/803,097, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, now U.S. Patent Application Publication No. 2014/0263542;


U.S. patent application Ser. No. 13/803,193, entitled CONTROL ARRANGEMENTS FOR A DRIVE MEMBER OF A SURGICAL INSTRUMENT, now U.S. Pat. No. 9,332,987;


U.S. patent application Ser. No. 13/803,053, entitled INTERCHANGEABLE SHAFT ASSEMBLIES FOR USE WITH A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263564;


U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK, now U.S. Patent Application Publication No. 2014/0263541;


U.S. patent application Ser. No. 13/803,210, entitled SENSOR ARRANGEMENTS FOR ABSOLUTE POSITIONING SYSTEM FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263538;


U.S. patent application Ser. No. 13/803,148, entitled MULTI-FUNCTION MOTOR FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263554;


U.S. patent application Ser. No. 13/803,066, entitled DRIVE SYSTEM LOCKOUT ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263565;


U.S. patent application Ser. No. 13/803,117, entitled ARTICULATION CONTROL SYSTEM FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,351,726;


U.S. patent application Ser. No. 13/803,130, entitled DRIVE TRAIN CONTROL ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,351,727; and


U.S. patent application Ser. No. 13/803,159, entitled METHOD AND SYSTEM FOR OPERATING A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0277017.


Applicant of the present application also owns the following patent application that was filed on Mar. 7, 2014 and is herein incorporated by reference in its entirety:


U.S. patent application Ser. No. 14/200,111, entitled CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263539.


Applicant of the present application also owns the following patent applications that were filed on Mar. 26, 2014 and are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/226,106, entitled POWER MANAGEMENT CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272582;


U.S. patent application Ser. No. 14/226,099, entitled STERILIZATION VERIFICATION CIRCUIT, now U.S. Patent Application Publication No. 2015/0272581;


U.S. patent application Ser. No. 14/226,094, entitled VERIFICATION OF NUMBER OF BATTERY EXCHANGES/PROCEDURE COUNT, now U.S. Patent Application Publication No. 2015/0272580;


U.S. patent application Ser. No. 14/226,117, entitled POWER MANAGEMENT THROUGH SLEEP OPTIONS OF SEGMENTED CIRCUIT AND WAKE UP CONTROL, now U.S. Patent Application Publication No. 2015/0272574;


U.S. patent application Ser. No. 14/226,075, entitled MODULAR POWERED SURGICAL INSTRUMENT WITH DETACHABLE SHAFT ASSEMBLIES, now U.S. Patent Application Publication No. 2015/0272579;


U.S. patent application Ser. No. 14/226,093, entitled FEEDBACK ALGORITHMS FOR MANUAL BAILOUT SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272569;


U.S. patent application Ser. No. 14/226,116, entitled SURGICAL INSTRUMENT UTILIZING SENSOR ADAPTATION, now U.S. Patent Application Publication No. 2015/0272571;


U.S. patent application Ser. No. 14/226,071, entitled SURGICAL INSTRUMENT CONTROL CIRCUIT HAVING A SAFETY PROCESSOR, now U.S. Patent Application Publication No. 2015/0272578;


U.S. patent application Ser. No. 14/226,097, entitled SURGICAL INSTRUMENT COMPRISING INTERACTIVE SYSTEMS, now U.S. Patent Application Publication No. 2015/0272570;


U.S. patent application Ser. No. 14/226,126, entitled INTERFACE SYSTEMS FOR USE WITH SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272572;


U.S. patent application Ser. No. 14/226,133, entitled MODULAR SURGICAL INSTRUMENT SYSTEM, now U.S. Patent Application Publication No. 2015/0272557;


U.S. patent application Ser. No. 14/226,081, entitled SYSTEMS AND METHODS FOR CONTROLLING A SEGMENTED CIRCUIT, now U.S. Patent Application Publication No. 2015/0277471;


U.S. patent application Ser. No. 14/226,076, entitled POWER MANAGEMENT THROUGH SEGMENTED CIRCUIT AND VARIABLE VOLTAGE PROTECTION, now U.S. Patent Application Publication No. 2015/0280424;


U.S. patent application Ser. No. 14/226,111, entitled SURGICAL STAPLING INSTRUMENT SYSTEM, now U.S. Patent Application Publication No. 2015/0272583; and


U.S. patent application Ser. No. 14/226,125, entitled SURGICAL INSTRUMENT COMPRISING A ROTATABLE SHAFT, now U.S. Patent Application Publication No. 2015/0280384.


Applicant of the present application also owns the following patent applications that were filed on Sep. 5, 2014 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/479,103, entitled CIRCUITRY AND SENSORS FOR POWERED MEDICAL DEVICE, now U.S. Patent Application Publication No. 2016/0066912;


U.S. patent application Ser. No. 14/479,119, entitled ADJUNCT WITH INTEGRATED SENSORS TO QUANTIFY TISSUE COMPRESSION, now U.S. Patent Application Publication No. 2016/0066914;


U.S. patent application Ser. No. 14/478,908, entitled MONITORING DEVICE DEGRADATION BASED ON COMPONENT EVALUATION, now U.S. Patent Application Publication No. 2016/0066910;


U.S. patent application Ser. No. 14/478,895, entitled MULTIPLE SENSORS WITH ONE SENSOR AFFECTING A SECOND SENSOR'S OUTPUT OR INTERPRETATION, now U.S. Patent Application Publication No. 2016/0066909;


U.S. patent application Ser. No. 14/479,110, entitled POLARITY OF HALL MAGNET TO DETECT MISLOADED CARTRIDGE, now U.S. Patent Application Publication No. 2016/0066915;


U.S. patent application Ser. No. 14/479,098, entitled SMART CARTRIDGE WAKE UP OPERATION AND DATA RETENTION, now U.S. Patent Application Publication No. 2016/0066911;


U.S. patent application Ser. No. 14/479,115, entitled MULTIPLE MOTOR CONTROL FOR POWERED MEDICAL DEVICE, now U.S. Patent Application Publication No. 2016/0066916; and


U.S. patent application Ser. No. 14/479,108, entitled LOCAL DISPLAY OF TISSUE PARAMETER STABILIZATION, now U.S. Patent Application Publication No. 2016/0066913.


Applicant of the present application also owns the following patent applications that were filed on Apr. 9, 2014 and which are each herein incorporated by reference in their respective entireties:


U.S. patent application Ser. No. 14/248,590, entitled MOTOR DRIVEN SURGICAL INSTRUMENTS WITH LOCKABLE DUAL DRIVE SHAFTS, now U.S. Patent Application Publication No. 2014/0305987;


U.S. patent application Ser. No. 14/248,581, entitled SURGICAL INSTRUMENT COMPRISING A CLOSING DRIVE AND A FIRING DRIVE OPERATED FROM THE SAME ROTATABLE OUTPUT, now U.S. Patent Application Publication No. 2014/0305989;


U.S. patent application Ser. No. 14/248,595, entitled SURGICAL INSTRUMENT SHAFT INCLUDING SWITCHES FOR CONTROLLING THE OPERATION OF THE SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305988;


U.S. patent application Ser. No. 14/248,588, entitled POWERED LINEAR SURGICAL STAPLER, now U.S. Patent Application Publication No. 2014/0309666;


U.S. patent application Ser. No. 14/248,591, entitled TRANSMISSION ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305991;


U.S. patent application Ser. No. 14/248,584, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH ALIGNMENT FEATURES FOR ALIGNING ROTARY DRIVE SHAFTS WITH SURGICAL END EFFECTOR SHAFTS, now U.S. Patent Application Publication No. 2014/0305994;


U.S. patent application Ser. No. 14/248,587, entitled POWERED SURGICAL STAPLER, now U.S. Patent Application Publication No. 2014/0309665;


U.S. patent application Ser. No. 14/248,586, entitled DRIVE SYSTEM DECOUPLING ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305990; and


U.S. patent application Ser. No. 14/248,607, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH STATUS INDICATION ARRANGEMENTS, now U.S. Patent Application Publication No. 2014/0305992.


Applicant of the present application also owns the following patent applications that were filed on Apr. 16, 2013 and which are each herein incorporated by reference in their respective entireties:


U.S. Provisional Patent Application Ser. No. 61/812,365, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR;


U.S. Provisional Patent Application Ser. No. 61/812,376, entitled LINEAR CUTTER WITH POWER;


U.S. Provisional Patent Application Ser. No. 61/812,382, entitled LINEAR CUTTER WITH MOTOR AND PISTOL GRIP;


U.S. Provisional Patent Application Ser. No. 61/812,385, entitled SURGICAL INSTRUMENT HANDLE WITH MULTIPLE ACTUATION MOTORS AND MOTOR CONTROL; and


U.S. Provisional Patent Application Ser. No. 61/812,372, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR.


Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. Well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. The reader will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.


The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.


The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.


Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the reader will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, the reader will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.


A surgical stapling system can comprise a shaft and an end effector extending from the shaft. The end effector comprises a first jaw and a second jaw. The first jaw comprises a staple cartridge. The staple cartridge is insertable into and removable from the first jaw; however, other embodiments are envisioned in which a staple cartridge is not removable from, or at least readily replaceable from, the first jaw. The second jaw comprises an anvil configured to deform staples ejected from the staple cartridge. The second jaw is pivotable relative to the first jaw about a closure axis; however, other embodiments are envisioned in which the first jaw is pivotable relative to the second jaw. The surgical stapling system further comprises an articulation joint configured to permit the end effector to be rotated, or articulated, relative to the shaft. The end effector is rotatable about an articulation axis extending through the articulation joint. Other embodiments are envisioned which do not include an articulation joint.


The staple cartridge comprises a cartridge body. The cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end. In use, the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue. The anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck. Thereafter, staples removably stored in the cartridge body can be deployed into the tissue. The cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities. The staple cavities are arranged in four longitudinal rows. Two rows of staple cavities are positioned on a first side of a longitudinal slot and two rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.


The staples are movable between their unfired positions and their fired positions by a sled assembly. The sled assembly is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end. The sled assembly comprises a plurality of ramped surfaces configured to slide under the staples and lift the staples toward the anvil. Other arrangements may include staple drivers supporting the staples in the staple cavities and, in such arrangements, the sled assembly can slide under and lift the drivers, as well as the staples supported thereon, toward the anvil.


Further to the above, the sled assembly is moved distally by a firing member. The firing member is configured to contact the sled assembly and push the sled assembly toward the distal end. The longitudinal slot defined in the cartridge body is configured to receive the firing member. The anvil also includes a slot configured to receive the firing member. The firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil. The firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.


In certain instances, the end effectors described herein can define a width equal to or less than 8 mm and a height equal to or less than 8 mm. For example, the end effectors described herein can be 5 mm wide by 8 mm high. In other instances, the end effectors can be 5 mm wide by 5 mm high, for example. The compact end effectors described herein can include various features that contribute to the smaller footprint thereof. For example, such end effectors can include direct-drive staples, such as the staples described in U.S. patent application Ser. No. 14/836,324, entitled SURGICAL STAPLES FOR MINIMIZING STAPLE ROLL, filed Aug. 26, 2015, which is incorporated by reference herein in its entirety. Because drivers are eliminated when a staple is driven directly by a sled assembly, the height of the staple cartridge and, thus, the height of the end effector configured to receive the staple cartridge can be reduced. Additionally or alternatively, such end effectors can include a multi-function firing member. For example, the firing member can drive a sled to fire the staples from the staple cartridge, cut tissue clamped between the jaws, cam the jaws into a clamped configuration, and cam the jaws into an open configuration. Such clamp-fire-open firing members can implement a combination of surgical functions with a single actuation system, which can decrease the independent actuation systems in the end effector and, thus, may reduce the size of the end effector. For example, a translating closure tube that moves around at least a portion of the end effector to effect a closure motion can be eliminated in certain instances.


The compact end effectors described herein can be advantageous for a wide variety of surgical procedures including surgical procedures in which a small surgical footprint is appreciated. For example, in certain thoracic procedures, the end effectors can be utilized to cut and seal vessels such as the pulmonary vessel, for example, which has a small diameter and a high volume of flow. The compact end effectors may require a smaller insertion orifice and can provide increased viewability to the surgeon around the surgical site.



FIGS. 1 and 2 depict one form of a surgical instrument 10 including an interchangeable surgical tool assembly 1000 that is operably coupled to a motor driven handle assembly 500. Referring to FIG. 1A, the handle assembly 500 can be compatible with a plurality of different interchangeable surgical tool assemblies in addition to the interchangeable surgical tool assembly 1000. For example, the handle assembly 500 can be compatible with the interchangeable surgical tool assemblies 1000′, 1000″, 1000′″ and 1000′″ depicted in FIG. 1A. The interchangeable surgical tool assembly 1000 may also be effectively employed with a tool drive assembly of a robotically controlled or automated surgical system. For example, the interchangeable surgical tool assemblies disclosed herein may be employed with various robotic systems, instruments, components and methods such as, but not limited to, those disclosed in U.S. Pat. No. 9,072,535, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, which is hereby incorporated by reference herein in its entirety. The handle assembly 500, as well as the tool drive assembly of a robotic system may also be referred to herein as “control systems” or “control units”.



FIGS. 1 and 2 illustrate attachment of the interchangeable surgical tool assembly 1000 to the handle assembly 500. The handle assembly 500 may comprise a handle housing 502 that includes a pistol grip portion 504 that can be gripped and manipulated by the clinician. The handle assembly 500 may further include a frame 506 that operably supports at least one drive system.


In at least one form, the handle assembly 500 and the frame 506 may operably support a drive system 530 that is configured to apply closing and firing motions to corresponding portions of the interchangeable surgical tool assembly that is attached thereto. As was described in detail in U.S. patent application Ser. No. 14/226,142, entitled SURGICAL INSTRUMENT COMPRISING A SENSOR SYSTEM, now U.S. Patent Application Publication No. 2015/0272575, which is hereby incorporated by reference in its entirety herein, the drive system 530 may employ an electric motor 505 that is located in the pistol grip portion 504 of the handle assembly 500. In various forms, the motor 505 may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example. In other arrangements, the motor 505 may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. The motor 505 may be powered by a power source 522 that in one form may comprise a removable power pack. The power pack may support a plurality of Lithium Ion (“LI”) or other suitable batteries therein. A number of batteries, which may be connected in series, may be used as the power source 522 for the handle assembly 500. In addition, the power source 522 may be replaceable and/or rechargeable.


Referring primarily to FIG. 2, the electric motor 505 is configured to axially drive a longitudinally movable drive member 540 in distal and proximal directions depending upon the polarity of the motor 505. For example, when the motor 505 is driven in one rotary direction, the longitudinally movable drive member 540 will be axially driven in the distal direction “DD”. When the motor 505 is driven in the opposite rotary direction, the longitudinally movable drive member 540 will be axially driven in a proximal direction “PD”. The handle assembly 500 can include a switch 513 that can be configured to reverse the polarity applied to the electric motor 505 by the power source 522 or otherwise control the motor 505. The handle assembly 500 can also include a sensor or sensors (not shown) configured to detect the position of the drive member 540 and/or the direction in which the drive member 540 is being moved. When the interchangeable surgical tool assembly 1000 is mounted to the handle assembly 500, the drive member 540 of the handle drive system 530 is coupled to a drive member 1602 of a tool drive system 1600 in the interchangeable surgical tool assembly 1000, and the drive member 1602 is connected to a firing member 1760 in the end effector 1100 via a flexible firing bar 1770 (see FIGS. 3-5).


During a firing stroke, the drive member 540 transfers a firing motion to the firing bar 1770 via the drive member 1602 to fire the firing member 1760. For example, actuation of the drive member 540 is configured to displace the firing bar 1770 and the firing member 1760 distally to cut tissue and effect firing of staples from a staple cartridge. Thereafter, the drive member 540 can be retracted proximally to retract the firing bar 1770 and the firing member 1760 proximally. The firing bar 1770 can be comprised of a laminated beam structure including a least two layers. The firing bar 1770 can be configured to flex within an articulation joint 1200. Such beam layers may comprise, for example, stainless steel bands that are interconnected by, for example, welding or pinning together at their proximal ends and/or at other locations along their length. In alternative embodiments, the distal ends of the bands are not connected together to allow the laminates or bands to splay relative to each other when the end effector is articulated. Such arrangement permits the firing bar 1770 to be sufficiently flexible to accommodate articulation of the end effector 1100. Various laminated knife bar arrangements are disclosed in U.S. patent application Ser. No. 15/019,245, entitled SURGICAL INSTRUMENTS WITH CLOSURE STROKE REDUCTION ARRANGEMENTS, which is hereby incorporated by reference herein in its entirety. The reader will readily appreciate that various firing members described herein can be coupled to the firing bar 1770 in certain instances.


In various instances, the handle assembly 500 can be configured to detect the type of interchangeable surgical tool assembly 1000 mounted or attached thereto. For example, the handle assembly 500 can include a Hall effect sensor, which can be configured to detect a detectable element, such as a magnetic element, for example, on an interchangeable surgical tool assembly, such as interchangeable surgical tool assembly 1000, for example. Different interchangeable surgical tool assemblies can have different detectable elements and/or arrangements thereof. Various sensors for detecting different interchangeable surgical tool assemblies are described in U.S. patent application Ser. No. 13/803,053, entitled INTERCHANGEABLE SHAFT ASSEMBLIES FOR USE WITH A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263564, which is hereby incorporated by reference herein in its entirety.


Based on the detected type of interchangeable surgical tool assembly 1000, the handle assembly 500 can implement certain surgical functions and/or can lockout certain surgical functions. For example, the handle assembly 500 can include one or more discrete drive systems (e.g. a closure drive system and a firing drive system), however, upon detecting the interchangeable surgical tool assembly 1000, the handle assembly 500 can disarm or deactivate certain drive system(s) (e.g. can deactivate the closure drive system and employ the firing drive system to close and fire the end effector). For example, a handle assembly that includes a plurality of drive systems is described in contemporaneously-filed U.S. patent application Ser. No. 15/385,941, entitled SURGICAL TOOL ASSEMBLIES WITH CLUTCHING ARRANGEMENTS FOR SHIFTING BETWEEN CLOSURE SYSTEMS WITH CLOSURE STROKE REDUCTION FEATURES AND ARTICULATION AND FIRING SYSTEMS, which is hereby incorporated by reference herein in its entirety.


In at least one form, the longitudinally movable drive member 540 may have a rack of teeth (not shown) formed thereon for meshing engagement with a corresponding drive gear arrangement (not shown) that interfaces with the motor 505. Further details regarding those features may be found in U.S. patent application Ser. No. 14/226,142, entitled SURGICAL INSTRUMENT COMPRISING A SENSOR SYSTEM, now U.S. Patent Application Publication No. 2015/0272575, which is hereby incorporated by reference in its entirety herein. At least one form also includes a manually-actuatable “bailout” assembly that is configured to enable the clinician to manually retract the longitudinally movable drive member 540 should the motor 505 become disabled. The bailout assembly may include a lever or bailout handle assembly that is stored within the handle assembly 500 under a releasable door 550. The lever is configured to be manually pivoted into ratcheting engagement with the teeth in the drive member 540. Thus, the clinician can manually retract the drive member 540 by using the bailout handle assembly to ratchet the drive member 540 in the proximal direction “PD”. U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Pat. No. 8,608,045, the entire disclosure of which is hereby incorporated by reference herein, discloses bailout arrangements and other components, arrangements, and systems that may also be employed with the interchangeable surgical tool assembly 1000.


Referring still to FIG. 2, actuation of the motor 505 for the drive system 530 can be controlled by one or more actuators. In at least one form, the drive system 530 may include an actuator in the form of a closure trigger 512 that is pivotally supported by the frame 506. Such an arrangement enables the closure trigger 512 to be manipulated by a clinician such that when the clinician grips the pistol grip portion 504 of the handle assembly 500, the closure trigger 512 may be easily pivoted from a starting or “unactuated” position to an “actuated” position and more particularly, to a fully compressed or fully actuated position. The closure trigger 512 can be employed to apply closing and, optionally, opening motions to the interchangeable surgical tool assembly 1000 that is operably attached or coupled to the handle assembly 500.


As described in further detail in U.S. patent application Ser. No. 14/226,142, entitled SURGICAL INSTRUMENT COMPRISING A SENSOR SYSTEM, now U.S. Patent Application Publication No. 2015/0272575, which is hereby incorporated by reference in its entirety herein, when the clinician fully depresses the closure trigger 512 to attain a “full” closure stroke, the drive system 530 (or another drive system in the handle assembly 500) can be configured to lock the closure trigger 512 into the fully depressed or fully actuated position. When the clinician desires to unlock the closure trigger 512 to permit it to be biased to the unactuated position, the clinician simply activates a closure release button assembly 518, which enables the closure trigger 512 to return to unactuated position. The closure release button assembly 518 may also be configured to interact with various sensors that communicate with a microcontroller 520 (see FIG. 2) in the handle assembly 500 for tracking the position of the closure trigger 512. Further details concerning the configuration and operation of the closure release button assembly 518 may be found in U.S. patent application Ser. No. 14/226,142, entitled SURGICAL INSTRUMENT COMPRISING A SENSOR SYSTEM, now U.S. Patent Application Publication No. 2015/0272575, which is hereby incorporated by reference in its entirety herein.


In at least one form, the drive system 530 may also include an actuator in the form of a firing trigger 532 that is pivotally supported by the frame 506. The firing trigger 532 may be pivoted between an unactuated position and an actuated position. The firing trigger 532 may be biased into the unactuated position by a spring (not shown) or other biasing arrangement such that when the clinician releases the firing trigger 532, it may be pivoted or otherwise returned to the unactuated position by the spring or biasing arrangement. In at least one form, the firing trigger 532 can be positioned “outboard” of the closure trigger 512. As discussed in U.S. patent application Ser. No. 14/226,142, entitled SURGICAL INSTRUMENT COMPRISING A SENSOR SYSTEM, now U.S. Patent Application Publication No. 2015/0272575, which is hereby incorporated by reference in its entirety herein, the handle assembly 500 may be equipped with a firing trigger safety button (not shown) to prevent inadvertent actuation of the firing trigger 532. When the closure trigger 512 is in the unactuated position, the safety button is contained in the handle assembly 500 where the clinician cannot readily access it and move it between a safety position preventing actuation of the firing trigger 532 and a firing position wherein the firing trigger 532 may be fired. As the clinician depresses the closure trigger 512, the safety button and the firing trigger 532 may pivot down wherein they can then be manipulated by the clinician.


As further described herein, the closure trigger 512 can be configured to actuate the motor 505 to drive the drive system 530 a first degree and/or through a first range of motion and the firing trigger 532 can be configured to actuate the motor 505 to drive the drive system 530 a second degree and/or through a second range of motion. In other instances, the handle assembly 500 can include a single actuator for closing and firing the end effector.


Referring primarily to FIG. 2, the interchangeable surgical tool assembly 1000 includes a tool drive system 1600 that is supported for axial travel within the spine assembly 1500. In the illustrated embodiment, the tool drive system 1600 includes a proximal drive shaft segment 1602. The proximal drive shaft segment 1602 can be coupled to an intermediate drive member, such as the drive member 3540 (see FIGS. 30, 31, 33, and 35), and the intermediate drive member can be coupled to a firing bar that terminates in a firing member, such as the firing bar 3770 and the firing member 1760 (see FIGS. 30, 31, 33, and 35). As can be seen in FIG. 2, a proximal attachment lug 1606 protrudes proximally from a proximal end of the proximal drive shaft segment 1602 and is configured to be operably received within the firing shaft attachment cradle 542 in the longitudinally movable drive member 540 that is supported in the handle assembly 500. When assembled, the handle drive member 540 is configured to transfer motion to the proximal drive shaft segment 1602 and ultimately to the firing member 1760 via the intermediate drive member and the firing bar.


Referring still to FIGS. 1 and 2, the interchangeable surgical tool assembly 1000 includes a shaft mounting portion 1300 that is operably attached to an elongate shaft assembly 1400. A surgical end effector 1100 that comprises an elongate channel 1102 that is configured to operably support a staple cartridge 1110 therein is operably attached to the elongate shaft assembly 1400. The end effector 1100 may further include an anvil 1130 that is pivotally supported relative to the elongate channel 1102. The elongate channel 1102/staple cartridge assembly 1110 and the anvil 1130 may also be referred to as “jaws”. The interchangeable surgical tool assembly 1000 may further include the articulation joint 1200 (see FIG. 1) and an articulation lock, which can be configured to releasably hold the end effector 1100 in a desired articulated position about an articulation axis B-B which is transverse to a shaft axis SA. Details regarding the construction and operation of the articulation lock may be found in U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK, now U.S. Patent Application Publication No. 2014/0263541, the entire disclosure of which is hereby incorporated by reference herein. Additional details concerning the articulation lock may also be found in U.S. patent application Ser. No. 15/019,196, filed Feb. 9, 2016, entitled SURGICAL INSTRUMENT ARTICULATION MECHANISM WITH SLOTTED SECONDARY CONSTRAINT, the entire disclosure of which is hereby incorporated by reference herein.


Referring primarily now to FIGS. 3-5, a firing member 1760 is configured to operably interface with a sled assembly 1120 that is operably supported within the cartridge body 1111 of the surgical staple cartridge 1110. The sled assembly 1120 is slidably displaceable within the surgical staple cartridge body 1111 from a proximal starting position adjacent the proximal end 1112 of the cartridge body 1111 to an ending position adjacent a distal end 1113 of the cartridge body 1111.


Staple pockets or cavities 1116 are aligned in rows on each side of a centrally-disposed slot 1114. The cavities 1116 open through the upper deck surface 1115 of the cartridge body 1111. The centrally-disposed slot 1114 enables the firing member 1760 to pass therethrough and cut the tissue that is clamped between the anvil 1130 and the staple cartridge 1110. A direct-drive surgical staple or fastener 1126 (see FIG. 5) is positioned in each staple cavity 1116. Referring primarily to FIG. 5, the staples 1126 are flat-formed staples, which can be cut and/or stamped from a sheet of material, for example. The sheet of material can be metallic and can comprise stainless steel and/or titanium, for example. In at least one instance, outlines can be traced, etched, and/or cut into the sheet of material which are machined and/or laser cut to form the direct-drive staples 1126 into a manufactured shape.


The staples 1126 comprise a pair of staple legs and a staple base portion, or crown, from which the staple legs extend. Each staple leg comprises a staple tip, or piercing portion, which is configured to pierce the tissue and contact a corresponding forming pocket 1128 (see FIG. 6) of the anvil of the surgical stapling instrument. The staple legs are configured to change shape to achieve a formed configuration to fasten the tissue. The staple base portion defines a first plane and the staple legs define a second plane which is laterally offset from but at least substantially parallel to the first plane. In other instances, the first and second planes may not be parallel.


The staples 1126 include drive surfaces on the base portion or crown. The drive surfaces are configured to receive the driving force from the sled assembly 1120. When the sled assembly 1120 translates distally through the staple cartridge 1110, the sled assembly 1120 contacts the drive surfaces to lift the staple 1126 out of the staple cartridge 1110 and form the staple 1126 into its fired configuration. Direct-drive staples, such as the staples 1126, for example, are further described in U.S. patent application Ser. No. 14/836,324, entitled SURGICAL STAPLES FOR MINIMIZING STAPLE ROLL, filed Aug. 26, 2015, which is incorporated by reference herein in its entirety.


The sled assembly 1120 includes a plurality of sloped or wedge-shaped cams 1122 wherein each cam 1122 corresponds to a particular line of staples 1126 located on a side of the centrally-disposed slot 1114. When the firing member 1760 is fired or driven distally, the firing member 1760 drives the sled assembly 1120 distally as well. As the firing member 1760 moves distally through the staple cartridge 1110, the tissue cutting feature 1766 cuts the tissue that is clamped between the anvil assembly 1130 and the staple cartridge 1110, and the sled assembly 1120 drives the staples 1126 upwardly in the staple cartridge 1110 and into forming contact with the anvil assembly 1130.


The firing member 1760 defines an I-beam structure that includes a lower flange 1764, an upper flange 1762, and a support portion 1763 extending between the flanges 1762 and 1764. The upper flange 1762 is comprised of horizontal pins extending from the support portion 1763. The lower flange 1764 is comprised of an enlarged or widened foot at the base of the support portion 1763. The tissue cutting feature 1766 is supported by the support portion 1763 between the flanges 1762 and 1764. The support portion 1763 is configured to travel though aligned slots in the elongate channel 1102, the staple cartridge 1110, and the anvil 1130. For example, the support portion 1763 extends through a centrally-disposed longitudinal channel slot 1104 in the elongate channel 1102 such that the lower flange 1764 is movably positioned within a passageway 1106 (see FIGS. 10 and 11) defined by elongate channel 1102. For example, the passageway 1106 can be defined below a cartridge-supporting base 1101 of the elongate channel 1102.


The support portion 1763 also extends through a centrally-disposed anvil slot 1132 in the anvil 1130 such that the upper flange 1762 is movably positioned within a passageway 1136 (see FIGS. 10 and 11) defined by the anvil 1130. For example, the passageway 1136 can be defined through the anvil 1130. The I-beam flanges 1762 and 1764 provide camming surfaces, which interact with the elongate channel 1102 and the anvil 1130, respectively, to open and clamp, or close, the jaws, as further described herein. Moreover, the firing member 1760 is configured to maintain a constant distance between the elongate channel 1102 and the anvil 1130 along the length of the end effector 1100 to ensure an appropriate tissue gap.


Referring primarily now to FIG. 6, the anvil 1130 includes downwardly-extending sidewalls 1133 commonly referred to as “tissue stops”. The tissue stops 1133 are configured to block the target tissue from getting too far proximal between the anvil 1130 and the staple cartridge 1110 (see FIG. 3-5). For example, the tissue stops 1133 extend toward the staple cartridge 1110 (see FIG. 3). When the anvil 1130 is closed toward the staple cartridge 1110, the tissue stops 1133 on either side of the anvil 1130 extend downward past the cartridge deck surface 1115 and form a wall or barrier, which prevents tissue from being positioned too far proximal between the anvil 1130 and the staple cartridge 1110. Additionally or alternatively, the elongate channel 1102 can include upwardly-extending tissue stops for blocking proximal tissue.


The anvil 1130 also includes inner rails 1135, which extend downwardly toward the staple cartridge 1110. The inner rails 1135 extend parallel to the tissue stops 1133 and are positioned laterally inboard of the tissue stops 1133. The inner rails 1135 are configured to guide the anvil 1130 relative to the elongate channel 1102 as the anvil 1130 pivots relative to the elongate channel 1102. For example, the inner rails 1135 can nest within the sidewalls 1103 of the elongate channel 1102 and the tissue stops 1133 can be positioned outside the sidewalls 1103 of the elongate channel 1102 when the anvil 1130 pivots toward a closed position. In various instances, the inner rails 1135 can slide or move adjacent to an inner surface of the sidewalls 1103 of the elongate channel 1102 as the anvil 1130 approaches the staple cartridge 1110 to ensure that the anvil 1130 remains properly aligned with the elongate channel 1102 and the staple cartridge 1110 installed therein.


The slot 1132 in the anvil 1130 extends from the proximal end to the distal end of the anvil 1130. Referring primarily to FIG. 6, the slot 1132 and the passageway 1136 extend to a t-shaped opening 1129 at the distal end of the anvil 1130, which can provide an assembly pathway for the firing member 1760. For example, the firing member 1760 can be inserted into the anvil 1130 from the distal end at the t-shaped opening 1129 and retracted proximally to a home position before the staple cartridge 1110 is inserted in the elongate channel 1102.


Referring primarily now to FIG. 7, the elongate channel 1102 includes the sidewalls 1103 and a pin hole 1108 defined in a proximal portion of each sidewall 1103. The elongate channel 1102 also includes a plate 1105, which is attached to the underside of the cartridge-supporting base 1101 of the elongate channel 1102. The plate 1105 can be laser welded to the elongate channel 1102, for example, and can increase the structural integrity of the elongate channel 1102. For example, the plate 1105 can be configured to prevent and/or limit bending, torqueing and/or deformation of the elongate channel 1102 during a stapling operation. The plate 1105 is positioned over a portion of the longitudinal channel slot 1104 and can define the passageway 1106 through the elongate channel 1102. For example, the passageway 1106 for the lower flange 1764 can be defined by the plate 1105 and the cartridge-supporting base 1101. Openings 1107 in the plate 1105 are positioned along the length thereof to provide views of the firing member as the firing member 1760 traverses the longitudinal channel slot 1104 during a firing stroke. For example, an operator can view the progress of the firing member 1760 through the openings 1107 throughout the firing stroke.


Referring primarily now to FIGS. 8-12, a pivot joint 1150 for the end effector 1100 is depicted. The pivot joint 1150 includes pivot pins 1152 (see FIG. 8) at which the anvil 1130 pivots relative to the elongate channel 1102. Although only a single pivot pin 1152 is depicted in FIG. 8, the reader will readily appreciate that symmetrical pivot pins 1152 are positioned on opposite sides of the end effector 1100. The symmetrical pivot pins 1152 are shown in FIG. 5. The pivot pins 1152 extend through apertures 1131 on each side of the anvil 1130 and into the pin holes 1108 on each respective side of the elongate channel 1102. For example, the pivot pins 1152 can be pressed into the apertures 1131. At the outset of the firing stroke, the firing member 1760 is configured to move distally from an initial or home position (FIG. 10). As the firing member 1760 moves distally, the anvil 1130 is pivoted toward a clamped configuration by the I-beam structure of the firing member 1760. More specifically, the lower flanges 1764 of the firing member 1760 move through the passageway 1106 defined by the elongate channel 1102 and the upper flanges 1762 move along a ramped surface 1134 of the anvil 1130 and then through the passageway 1136 defined by the anvil 1130.


Referring primarily to FIGS. 10 and 11, the ramped surface 1134 defines an open-close cavity 1148 in the anvil 1130 through which a portion of the firing member 1760 extends during a portion of the firing stroke. For example, the upper flanges 1762 protrude from the anvil 1130 via the open-close cavity 1148 during a portion of the firing stroke. The ramped surface 1134 slopes downward along a proximal opening surface 1142, extends along an intermediate portion 1138, and slopes upward along a distal closure ramp 1140. When the firing member 1760 is in an initial position or home position (see FIG. 10), the upper flanges 1762 are spaced apart from the intermediate portion 1138. In other words, the upper flanges 1762 are not cammingly engaged with the open-close cavity 1148. In the home position, the firing member 1760 can dwell or hover with respect to the open-close cavity 1148 such that neither an opening force nor a closing force is applied to the anvil 1130 by the firing member 1760.


From the home position (see FIG. 10), the firing member 1760 can be retracted proximally. A retracted position of the firing member 1760 is depicted in FIG. 11. As the firing member 1760 continues to move proximally, the upper flanges 1762 of the firing member 1760, which are engaged with the proximal opening surface 1142, are configured to exert an opening force on the proximal opening surface 1142. As the upper flanges 1762 move against the proximal opening surface 1142, the proximal opening surface 1142 pivots, which causes the pivoting, opening motion of the anvil 1130. The proximal opening surface 1142 is positioned proximal to the pivot joint 1150. As a result, as the upper flanges 1762 exert a downward force on the proximal opening surface 1142, the anvil 1130 is pushed upward by the leveraging action on the proximal opening surface 1142.


The ramped surface 1134 also includes a fillet 1144 between the intermediate portion 1138 and the proximal opening surface 1142. In certain instances, the proximal end of the open-close cavity 1148 can include an opening ramp, which can extend to a protruding tail. The upper flange 1762 of the firing member 1760 can be configured to camming engage the opening ramp and/or the protruding tail to generate an opening motion for the end effector 1100. In certain instances, the upper flange 1762 can also include a proximally-extending boss, which can be configured to generate an additional opening motion, as further described herein.


From the retracted position (see FIG. 11), the firing member 1760 can be advanced distally to return to the home position (see FIG. 10). To close the end effector, the firing member 1760 can be further advanced from the home position to an advanced position depicted in FIG. 12. For a portion of the firing motion intermediate the retracted position and the advanced position, the upper flanges 1762 are spaced apart from the ramped surface 1134. For example, the upper flanges 1762 hover or dwell above the intermediate portion 1138 as the firing member 1760 shifts between a closure motion (see FIG. 12) and an opening motion (see FIG. 11). The dwell portion of the firing motion can be configured to prevent jamming of the opening and/or closing motions, for example.


The firing member 1760 moves into contact with the ramped surface 1134 and the distal closure ramp 1140 thereof in the advanced position depicted in FIG. 12. As the firing member 1760 is advanced farther distally, the upper flanges 1762 move along the distal closure ramp 1140 to clamp the anvil 1130 relative to the elongate channel 1102. The distal closure ramp 1140 is positioned distal to the pivot joint 1150. As a result, as the upper flanges 1762 exert a downward force on the distal closure ramp 1140, the anvil 1130 is pushed downward.


As the firing member 1760 continues to progress distally, the upper flanges 1762 move through the passageway 1136 to ensure a constant distance between the anvil 1130 and the elongate channel 1102 along the length of the end effector 1100. For example, the passageway 1136 includes a lower ledge 1137 and an upper cap 1139, which define the lower and upper limits of the passageway 1136. The upper flanges 1762 are constrained within those lower and upper limits during the firing stroke. The upper flanges 1762 can be dimensioned to fit snuggly within the confines of the passageway 1136. In other instances, as further described herein, the upper flanges 1762 can be configured to float and/or adjust vertically within a clearance provided by the passageway 1136 or a portion thereof.


The firing member 1760 is a multi-function firing member. For example, the firing member 1760 is configured to drive the sled assembly 1120 in order to fire the direct-drive staples 1126 from the staple cartridge 1110, to cut tissue clamped between the jaws 1102 and 1130, to cam the jaws 1102 and 1130 into a clamped configuration at the outset of the firing stroke, and to cam the jaws 1102 and 1130 into an open configuration at the completion of the firing stroke. In other words, the firing member 1760 is configured to implement a combination of surgical functions with a single actuation system. As a result, the independent actuations systems required to fit within the footprint of the end effector 1100 can be minimized by the multi-function firing member 1760.


In other instances, an interchangeable surgical tool assembly can include a closure tube for opening and closing the jaws of an end effector. A closure tube can be configured to translate relative to the end effector. As the closure tube translates over the end effector, for example, the closure tube can be configured to bias the jaws of the end effector closed. In certain instances, a spring can be configured to bias the jaws of the end effector toward an open configuration and the closure tube can overcome the spring bias in order to close the jaws.


An interchangeable surgical tool assembly 7000 including an end effector 7100 and a distal closure tube 7430 is depicted in FIGS. 13-17. The end effector 7100 includes an anvil 7130 and an elongate channel 7102, which are similar to the anvil 1130 and the elongate channel 1102, respectively. A closure assembly 7406 is utilized to close and/or open the anvil 7130 and the elongate channel 7102 of the end effector 7100. The closure assembly 7406 includes an intermediate closure member 7410 and a distal closure member 7430. The intermediate closure member 7410 and the distal closure member 7430 are coupled together by an upper double pivot link 7220.


In the illustrated arrangement, the distal closure member 7430 comprises a hollow tubular member that is slidably supported relative to the end effector 7100. Hence, the distal closure member 7430 may also be referred to herein as the distal closure tube. Actuation of a closure trigger 512 (see FIGS. 1 and 2) on the handle assembly 500 of the surgical instrument can result in the axial movement of the closure assembly 7406 including the distal closure tube 7430. A closure spring (not shown) may also be journaled on the closure assembly 7406 and serves to bias the closure assembly 7406 in the proximal direction “PD” which can serve to pivot closure trigger 512 into the unactuated position when the interchangeable surgical tool assembly 7000 is operably coupled to the handle assembly 500. In use, the closure assembly 7406 is configured to be translated distally (direction DD) to close the anvil 7130, for example, in response to the actuation of the closure trigger 512.



FIGS. 13 and 14 illustrate the anvil 7130 and the elongate channel 7102 (the “jaws”) in the closed position. As the distal closure member 7430 is advanced in the distal direction DD, the distal end 7431 of the distal closure member 7430 can be configured to travel up closure cam surfaces formed on the anvil mounting walls and up closure cam surfaces formed on the proximal end of the elongate channel 7102. When the clinician desires to move the anvil 7130 and the elongate channel 7102 to the open position, the distal closure member 7430 is moved in the proximal direction PD. Actuation of a closure trigger and closure assembly including a distal closure tube thereof is described in contemporaneously-filed U.S. patent application Ser. No. 15/385,956, entitled SURGICAL INSTRUMENTS WITH POSITIVE JAW OPENING FEATURES, which is hereby incorporated by reference herein in its entirety.


Referring primarily now to FIG. 17, a firing member 7760 is positioned in the end effector 7100. The firing member 7760 is configured to translate through the end effector 7100 during a firing stroke to move a sled assembly 7120 through the end effector 7100 and cut tissue clamped between the jaws of the end effector 7100. The anvil 7130 includes a passageway 7136, which is configured to receive a portion of the firing member 7760 during the firing stroke. For example, an upper flange on the firing member 7760 can be movably positioned in the passageway 7136.


The anvil 7130 also includes a channel 7138 (see FIGS. 13 and 15) through which a rod 7140 extends. Referring primarily to FIG. 17, the rod 7140 includes a proximal end 7142 and a distal end 7144. The distal end 7144 is operably positioned to engage a distal nose 7150 of the anvil 7130, as further described herein. The proximal end 7142 is operably positioned in abutting contact with the distal end 7431 of the distal closure tube 7430. When the distal closure tube 7430 is moved distally to complete the closure of the anvil 7130, the distal end 7431 of the distal closure tube 7430 can be moved into abutting contact with the proximal end 7142 of the rod 7140. As a result, at the completion of the closure motion, the rod 7140 is extended or pushed distally, which causes pivoting of the distal nose 7150. Referring primarily to FIGS. 15-17, the rod 7140 is pushed distally by the closure tube 7430 to pivot the distal nose 7150 after the anvil 7130 has been moved to a closed configuration by the distal closure tube 7430.


Referring again to FIGS. 13 and 15, the channel 7138 extends from a proximal portion of the anvil 7130 to the distal nose 7150. The distal nose 7150 is pivotably connected to the body of the anvil 7130 at a pivot joint 7152. A resilient support 7154 is configured to hold the distal nose 7150 in a linear, or non-pivoted, position (see FIGS. 13 and 14). The resilient support 7154 can be an elastic member or a spring, such as a leaf spring or hairpin spring, for example. When the rod 7140 is extended distally, the distal end 7144 thereof engages the distal nose 7150 and overcomes the resilient support 7154. For example, the rod 7140 has been extended in FIGS. 15-17 to pivot the distal nose 7150 to a pivoted position. In the pivoted position, the distal nose 7150 is configured to clamp tissue against a distal nose portion of the staple cartridge. Such a clamping feature is configured to trap or hold a distal portion of tissue and to limit tissue flow during a firing stroke. For example, increased clamping pressure can be applied by the end effector 7100 at the distal end portion thereof.


As described above, in certain instances, the upper flange 1762 of a firing member can hover out of contact with the ramped surface 1134 for a portion of the firing motion (see FIG. 10). For example, the ramped surface 1134 can include the intermediate surface 1138 extending between the distal closure ramp 1140 and the proximal closure surface 1142. The intermediate surface 1124 can separate the distal closure ramp 1140 from the proximal closure surface 1142 such that the surfaces 1140 and 1142 are separate and distinct.


For example, though the closure trigger 512 (see FIGS. 1 and 2) may be pivoting within a range of motion to displace the firing member 1760, the pivoting motion is not configured to cause a corresponding pivoting motion of the anvil 1130. In other words, during a range of motion of the closure trigger 512, the actuation of the closure trigger 512 is non-proportional to the closing and opening motion of the anvil 1130. In certain instances, it is desirable to provide feedback to the anvil 1130, i.e., effect pivoting thereof, throughout the firing motion including while the upper flange 1762 hovers above the intermediate surface 1138 between engagement with the distal closure ramp 1140 and engagement with the proximal closure surface 1142. For example, a spring assembly can be configured to exert a biasing force on the anvil 1130 during the dwell portion of the firing stroke.


Referring now to FIG. 54, a spring assembly 1160 is positioned proximal to the upper flange 1762 of the firing member 1760. The spring assembly 1160 includes a tubular member 1162 and a compression spring 1164 positioned partially within the tubular member 1162. The tubular member 1162 is positioned in a proximal notch or recess 1149 in the anvil 1130. For example, the anvil 1130 includes the proximal notch 1149 extending proximally from the open-close cavity 1148. The spring assembly 1160 is retained in the recess 1149 and positioned to operably engage the firing member 1760.


The spring assembly 1160 is configured to effect an opening motion of the anvil 1130 as the upper flange 1762 hovers above the intermediate surface 1138. The upper flange 1762 can be configured to move into contact with the compression spring 1164 when the anvil 1130 is in a closed configuration and the firing member 1760 is in a home position. As the firing member 1760 continues to be retracted proximally, the firing member 1760 can be configured to compress the compression spring 1164 into the tubular member 1162. Compression of the compression spring 1164 is configured to exert a force on the anvil 1130, which can correspond to an opening force on the anvil 1130. For example, the spring assembly 1160 can be configured to exert a proximal and downward force on a distal-facing surface of the notch 1149 to effect pivoting of the anvil 1130 upward toward an open configuration.


In various instances, the compression spring 1164 can be compressed by the firing member 1760 until the upper flange 1762 moves into engagement with the proximal closure surface 1142. The compression spring 1164 can define a spring force that is sufficient to initiate opening of the anvil 1130 before the upper flange 1762 moves into abutting engagement with the proximal closure surface 1142. In various instances, the spring force can be tuned to provide sufficient feedback during the dwell portion of the firing stroke. In certain instances, the compression spring 1164 can be compressed to the height of the tubular member 1162. When the compression spring 1164 is compressed entirely within the tubular member 1162, the opening motion can be proportional to the proximal displacement of the firing member 1760 and the corresponding actuation motion of the closure trigger 512.


In various instances, when the anvil 1130 is completely open with respect to the elongate channel 1102, a tissue aperture can be defined between the forming surface of the anvil 1130 and the deck 1115 of the staple cartridge 1110 positioned in the elongate channel 1102. The tissue aperture can be quantified as a vertical height between the anvil forming surface and the deck 1115 at the distal end of the end effector 1100 when the anvil 1130 is completely open. In certain instances, it can be desirable to increase the tissue aperture without increasing the angle between the anvil 1130 and the elongate channel 1102. In such instances, the proximal end of the anvil 1130 can be configured to move away from the elongate channel 1102 to increase the tissue aperture at the distal end.


For example, referring now to FIG. 55, an elongate channel 11102 includes vertical slots 11108 for permitting vertical movement of the anvil 1130 relative to the elongate channel 11102. The elongate channel 11102 is similar in many respects to the elongate channel 1102; however, the elongate channel 11102 includes the vertical slots 11108 instead of the pin holes 1108 (see FIG. 5). The elongate channel 11102 can be utilized with an end effector 11100, which also includes the anvil 1130 and is configured to receive the staple cartridge 1110. The anvil 1130 is pivotably connected to the elongate channel 11102 by pivot pins 11152, which are operably engaged by springs 11154. The springs 11154 are configured to bias the pivot pins 11152 downward in the vertical slots 11108. The springs 11154 depicted in FIG. 55 are leaf springs; however, the reader will readily appreciate that alternative spring geometries and configurations can be utilized. When the pivot pins 11152 are positioned in the bottom of the vertical slots 11108, the end effector 11100 defines a first tissue aperture. When the pivot pins 11152 are permitted to move upwards to the top of the vertical slot 11108, the end effector 11100 defines a second, larger tissue aperture.


In various instances, the pivot pins 11152 can be permitted to overcome the springs 11154 and “pop” or spring upwards in the vertical slots 11108 when the firing member is retracted proximally out of engagement with the distal closure ramp 1140 on the anvil 1130. For example, the pivot pins 11152 are configured to shift upwards in the vertical slots 11108 when the firing member moves to dwell or hover above the intermediate surface 1138 on the anvil 1130. Referring still to FIG. 55, a firing member 11760 is configured to lift the pivot pins 11152 upwards. For example, the firing member 11760 is similar in many respects to the firing member 1760; however, the firing member 11760 includes wedged protrusions 11770 having a ramped surface 11772 for engaging and lifting the pivot pins 11152 upwards in the vertical slots 11108. Though only a single wedged protrusion 11170 is depicted in FIG. 55, the reader will readily appreciate that a pair of symmetrical wedges 11170 are positioned on opposing sides of the firing member 11760.


When the firing member 11760 is retracted proximally to exert an opening motion on the anvil 1130, the anvil 1130 is configured to shift vertically away from the elongate channel 11102 to increase the tissue aperture. Moreover, when the firing member 11760 is advanced distally during a subsequent closing motion, the wedged protrusions 11770 are configured to move out of engagement with the pivot pins 11152 such that the springs 11154 can return the pivot pins 11152 to their initial positions in the bottom of the vertical slots 11108. In various instances, the pivot pins 11152 are configured to return to the bottom of the vertical slots 11108 before the upper flanges of the firing member 11760 engage the distal closure ramp 1140 of the anvil 1130 to affect the closure thereof.


In certain instances, an end effector can be configured to clamp and staple tissue within a range of thicknesses. The end effector can clamp tissue having a first thickness during a first surgical function and can clamp tissue having a different thickness during a second surgical function. In certain surgical functions, the thickness of tissue clamped between the end effector jaws can be constant, or substantially constant. In other instances, the end effector can be configured to clamp and staple tissue having varying or changing thicknesses. For example, the thickness of tissue clamped between the end effector jaws can vary longitudinally along the length of the end effector.


As described herein, a firing member can include flanges for setting a tissue gap between the end effector jaws. For example, an upper flange can be configured to move along a channel in an anvil and a lower flange can be configured to move along a channel in an elongate channel during a firing stroke. The flanges of the firing member include camming surfaces that are configured to engage the inner surfaces of the respective channels to limit the tissue gap between the jaws. For example, the flanges can define a maximum and/or minimum spacing between the jaws, which amounts to a limitation to the spacing between a tissue-contacting deck on a staple cartridge installed in the end effector and a tissue-facing anvil of the end effector. In certain instances, the maximum and minimum spacing defined by the firing member flanges can be fixed. In other instances, one or both of the flanges can be configured to float or shift to accommodate variations in tissue thickness. The flange(s) can shift during the firing stroke or a portion thereof, for example.


Referring now to FIGS. 18-21, an upper portion of a firing member 8760 is depicted. The firing member 8760 is similar in many respects to the firing member 1760 (see FIGS. 4 and 5). For example, the firing member 8760 defines an I-beam structure that includes a lower flange (not shown), an upper flange 8762, and a support portion 8763 extending between the lower flange and the upper flange 8764. The upper flange 8762 is comprised of horizontal pins extending from the support portion 8763. The lower flange can be identical to the lower flange 1764 (see FIGS. 4 and 5), for example. A tissue cutting feature 8766 is supported by the support portion 8763 between the flanges.


The support portion 8763 is configured to travel though aligned slots in an elongate channel, a staple cartridge, and an anvil. For example, the firing member 8760 can be compatible with the end effector 1100 (see FIGS. 1-5) such that the support portion 8763 travels though aligned slots in the elongate channel 1102, the staple cartridge 1110, and the anvil 1130. Similar to the firing member 1760, when the firing member 8760 is fired or driven distally, the firing member 8760 is configured to drive a sled assembly distally as well. And, as the firing member 8760 moves distally through a staple cartridge, the tissue cutting feature 8766 is configured to cut the tissue that is clamped by the end effector 1100 as the sled assembly drives the staples upwardly in the staple cartridge 1110 and into forming contact with the anvil 1130.


The firing member 8760 includes a slot 8761 that extends along an upper portion of the support portion 8763. The slot 8761 is a wedge-shaped slot, and the height of the slot 8761 varies longitudinally along the length of the firing member 8760. More specifically, the height of the slot 8761 at the proximal end 8765 is greater than the height at the distal end 8767. In other instances, the height of the slot 8761 can be constant but the slot 8761 can be obliquely oriented, slanted, and/or non-horizontal along the length of the firing member 8760. The slot 8761 includes an upper edge 8768, which defines the maximum tissue gap. As described herein, the upper flange or pin 8762 is configured to move in the slot 8761 to adjust the tissue gap. Moreover, when a load is applied to the upper pin 8762, the upper pin 8762 is configured to slide along the upper edge 8768 as the upper pin 8762 moves in the slot 8761.


Referring primarily to FIG. 18A, the upper pin 8762 includes a central groove 8770, which guides the upper pin 8762 within the slot 8761. For example, the upper edge 8768 is configured to extend into the groove 8770 when the upper pin 8762 is positioned in the slot 8761. In other embodiments, the upper pin 8762 can include guide blocks, which can be secured onto the pin 8762 on one or both sides of the support portion 8763. The central groove 8770 and/or the guide blocks can be configured to prevent twisting or torqueing of the upper pin 8762 during a firing stroke and as the upper pin 8762 moves in the slot 8761. The guide blocks can be welded onto the pin 8762, for example. In other instances, one or more guide blocks can be secured to the support portion 8763.


A first or initial configuration of the firing member 8760 is depicted in FIG. 19. The upper pin 8762 is held in place by friction in the first configuration. For example, the upper pin 8762 can be compressed and press-fit within the slot 8761. In the first configuration, the upper pin 8762 is positioned adjacent to the distal end 8767 of the slot 8761. A first height H1 is defined between the upper pin 8762 and the lower flange when the firing member 8760 is in the first configuration. More specifically, the first height H1 is defined between the upper surface of the lower flange and the lower surface of the upper pin 8762. The first height H1 corresponds to a minimum tissue gap defined by the firing member 8760.


Referring still to FIG. 19, the upper edge 8768 of the slot 8761 extends along an inward contour. In other words, the upper edge 8768 defines a compression radius R. The inward contour of the upper edge 8768 applies a compressive force to the upper pin 8762 that seeks to hold the upper pin 8762 in the distal-most position in the slot 8761 against the distal end 8767.


Referring now to FIG. 20, during a firing stroke, a force F can be applied to the upper pin 8762. For example, when tissue is clamped between the jaws of an end effector, the tissue can be compressed by the jaws. As a result, the compressed tissue is configured to exert an opening force on the jaws, and such a force is applied to the upper pin 8762 and the lower flange of the firing member 8760. The force F is greater when the clamped tissue experiences increased compression, such as when thicker tissue is clamped between the jaws, for example. The force F in FIG. 20 is sufficient to deflect the inward contour of the upper edge 8768, which deflects the upper boundary of the firing member 8760 and relieves the compression on the upper pin 8762 in the slot 8761. The force F is equal to or greater than a threshold force that is required to deflect the upper edge 8768 and releases the upper pin 8762. In FIG. 20, the force F on the upper pin 8762 has moved the firing member 8760 to a stressed configuration.


Because the upper pin 8762 has been released by the force F, the upper pin 8762 is free to slide within the slot 8761 in the proximal direction (PD) (see FIG. 20). For example, the upper pin 8762 has moved to a proximal, upper position in FIG. 21. In the proximal, upper position of FIG. 21, a second height H2 is defined between the upper pin 8762 and the lower flange. More specifically, the second height H2 is defined between the upper surface of the lower flange and the lower surface of the upper pin 8762. The second height H2 corresponds to a maximum tissue gap or the tissue gap when the firing member 8760 is in an adapted configuration. In such instances, the firing member 8760 is configured to allow a greater tissue gap during a second portion of the firing stoke. As described herein, in certain instances, it can be desirable to further limit the maximum tissue gap during an initial portion of the firing stroke when loads may be the highest to prevent jamming of the firing member 8760.


The upper pin 8762 is configured to shift to the proximal, upper position depicted in FIG. 21 when a force equal to or greater than a threshold force is applied to the upper pin 8762. Because the force F is exerted upward on the upper pin 8762, the force F biases the upper pin 8762 along the upper edge 8768 of the slot 8761 and maintains the alignment of the groove 8770 and the upper edge 8768. As a result, the firing member 8760 is configured to adjust or adapt to accommodate variations in tissue thickness.


In other instances, the firing member 8760 can be configured to define a decreasing tissue gap during a distal portion of the firing stroke. In such instances, compression at the distal end of the end effector can be increased. For example, the upper surface 8768 of the slot 8761 can be angled downward toward the proximal end of the firing member 8760 such that the height of the slot 8761 is greatest at the distal end 8767 of the slot 8761, rather than as shown in FIGS. 19-23.


Referring now to FIG. 21A, the upper pin 8762 is depicted in a loaded configuration. To load the upper pin 8762 into the slot 8761, the upper pin 8762 can be aligned with the largest or tallest portion of the slot 8761, which is at the proximal end 8765. From the proximal end 8765, the upper pin 8762 can be slid toward the distal end 8767 such that the upper edge 8768 protrudes into the central groove 8770 in the upper pin 8762 and restrains the upper pin 8762 in the slot 8761. For example, when the firing member 8760 is advanced distally, the upper pin 8762 is configured to slide toward the distal end 8767 and into the configuration depicted in FIG. 19. A first load on the upper pin 8762 can bias the upper pin 8762 distally and into a compressed state at the distal end 8767 and a second, greater load on the upper pin 8762 can deform the firing member 8760 to release the compression in the upper pin 8762 and permit it to slide proximally, as described herein.


Though the firing member 8760 has been described having a single floating flange, i.e. the upper flange 8762, in other instances, the lower flange can also be configured to float and/or shift when a force equal to or greater than a second threshold force is applied thereto. For example, the upper flange 8762 can be configured to shift when a first force is applied by the compressed tissue and the lower flange can be configured to shift when a second, greater force is applied by the compressed tissue. In other instances, only the lower flange can be configured to shift and/or float.


Referring now to FIGS. 22 and 23, an upper portion of a firing member 9760 is depicted. The firing member 9760 is similar in many respects to the firing member 1760 (see FIGS. 4 and 5). For example, the firing member 9760 defines an I-beam structure that includes a lower flange, an upper flange 9762, and a support portion 9763 extending between the lower flange and the upper flange 9764. The upper flange 9762 is comprised of horizontal pins extending from the support portion 9763. The lower flange can be identical to the lower flange 1764 (see FIGS. 4 and 5), for example. A tissue cutting feature 9766 is supported by the support portion 9763 between the flanges.


The support portion 9763 is configured to travel though aligned slots in an elongate channel, a staple cartridge, and an anvil. For example, the firing member 9760 can be compatible with the end effector 1100 (see FIGS. 1-5) such that the support portion 9763 travels though aligned slots in the elongate channel 1102, the staple cartridge 1110, and the anvil 1130. Similar to the firing member 1760, when the firing member 9760 is fired or driven distally, the firing member 9760 is configured to drive a sled assembly distally as well. And, as the firing member 9760 moves distally through a staple cartridge, the tissue cutting feature 9766 is configured to cut the tissue that is clamped by the end effector as the sled assembly drives the staples upwardly in the cartridge and into forming contact with an anvil.


The firing member 9760 includes a slot 9761 that extends along an upper portion of the support portion 9763. The slot 9761 is a wedge-shaped slot, and the height of the slot 9761 varies longitudinally along the length of the firing member 9760. More specifically, the height of the slot 9761 at the proximal end 9765 is greater than the height at the distal end 9767. Additionally or alternatively, the slot 9761 can be obliquely oriented, slanted, and/or non-horizontal such that the distal end 9767 is higher than the proximal end 9765. The slot 9761 includes an upper edge 9768, which defines the maximum tissue gap. As described herein, the upper flange or pin 9762 is configured to move in the slot 9761 to adjust the tissue gap and the upper pin 9762 slides along the upper edge 9768 as the upper pin 9762 moves in the slot 9761. The firing member 9760 also includes a spring 9769 that is configured to exert a biasing force on the upper pin 9762.


The upper pin 9762 includes a central groove 9770, which guides the upper pin 9762 within the slot 9761. For example, the upper edge 9768 is configured to extend into the groove 9770 when the upper pin 9762 is positioned in the slot 9761. In the depicted embodiment, the upper pin 9762 includes guide blocks 9780, which are secured to both sides of the support portion 9763. The guide blocks 9780 are configured to prevent twisting or torqueing of the upper pin 9762 during a firing stroke and as the upper pin 9762 moves in the slot 9761. In other instances, one or more guide blocks can be secured to the upper pins 9762 and, in still other instances, the firing member 9760 may not include guide blocks.


A first or initial configuration of the firing member 9760 is depicted in FIG. 22. The upper pin 9762 is held in place by the spring 9769. For example, the spring 9769 is configured to bias the upper pin 9762 toward the distal end 9767 of the slot 9761. A first height H1 is defined between the upper pin 9762 and the lower flange when the firing member 9760 is in the first configuration. More specifically, the first height H1 is defined between the upper surface of the lower flange and the lower surface of the upper pin 9762. The first height H1 corresponds to a minimum tissue gap.


Referring still to FIG. 22, when tissue is clamped between the jaws of an end effector, the tissue can be compressed by the jaws. As a result, the compressed tissue can exert an opening force on the jaws, and such a force is applied to the upper pin 9762 and the lower flange of the firing member 9760. The force F is greater when the clamped tissue experiences increased compression, such as when thicker tissue is clamped between the jaws, for example. When the force F is equal to or greater than a threshold force, the force F can be configured to overcome the bias of the spring 9769, as depicted in FIG. 23. For example, the force F is sufficient to deform the spring 9769 to a compressed configuration and permit the upper pin 9762 to move along the slot 9761 toward the proximal end 9765 thereof.


The upper pin 9762 has moved to a proximal, upper position in FIG. 23. In the proximal, upper position of FIG. 23, a second height H2 is defined between the upper pin 9762 and the lower flange. More specifically, the second height H2 is defined between the upper surface of the lower flange and the lower surface of the upper pin 9762. The second height H2 corresponds to a maximum tissue gap or the tissue gap when the firing member 9760 is in an adapted configuration. Because the force F (FIG. 22) is exerted upward on the upper pin 9762, the force F biases the upper pin 9762 along the upper edge 9768 of the slot 9761 and maintains the alignment of the groove 9770 and the upper edge 9768. As a result, the firing member 9760 is configured to adjust or adapt to accommodate variations in tissue thickness.


Though the firing member 9760 has been described having a single floating flange, i.e. the upper flange 9762, in other instances, the lower flange can also be configured to float and/or shift when a force equal to or greater than a second threshold force is applied thereto. For example, the upper flange 9762 can be configured to shift when a first force is applied by the compressed tissue and the lower flange can be configured to shift when a second, greater force is applied by the compressed tissue. In other instances, only the lower flange can be configured to shift and/or float.


As described herein, a firing member can include at least one floating flange, which can be configured to shift or move when a threshold force is applied thereto to accommodate for variations in tissue thickness. In certain instances, the floating flange can be positioned in a slot and can be biased and/or retained in an initial configuration until the threshold force is applied thereto. In other instances, a portion of the firing member can include a deformable or compliant material, which can be configured to flex or otherwise deform when the threshold force is applied thereto. In certain instances, a compliant core of the firing member can support at least one flange that is configured to shift or move when the threshold force is applied thereto.


Referring now to FIGS. 24-26, a portion of an interchangeable surgical tool assembly 10000 including an end effector 10100 is depicted. The end effector 10100 includes the elongate channel 1102 and the anvil 1130, and the staple cartridge 1110 is installed in the elongate channel 1102. The end effector 10100 also includes a firing member 10760, which is similar in many respects to the firing member 1760 (see FIGS. 4 and 5). For example, the firing member 10760 defines an I-beam structure that includes a lower flange 10764, an upper flange 10762, and a support portion 10763 extending between the lower flange and the upper flange 10762. The upper flange 10762 is comprised of horizontal pins extending from the support portion 10763. The lower flange 10764 is comprised of an enlarged or widened foot at the base of the support portion 10763. A tissue cutting feature 10766 is supported by the support portion 10763 between the flanges 10762 and 10764.


The support portion 10763 is configured to travel though aligned slots in the elongate channel 1102, the staple cartridge 1110, and the anvil 1130. Similar to the firing member 1760, when the firing member 10760 is fired or driven distally, the firing member 10760 is configured to drive the sled assembly 1120 distally as well. And, as the firing member 10760 moves distally through a staple cartridge, the tissue cutting feature 10766 is configured to cut the tissue that is clamped by the end effector 10100 as the sled assembly 1120 drives the staples 1126 (see FIG. 5) upwardly in the staple cartridge 1110 and into forming contact with the anvil 1130.


Referring still to FIGS. 24-26, the firing member 10760 includes a body 10772 and a compliant portion or core 10770 embedded in the body 10772. For example, the body 10772 includes a cutout or cavity 10774, and the compliant portion 10770 is positioned in the cutout 10774. The compliant portion 10770 includes the upper flange 10762. As further described herein, the upper flange 10762 is configured to shift or move as the compliant portion 10770 deforms.


The elasticity of the body 10772 can be less than the elasticity of the compliant core 10770. In certain instances, the compliant core 10770 can be formed from a shape memory material, such as nitinol, which can provide a constant spring rate over the full range of vertical flexure thereof. Moreover, the body 10772 of the firing member 10760 can be formed from a non-compliant or substantially less compliant material, such as stainless steel or titanium, for example.


The compliant portion 10770 includes a first end 10776 and a second end 10778. The first end 10776 is held or fixed in the cutout 10774 in the body 10772. For example, the cutout 10774 can securely encapsulate the first end 10776 to prevent movement of the first end 10776 within the body 10772. The second end 10778 supports the upper flange 10762. For example, the upper flange 10762 can be integrally formed with the second end 10778 and/or can be securely connected thereto. The second end 10778 is provided with a clearance 10780 within the cutout 10774 to permit controlled deflection of the second end 10778 therein. For example, the second end 10778 and the upper flange 10762 supported thereon are configured to shift with respect to the first end 10776 and with respect to the lower flange 10764 in response to forces applied to the upper flange 10762. Movement of the upper flange 10762 is restrained by the geometry of the cutout 10774 and the passageway 1136 defined in the anvil 1130.


As described with respect to the firing member 1760 (see FIGS. 4 and 5), the firing member 10760 is configured to engage the open-close cavity 1148 of the anvil 1130 to move the anvil 1130 to a clamped position. For example, the upper flanges 10762 of the firing member 10760 are configured to move along the distal closure ramp 1140 of the anvil 1130 (see FIGS. 8-12) and into the passageway 1136. The passageway 1136 includes the lower ledge 1137 and the upper cap 1139 which define the lower and upper limits of the passageway 1136.


In FIG. 24, the firing member 10760 has been displaced distally from the home position to a first intermediate position. Between the home position and the first intermediate position, the upper flange 10762 has been moved along the distal closure ramp 1140 to pivot the anvil 1130 toward the staple cartridge 1110 and clamp tissue therebetween. Referring still to FIG. 24, a first load is applied to the upper flange 10762 of the firing member 10760. The first load can correspond to a first thickness, density, and/or toughness of tissue clamped by the end effector 10100.


When the first load is applied to the upper flange 10762, the compliant portion 10770 is configured to assume the configuration depicted in FIG. 24. In particular, the second end 10778 of the compliant portion 10770 is spaced between the lower ledge 1137 and the upper cap 1139 of the passageway 1136. A portion of the clearance 10780 is above the second end 10778 and another portion of the clearance 10780 is below the second end 10778. In such instances, the upper flange 10762 defines an intermediate tissue gap, which is between the minimum and maximum tissue gap permitted by the interchangeable surgical tool assembly 10000 at the first intermediate position.


In FIG. 25, the firing member 10760 has been advanced distally from the first intermediate position (see FIG. 24) to a second intermediate position, and a second load is applied to the upper flange 10762 of the firing member 10760. The second load is less than the first load and can correspond to a second thickness, density and/or toughness of tissue clamped by the end effector 10100, which is less than the first thickness, density and/or toughness, respectively. For example, the second load can be less than the first load because the tissue is thinner.


When the second load is applied to the upper flange 10762, the compliant portion 10770 is configured to assume the configuration depicted in FIG. 25. In particular, the second end 10778 of the compliant portion 10770 is positioned against the lower ledge 1137 of the passageway 1136 and the clearance 10780 is above the second end 10778. In such instances, the upper flange 10762 defines the minimum tissue gap. To assume the configuration of FIG. 25, the compliant portion 10770 has contracted to draw the second end 10778 toward the fixed, first end 10776. The contraction of the compliant portion 10770 can be limited by the material thereof, the position of the lower ledge 1137, and/or a limiting pin 10768, which is further described herein.


In FIG. 26, the firing member 10760 has been displaced distally from the second intermediate position (see FIG. 25) to a third intermediate position, and a third load is applied to the upper flange 10762 of the firing member 10760. The third load is greater than the first load and the second load and can correspond to a third thickness, density, and/or toughness of tissue clamped by the end effector 10100, which is greater than the first thickness, density, and/or toughness, respectively, and the second thickness, density, and/or toughness, respectively. For example, the third load can be greater than the first load and the second load because the tissue is thicker, denser, and/or tougher.


When the third load is applied to the upper flange 10762, the compliant portion 10770 is configured to assume the configuration depicted in FIG. 26. In particular, the second end 10778 of the compliant portion 10770 is positioned against the upper cap 1139 of the passageway 1136 and the clearance 10780 is below the second end 10778. In such instances, the upper flange 10762 defines the maximum tissue gap. To assume the configuration of FIG. 26, the compliant portion 10770 has been stretched or extended to draw the second end 10778 away from the fixed, first end 10776. The extension of the compliant portion 10770 can be limited by the material thereof, the position of the upper cap 1139, and/or the limiting pin 10768, which is further described herein.


The firing member 10670 also includes a first laterally protruding lug, or limiting pin, 10768, which is configured to move in the passageway 1136 of the anvil 1130. The limiting pin 10768 is configured to limit the tissue gap during a portion of the firing stroke. The limiting pin 10768 is fixed relative to the support portion 10763, and is configured to move in the passageway 1136 during at least a portion of the firing stroke. When the limiting pin 10768 rides along the anvil ledge 1137 (see FIG. 24), the limiting pin 10768 is configured to limit the maximum tissue gap. When the limiting pin 10768 rides along the upper cap 1139, the limiting pin 10768 is configured to limit the minimum tissue gap. For example, though the upper flange 10762 is moveable relative to the support portion 10763, the displacement of the upper flange 10762 is limited by the fixed location of the limiting pin 10768 within the passageway 1136.


In various instances, the limiting pin 10768 can protrude laterally a first distance, which can be less than the laterally-protruding distance of the upper flange 10762. In other words, the limiting pin 10768 can be narrower than the upper flange 10762. Additionally, the slot 1132 in the anvil 1130, which provides access to the passageway 1136, can be wider in a portion of the anvil 1130. In such instances, the shorter limiting pin 10768 can extend below the anvil ledge 1137 without limiting the maximum tissue gap for a portion of the firing stroke.


In the depicted embodiment, the limiting pin 10768 is positioned within the passageway 1136 during an initial, proximal portion of the firing stroke (see FIG. 24) and protrudes below the anvil ledge 1037 during a later, distal portion of the firing stroke (see FIG. 26). More specifically, between the proximal portion of the firing stroke and the distal portion of the firing stroke, the slot 1132 widens such that the fixed pin is not confined within the passageway 1136, however, the wider upper flange 1762 can remain confined within the passageway 1136. In various instances, the slot 1132 can widen to larger than the limiting pins 10768 at or about one-third of the distance from the proximal starting point. In other instances, the slot 1132 can widen to larger than the limiting pins 10768 before or after one-third of the distance from the proximal starting point.


In various instances, it can be desirable to limit the maximum tissue gap during an initial portion of the firing stroke. For example, at the outset of a firing stroke through thick, dense and/or tough tissue, the loads on the firing member 10760 can be large and can bias the upper flange 10762 a maximum distance away from the lower flange 10764. In such instances, to ensure that the firing member 10760 does not become jammed or otherwise disabled during the initial portion of the firing stroke when the highest loads are exerted on the firing member 10760, the maximum tissue gap can be controlled by the distance between the fixed limiting pin 10769 and the lower flange 10764. Thereafter, when the load on the firing member 10760 decreases as tissue is cut by the cutting edge 10766, the limiting pin 10768 can disengage the passageway 1136 and the anvil ledge 1137 thereof to permit an additional or increased maximum tissue gap, which can be controlled by the floating upper flange 10762.


The firing member 10760 also includes a second laterally-protruding lug 10769, which is operably configured to engage the elongate channel 1102. For example, the laterally-protruding lug 10769 is configured to ride along an inside surface in the elongate channel 1102 (e.g. along the cartridge-supporting base 1101) to further control the tissue gap. Additionally or alternatively, the laterally-protruding lug 10769 can be configured to engage a lockout arrangement, such as the lockout arrangement 6180 (see FIGS. 45-53), which is further described herein.


During a firing stroke, staples can be fired into tissue and the tissue can be cut by a cutting element. Upon the completion of the firing stroke, rows of staples can be positioned on both sides of the cutline and the staple rows can provide a tissue seal on both sides of the cutline. To minimize bleeding, the staples can be fired before the tissue is cut by the cutting element. In such instances, the staples can provide a tissue seal before the tissue between the seal is severed by the cutting element.


In certain instances, it is advantageous to prevent a surgical instrument from implementing a firing stroke. For example, if a staple cartridge is missing from the end effector, it can be advantageous to prevent the firing stroke because such a firing stroke can result in tissue being cut by the cutting element but not being sealed by the staples. Similarly, when an empty or spent staple cartridge is installed in an end effector, it can be advantageous to prevent a firing stroke because such a firing stroke would also result in tissue being cut by the cutting element but not being sealed by the staples.


A surgical instrument can be provided with various features to prevent a firing stroke in certain instances. Such features are commonly referred to as “lockouts” and can be positioned in the handle, shaft, interchangeable surgical tool assembly, end effector, and/or staple cartridge, for example. Referring to FIGS. 27-29, an end effector 2100 having a lockout arrangement 2180 is depicted. The end effector 2100 includes an elongate channel 2102, which is similar in many respects to the elongate channel 1102 (see FIGS. 3-5). For example, the elongate channel 2102 includes a pair of sidewalls 2103 extending from a cartridge-supporting surface or base 2101. The elongate channel 2102 is configured to operably support a staple cartridge, such as the staple cartridge 1110 (see FIGS. 3-5) therein. The end effector 2100 also includes the anvil 1130 and the firing member 1760.


The lockout arrangement 2180 includes a lock 2182 having a first leg or prong 2181, a second leg or prong 2183, and a third leg or prong 2185. The first leg 2181 and the second leg 2183 form a V-shaped body of the lock 2182. The third leg 2185 extends proximally from the V-shaped body. A lockout pivot 2184 is positioned at a central hub portion intermediate the legs 2181, 2183, and 2185. The lock 2182 is configured to pivot about the lockout pivot 2184 between a locked position (see FIGS. 27 and 28) and an unlocked position (see FIG. 29). The lockout pivot 2184 can be pivotably mounted to the sidewall 2103 of the elongate channel 2102. The lockout arrangement 2180 also includes a lockout spring 2186 which is configured to act on the lock 2182. Although only one lock 2182 and one lockout spring 2186 are depicted in FIGS. 27-29, the reader will readily appreciate that the lockout arrangement 2180 can include symmetrical locks 2182 and lockout springs 2186. For example, each lock 2182-lockout spring 2186 pair can be positioned on one side of the firing member 1760. In other instances, the lockout arrangement 2180 can include a single lock 2182 and a single lockout spring 2186.


The first leg 2181 constitutes an anvil engagement leg, which acts as a support ledge for the anvil 1130 when the lock 2182 is in the first orientation. The second leg 2183 constitutes a cartridge engagement leg, which is biasable by a staple cartridge to pivot the lock 2182 to the unlocked position. The third leg 2185 constitutes a spring engagement leg, or nub, against which the lockout spring 2186 biases the lock 2182 toward the locked position. More specifically, the lockout arrangement 2180 includes the lockout spring 2186, which applies a downward force on the third leg 2185. The force on the third leg 2185 is configured to bias the first leg 2181 upward toward the anvil 1130 and proximally. A proximal portion of the lockout spring 2186 is fixedly secured to the elongate channel 2102 and a distal portion of the lockout spring 2186 is configured to deflect relative to the fixed proximal portion thereof. The lockout spring 2186 is a leaf spring; however, the reader will readily appreciate that alternative springs can be employed to bias the lock 2182 toward the locked position.


Referring primarily to FIG. 28, the lock 2182 is initially biased into the locked position by the lockout spring 2186. When in the locked position, the first leg 2181 abuts the anvil 1130. In particular, an end 2181a of the first leg 2181 is positioned against the inner rail 1135 of the anvil 1130. As a result of the engagement between the first leg 2181 and the inner rail 2135, the anvil 1130 is held in an open orientation relative to the elongate channel 2102. Even if a closure motion is applied to the anvil 1130 (e.g. by advancing the firing member 1760 distally), closing of the anvil 1130 is prevented by the first leg 2181 and the inner rail 1135 engagement.


The lock 2182 is configured to remain in the locked position until an unfired staple cartridge is installed in the elongate channel 2102. When the staple cartridge 1110 is positioned in the elongate channel 2102, as depicted in FIG. 29, a portion of the staple cartridge 1110 abuts the second leg 2183. More specifically, the sled assembly 1120 is in a proximal position when the staple cartridge 1110 is unfired, and the proximal end of the unfired sled assembly 1120 is positioned against the second leg 2183 of the lock 2182. The sled assembly 1120 applies a force F (see FIG. 29) to the second leg 2183, which displaces the second leg 2183 downward and into a lockout notch 2109 in the cartridge-supporting base 2101 of the elongate channel 2102. Because the second leg 2183 is nested in the lockout notch 2109, the installed staple cartridge 1110 can be positioned flush against the cartridge-supporting base 2101 of the elongate channel 2102. The force F exerted by the sled assembly 1120 on the second leg 2183 is sufficient to overcome the spring bias of the lockout spring 2186.


In other instances, another part of the staple cartridge 1110, such as the cartridge body 1111, can abut the lock 2182. In such instances, the lockout arrangement 1280 can be a missing or no-cartridge lockout, which prevents clamping of the end effector 2100 until a staple cartridge is installed therein. However, while a staple cartridge is installed in the end effector 2100, the lockout arrangement can be overcome even if the staple cartridge has already been fired. Such a missing cartridge lockout could be combined with an empty or spent cartridge lockout, for example. An empty cartridge lockout can be a sensor (e.g. an electronic contact sensor) that detects the proper position of the sled assembly 1120 within the staple cartridge 1110 and only permits the firing stroke when the sled assembly 1120 is in the proper, pre-fired position, for example.


Referring still to FIG. 29, as the second leg 2183 rotates into the lockout notch 2109, the lock 2182 pivots to the unlocked position. As a result, the first leg 2181 moves out of engagement with the inner rail 1135. When a closure motion is applied to the anvil 1130 (e.g. by advancing the firing member 1760 distally), the anvil 1130 is cleared to pivot downward toward the staple cartridge 1110. In other words, closure of the anvil 1130 is permitted when an unfired staple cartridge is positioned in the elongate channel 2102. For example, the firing member 1760 can be advanced distally, and the upper flanges 1762 can move along the distal closure ramp 1140 of the open-close cavity 1148 to cam the anvil 1130 toward the closed position.


The sled assembly 1120 holds the lock 2182 in the unlocked position while the sled assembly 1120 is positioned in the proximal position depicted in FIG. 29. When the sled assembly 1120 is advanced distally during a firing stroke, the lock 2182 is released; however, rotation of the lock 2182 back to the locked position is prevented by the inner rail 1135 while the anvil 1130 is clamped relative to the staple cartridge 1110. Thereafter, when the anvil 1130 is returned to an open position (e.g. by retracting the firing member 1760 proximally), the lockout spring 2186 is configured to bias the lock 2182 back toward the locked position (see FIGS. 27 and 28), which prevents a subsequent closing and firing stroke until the staple cartridge 1110 is removed from the elongate channel 2102 and replaced with a new staple cartridge having a proximally-positioned sled assembly positioned to overcome the lockout arrangement 1280.


The lockout arrangement 1280 prevents the pivoting of the anvil 1130 relative to the elongate channel 2102 unless an unfired staple cartridge 1110 is installed in the end effector 1000. In various instances, the anvil 1130 can be fixed or stationary, and the elongate channel 2102 can be configured to pivot relative to the fixed anvil 1130. In such instances, the reader will readily appreciate that the lockout arrangement 1280 can be configured to prevent the pivoting of the elongate channel 2102 relative to the anvil 1130 unless an unfired staple cartridge 1110 is installed in the end effector 2100.


In certain instances, a lockout can be positioned in an end effector. For example, the lock 2182 of the lockout arrangement 2180 is positioned in the elongate channel 2102 of the end effector 2100. In other instances, a lockout can be positioned in a shaft portion of a surgical instrument. For example, an interchangeable surgical tool assembly can include a shaft portion and an end effector portion, and a lockout can be positioned in the shaft portion.



FIG. 30 depicts an interchangeable surgical tool assembly 3000, which is similar in many respects to the interchangeable surgical tool assembly 1000. The interchangeable surgical tool assembly includes an end effector 3100 and a shaft portion 3400. A lockout arrangement 3480 is positioned in the shaft portion 3400. The interchangeable surgical tool assembly 3000 also includes a firing member 3760 coupled to a firing bar 3770.


The firing member 3760 is similar in many respects to the firing member 1760 (see FIGS. 4 and 5). For example, the firing member 3760 defines an I-beam structure that includes a lower flange 3764, an upper flange 3762, and a support portion 3763 extending between the flanges 3762 and 3764. The upper flange 3762 is comprised of horizontal pins extending from the support portion 3763. The lower flange 3764 is comprised of an enlarged or widened foot at the base of the support portion 3763. A tissue cutting feature 3766 is supported by the support portion 3763 between the flanges 3762 and 3764. The support portion 3763 travels though aligned slots in the elongate channel 3102, a staple cartridge, and an anvil 3130.


Unlike the anvil 1130, the anvil 3130 does not include the open-close cavity 1148 that is engageable by the firing member to open and close the jaws of the end effector 3100. Rather, to open and close the anvil 3130, a closure tube 3430 is configured to translate around a portion of the end effector 3100. Distal translation of the closure tube 3430 is configured to cam the jaws toward a clamped configuration, and proximal displacement of the closure tube 3430 is configured to cam the jaws toward an open configuration. Operation of a closure tube for opening and closing end effector jaws in further described herein.


The shaft portion 3400 includes a longitudinally-movable drive member 3540, which is similar in many respects to the drive member 1602. During a firing stroke, the drive member 3540 transfers a firing motion to the firing bar 3770 to fire the firing member 3760. For example, actuation of the drive member 3540 is configured to displace the firing bar 3770 and the firing member 3760 distally to cut tissue and effect firing of staples from a staple cartridge. Thereafter, the drive member 3540 can be retracted proximally to retract the firing bar 3770 and the firing member 3760 proximally.


In certain instances, the drive member 3540 can be directly coupled to the firing bar 3770. Other times, as depicted in FIG. 30, a bias spring 3560 is positioned between the drive member 3540 and the firing bar 3770. For example, the bias spring 3560 extends proximally from the firing bar 3770 toward the drive member 3540. In various instances, an end of the bias spring 3560 can be coupled to the firing bar 3770 and an opposite end of the bias spring 3560 can be coupled to the drive member 3540. The drive member 3540 includes a spring aperture 3544 at the distal end thereof. The spring aperture 3544 is configured to receive and constrain a portion of the bias spring 3560. The bias spring 3560 is a coil spring, but the reader will readily appreciate that alternative spring geometries can be configured to exert a proximal biasing force on the drive member 3540 and a corresponding distal biasing force on the firing bar 3770.


The lockout arrangement 3480 in the shaft portion 3400 includes a lockout lever 3482 having a detent 3484 (see FIGS. 33 and 35) and a distal nose 3486. The detent 3484 of the lockout lever 3482 is positioned to operably engage the drive member 3540, and the distal nose 3486 of the lockout lever 3482 is positioned to operably engage the firing bar 3770. In particular, the firing bar 3770 includes a proximal reset pawl 3772 having a proximal nose 3774. The proximal reset pawl 3772 extends toward the lockout arrangement 3480 from the proximal end of the firing bar 3770. The ramped surface of the distal nose 3486 on the lockout lever 3482 and the ramped surface of the proximal nose 3774 are slidingly engaged, as further described herein.


The lockout arrangement 3480 also includes a reset spring 3450, which operably engages the lockout lever 3482. The reset spring 3450 is positioned to exert a force F (see FIG. 30) on the lockout lever 3482 to bias the lockout lever 3482 toward the locked position depicted in FIG. 30. As further described herein, the lockout lever 3482 is configured to rotate about a pivot 3488 to move from the locked position to an unlocked position (see FIG. 31). When in the locked position, the detent 3484 (see FIGS. 33 and 35) of the lockout lever 3482 is engaged with the drive member 3540. More specifically, the detent 3484 is positioned in a lockout recess 3542 in the drive member 3540 such that longitudinal displacement of the drive member 3540 is prevented by the detent 3484.


Referring still to FIG. 30, a staple cartridge is missing from the end effector 3100. When a staple cartridge is not positioned in the end effector 3100, the force F from the reset spring 3450 pivots the lockout lever 3482 to the locked position such that the detent 3484 (see FIGS. 33 and 35) is positioned in the lockout recess 3542. As a result, distal displacement of the drive member 3540 is prevented. Though a firing motion may be applied to the drive member 3540 from an actuator in the handle (e.g. handle assembly 500 in FIGS. 1 and 2) of the surgical instrument, the drive member 3540 is not displaced and does not transfer the firing motion to the firing bar 3770 and the firing member 3760 because the detent 3484 holds and/or constrains the drive member 3540 to prevent distal displacement thereof.


Referring to FIG. 31, a staple cartridge 3110 is positioned in the end effector 3100. The staple cartridge 3110 is similar in many respects to the staple cartridge 1110. However, the staple cartridge 3110 also includes a proximal gate 3120, which is operably configured to abut the firing member 3760. Referring primarily to FIG. 32, the staple cartridge 3110 includes a cartridge body 3111 and a longitudinal slot 3114 defined in the cartridge body 3111. The longitudinal slot 3114 extends from a proximal end 3112 of the staple cartridge 3110. At the proximal end 3112 of the staple cartridge 3110, the proximal gate 3120 extends across the longitudinal slot 3114. As a result, the proximal gate 3120 forms a frangible or breakable barrier for the firing member 3760.


Referring still to FIG. 32, the proximal gate 3120 is connected to the cartridge body 3111 by a hinge 3122 on a first side of the longitudinal slot 3114. The proximal gate 3120 abuts the cartridge body 3111 on the opposite side of the longitudinal slot 3114. In particular, the cartridge body 3111 includes a cutout 3124 that is dimensioned to fit and receive a portion of the gate 3120. In various instances, the gate 3120 can be press-fit or friction-fit into the cutout 3124. Additionally or alternatively, the cutout 3124 can define a stop 3126. The stop 3126 constitutes a distal abutment surface or shelf for the gate 3120. In various instances, the cartridge body 3111 can be molded from a plastic material, and the cutout 3124 and/or the stop 3126 can be molded-in features of the cartridge body 3111.


Referring again to FIG. 31, when the staple cartridge 3110 is positioned in the end effector 3100, the proximal gate 3120 is positioned against a distal end portion of the firing member 3760. As a result, the proximal gate 3120 is configured to shift the firing member 3760 and the firing bar 3770 proximally. As depicted in FIG. 31, the bias spring 3560 is configured to compress or otherwise deform to permit the proximal displacement of the firing member 3760 toward the drive member 3540. Though the proximal gate 3120 is frangible, the proximal gate 3120 is configured to withstand the biasing force generated by the compressed bias spring 3560.


Referring still to FIG. 31, proximal displacement of the firing member 3760 drives the proximal nose 3774 on the reset pawl 3772 proximally against the lockout lever 3482. The proximal nose 3774 is configured to overcome the reset spring 3450 such that the lockout lever 3482 can pivot toward the unlocked position depicted in FIG. 31. When in the unlocked position, the reset spring 3450 is compressed flush against an inner surface of the shaft portion 3400 and the detent 3484 (see FIGS. 33 and 35) on the lockout lever 3482 is disengaged from the lockout recess 3542. As a result, distal displacement of the drive member 3540 is permitted by the lockout arrangement 3480. Moreover, the firing force of the drive member 3540, transmitted to the firing bar 3770 and the firing member 3760, is configured to break the proximal gate 3120 on the staple cartridge 3110.


Referring now to FIG. 33, the drive member 3540 has pushed the firing bar 3770 distally causing the firing member 3760 to break or otherwise release the proximal gate 3120. The threshold force required to break or otherwise release the proximal gate 3120 can be less than the force generated by the surgical instrument to implement a firing stroke. In other words, a firing stroke can be designed to break or otherwise overcome the proximal gate 3120. As depicted in FIG. 34, when the firing member 3760 pushes against the proximal gate 3120 with the force of a firing stroke, the proximal gate 3120 can be configured to pivot at the hinge 3122. In various instances, the stop 3126 of the cutout 3124 can deform or break to release the proximal gate 3120. For example, as depicted in FIG. 34, a corner of the stop 3126 is broken to accommodate the distally-pivoting gate 3120.


As the drive member 3540 moves distally during the firing stroke, referring again to FIG. 33, the firing bar 3770 and the reset pawl 3772 thereof also move distally. Distal displacement of the reset pawl 3772 moves the reset pawl 3772 out of engagement with the lockout lever 3482. Consequently, the force of the reset spring 3450 on the lockout lever 3482 is configured to bias the disengaged lockout lever 3482 back to the locked position. Though the lockout lever 3482 has returned to the locked position in FIG. 33, completion of the firing stroke is permitted because the lockout recess 3542 in the drive member 3540 is longitudinally offset from the detent 3484 on the lockout lever 3482.


At the completion of the firing stroke, the firing member 3760 can be retracted proximally. As the firing member 3760, the firing bar 3770, and the drive member 3540 move proximally, a ramped surface 3546 on the drive member 3540 engages the lockout lever 3482. For example, the ramped surface 3546 can slide along the distal nose 3486 of the lockout lever 3482 to temporarily compress the reset spring 3450 and pivot the lockout lever 3482 against the reset spring 3450. As the drive member 3540 continues to be retracted proximally and the ramped surface 3546 moves past the detent 3484 on the lockout lever 3482, the detent 3484 can spring into engagement with the lockout recess 3542 in the drive member 3540, as depicted in FIG. 35. The reset spring 3450 exerts the spring force on the lockout lever 3482 to reset the lockout arrangement 3480. Because the detent 3484 is reengaged with the lockout recess 3542 and biased into such a position by the reset spring 3450, the lockout arrangement 3480 has been reset in FIG. 35. In other words, a subsequent firing stroke is prevented by the lockout arrangement 3480.


Though the firing member 3760 has been retracted to its home position in FIG. 35, the firing member 3760 is slightly distal to the position depicted in FIG. 31. Because the proximal gate 3120 was overcome during the firing stroke, the gate 3120 no longer biases the firing member 3760, and thus the firing bar 3770, proximally. As a result, the lockout arrangement 3480 in the shaft portion 3400 cannot be overcome by the spent staple cartridge 3110 depicted in FIG. 35.


Although the lockout arrangement 3480 has been described with respect to the end effector 3100, the reader will readily appreciate that the lockout arrangement 3480 can also be utilized with other end effectors, such as the end effector 1100, which utilizes a multi-function firing member to open and close the end effector jaws, fire staples, and cut tissue.


In certain instances, an interchangeable surgical tool assembly can include a spring configured to urge the jaws of the end effector toward a closed position. Such a spring can be positioned distal to the pivot joint of the end effector, for example. In certain instances, the spring can interact with a lockout arrangement that prevents a firing stroke when a staple cartridge is not installed in the end effector, i.e., a missing cartridge or no-cartridge lockout.


Referring to FIG. 36, an anvil 4130 is depicted. The anvil 4130 is similar in many respects to the anvil 1130 (see FIGS. 3-6), however, the anvil 4130 also includes spring slots 4146 and release notches 4136. The spring slots 4146 are defined in an outer proximal surface 4147 of the anvil 4130. For example, the anvil 4130 includes a ramped surface 4134 defining an open-close cavity 4148 similar to the ramped surface 1134 and the open-close cavity 1148 (see FIGS. 8-12), respectively. For example, the open-close cavity 4148 includes a distal closure ramp 4140 and a proximal opening surface 4142. The spring slots 4146 are located at the proximal end of the anvil 4130 proximal to the open-close cavity 4148. The anvil 4130 also includes inner rails 4135 positioned laterally inboard of the sidewall tissue stops 4133.


The inner rails 4135 are similar to the inner rails 1135 (see FIGS. 4 and 6) and include the release notches 4136 therein. The release notches 4136 are engaged by a lockout feature, as further described herein. The lockout arrangement of FIGS. 36-44 includes a pair of lockout springs 4450 and a pair of lock bars 4180. The lockout springs 4450 and the lock bars 4180 are symmetric with respect to a longitudinal axis of the anvil 4130. In other instances, the lockout arrangement can include a single lockout spring 4450 and a single lock bar 4180.


Referring primarily to FIGS. 33-40, an interchangeable surgical tool assembly 4000 includes an end effector 4100 having the anvil 4130, an elongate channel 4102, and lockout springs 4450 extending between the anvil 4130 and the elongate channel 4102. The anvil 4130 is configured to pivot relative to the elongate channel 4102 at a pivot joint 4150 at pivot pins 4152. The elongate channel 4102 is similar in many respects to the elongate channel 1102 (see FIGS. 3-5 and 7), however, the elongate channel 4102 also includes apertures 4107 (see FIGS. 24, 26, and 28) for the springs 4450 as well as recesses 4109 for the lock bars 4180, for example. The anvil 4130 is similar in many respects to the anvil 1130 (see FIGS. 3-6), however, the anvil 4130 also includes the spring slots 4146 for accommodating a portion of the lockout springs 4450, for example.


The lockout springs 4450 extend through the spring slots 4146 between the elongate channel 4102 and the anvil 4130. Each spring 4450 includes a first end 4452, which is held in an aperture 4107 in the elongate channel 4102, and a second end 4454, which engages the anvil 4130. The first ends 4452 of the springs 4450 can be embedded or otherwise secured to the elongate channel 4102. For example, the first ends 4452 of the springs 4450 can be held within the respective apertures 4107 in the elongate channel 4102. The second ends 4454 of the springs 4450 can be positioned against respective abutment surfaces 4149 on the outer proximal surface 4147 of the anvil 4130. For example, abutment surfaces 4149 are aligned with the spring slots 4146 directly adjacent to the open-close cavity 4148.


A firing member 4760 (see FIGS. 38-40) is positioned in the end effector 4100. The firing member 4760 is similar in many respects to the firing member 1760 (see FIGS. 4 and 5). For example, the firing member 4760 defines an I-beam structure that includes a lower flange 4764, an upper flange 4762, and a support portion 4763 extending between the flanges 4762 and 4764. The upper flange 4762 is comprised of horizontal pins extending from the support portion 4763. The lower flange 4764 is comprised of an enlarged or widened foot at the base of the support portion 4763. A tissue cutting feature 4766 is supported by the support portion 4763 between the flanges 4762 and 4764. The support portion 4763 travels though aligned slots in the elongate channel 4102, a staple cartridge, such as the staple cartridge 1110 (see FIGS. 3-5), and the anvil 4130.


The firing member 4760 also includes a proximal boss 4768, which extends proximally from a top portion of the firing member 4760. The proximal boss 4768 is operably configured to engage the anvil 4130 to facilitate an opening motion of the anvil 4130. More specifically, the proximal boss 4768 is positioned to engage a central crossover surface 4145 of the anvil 4130. The central crossover surface 4145 is positioned intermediate the spring slots 4146 and proximal to the open-close cavity 4148 and the pivot joint 4150 of the end effector 4100. When the firing member 4760 is retracted proximally beyond the pivot joint 4150, the proximal boss 4768 is configured to slidingly engage the central crossover surface 4145, which biases the central crossover surface 4145 downward to pivot the anvil 4130 toward an open position.


The end effector 4100 includes lock bars 4180 slidably positioned in a recess 4109 in the elongate channel 4102. Each lock bar 4180 includes a proximal end 4182 and a distal end 4184. The proximal end 4182 is operably positioned in the release notch 4136. The distal end 4184 is positioned to engage a staple cartridge when a staple cartridge is inserted in the elongate channel 4102. The engaged surfaces at the proximal end 4182 of the lock bar 4180 and the notch 4136 are configured to bias the lock bar 4180 distally. For example, the notch 4136 defines a ramped surface that pushes the proximal end 4182 of the lock bar 4180 distally. Additionally or alternatively, the lockout arrangement can include a bias spring 4186 (see FIG. 40) for biasing the lock bar 4180 toward a distal position. The bias spring 4186 is positioned in abutting contact with the proximal end 4182 of the lock bar 4180. In various instances, a recess in the elongate channel 4102 can be configured to receive and support the bias spring 4186.


Referring primarily to FIGS. 39 and 40, the end effector 4100 is shown in an unclamped or open configuration. Moreover, a staple cartridge has not been installed in the elongate channel 4102. Though the anvil 4130 is not clamped with respect to a staple cartridge, the lockout springs 4450 are configured to exert a closure force on the anvil 4130. For example, the lockout springs 4450 are configured to bias the anvil 4130 downward and forward. Referring primarily to FIG. 40, the second end 4454 of the spring 4450 is positioned against the abutment surface 4149 on the outer proximal surface 4147 and the spring 4450 is configured to exert a force f (see FIG. 40) on the abutment surface 4149; the force f biases the anvil 4130 toward a closed position.


The force f from the lockout spring 4450 is also configured to bias the anvil pin 4152 into a lockout notch 4105 in the elongate channel 4102. More specifically, the elongate channel 4102 includes a pair of contoured slots 4108 defined in a proximal portion of each sidewall. The contoured slots 4108 are commonly referred to as “kidney slots” or “banana slots” due to their geometry. The lockout notch 4105 extends from a lower proximal portion of the contoured slot 4108. When the anvil pin 4152 is positioned in the lockout notch 4105, rotation of the anvil 4130 from the open position (see FIGS. 39-42) to a closed position (see FIGS. 43 and 44) is prevented. For example, wherein the proximal end 4182 of the lock bar 4180 is positioned in the release notch 4136, a ramped surface at the proximal end 4182 can be positioned flush against a ramped surface in the release notch 4136 such that movement of the anvil 4130 is restrained.


Referring now to FIGS. 41 and 42, the staple cartridge 1110 has been installed in the elongate channel 4102. When the staple cartridge 1110 is inserted in the end effector 4100, the proximal end 1112 of the staple cartridge 1110 is positioned against the distal end 4184 of the lock bar 4180 and shifts the lock bar 4180 proximally in the recess 4109. For example, the distal end 4184 of the lock bar 4180 can include a cartridge-facing surface against which the proximal end 1112 of the staple cartridge abuts. The proximal displacement of the lock bar 4180 also moves the proximal end 4182 of the lock bar within the release notch 4136. The proximal end 4182 includes a ramped surface, which engages a ramped surface of the release notch 4136 to lift the anvil 4130 upward away from the elongate channel 4102. As the anvil 4130 moves upward, the anvil pins 4152 also move upward out of the lockout notch 4105 and into the contoured slot 4108. Though the springs 4450 continue to bias the anvil 4130 downward and, thus, bias the anvil pins 4152 into the lockout notch 4105, the proximal displacement of the lock bar 4180 by the installed staple cartridge 1110 is sufficient to overcome the bias of the lockout springs 4450. When the anvil pins 4152 are positioned within the contoured slots 4108, as shown in FIG. 42, the anvil 4130 is operably configured to pivot about the pivot joint 4150 at the anvil pins 4152 toward the closed position.


Referring now to FIGS. 43 and 44, the firing member 4760 has been advanced distally to close the anvil 4130. For example, the upper flanges 4762 of the anvil 4130 are configured to cam against a distal closure ramp, similar to the distal closure ramp 1140 (see FIGS. 8-12) on the anvil 1130, for example, on the anvil 4130 as the firing member 4760 moves distally. The camming force generated by the firing member 4760 is sufficient to pivot the anvil 4130 toward the closed position, and the anvil pins 4152 are configured to move along the contoured slots 4108 as the anvil 4130 pivots relative to the elongate channel 4102. Thereafter, the firing member 4760 can continue to move distally along the firing path in the end effector 4100 to complete the firing stroke.


Upon completion of the firing stroke, the firing member 4760 is retracted toward the proximal end 1112 of the spent staple cartridge 1110. Though the firing member 4760 is retracted proximally, the sled assembly 1120 is configured to remain at the distal end 1113 of the spent staple cartridge 1110. In such instances, the proximal end 1112 of the spent staple cartridge 1110 can continue to bias the lock bar 4180 proximally such that the anvil pin 4152 remains in the contoured slot 4108.


In other instances, the sled assembly 1120 can operably engage the lock bar 4180 such that the lock bar 4180 is biased proximally only when the sled assembly 1120 is in the proximal, pre-fired position in the staple cartridge 1110. In such instances, at the outset of the firing stroke, the lock bar 4180 can be permitted to shift distally and reengage the lockout arrangement such that a subsequent firing stroke is prevented until a new staple cartridge is installed in the end effector 4100.


As described herein, in certain instances, the elongate channel of an end effector can include contoured slots (e.g. “kidney” or “banana” slots) for facilitating the opening and closing of the anvil. In other instances, the elongate channel can include a pin hole for facilitating the opening and closing of the anvil. In such instances, the anvil is configured to pivot about a single pivot axis at the pivot joint. The lockout arrangement including the lock bar 4180 can be modified for a single pivot axis closure of an anvil.


For example, referring now to FIGS. 90-92, an interchangeable surgical tool assembly 5000 includes an end effector 5100 having an anvil 5130 and an elongate channel 5102. The anvil 5130 is configured to pivot relative to the elongate channel 5102 about a pivot joint 5150 at pivot pins 5152. The elongate channel 5102 is similar in many respects to the elongate channel 4102 (see FIGS. 37-44), however, the elongate channel 5102 includes pin holes 5108 for receiving the pivot pins 5152 instead of contoured slots. The anvil 5130 is similar in many respects to the anvil 4130 (see FIGS. 36-44), however, the anvil 5130 does not include a notch in the inner rail 5135 for engagement with a lock bar.


Although a firing member is not depicted in FIGS. 90-92, the reader will readily appreciate that the firing member in the end effector 5100 can be identical to the firing member 4760 (see FIG. 38), for example. The firing member for the end effector 5100 can be configured to engage a ramped surface defining an open-close cavity similar to the ramped surface 1134 and the open-close cavity 1148 (see FIGS. 8-12), respectively. For example, the open-close cavity includes a distal closure ramp and a proximal opening surface. In certain instances, lockout springs can extend through spring slots 5146 between the elongate channel 5102 and the anvil 5130. Such lockout springs can be identical to the lockout springs 4450, for example. In other instances, the end effector 5100 may not include lockout springs extending between the anvil 5130 and the elongate channel 5102.


The end effector 5100 includes lock bars 5180 slidably positioned in a recess 5109 in the elongate channel 5102. Each lock bar 5180 includes a proximal end 5182 and a distal end 5184. The proximal end 5182 is positioned in abutting contact with a compression spring 5190, which is also positioned in the recess 5109. The distal end 5184 is positioned to engage a staple cartridge when a staple cartridge is inserted in the elongate channel 5102. Although only a single lock bar 5180 is depicted in FIGS. 90-92, the reader will readily appreciate that symmetrical lock bars 5180 can be positioned on each lateral side of the end effector 5100. In other instances, the lockout arrangement of the end effector 5100 can be asymmetrical relative to the firing member, and may only include a single lock bar 5180, for example.


Referring primarily to FIG. 90, the end effector 5100 is shown in an unclamped or open configuration. Moreover, a staple cartridge has not been installed in the elongate channel 5102. Though the anvil 5130 is not clamped with respect to a staple cartridge, in certain instances, lockout springs can be configured to exert a closure force on the anvil 5130. For example, the lockout springs can be configured to bias the anvil 5130 downward and forward. Though the anvil 5130 may be biased toward a clamped configuration, the pivot pin 5152 can be configured to prevent pivoting of the anvil 5130.


The pivot pin 5152 has a semicircular perimeter or cross-section including a circular, rounded, or otherwise contoured portion 5154 and a flat or linear portion 5156. When the anvil 5130 is in the unclamped configuration, the pivot pin 5152 is oriented such that the flat portion 5156 is positioned flush against a top surface 5186 of the lock bar 5180. When the flat portion 5156 is flush against the top surface 5186, rotation of the pivot pin 5152 and, thus, rotation of the anvil 5130 from the open position to a closed position (see FIG. 92) is restrained or entirely prevented. For example, when the firing member is advanced distally from a home position in the open-close cavity toward the distal closure ramp, the attempted distal displacement of the firing member can be insufficient to overcome the rotational resistance between the flat surface 5156 of the pivot pin 5152 and the top surface 5186 of the lock bar 5180. As result, the anvil 5130 can be prevented from moving toward the closed configuration until a staple cartridge is positioned in the elongate channel 5102 and, thus, the lockout arrangement is overcome.


Referring now to FIG. 91, the staple cartridge 1110 has been installed in the elongate channel 5102. When the staple cartridge 1110 is inserted in the end effector 5100, the proximal end 1112 of the staple cartridge 1110 is positioned against the distal end 5184 of the lock bar 5180 and shifts the lock bar 5180 proximally in the recess 5109. For example, the distal end 5184 of the lock bar 5180 can include a cartridge-facing surface against which the proximal end 1112 of the staple cartridge abuts.


The proximal displacement of the lock bar 5180 also moves a notch 5188 in the lockout bar 5180 proximally. The notch 5188 is defined downward from the top surface 5186 intermediate the proximal end 5182 and the distal end 5184. When the compression spring 5190 compresses to permit proximal shifting of the lock bar 5180 within the recess 5109, the notch 5188 is configured to move into longitudinal alignment with the pivot pin 5152. As depicted in FIG. 91, when the notch 5188 is aligned with the pivot pin 5152, the flat portion 5156 of the pivot pin 5152 can be spaced apart from the lock bar 5180. As a result, the anvil 5130 is operably permitted to pivot at the pivot joint 5150 about the anvil pins 5152 toward the closed position.


Referring now to FIG. 92, a closure motion has been applied to the anvil 5130. For example, the firing member can be advanced distally to close the anvil 5130. The distal advancement of the firing member is configured to cam the upper flanges thereof against the distal closure ramp on the anvil 5130. The camming force generated by the firing member is sufficient to pivot the pins 5152 within the pin holes 5108. Thereafter, the firing member can continue to move distally along the firing path in the end effector 5100 to complete the firing stroke.


Upon completion of the firing stroke, the firing member can be retracted toward the proximal end 1112 of the spent staple cartridge 1110. Though the firing member is retracted proximally, the sled assembly 1120 is configured to remain at the distal end 1113 of the spent staple cartridge 1110. In such instances, the proximal end 1112 of the spent staple cartridge 1110 can continue to bias the lock bar 5180 proximally such that the anvil pin 5152 remains aligned with the notch 5188.


In other instances, the sled assembly 1120 can operably engage the lock bar 5180 such that the lock bar 5180 is biased proximally only when the sled assembly 1120 is in the proximal, pre-fired position in the staple cartridge 1110. In such instances, at the outset of the firing stroke, the lock bar 5180 can be permitted to shift distally and reengage the lockout arrangement such that a subsequent firing stroke is prevented until a new staple cartridge is installed in the end effector 5100.


Referring now to FIGS. 45-53, a surgical end effector 6100 is depicted. The surgical end effector 6100 includes an elongate channel 6102 and the anvil 1130. The elongate channel 6102 is similar in many respects to the elongate channel 1102 (see FIGS. 3-5 and 7), however, the elongate channel 6102 also includes a recess 6109 dimensioned and positioned to operably receive a portion of a lockout spring 6182. In other instances, the surgical end effector 6100 can include the elongate channel 1102 instead of the elongate channel 6102, as further described herein.


A firing member 6760 is positioned in the end effector 6100. The firing member 6760 is similar in many respects to the firing member 1760 (see FIGS. 4 and 5). For example, the firing member 6760 defines an I-beam structure that includes a lower flange 6764, an upper flange 6762, and a support portion 6763 extending between the flanges 6762 and 6764. The upper flange 6762 is comprised of horizontal pins extending from the support portion 6763. The lower flange 6764 is comprised of an enlarged or widened foot at the base of the support portion 6763. A tissue cutting feature 6766 is supported by the support portion 6763 between the flanges 6762 and 6764. The support portion 6763 travels though aligned slots in the elongate channel 6102, a staple cartridge 6110, and the anvil 1130.


Similar to the firing member 1760, the firing member 6760 is configured to exert a closure camming force on the end effector 6100 to clamp the anvil 1130 relative to the elongate channel 6102 during a portion of the firing stroke and is configured to exert an opening camming force on the end effector 6100 to pivot the anvil 1130 away from the elongate channel 6102 upon completion of the firing stroke. For example, the firing member 6730 is positioned to operably engage the open-close cavity 1148 in the anvil 1130 to facilitate the pivoting of the anvil 1130.


The surgical end effector 6100 includes a lockout arrangement 6180, which can operably prevent a firing stroke and/or prevent rotational movement of the anvil 1130 toward the elongate channel 6102 unless an unfired staple cartridge is positioned in the first jaw. In other words, the lockout arrangement 6180 is a missing and empty cartridge lockout and can also be considered to be a clamping lockout. Because the firing member 6760 is a multi-function firing member, the firing member is configured to implement a combination of surgical functions with a single actuation system. Consequently, when the lockout arrangement 6180 prevents the actuation of the firing member 6760, the lockout arrangement 6180 effectively prevents the combination of surgical functions implemented by the firing member 6760 including the clamping of the end effector 6100 and the advancement of the cutting edge 6766.


In other instances, the lockout arrangement 6180 can be configured to engage the firing member 6760 after the firing member 6760 has closed the end effector jaws. For example, the lockout arrangement 6180 can be positioned farther distally such that the firing member 6760 engages the lockout arrangement 6180 after engaging the distal closure ramp 1140 of the open-close cavity 1148. In such instances, the firing member 6760 can be configured to clamp the anvil 1130 relative to the elongate channel 6102 before the lockout arrangement 6180 is potentially engaged.


The lockout arrangement 6180 includes the lockout spring 6182 as well as lockout lugs 6770 on the firing member 6760. The lockout spring 6182 is positioned in the recess 6109 in the elongate channel 6102. The lockout spring 6182 defines a U-shaped member having a fixed end and a pair of deflectable ends. The lockout spring 6182 is a leaf spring, however, the reader will readily appreciate that various alternative springs can be configured to operably engage the lockout lugs 6770. For example, the lockout spring 6182 can be comprised of two separate leaf springs on either side of the firing member 6760.


The fixed end of the lockout spring 6182 is a proximal end 6184, which is fixed to the elongate channel 6102. For example, the proximal end 6184 can be welded to the elongate channel 6102 at the spot welds 6196 (see FIG. 47). The deflectable or free ends of the lockout spring 6182 define the distal ends 6186 thereof. A spring arm 6188 extends between the proximal end 6184 and each free distal end 6186 of the lockout spring 6182.


Referring primarily to FIG. 47, a pair of laterally-extending tabs or hooks 6190 extend inward from the distal ends 6186 toward a centerline of the lockout spring 6182. The hooks 6190 are laterally inboard of the spring arms 6188. The hooks are operably configured to catch or engage the lockout lugs 6770, as further described herein. Referring still to FIG. 47, the lockout spring 6182 is depicted in a non-stressed, or non-flexed, default configuration. In the non-stressed configuration, the spring arms 6188 define a bend or contour such that the distal ends 6186 are offset upward from the proximal end 6184. Though the lockout spring 6182 is configured to flex or otherwise deform during operation of the end effector 6100, the lockout spring 6182 is configured to seek to resume the non-stressed configuration of FIG. 47.


The lockout lugs 6770 define laterally-protruding lugs on the support portion 6763 of the firing member 6760. A lock or notch 6772 is defined in each laterally-protruding lug 6770. The locks 6772 are rectangular cutouts that are dimensioned and aligned to receive the hooks 6190 on the lockout spring 6182 when the lockout spring 6182 is in the non-stressed configuration of FIG. 47 and the firing member 6760 is advanced distally into engagement with the hooks 6190. For example, each lock 6772 includes a distally-facing opening which is configured to receive the hook 6190 when the hook 6190 is aligned with the distally-facing opening and the firing member 6760 is advanced distally. When the hooks 6190 are retained in the locks 6772, distal advancement of the firing member 6760 is prevented. As a result, clamping of the anvil 1130 and advancement of the knife edge 6766 is prevented by the lockout arrangement 6180.


In use, the lockout spring 6182 can initially be in the non-stressed configuration of FIG. 47 in the elongate channel 6102. In the non-stressed configuration, the hooks 6190 on the distal ends 6186 of the lockout spring 6182 are biased upward and into alignment with the locks 6772 in the firing member 6760. As a result, when the firing member 6760 is advanced distally, the hooks 6190 slide into locks 6772 on the advancing firing member 6760 such that distal displacement of the firing member 6760 past the hooks 6190 is prevented.


Referring now to FIG. 48, when a staple cartridge 6110 is installed in the end effector 6100, a part of the staple cartridge 6110 is configured to engage the lockout spring 6182. The staple cartridge 6110 is similar in many respects to the staple cartridge 1110 (see FIGS. 3-5). The staple cartridge 6110 includes a sled assembly 6120, which is similar in many respects to the sled assembly 1120 (see FIGS. 4 and 5), however, the sled assembly 6120 has a cutout or recess 6122 at a proximal end 6112 of the staple cartridge 6110. The cutout 6122 is defined in a channel-facing surface of the sled assembly 6120 and is configured to receive the distal end 6186 of the lockout spring 6182 including the hooks 6190 thereof when the sled assembly 6120 is in the proximal, home position (see FIG. 48) in the staple cartridge 6110. The sled assembly 6120 engages the distal ends 6186 of the lockout spring 6182 to deflect the hooks 6190 into the cutout 6122 and out of alignment with the locks 6772.


In other instances, the staple cartridge 1110 (see FIGS. 3-5) can be installed in the elongate channel 6102, and the sled assembly 1120 thereof can be configured to deflect the hooks 6190 downward into the lockout recess 6109 in the elongate channel 6102. In such instances, the lockout recess 6109 can be sized to accommodate the height of the lockout spring 6182 such that the staple cartridge 1110 can be positioned flush against a cartridge-supporting surface of the elongate channel 6102. In still other instances, the elongate channel 6102 may not include the lockout recess 6109, similar to the elongate channel 1102 (see FIGS. 3-5). In such instances, the cutout 6122 in the sled assembly 6120 can be sized to accommodate the height of the lockout spring 6182 such that the staple cartridge 6110 can be positioned flush against a cartridge-supporting surface of the elongate channel 6102.


During a firing stroke, the sled assembly 6120 is advanced distally though the cartridge body 6111 by the firing member 6760. The sled assembly 6120 is left in the distal portion of the staple cartridge 6110 when the firing member 6760 is retracted proximally after the firing stroke. For example, referring now to FIG. 49, the firing member 6760 has been advanced distally from the proximal, home position during an initial portion of a firing stroke. As the firing member 6760 moves distally away from the lockout spring 6182, the lockout spring 6182 is configured to resume the non-stressed orientation of FIG. 47 in which the hooks 6190 are deflected upwards with respect to the fixed proximal end 6184 of the lockout spring 6182.


Referring now to FIG. 50, upon completion of the firing stroke, the firing member 6760 is retracted proximally toward the proximal, home position. As the firing member 6760 moves proximally past the distal end 6186 of the lockout spring 6182, the hooks 6190 on the lockout spring 6182 are configured to ride or slide along ramped surfaces 6774 on the laterally-protruding lugs 6770. The hooks 6190 are engaged with the ramped surfaces 6774 in FIG. 50 such that the ramped surfaces 6774 cam or lift the hooks 6190 and the distal end 6186 of the lockout spring 6182 upward over the locks 6772 and along a top surface of the laterally-protruding lugs 6770. As the hooks 6190 bypass the locks 6772, the lockout arrangement 6180 is effectively reset.


Referring now to FIG. 51, the firing member 6760 has returned to the proximal, home position and the lockout spring 6182 has returned to the non-stressed configuration. As a result, the hooks 6190 on the lockout spring 6182 are aligned with the locks 6772 on the firing member 6760. For example, the locks 6772 are configured to move along respective lock paths in the end effector 6100 as the firing member 6760 is advanced distally, and each hook 6190 is in the lock path of the corresponding lock 6772. Though the staple cartridge 6110 remains in the elongate channel 6102 in FIG. 51, because the staple cartridge 6110 has already been fired, or spent, the sled 6120 (see FIGS. 33 and 34) remains in a distal end portion of the staple cartridge 6110. The distally-displaced sled 6120 is not positioned to engage the distal ends 6186 of the lockout spring 6182 to overcome the lockout arrangement 6180 as depicted in FIG. 45.


Distal displacement of the firing member 6170 past the reset lockout arrangement 6180 is prevented, as shown in FIG. 52. In particular, the firing member 6760 has been displaced distally from the proximal, home position during a subsequent attempted firing stroke. However, as the firing member 6760 moves distally, the locks 6772 move along their respective lock paths into engagement with the hooks 6190. The hooks 6190 slide into the locks 6772 to prevent further distal movement of the firing member 6760.


The lockout arrangement 6180 includes symmetrical locks 6772 and symmetrical hooks 6190. For example, the locks 6772 and the hooks 6190 are symmetrical about a longitudinal axis of the end effector 6100 such that a firing force generated by the firing member is restrained by the lockout arrangement 6180 in a balanced and symmetrical manner. In other instances, the lockout arrangement 6180 can be asymmetrical, and can include a single lock 6772 and a single hook 6190, for example.


In various instances, an interchangeable surgical tool assembly for a surgical instrument can be fired upon actuation of a firing trigger on the handle assembly thereof, as described herein. In certain instances, multiple actuations of the firing trigger can be configured to fire the interchangeable surgical tool assembly. For example, each actuation of the firing trigger can implement a portion of a firing stroke. In other instances, a single actuation of the firing stroke can be configured to implement a series of successive firing strokes. In certain instances, each successive firing stroke can contribute to the distal advancement and/or proximal retraction of a firing member, a cutting edge and/or a sled assembly. For example, a firing rod in an interchangeable surgical tool assembly can be extended and retracted multiple times in a series of successive firing strokes to complete the firing of the end effector.


In certain instances, it can be desirable to advance a firing member distally to an intermediate portion of the end effector. The firing member can fire a sled assembly and/or a cutting element to the intermediate portion of the end effector. Moreover, in various instances, a pusher plate can be advanced distally to complete the firing of the sled assembly and/or the cutting element. As described herein, the firing member can include an upper flange that is configured to travel through the anvil of the interchangeable surgical tool assembly. In instances in which the distal advancement of the firing member terminates at an intermediate portion of the end effector, the distal portion of the anvil can be passageway-free. For example, the distal portion of the anvil can be solid such that the upper flange of the firing member cannot travel therethrough. When the distal portion of an anvil is solid, the rigidity of the anvil can be greater than an anvil having a passageway that extends to the distal end thereof. Increased rigidity of the anvil can be configured to limit deformation and/or bowing of the anvil.


An interchangeable surgical tool assembly 12000 configured to execute a series of successive firing strokes is depicted in FIGS. 56-70. The interchangeable surgical tool assembly 12000 can be mounted to the handle assembly 500 (see FIGS. 1 and 2). In certain instances, each firing stroke in the series of successive firing strokes can be affected by a single actuation of the firing trigger 532 (see FIGS. 1 and 2). In other instances, a single actuation of the firing trigger 532 can affect one or more of the firing strokes. For example, a single actuation of the firing trigger 532 can affect the complete series of successive firing strokes to fire the staples and incise the target tissue clamped between the end effector jaws.


The interchangeable surgical tool assembly 12000 includes an end effector 12100, a shaft portion 12400, a firing member 12760, and a firing bar 12770. The end effector 12100 includes an elongate channel 12102 that is configured to operably support a staple cartridge 11210 therein. The elongate channel 12102 is operably attached to the shaft portion 12400. The end effector 12100 also includes an anvil 12130 that is pivotally supported relative to the elongate channel 12102.


The firing member 12760 is configured to operably interface with a sled assembly 12120 that is operably supported within the body 12111 of the surgical staple cartridge 12110. The sled assembly 12120 is slidably displaceable within the surgical staple cartridge body 12111 from a proximal starting position adjacent the proximal end 12112 of the cartridge body 12111 to an ending position adjacent a distal end 12113 of the cartridge body 12111. The sled assembly 12120 includes a plurality of sloped or wedge-shaped cams 12122 wherein each cam 12122 corresponds to a particular line of staples 1126. The sled assembly 12120 also includes a cutting edge 12124. The cutting edge 12124 is configured to travel through the end effector 12100 with the sled assembly 12120. For example, the cutting edge 12124 is integrally formed on the sled assembly 12120.


Direct-drive surgical staples 1126 (see also FIG. 5) are positioned in staple cavities in the body 12111. When the sled assembly 12120 is driven distally, the tissue cutting edge 12124 is configured to cut the tissue that is clamped between the anvil assembly 12130 and the staple cartridge 12110, and the sled assembly 12120 drives the staples 1126 upwardly in the staple cartridge 12110 and into forming contact with the anvil assembly 12130. As further described herein, the sled assembly 12120 can be driven distally by the firing member 12760 and/or by a pusher plate 12780. For example, the firing member 12760 is configured to push the sled assembly 12120 distally to an intermediate location in the end effector 12100, and the pusher plate 12780 is configured to bypass the firing member 12760 to further advance the sled assembly 12120 distally to a distal location in the end effector 12100.


During a firing stroke, a drive member in the shaft portion 12400, such as the drive member 1602 (see FIG. 2), for example, is configured to transfer a firing motion to the firing bar 12770. For example, displacement of the drive member 1602 is configured to displace the firing bar 12770. As described herein, the firing bar 12770 can be operably configured to fire the firing member 12760. For example, the firing bar 12770 can push the firing member 12760 distally during at least a portion of the firing sequence.


The firing member 12760 is similar in many respects to the firing member 1760 (see FIGS. 4 and 5). For example, the firing member 12760 defines an I-beam structure that includes a lower flange 12764, an upper flange 12762, and a support portion 12763 extending between the lower flange 12764 and the upper flange 12762. The upper flange 12762 is comprised of horizontal pins extending from the support portion 12763. The lower flange 12764 is comprised of an enlarged or widened foot at the base of the support portion 12763. The firing member 12760 can be configured to engage an open-close cavity, such as the open-close cavity 1148 (see FIGS. 8-12) on the anvil 12130 to effect opening and closing of the anvil 12130 relative to the staple cartridge 12110. Additionally, the upper flange 12762 can be configured to travel through a passageway 12136 in the anvil 12130 and the lower flange 12764 can be configured to travel through a passageway 12106 in the elongate channel 12102. Unlike the firing member 1760, the firing member 12760 does not include a cutting edge. Rather, the firing member 12760 is configured to selectively engage the sled assembly 12120, which includes the cutting edge 12124.


The interchangeable surgical tool assembly 12000 also includes a pusher assembly 12778 having the pusher plate 12780 and a spring 12782. Referring primarily to FIGS. 56-58, when the interchangeable surgical tool assembly 12000 is in an unfired configuration, the spring 12782 is configured to bias the pusher plate 12780 laterally toward the firing bar 12770. For example, the spring 12782 is positioned intermediate the pusher plate 12780 and a sidewall of the shaft assembly 12400. The pusher plate 12780 is biased against the firing bar 12770, which is positioned against a stop plate 12784 in the shaft portion 12400. The spring 12782 is a linear wave spring, however, the reader will readily appreciate that alternative spring designs can be configured to bias the pusher plate 12780 laterally toward the firing bar 12770. As further described herein, the pusher plate 12780 is retained in the shaft portion 12400 of the interchangeable surgical tool assembly 12000 until the firing bar 12770 is retracted to a more proximal position, which permits the pusher plate 12780 to spring laterally into engagement with the firing bar 12770.


Referring now to FIGS. 59-61, the pusher plate 12780 comprises a linear body 12786 having a plurality of leaf springs 12788 along the body 12786. The leaf springs 12788 are depicted in a non-stressed or undeformed configuration in FIGS. 60 and 61, which depict the leaf springs 12788 biased outward laterally from the linear body 12786. The linear body 12786 extends between a proximal end 12788 and a distal end 12790. A T-slot 12792 is defined in the proximal end 12788. The T-slot 12792 is configured to operably receive a distal key or nub 12771 on the firing bar 12770. The distal key 12771 can comprise a disk-shaped key (see FIG. 63), for example, protruding from the firing bar 12770. When the key 12771 is positioned in the T-slot 12792, proximal and distal translation of the firing bar 12770 is transferred to the pusher plate 12780. The reader will readily appreciate that alternative complementary slot and key geometries can be employed to transfer the firing motions between the firing bar 12770 and the pusher plate 12780.


At the outset of a first firing stroke, referring primarily to FIGS. 62 and 63, a distal end of the firing bar 12770 is positioned in abutting and driving contact with the firing member 12760. Moreover, the firing bar 12770 is configured to restrain the pusher plate 12780 and the leaf springs 12788 thereof. In such instances, the firing bar 12770 can be advanced distally to push the firing member 12760 distally. As the firing member 12760 moves distally, the firing member 12760 pushes the sled assembly 12120 distally. In FIG. 62, a ramped surface 12122 of the sled assembly 12120 has engaged the proximal-most staple 1126 in the depicted row and started to lift the staple 1126 toward the anvil 12130.


Though the firing bar 12770 has moved distally in FIG. 62, the pusher plate 12780 is configured to remain in a proximal position in the shaft portion 12400 of the interchangeable surgical tool assembly 12000. Referring primarily to FIG. 63, the firing member 12760 includes a notch 12766, which is dimensioned to allow the pusher plate 12780 to bypass the firing member 12760 at a later stage in the firing stroke sequence, as further described herein.


The interchangeable surgical tool assembly 12000 is depicted at the completion of the first firing stroke in FIG. 64. Upon comparing FIG. 58 to FIG. 64, the reader will readily appreciate that the firing member 12760 has been moved distally by the firing bar 12770 a distance V from a point A to a point B. The point B is approximately one-third of the distance between the proximal end 12112 and the distal end 12113 of the staple cartridge 12110. In other instances, the point B can be less than or more than one-third of the distance between the proximal end 12112 and the distal end 12113. For example, the point B can be approximately one-fourth or one-sixth of the distance between the proximal end 12112 and the distal end 12113. In other instances, the point B can be farther than halfway between the proximal end 12112 and the distal end 12113.


Upon reaching the point B, the sled assembly 12120 has moved two staples 1126 in the depicted row into a forming position and has moved a third staple in the depicted row toward the forming position. Thereafter, the firing bar 12770 is configured to be retracted proximally during a second firing stroke. Because the firing bar 12770 is merely in abutting, driving contact with the firing member 12760 and is not coupled thereto, when the firing bar 12770 is retracted proximally, the firing member 12770 is configured to remain in the intermediate position (point B) in the end effector 12100.


Referring primarily to FIGS. 65 and 66, the interchangeable surgical tool assembly 12000 is depicted at the completion of the second firing stroke. Upon comparing FIG. 64 to FIG. 66, the reader will readily appreciate that the firing bar 12770 has been moved proximally a distance W from the point B to a point C. The point C is proximal to the point A. In other words, the distance W is greater than the distance V (see FIG. 64). Moreover, the point C is proximal to the pusher assembly 12778. More specifically, when the firing bar 12770 is retracted to the point C, the firing bar 12770 is retracted proximally such that the T-slot 12792 in the proximal end 12788 of the pusher plate 12780 is aligned with the distal key 12771 on the firing bar 12770. When the distal key 12771 is aligned with the T-slot 12792, the T-slot 12792 is configured to receive the distal key 12771 therein. For example, referring primarily to FIG. 66, the spring 12782 is configured to bias the pusher plate 12780 laterally into engagement with the firing bar 12770. Moreover, the leaf springs 12788 are permitted to resume the non-stressed configuration (see FIGS. 60 and 61) when the firing bar 12770 has been retracted proximally thereof.


The interchangeable surgical tool assembly 12000 is depicted at the completion of a third firing stroke in FIGS. 67-69. Upon comparing FIG. 66 to FIG. 67, the reader will readily appreciate that the firing bar 12770 has been moved distally a distance X from the point C to a point D. The point D is also distal to the point B (see FIG. 64). The distal displacement of the firing bar 12770 the distance X is configured to move the firing member 12760 a distance Y and the sled assembly 12120 to the distal end 12113 of the staple cartridge 12110. The pusher plate 12780 is advanced distally by the firing bar 12770 during the third firing stroke.


During the third firing stroke, the pusher plate 12780 pushes the firing member 12760 distally until the firing member 12760 reaches the end of the passageway 12136. When the upper flange 12762 of the firing member 12760 abuts the distal end of the passageway 12136 (or the firing member 12760 is otherwise prevented from traveling farther distally), the pusher plate 12780 is configured to bypass the firing member 12760. For example, the leaf springs 12788 are configured to deflect toward the body 12786, which permits the pusher plate 12780 to fit within the notch 12766 in the firing member 12760. When the pusher plate 12780 is positioned within the notch 12766, the pusher plate 12780 is configured to travel distally past the firing member 12760. In certain instances, the pusher plate 12780 may not displace the firing member distally during the third firing stroke. For example, the point B can be aligned with the distal end of the passageway 12136.


At the completion of the third firing stroke, the sled assembly 12120 is positioned at the distal end 12113 of the staple cartridge 12110 and all of the staples 1126 in the depicted row having been moved into a forming position with the anvil 12130. Moreover, the sled assembly 12120 is configured to sink or move downward toward a cartridge-supporting surface 12101 of the elongate channel 12102 at the completion of the third firing stroke. The sunken sled assembly 12120 depicted in FIG. 67 is configured to shift the cutting edge 12124 downward. For example, the cutting edge 12124 can be positioned below the deck of the staple cartridge 12110. In such instances, when the firing member 12760 is retracted and the anvil 12130 is pivoted to an open configuration, the cutting edge 12124 can be concealed within or shielded by the cartridge body 12111, which can prevent inadvertent cutting and/or injury with the cutting edge 12124. In certain instances, the body 12111 of the staple cartridge 12110 includes a distal cavity into which the sled assembly 12120 is configured to fall or shift at the completion of the third firing stroke.


Referring still to FIGS. 67-69, the leaf springs 12788 are in the non-stressed configuration such that they extend laterally outboard of the body 12786. When in the non-stressed configuration, a proximal, outwardly-positioned end 12789 of one of the leaf springs 12788 extends in front of the support portion 12763 of the firing member 12760 (see FIG. 69). In other words, the end 12789 of the leaf spring 12788 extends beyond the notch 12766 and laterally overlaps the support portion 12763 of the firing member 12760. As a result, the end 12789 acts as a spring-loaded barb that catches the firing member 12760 when the pusher plate 12780 is subsequently retracted proximally.


During the fourth firing stroke, the pusher plate 12780 is retracted proximally. Upon comparing FIG. 67 to FIG. 70, the reader will readily appreciate that the firing bar 12770 has been moved proximally a distance Z from the point D to a point E. The firing bar 12770 is engaged with the pusher plate 12780 via the lock 12771 and the T-slot 12792 and, thus, the pusher plate 12780 is also withdrawn proximally with the firing bar 12770. Moreover, because the end 12789 of one of the leaf springs 12788 is caught or otherwise engaged with the firing member 12760, the retraction of the pusher plate 12780 also retracts the firing member 12760. The firing member 12760 in FIG. 70 has been retracted such that the upper flange 12762 is withdrawn from the passageway 12136 in the anvil 12130. In certain instances, the upper flange 12762 can be configured to engage an open-close cavity to open the anvil 12130 toward an open configuration when withdrawn to the point E. Moreover, the sled assembly 12120 including the cutting edge 12124 thereof remains shielded in the drop down cavity at the distal end 12113 of the staple cartridge 12110.


In certain instances, an interchangeable surgical tool assembly can include a flexible spine, which can permit flexing of at least a portion of the shaft away from a linear configuration. The flexible spine is configured to move the end effector of the interchangeable surgical tool assembly vertically and/or horizontally with respect to a longitudinal axis of the shaft. Additionally or alternatively, in certain instances, the end effector and/or a distal portion of the interchangeable surgical tool assembly can be configured to rotate with respect to the longitudinal axis of the shaft. The flexibility and rotatability of an interchangeable surgical tool assembly is configured to increase the range of motion such that the end effector can be manipulated to assume different positions with respect to target tissue. Additionally, flexibility and rotatability can be configured to increase the operator's viewability at the surgical site.


An interchangeable surgical tool assembly 14000 is depicted in FIGS. 71-74. The interchangeable surgical tool assembly 14000 includes the end effector 1100 including the elongate channel 1102, the anvil 1130, and the firing member 1760. The staple cartridge 1110 (see FIGS. 72 and 74) is removably positioned in the elongate channel 1102. The interchangeable surgical tool assembly 14000 also includes a shaft portion 14400 including a flexible spine 14402. A flexible spine for a surgical instrument is further described in U.S. patent application Ser. No. 14/138,554, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE SHAFT ARRANGEMENTS, filed Dec. 23, 2013, now U.S. Patent Application Publication No. 2015/0173789, which is hereby incorporated by reference herein in its entirety.


The flexible spine 14402 comprises a vertebral body 14404 and a distal tube segment 14440 mounted to the vertebral body 14404 (see FIG. 74). The vertebral body 14404 includes a central portion 14408 and laterally-symmetric pairs of vertebrae 14406 extending from the central portion 14408. The vertebrae 14406 are positioned along each lateral side 14410, 14412 of the vertebral body 14404. The vertebrae 14406 along the length of the vertebral body 14404 are nested. For example, each vertebra 14406 includes a protrusion and the adjacent vertebra 14406 includes a corresponding recess into which the protrusion protrudes. The interlocking protrusions and recesses are configured to limit torqueing or twisting of the vertebral body 14404.


Adjacent vertebra 14406 in the vertebral body 14404 are separated by a gap 14405 when the vertebral body 14404 is in a linear orientation. For example, the gaps 14405 can extend between the interlocking protrusions and recesses. The gaps 14405 between adjacent vertebrae 14406 are configured to permit the articulation of the vertebral body 14404 in an articulation plane.


Referring primarily to FIGS. 72 and 73, to articulate the flexible spine 14402 and the distal tube segment 14440 mounted thereto, the respective lateral sides 14410, 14412 of the vertebral body 14404 are simultaneously compressed and expanded by selective movement of articulation bands 14420 that longitudinally pass through passages along each respective lateral side 14410, 14412 of the vertebral body 14404. The distal ends of the articulation bands 14420 are anchored to an articulation head 14430, which is mounted or otherwise secured to the distal tube segment 14440. For example, the articulation bands 14420 terminate at distal loops 14422, which are positioned around attachment tabs 14432 on the articulation head 14430. Thus, the reciprocating motions of the articulation bands 14420 are configured to cause the articulation head 14430 and the distal tube segment 14440 to articulate relative to the flexible spine 14402. The articulation bands 14420 can be comprised of metal bands, which can be at least partially enclosed or encased in plastic, for example. In various instances, the articulation bands can be actuated (i.e. displaced proximally or distally) by levers or other actuators on the handle assembly, such as the handle assembly 500 (see FIGS. 1 and 2) of the surgical instrument.


As the vertebral body 14404 flexes and the distal tube segment 14440 articulates, the end effector 1100 is also configured to articulate. More specifically, the end effector 1100 includes a proximal mounting portion 14450. Referring primarily to FIG. 74, the proximal mounting portion 14450 is mounted to the elongate channel 1102. For example, the proximal mounting portion 14450 can be fixed to the elongate channel 1102 and/or integrally formed with the elongate channel 1102. The proximal mounting portion 14450 is positioned adjacent to the distal tube segment 14440 and the articulation head 14430 therein. As further described herein, a thrust bearing 14460 is positioned intermediate the proximal mounting portion 14450 and the distal tube segment 14440 such that the proximal mounting portion 14450 can rotate relative to the distal tube segment 14440. When the distal tube segment 14440 articulates, the proximal mounting portion 14450 and the end effector 1100 extending therefrom are also configured to articulate.


In various instances, the end effector 1100 can also be configured to rotate about the longitudinal axis of the shaft portion 14000. For example, the end effector 1100 can be rotated relative to the flexible spine 14402. The interchangeable surgical tool assembly 14000 includes a rotation shaft 14470, which extends proximally from the proximal mounting portion 14450. The rotation shaft 14470 can extend proximally through the distal tube segment 14440 and the flexible spine 14402 and can be secured at a rotational coupling in the handle assembly. The rotation shaft 14470 and the proximal mounting portion 14450 can be connected such that rotation of the rotation shaft 14470 causes a rotation of the proximal mounting portion 14450 and, thus, the end effector 1100, as well. For example, the rotation shaft 14470 can be fixed and/or integrally formed with the proximal mounting portion 14450. In other instances, rotation transmitting features, such as gear teeth, for example, can be configured to transmit rotation of the rotation shaft 14470 to the proximal mounting portion 14450.


The rotation shaft 14470 extends through the flexible spine 14402. For example, the rotation shaft 14470 can be concentric with the flexible spine 14402 and the vertebral body 14404 thereof. Though the rotation shaft 14470 extends through the flexible spine 14402 and rotates therein, rotation of the rotation shaft 14470 is not transferred to the flexible spine 14402. For example, the thrust bearing 14460 intermediate the proximal mounting portion 14450 and the articulation head 1430 is configured to permit rotation of the proximal mounting portion 14450 relative to the articulation head 1430. In other instances, the flexible spine 14402 can be configured to rotate with the rotation shaft 14470 and the thrust bear 14460 can be positioned intermediate the flexible spine 14402 and a non-rotatable portion of the shaft 14400.


Referring primarily to FIG. 73, the rotation shaft 14470 can be serrated or notched. The serrations and/or notches are configured to permit flexing of the rotation shaft 14470 within the flexible spine 14402. Though the rotation shaft 14470 is permitted to flex, the serrations can be configured to limit twisting or torqueing of the rotation shaft 14470 such that rotational movement generated at the proximal end thereof can be efficiently transferred to the distal end of the rotation shaft 14470 and, thus, to the proximal mounting portion 14450.


Referring primarily to FIGS. 73 and 74, the shaft portion 14400 includes a longitudinally-movable firing bar 14770, which is similar in many respects to the firing bar 1770 (see FIGS. 3-5). During a firing stroke, a drive member in the handle assembly (e.g. the drive member 540 in the handle assembly 500, see FIGS. 1 and 2) transfers a firing motion to the firing bar 1770 via a drive member (e.g. the drive member 1602, see FIG. 2) to fire the firing member 1760. For example, actuation of the drive member 540 can be configured to displace the firing bar 14770 and the firing member 1760 distally to cut tissue and effect firing of staples from the staple cartridge 1110. Thereafter, the drive member 540 can be retracted proximally to retract the firing bar 14770 and the firing member 1760 proximally. The firing bar 14770 is configured to flex within the flexible spine 14402.


The firing bar 14770 is concentric with the rotation shaft 14470. Moreover, as the rotation shaft 14470 rotates within the flexible spine 14402, the firing bar 14770 is configured to rotate as well. For example, the firing bar 14770 extends distally to the firing member 1760 having the upper flange 1462 restrained by the anvil 1130 and the lower flange 1464 restrained by the elongate channel 1102. As the end effector 1100 rotates with the rotation shaft 14470, as described herein, the firing member 1760 positioned in the end effector 1100 is also configured to rotate.


As described herein, the rotational joint between the proximal mounting portion 14450 and the distal tube segment 14440 is distal to the articulating vertebral body 14404. Therefore, the rotation of the end effector 1100 occurs distal to the articulation region of the shaft portion 14400. In other instances, the interchangeable surgical tool assembly 14000 can include alternative and/or additional articulation joints and/or regions. For example, various additional articulation joints are further described herein. In such instances, the rotational joint between the proximal mounting portion 14450 and the distal tube segment 14440 can be positioned distal to the distal-most articulation joint.


In various instances, translation of the firing member 1760 and/or firing bar 14770 can be prevented until an unfired staple cartridge is positioned in the end effector 1100. For example, the various lockout arrangements disclosed herein can be incorporated into the end effector 1100 and/or the interchangeable surgical tool assembly 14000. Through translation of the firing member 1760 and/or the firing bar 14770 can be prevented in such instances, the rotation of the firing member and the firing bar 14770 along with the rotation shaft 14470 and the end effector 1100 can be permitted by such lockout arrangements.


Turning next to FIGS. 75-81, there is shown a portion of another surgical instrument embodiment 15010 of the present invention. In the illustrated arrangement, the surgical instrument 15010 comprises a shaft assembly 15100 that may be operably coupled to a housing (not shown) in the form of a handle assembly or a portion of a robotic system. For example, the shaft assembly 15100 may be operably coupled to, or otherwise configured for use in connection with the handle assembly and other drive arrangements disclosed above and/or in connection with the various handle assemblies, firing and articulation drive systems disclosed in U.S. Patent Application Publication No. 2014/0246471, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH CONDUCTIVE PATHWAYS FOR SIGNAL COMMUNICATION, the entire disclosure of which is hereby incorporated by reference herein.


As can be seen in FIG. 75, the shaft assembly 15100 includes a spine member 15110 that operably supports a proximal rotary drive shaft 15120 that operably interfaces with a source of rotary motion (e.g., a motor or motor arrangement supported in the handle assembly or robotic system). In the illustrated arrangement, the proximal rotary drive shaft 15120 is flexible to accommodate articulation of a portion of the shaft assembly 15100. For example, the rotary drive shaft may comprise a cable that is somewhat flexible. The spine member 15110 defines a shaft axis SA and may, for example, be coupled to the handle assembly or robotic system in various known manners to facilitate selective rotation of the spine member 15110 about the shaft axis SA relative to the handle assembly or robotic system. In the illustrated embodiment, the shaft assembly 15100 includes a proximal or “first” articulation joint 15130 that defines a first articulation axis AA1 that is transverse to the shaft axis SA and a distal or “second” articulation joint 15150 that defines a second articulation axis AA2 that is also transverse to the shaft axis SA as well as to the first articulation axis AA1.


Referring now to FIG. 76, the proximal or first articulation joint 15130 comprises a first channel mounting assembly 15132 that is pivotally coupled to a distal end 15112 of the spine member 15110 by a first articulation pin 15134. The first articulation pin 15134 defines the first articulation axis AA1 about which the first channel mounting assembly 15132 may pivot. The illustrated shaft assembly 15100 comprises a first articulation system 15136 that comprises a first axially movable articulation actuator 15138 that operably interfaces with a source of first axial articulation motions in the handle assembly or robotic system. Such first axial articulation motions are represented by arrows AD1 and AD2 in FIG. 76. As can be seen in FIG. 76, a distal end 15139 of the first axially movable articulation member 15138 is pivotally pinned to the first channel mounting assembly 15132 by an attachment pin 15135. Axial movement of the first articulation actuator 15138 in the first and second articulation directions AD1, AD2 will result in the pivotal travel of the first channel mounting assembly 15132 relative to the spine member 15110 about the first articulation axis AA1.


Still referring to FIG. 76, the distal or second articulation joint 15150 comprises a second channel mounting member 15152 that is pivotally coupled to the first channel mounting assembly 15132 by a second articulation pin 15154. The second articulation pin 15154 defines the second articulation axis AA2 about which the second channel mounting member 15152 may pivot relative to the first channel mounting assembly 15132. See FIG. 75. The illustrated shaft assembly 15100 further comprises a second articulation system 15160 that comprises a second endless articulation member 15162 that is journaled on a proximal idler pulley 15164 that is rotatable supported on a pulley shaft 15165 that is attached to the spine member 15110. The second endless articulation member 15162 is also attached to an articulation pulley 15156 that is non-movably attached to or formed on the second channel mounting member 15152 such that rotation of the second endless articulation member 15162 on the idler pulley 15164 will cause the second channel mounting member 15152 to pivot relative to the first channel mounting assembly 15132 about the second articulation axis AA2. The second articulation system 15160 further comprises a second axially movable articulation actuator 15166 that operably interfaces with a source of second axial articulation motions in the handle assembly or robotic system. Such second axial articulation motions are represented by arrows AD3 and AD4 in FIG. 76. As can be seen in FIG. 76, a distal end 15167 of the second axially movable articulation member 15166 is clamped to a portion of the second endless articulation member 15162 by a clamp member 15168. The clamp member 15168 includes a cable guide hole 15169 therethrough for slidably supporting another portion of the second endless articulation member 15162 during application of second articulation motions thereto.


In the illustrated embodiment, an anvil member 15200 is movably coupled to the shaft assembly 15100. The anvil 15200 may be similar to the anvil 1130 described above. For example, the anvil 15200 is pivotally coupled to the second channel mounting member 15162 for selective pivotal travel relative thereto. As can be seen in FIG. 76, the anvil 15200 includes an anvil body 15202 that includes a staple forming portion 15204 and an anvil mounting portion 15210. The anvil mounting portion 15210 includes downwardly extending side walls 15212 that are commonly referred to as tissue stops, the purpose of which was previously described herein.


In the illustrated example, the second channel mounting member 15152 includes two distally protruding anvil mounting portions 15190 that each have a pin hole 15192 therein that is adapted to receive therein a corresponding anvil attachment pin 15193. The anvil attachment pins 15193 are received in the pin holes 15192 and in corresponding apertures 15213 in the side walls 15212 of the anvil 15200. As discussed above, the pins may be pressed into the apertures 15213. Such arrangement forms a pivot joint 15191 that facilitates pivotal travel of the anvil 15200 relative to the second channel mounting member 15152 while remaining attached thereto. In such arrangement, the anvil 15200 is not intended to be detached from the shaft assembly 15100 or more particularly, the second channel mounting member 15152 during normal use. Thus, as used in this context of describing the attachment of the anvil 15200 to the shaft assembly 15100, the term, “non-removably attached” means that the anvil 15200 remains attached to the shaft assembly 15100 during operation of the surgical instrument as well as when operably installing other surgical staple cartridges as will be discussed in further detail below.


As can be seen in FIGS. 76 and 77, the surgical instrument 15010 further includes a channel 15300 that is configured to operably support a surgical staple cartridge 15400 therein. In the illustrated embodiment, the channel 15300 includes a proximal attachment portion 15302 that is configured to be removably attached to the second channel mounting member 15152. For example, the second channel mounting member 15152 includes a mounting body or mounting hub portion 15194 that has two channel attachment slots 15196 formed therein that are configured to receive corresponding channel rails 15304 that are formed on the proximal attachment portion 15302 of the channel 15300. As can be seen in FIG. 77, the channel 15300 is removably attached to the shaft assembly 15100 by inserting the channel rails 15304 into the corresponding channel attachment slots 15196 in the second channel mounting member 15152 in an installation direction ID that is transverse to the shaft axis SA. In the illustrated example, the channel 15300 is removably locked to the shaft assembly 15100 by a lock member 15350.


Still referring to FIGS. 76 and 77, in the illustrated example, the lock member 15350 comprises a distal tube segment 15352 that is axially movably supported on the mounting hub portion 15194 of the second channel mounting member 15152. The distal tube segment 15352 may be pivotally attached to a flexible proximal tube segment (not shown) of the shaft assembly 15100 to facilitate articulation about the first and second articulation axes. The distal tube segment 15352 is configured to axially move between a distal-most “locked” position wherein the distal tube segment 15352 prevents the channel 15300 from being detached from the shaft assembly 15100 in removal direction RD and a proximal “unlocked” position whereby the distal tube segment 15352 is proximal of the channel attachment slots 15196 to enable the channel 15300 to be detached from the shaft assembly 15100. Thus, the distal tube segment 15352 is coupled to the proximal tube segment to facilitate axial movement relative thereto or the entire assembly (distal tube segment 15352 and proximal tube segment) is axially movable. As can be seen in FIGS. 76-79, clearance slots 15309 are provided in upstanding side walls 15308 of the elongate channel 15300 to accommodate the anvil attachment pins 15193 that attach the anvil 15200 to the second channel mounting member 15152. The anvil side walls 15212 are spaced from each of the corresponding anvil mounting portions 15190 to accommodate the corresponding side wall 15308 of the elongate channel 15300 when the anvil 15200 is closed and the elongate channel 15300 is attached to the second channel mounting member 15152.


In one arrangement, the surgical staple cartridge 15400 includes a cartridge body 15402 that is configured to be snapped or otherwise removably retained within the channel 15200 to facilitate easy replacement after use. The cartridge body 15402 includes a centrally disposed elongate slot 15404 that is configured to accommodate axial travel of a firing member 15500 therethrough. The cartridge body 15402 further includes a plurality of staple pockets 15406 therein. In the illustrated example, the staple pockets 15406 are arranged in two lines on each side of the elongate slot 15404. The staple pockets 15406 in one line are staggered with respect to the staple pockets 15406 in the adjacent line of staple pockets. In the illustrated example, each staple pocket 15406 contains a “direct drive” surgical staple 1126 therein. In the arrangement depicted in FIG. 79, the surgical staples 1126 are movably supported within the staple pockets 15406 and are configured such that a separate movable staple driver is not employed. FIG. 80 illustrates an alternative arrangement wherein conventional surgical staples 1126′ are each supported on a staple driver 15412 that are supported within the staple pockets 15406′ in the cartridge body 15402′. The staple drivers 15412 are driven upward in the surgical staple cartridge 15400′ as the firing member 15500′ is driven distally therethrough. Further details concerning the operation of the firing member 15500′ and the staple drivers 15412 may be found in U.S. patent application Ser. No. 14/308,240, entitled SURGICAL CUTTING AND STAPLING INSTRUMENTS AND OPERATING SYSTEMS THEREFOR, now U.S. Patent Application Publication No. 2014/0299648, the entire disclosure of which is hereby incorporated by reference herein.


Turning next to FIGS. 78 and 81, in the illustrated example, the proximal rotary drive shaft 15120 extends through the second channel mounting member 15152 and is rotatably supported therein by a bearing assembly 15122. A distal end 15124 of the proximal rotary drive shaft 15120 has a firing member drive gear 15126 attached thereto that is configured for operable engagement with a distal rotary drive shaft assembly 15310 mounted within the elongate channel 15300. The distal rotary drive shaft assembly 15310 includes a proximal shaft end 15312 that has a firing member driven gear 15314 attached thereto. The proximal shaft end 15312 is rotatably supported in a proximal shaft bearing 15316 that is mounted in the proximal attachment portion 15302 of the channel 15300. See FIGS. 77 and 81. The distal rotary drive shaft assembly 15310 further includes a distal shaft end 15320 that is rotatably supported in a distal shaft bearing 15322 that is supported in a distal end 15306 of the channel 15300. See FIG. 78. A central portion 15330 of the distal rotary drive shaft assembly 15310 is threaded for threaded driving engagement with a threaded drive nut portion 15502 of the firing member 15500.


In one example, the firing member 15500 includes an upstanding body 15504 that extends upward from the threaded drive nut portion 15502 and has a tissue cutting surface 15506 formed thereon or attached thereto. In at least one embodiment, the firing member body 15504 has a sled assembly 15540 formed thereon or attached thereto. In other arrangements, the sled assembly may not be attached to the firing member 15500 but is configured to be driven distally through the surgical staple cartridge 15400 as the firing member 15500 is driven distally therethrough. The sled assembly 15540 includes a series of wedge-shaped cams 15542 that are configured to cammingly engage the staples 1126 or the drivers 15412 to cammingly drive the staples upward into forming contact with the staple forming undersurface 15220 on the anvil 15200. See FIG. 79. As can be seen in FIG. 77, for example, the staple forming undersurface 15220 comprises a series of staple forming pockets 15222 corresponding to each staple within the surgical staple cartridge 15400. As the staple legs contact the forming pockets, the staple is formed or closed. See e.g., the staples 1126′ illustrated in FIG. 80. In the illustrated embodiment, the firing member driven gear 15314 is configured to meshingly engage the firing member drive gear 15126 on the proximal drive shaft 15120 when the channel 15300 is attached to the second channel mounting member 15152 of the shaft assembly 15100. Thus, rotation of the proximal drive shaft 15120 will result in rotation of the distal drive shaft assembly 15310. Rotation of the proximal drive shaft 15120 in a first rotary direction will cause the firing member 15500 to be driven distally within the channel 15300 and rotation of the proximal drive shaft 15120 in a second rotary direction will cause the firing member 15500 to be driven in a proximal direction within the channel 15300.


The firing member 15500 defines an I-beam like structure and includes a lower flanged portion 15560 that is formed from two laterally extending flanges 15562 that extend from the threaded drive nut portion 15502. In addition, the firing member includes an upper flanged portion 15564 that is formed from two laterally extending flanges 15566. The firing member body 15504 extends through an elongate channel slot 15301 in the elongate channel 15300, the elongate slot 15404 in the surgical staple cartridge 15400 and an anvil slot 15230 in the anvil 15200. For example, the firing member body 15504 extends through the centrally-disposed channel slot 15301 in the elongate channel 15300 such that the lower flanges 15562 are movably positioned within a passageway 15303 defined by the elongate channel 15300. In the embodiment depicted in FIG. 77, the bottom of the channel 15300 is open. A plate 15305 is attached thereto to provide added rigidity thereto. The plate 15305 has a series of windows 15307 therein to enable the surgeon to view therethrough the position of the firing member 15500 during firing and retraction.


In the illustrated embodiment, the anvil member 15200 is moved between an open position and closed positions by the firing member 15500. As indicated above, the firing member body 15504 extends through the elongate slot 15404 in the cartridge body. A top end 15505 of the firing member body 15504 is configured to extend into an anvil slot 15230 in the staple forming portion 15204 of the anvil body 15202. See FIG. 77. The top end 15505 extends through the anvil slot 15230 such that the upper flanges 15566 are movably positioned within a passageway 15232 (see FIG. 79) defined by the anvil 15200. For example, the passageway 15232 can be defined through the anvil 15200. The I-beam flanges 15562 and 15566 provide camming surfaces, which interact with the elongate channel 15300 and the anvil 15200, respectively, to open and clamp, or close, the jaws, as further described herein. Moreover, the firing member 15500 is configured to maintain a constant distance between the elongate channel 15300 and the anvil 15200 along the length of the end effector 1100.


At the outset of the firing stroke, the firing member 15500 is configured to move distally from an initial position. As the firing member 15500 moves distally, the anvil 15200 is pivoted toward a clamped configuration by the I-beam structure of the firing member 15500. More specifically, the lower flanges 15562 of the firing member 15500 move through the passageway 15303 defined by the elongate channel 15300 and the upper flanges 15566 move along a ramped surface 15234 of the anvil 15200 and then through the passageway 15232 defined by the anvil 15200.


Referring primarily to FIGS. 79 and 81, the ramped surface 15234 defines an open-close cavity 15236 in the anvil 15200 through which a portion of the firing member 15500 extends during a portion of the firing stroke. For example, the upper flanges 15566 protrude from the anvil 15200 via the open-close cavity 15236. The ramped surface 15234 slopes downward along a proximal opening surface 15238, extends along an intermediate portion 15239, and slopes upward along a distal closure ramp 15234. When the firing member 15500 is in an initial position or home position, the upper flanges 15566 are spaced apart from the intermediate portion 15239. In other words, the upper flanges 15566 are not cammingly engaged with the open-close cavity 15236. In the home position, the firing member 15500 can dwell with respect to the open-close cavity 15234 such that neither an opening force nor a closing force is applied to the anvil 15200 by the firing member 15500.


From the home position, the firing member 15500 can be retracted proximally. As the firing member 15500 continues to move proximally, the upper flanges 15566 of the firing member 15500, which are engaged with the proximal opening surface 15238, are configured to exert an opening force on the proximal opening surface 15238. As the upper flanges 15566 move against the proximal opening surface 15238, the proximal opening surface 15238 pivots, which causes the anvil 15200 to pivot open. As the upper flanges 15566 exert a downward force on the proximal opening surface 15238, the anvil 15200 is pushed upward by the leveraging action on the proximal opening surface 15238.


From the retracted position, the firing member 15500 can be advanced distally to return to the home position. To close the end effector, the firing member 15500 can be further advanced from the home position to an advanced position. For a portion of the firing motion intermediate the home position and the advanced position, the upper flanges 15566 are spaced apart from the ramped surface 15234. For example, the upper flanges 15566 hover or dwell above the intermediate portion 15239 as the firing member 15500 shifts between a closure motion and an opening motion. The dwell portion of the firing motion can be configured to prevent jamming of the opening and/or closing motions, for example.


As the firing member 15500 moves distally, the flanges 15566 contact the ramp surface 15234 to exert a downward force on the anvil 15200 to pivot it closed. As the firing member 15500 continues to move in the distal direction, the upper flanges 15566 move through the passageway 15232 to ensure a constant distance exists between the anvil 15200 and the elongate channel 15300 along the length of the end effector. For example, the passageway 15232 includes a lower ledge and an upper cap, which define the lower and upper limits of the passageway 15232. The upper flanges 15566 are constrained within those lower and upper limits during the firing stroke. The upper flanges 15566 can be dimensioned to fit snuggly within the confines of the passageway 15232. In other instances, as further described herein, the upper flanges 15566 can be configured to float and/or adjust vertically within the passageway 15232.


The firing member 15500 is a multi-function firing member. For example, the firing member 15500 is configured to drive the sled assembly 15540 to fire the staples 1126 from the surgical staple cartridge 15400, cut tissue clamped between the jaws 15200 and 15300, cam the jaw 15200 into a clamped configuration at the outset of the firing stroke, and cam the jaw 15200 into an open configuration at the completion of the firing stroke. The firing member 15500 can implement combination surgical functions with a single actuation system. As a result, the independent actuations systems required to fit within the footprint of the end effector may be minimized by the multi-function firing member 15500. In addition, the elongate channel and surgical staple cartridge 15400 can be replaced as a unit without detaching or replacing the anvil 15200. In alternative arrangements, the surgical staple cartridge 15400 may be replaced without replacing the elongate channel 15300 whether the elongate channel 15300 remains attached to the shaft assembly 15100 or has been detached therefrom. In addition, as can be seen in FIGS. 83-85, the elongate channel 15300, as well as the surgical staple cartridge 15400 and the anvil 15200, may be selectively pivoted in multiple articulation planes AP1, AP2 that are perpendicular to each other.



FIGS. 86-89 illustrate portions of another surgical instrument embodiment 16010 of the present invention. In the illustrated arrangement, the surgical instrument 16010 comprises a shaft assembly 16100 that may be operably coupled to a housing (not shown) in the form of a handle assembly or a portion of a robotic system. For example, the shaft assembly 16100 may be operably coupled to, or otherwise configured for use in connection with the various drive arrangements disclosed herein and/or in connection with the various handle assemblies, firing and articulation drive systems disclosed in U.S. Patent Application Publication No. 2015/0173789, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE SHAFT ARRANGEMENTS, the entire disclosure of which is hereby incorporated by reference herein.


As shown in FIGS. 86-89, the illustrated shaft assembly includes a flexible shaft portion 16110. The flexible shaft portion 16110 may be of the type and construction disclosed in greater detail in U.S. Patent Application Publication No. 2015/0173789. Thus, for the sake of brevity, specific details of the flexible shaft portion 16110 will not be discussed herein beyond what is necessary to understand the construction and operation of the surgical instrument 16010. In various arrangements, the flexible shaft portion 16110 may comprise a segment of the shaft assembly 16100 and be attached to, for example, an attachment stem portion (not shown) that is coupled to the housing (handle, robot system, etc.) as described in the aforementioned U.S. Patent Application or those interchangeable shaft arrangements disclosed herein. The flexible shaft portion 16110 may be fabricated from, for example, rigid thermoplastic polyurethane sold commercially as ISOPLAST grade 2510 by the Dow Chemical Company and include a centrally disposed, vertically extending articulation spine 16112. The articulation spine 16112 includes a centrally disposed component or knife slot 16114 for facilitating the passage of various control components therethrough. See FIG. 87. In the illustrated arrangement, the knife slot 16114 movably supports a central firing beam or bar 16200 therein. The flexible shaft portion 16110 further includes a plurality of right ribs 16116 and a plurality of left ribs 16118 that may be integrally-formed with, and laterally protrude from, the articulation spine 16112. The right and left ribs 16116, 16118 have an arcuate shape to provide the flexible shaft portion 16110 with a substantially-circular cross-sectional shape. Such shape may facilitate easy passage of the flexible shaft portion 16110 through a circular passage such as, for example, an appropriately sized trocar.


In various arrangements, each of the right ribs 16116 serves to define a right articulation passage for movably receiving a right articulation band 16120 therethrough. The right articulation band 16120 may extend through the right articulation passage and be coupled to a connector assembly 16150. For example, a distal end 16122 of the right articulation band 16120 may have a right hook portion 16124 that is adapted to be coupled to a right attachment portion 16152 of the connector assembly 16150. See FIG. 89. Similarly, each of the left ribs 16118 serves to define a left articulation passage for movably receiving a left articulation band 16130 therethrough. The left articulation band 16130 may extend through the left articulation passage and be coupled to the connector assembly 16150. For example, a distal end 16132 of the left articulation band 16130 may have a left hook portion 16134 that is adapted to be coupled to a left attachment portion 16154 of the connector assembly 16150. In the illustrated example, the right and left articulation bands 16120, 16130 operably interface with an articulation system in the handle or housing such as the one disclosed in, for example, U.S. Patent Application Publication No. 2015/0173789 or the articulation systems of the interchangeable shaft arrangements disclosed herein.


Referring now to FIG. 87, in the illustrated example, the connector assembly 16150 has a proximal outer tube member 16160 mounted thereon. As can be seen in FIG. 89, the proximal outer tube member 16160 may have an outer diameter that is the same as the outer diameter of the flexible shaft portion 16110 to facilitate insertion thereof through a trocar cannula or other passage. An open proximal end 16162 is sized to be non-movably received on a distal mounting hub 16119 on a distal end 16111 of the flexible shaft portion 16110. The proximal outer tube member 16160 has an open distal end 16163 and an internal flange 16164 formed therein. As can be seen in FIG. 89, the right and left articulation bands 16120, 16130 are free to axially move within the proximal outer tube member 16160. The connector assembly 16150 is configured to facilitate quick attachment and detachment of a surgical end effector 16300 to the shaft assembly 16100.


In the illustrated example, the end effector 16300 comprises an elongate channel 16310 that is configured to operably support a surgical staple cartridge 1110 therein. The elongate channel 16310 may be substantially similar to the elongate channel 1102 described in detail above except that the elongate channel 16310 includes a proximal end portion 16312 that has a distal tube connector 16314 non-movably attached thereto. The distal tube connector 16314 protrudes proximally from the proximal end portion 16312 of the channel 16310 and includes a proximal mounting hub portion 16316 that is sized to be received within the opened distal end 16163 of the proximal outer tube member 16160. See FIG. 89. In addition, the distal tube connector 16314 includes a pair of diametrically opposed, inwardly extending bayonet pins 16318 and 16320. Bayonet pin 16318 is configured to be received within a corresponding slot 16156 in a distal end 16155 of the connector assembly 16150 and the bayonet pin 16320 is configured to be received within a corresponding slot 16158 in the distal end 16155 of the connector assembly 16150. See FIG. 88. In addition, a biasing member 16170 is received within the open distal end 16163 of the proximal outer tube member 16160 in butting engagement with the internal flange 16164. In the illustrated arrangement, for example, the biasing member 16170 comprises a wave spring. See FIGS. 87 and 89. To attach the surgical end effector 16300 to the shaft assembly 16100, the proximal mounting hub portion 16316 of the distal connector tube is inserted into the open distal end 16163 of the proximal outer tube member 16160 so that the bayonet pin 16318 is aligned with the slot 16156 in the connector assembly 16150 and the bayonet pin 16320 is aligned with the slot 16158. The end effector 16300 is then moved in the proximal direction PD and rotated about the shaft axis until the bayonet pin 16318 is seated in a retention groove 16157 in the connector assembly 16150 and the bayonet pin 16320 is seated in a retention groove 16159. See FIG. 88. The biasing member 16170 applies a biasing motion to the distal tube connector 16314 to retain the bayonet pins 16318, 16320 seated in their respective retention grooves 16157, 16159. To detach the end effector 16300 from the shaft assembly 16100, the user applies a force in the proximal direction to the surgical end effector 16300 to compress the biasing member 16170 and then rotates the surgical end effector 16300 in an opposite direction to unseat the bayonet pins 16318, 16320 from their respective retention grooves 16157, 16159 and then pulls the surgical end effector 16300 in the distal direction DD away from the connector assembly 16150.


In at least one embodiment, the surgical end effector 16300 includes an anvil 1130 as was described in detail above. The elongate channel 16310 includes upstanding side walls 16330 that each has a pin hole 16332 therein. See FIG. 87. The anvil 1130 is pivotally attached to the elongate channel 16310 by pivot pins 1152 that extend through apertures 1131 on each side of the anvil 1130 and into the pin holes 16332 in the manner discussed in detail above.


As can be seen in FIG. 87, the elongate channel 16310 is configured to operably support a staple cartridge 1110 therein. The surgical instrument 16010 also includes a firing member 16210 that is similar to firing member 1760 described above, except that the firing member 16210 is configured for quick axial attachment to and detachment from the firing beam 16200. The firing beam 16200 may be comprised of a plurality of laminated plates and be configured to sufficiently flex to accommodate articulation of the end effector relative to the shaft assembly. In the illustrated example, the firing member 16210 includes a proximally protruding coupler 16212 that is configured to be removably inserted into a corresponding retention cavity 16204 formed on a distal end 16202 of the firing beam 16200. In one arrangement, the coupler 16212 comprises a somewhat arrow-shaped member and the retention cavity 16204 is correspondingly shaped so as to retain the firing member in coupled engagement during normal operations (e.g., firing and retraction) of the surgical instrument 16010, yet facilitate detachment of the firing member 16210 from the firing beam 16200 when the surgical end effector 16300 is detached from the shaft assembly 16100. Actuation of the firing member 16210 otherwise facilitates opening and closing of the anvil 1130 in the various manners disclosed herein. Such arrangement facilitates easy attachment and detachment of the surgical end effector from the shaft assembly. Thus, such arrangement can serve to provide the user with a fresh (unused) firing member and tissue cutting surface as well as a new anvil and staple cartridge when the entire end effector is replaced. However, if desired, the user may simply replace the cartridge without replacing the entire end effector. The firing member 16210 is otherwise operated in a similar manner as firing member 1760 described above and serves to interact with sled 1120 in the manners described herein to eject staples from the staple cartridge 1110.


EXAMPLES
Example 1

An interchangeable surgical tool assembly, comprising an end effector, wherein the end effector comprises a sled and a cutting edge. The interchangeable tool assembly also comprises a firing bar operably configured to fire the sled and the cutting edge, wherein the firing bar comprises a distal engagement portion, and wherein the firing bar is movable from a first proximal position to a first distal position to a second proximal position to a second distal position. The interchangeable tool assembly further comprises a pusher assembly, wherein the pusher assembly comprises a plate comprising a proximal engagement portion, wherein the proximal engagement portion is selectively coupled to the distal engagement portion, and a spring configured to bias the proximal engagement portion laterally into engagement with the distal engagement portion when the firing bar is moved from the first distal position to the second proximal position.


Example 2

The interchangeable surgical tool assembly of Example 1, further comprising a firing member, wherein the firing bar is configured to push the firing member distally when the firing bar moves from the first proximal position to the first distal position.


Example 3

The interchangeable surgical tool assembly of Example 2, wherein the firing member comprises a first flange configured to engage a first jaw of the end effector, a second flange configured to engage a second jaw of the end effector, and a support portion extending between the first flange and the second flange. A notch is defined in the support portion, and the plate is configured to slide distally through the notch when the firing bar is moved from the second proximal position to the second distal position.


Example 4

The interchangeable surgical tool assembly of Example 3, wherein the plate comprises a spring-loaded catch configured to engage the support portion when the plate is retracted proximally by the firing bar.


Example 5

The interchangeable surgical tool assembly of Examples 1, 2, 3, or 4, wherein the first proximal position is distal to the second proximal position.


Example 6

The interchangeable surgical tool assembly of Examples 1, 2, 3, 4, or 5, wherein the first distal position is proximal to the second distal position.


Example 7

The interchangeable surgical tool assembly of Examples 1, 2, 3, 4, 5, or 6, wherein the cutting edge is integrally formed with the sled.


Example 8

The interchangeable surgical tool assembly of Examples 1, 2, 3, 4, 5, 6, or 7, wherein the proximal engagement portion comprises a t-shaped slot, and wherein the distal engagement portion comprises a key.


Example 9

An interchangeable surgical tool assembly comprising an end effector, wherein the end effector comprises a first jaw, a second jaw rotatably coupled to the first jaw; and a sled configured to translate relative to the first jaw and the second jaw. The interchangeable surgical tool assembly also comprises a firing member, wherein the firing member comprises a first flange configured to engage the first jaw, and a second flange configured to engage the second jaw. The interchangeable surgical tool assembly further comprises a pusher plate, and a firing bar selectively coupled to the pusher plate, wherein the firing bar is configured to move through a plurality of successive firing strokes. The plurality of successive firing strokes comprises a first distal firing stroke in which the firing bar is configured to push the firing member distally, and a first proximal firing stroke in which the firing bar is configured to retract proximally into engagement with the pusher plate. The plurality of successive firing strokes further comprises a second distal firing stroke in which the firing bar is configured to advance the pusher plate distally past the firing member, and a second proximal firing stroke in which the firing bar is configured to retract the pusher plate and the firing member proximally.


Example 10

The interchangeable surgical tool assembly of Example 9, wherein the firing member is configured to push the sled distally during the first distal firing stroke.


Example 11

The interchangeable surgical tool assembly of Examples 9 or 10, wherein the pusher plate is configured to push the sled distally during the second distal firing stroke.


Example 12

The interchangeable surgical tool assembly of Examples 9, 10, or 11, wherein the pusher plate comprises a leaf spring comprising an end, and wherein the end is configured to engage the firing member when the pusher plate is retracted proximally during the second proximal firing stroke.


Example 13

The interchangeable surgical tool assembly of Examples 9, 10, 11, or 12, wherein the sled comprises a cutting edge.


Example 14

The interchangeable surgical tool assembly of Example 13, further comprising a staple cartridge removably positioned in the first jaw, wherein the first jaw comprises a distal cavity configured to receive the cutting edge at the completion of the second distal firing stroke.


Example 15

The interchangeable surgical tool assembly of Example 9, further comprising a spring configured to bias the pusher plate laterally into engagement with the firing bar during the first proximal firing stroke.


Example 16

An interchangeable surgical tool assembly comprising an end effector, wherein the end effector comprises a first jaw comprising a proximal end, and a second jaw rotatably coupled to the first jaw. The interchangeable surgical tool assembly also comprises a distal mounting portion fixedly attached to the proximal end, and a proximal mounting portion rotatably attached to the distal mounting portion. The interchangeable surgical tool assembly also comprises a rotational bearing intermediate the proximal mounting portion and the distal mounting portion, and a rotational shaft extending from the distal mounting portion through the proximal mounting portion, wherein a rotation of the rotational shaft is configured to rotate the distal mounting portion. The interchangeable surgical tool assembly further comprises a flexible spine extending from the proximal mounting portion, wherein the flexible spine comprises a plurality of laterally-symmetrical vertebrae.


Example 17

The interchangeable surgical tool assembly of Example 16, further comprising a firing member configured to translate with the rotational shaft, wherein the firing member comprises a first flange configured to cammingly engage an open-close cavity in the first jaw, and a second flange configured to cammingly engage the second jaw.


Example 18

The interchangeable surgical tool assembly of Examples 16 or 17, wherein the rotational shaft comprises a plurality of perforations for permitting flexing of the rotational shaft within the flexible spine.


Example 19

The interchangeable surgical tool assembly of Examples 16, 17, or 18, wherein the flexible spine comprises a plurality of gaps positioned intermediate adjacent the laterally-symmetrical vertebrae.


Example 20

The interchangeable surgical tool assembly of Examples 16, 17, 18, or 19, wherein the flexible spine comprises an articulation head mounted to the proximal mounting portion, wherein the articulation head comprises a pair of attachment tabs, and a pair of flexible attachment bands extending distally to a respective attachment tab.


Example 21

A surgical instrument comprising a shaft assembly defining a shaft axis wherein the shaft assembly comprises a proximal articulation joint defining a first articulation axis that is transverse to the shaft axis, and a distal articulation joint defining a second articulation axis that is transverse to the shaft axis and the first articulation axis. The surgical instrument also comprises a drive shaft configured to transmit rotary drive motions from a source of rotary drive motions, and a movable anvil. The surgical instrument further comprises a channel that is configured to operably support a surgical staple cartridge therein, the channel being configured to be removably attached to the shaft assembly. The surgical instrument further comprises a firing member movably supported in the channel and configured to operably interface with the drive shaft when the channel is operably coupled to the shaft assembly, wherein the firing member is operably movable between a first proximal position, wherein the firing member applies an opening motion to the anvil, and closing positions wherein the firing member applies closing motions to the anvil.


Example 22

The surgical instrument of Example 21, wherein the channel is configured to be attached to the shaft assembly in an installation direction that is transverse to the shaft axis.


Example 23

The surgical instrument of Examples 21 or 22, wherein the shaft assembly further comprises a spine member and wherein the proximal articulation joint comprises a first channel mounting assembly pivotally coupled to the spine member for selective articulation relative thereto about the first articulation axis and wherein the distal articulation joint comprises a second channel mounting member pivotally coupled to the first channel mounting assembly for selective pivotal travel relative to the first channel mounting assembly about the second articulation axis.


Example 24

The surgical instrument of Examples 21, 22, or 23, further comprising a first articulation system operably interfacing with the first channel mounting assembly for selectively applying first articulation motions thereto, and a second articulation system operably interfacing with the second channel mounting member for selectively applying second articulation motions thereto.


Example 25

The surgical instrument of Example 24, wherein the first articulation system comprises a first axially movable articulation actuator operably coupled to the first channel mounting assembly and wherein the second articulation system comprises a second endless articulation member operably interfacing with the second channel mounting member and configured to apply the second articulation motions thereto as the second endless articulation member is rotated, and means for rotating the second articulation member.


Example 26

The surgical instrument of Example 25, wherein the means for rotating comprises a second axially movable articulation actuator operably interfacing with the second endless articulation member.


Example 27

The surgical instrument of Examples 21, 22, 23, 24, 25, or 26, wherein portions of the channel are configured to be slidably received within corresponding slots in the second channel mounting member.


Example 28

The surgical instrument of Examples 21, 22, 23, 24, 25, 26, or 27, wherein the portions of the channel are configured to be slidably inserted into the corresponding slots in the second channel mounting member in an installation direction that is transverse to the shaft axis.


Example 29

The surgical instrument of Examples 21, 22, 23, 24, 25, 26, 27, or 28, further comprising means for releasably retaining the portions of the channel in the corresponding slots.


Example 30

The surgical instrument of Example 29, wherein the means for releasably retaining comprises a lock member that is selectively axially movable between a locked position wherein the portions of the channel are retained within the corresponding slots and an unlocked position wherein the portions of the channel are removable from the corresponding slots in a removal direction that is opposite to the installation direction.


Example 31

The surgical instrument of Example 30, wherein the lock member is axially movable in locking directions that are transverse to the installation directions and the removal directions.


Example 32

A surgical instrument, comprising a shaft assembly wherein the shaft assembly comprises a spine member defining a shaft axis, a first channel mounting assembly movably coupled to the spine member for selective articulation relative thereto in a first articulation plane, and a second channel mounting member movably coupled to the first channel mounting assembly for selective articulation relative thereto in a second articulation plane that is perpendicular to the first articulation plane. The surgical instrument also comprises a flexible rotary drive shaft, and an anvil pivotally coupled to the second channel mounting member. The surgical instrument also comprises a channel that is configured to operably support a surgical staple cartridge therein, wherein the channel is configured to be removably detached from the second channel mounting member apart from the anvil. The surgical instrument further comprises a firing member movably supported in the channel and configured to operably interface with the flexible rotary drive shaft when the channel is operably coupled to the second channel mounting member, the firing member operably movable between a first proximal position wherein the firing member applies an opening motion to the anvil and closing positions wherein the firing member applies closing motions to the anvil.


Example 33

The surgical instrument of Example 32, wherein the firing member comprises a tissue cutting portion, and means for ejecting surgical staples from a surgical staple cartridge supported in the channel as the firing member is driven between the first proximal position and an ending position within the channel.


Example 34

The surgical instrument of Examples 32 or 33, wherein the channel is configured to be attached to the second channel mounting member in an installation direction that is transverse to the shaft axis.


Example 35

The surgical instrument of Examples 32, 33, or 34, wherein the shaft assembly further comprises a lock member movably supported on the spine member and being selectively axially movable thereon between a locked position wherein the channel is locked to the second channel mounting member and an unlocked position wherein the channel is detachable from the second channel mounting member.


Example 36

A surgical instrument, comprising a shaft assembly, wherein the shaft assembly comprises a spine assembly, and an axially movable firing bar. The surgical instrument also comprises a surgical end effector comprising a channel configured to operably support a surgical staple cartridge therein, wherein the channel is configured to be removably coupled to the spine assembly by a connector assembly. The surgical instrument further comprises a firing member supported for axial travel within a surgical staple cartridge supported within the channel. The firing member comprises a proximally protruding coupler sized to be removably inserted into a corresponding retention cavity formed in a distal end of the axially movable firing bar. The corresponding retention cavity is sized relative to the proximally protruding coupler to snappingly receive the proximally protruding coupler therein when the channel is removably coupled to the spine assembly.


Example 37

The surgical instrument of Example 36, wherein the connector assembly comprises a channel retainer operably coupled to the spine assembly, and a distal channel coupler comprising a pair of inwardly extending, diametrically opposed attachment pins configured to be axially inserted into corresponding coupling slots in the channel retainer that are transverse to the shaft axis.


Example 38

The surgical instrument of Examples 36 or 37, wherein the spine assembly comprises a flexible articulation segment movably coupled to the channel retainer.


Example 39

The surgical instrument of Example 38, wherein the channel retainer is movably coupled to the flexible articulation segment by at least one axially movable articulation bar that is movably supported by the flexible articulation segment.


Example 40

The surgical instrument of Examples 36, 37, 38 or 39, wherein the axially moving firing bar comprises a plurality of laminated plates.


Example 41

A surgical end effector, comprising a first jaw, a second jaw rotatably coupled to the first jaw, and a firing member configured to translate during a firing stroke, wherein the firing member comprises a notch. The surgical end effector further comprises a lockout spring comprising a hook, wherein the notch is aligned to receive the hook during the firing stroke unless an unfired staple cartridge is positioned in the first jaw, and wherein a sled assembly of the unfired staple cartridge is positioned to deflect the hook out of alignment with the notch.


Example 42

The surgical end effector of Example 41, wherein the lockout spring comprises a leaf spring. The leaf spring comprises a proximal portion fixed to the first jaw, and a distal portion comprising the hook.


Example 43

The surgical end effector of Examples 41 or 42, wherein the firing member comprises a cutting edge, an intermediate portion supporting the cutting edge, and a lug protruding laterally from the intermediate portion, wherein the notch is defined in the lug.


Example 44

The surgical end effector of Examples 41, 42 or 43, wherein the firing member further comprises a first flange configured to cammingly engage the first jaw, and a second flange configured to cammingly engage the second jaw.


Example 45

The surgical end effector of Examples 41, 42, 43, or 44, wherein the lockout spring is configured to prevent translation of the firing member distally past the hook unless the unfired staple cartridge is positioned in the first jaw.


Example 46

The surgical end effector of Examples 41, 42, 43, 44, or 45, wherein the first jaw comprises a cartridge support surface, wherein a recess is defined in the cartridge support surface, and wherein the hook is deflected at least partially into the recess when the unfired staple cartridge is positioned in the first jaw.


Example 47

The surgical end effector of Examples 41, 42, 43, 44, 45, or 46, wherein the lockout spring comprises a spring arm supporting the hook, and wherein the spring arm is laterally offset from the firing member.


Example 48

The surgical end effector of Examples 41, 42, 43, 44, 45, 46, or 47, wherein the lockout spring comprises a second hook, and wherein the firing member comprises a second notch aligned to receive the second hook during the firing stroke unless the unfired staple cartridge is positioned in the first jaw.


Example 49

A surgical end effector, comprising a first jaw, a second jaw rotatably coupled to the first jaw, and a firing member configured to translate during a firing stroke. The firing member comprises a laterally-protruding lug, and a lock defined in the laterally-protruding lug. The surgical end effector further comprises a lockout spring comprising a laterally-protruding tab, wherein the lock is positioned to receive the laterally-protruding tab during the firing stroke unless an unfired staple cartridge is positioned in the first jaw.


Example 50

The surgical end effector of Example 49, further comprising the unfired staple cartridge, comprising a sled assembly configured to translate distally during the firing stroke.


Example 51

The surgical end effector of Example 50, wherein the lock is configured to translate along a lock path during the firing stroke, and wherein the sled assembly in the unfired staple cartridge is configured to deflect the laterally-protruding tab out of the lock path.


Example 52

The surgical end effector of Examples 49, 50, or 51, wherein the first jaw comprises a cartridge support surface, wherein a recess is defined in the cartridge support surface, and wherein the laterally-protruding tab is deflected into the recess when the unfired staple cartridge is positioned in the first jaw.


Example 53

The surgical end effector of Examples 49, 50, 51, or 52, wherein the lockout spring comprises a leaf spring. The leaf spring comprises a first portion fixed to the first jaw, a second portion supporting the laterally-protruding tab, and a spring arm extending intermediate the first portion and the second portion, wherein the spring arm is laterally offset from the firing member.


Example 54

The surgical end effector of Examples 49, 50, 51, 52, or 53, wherein the firing member further comprises a support comprising a cutting edge. The firing member further comprises a first flange extending from the support, wherein the first flange is configured to cammingly engage the first jaw, and a second flange extending from the support, wherein the second flange is configured to cammingly engage the second jaw.


Example 55

The surgical end effector of Examples 49, 50, 51, 52, 53, or 54, wherein the firing member further comprises a second laterally-protruding lug and a second lock defined in the second laterally-protruding lug, wherein the lockout spring further comprises a second laterally-protruding tab, and wherein the second lock is positioned to receive the second laterally-protruding tab during the firing stroke unless the unfired staple cartridge is positioned in the first jaw.


Example 56

A surgical end effector comprising a first jaw, a second jaw rotatably coupled to the first jaw, and a lockout arrangement. The lockout arrangement comprises a lock configured to translate along a lock path during a firing stroke, and a lockout spring comprising an inwardly-protruding tab, wherein the lock is positioned to receive the inwardly-protruding tab during the firing stroke unless an unfired staple cartridge is positioned in the first jaw.


Example 57

The surgical end effector of Example 56, further comprising the unfired staple cartridge, wherein the unfired staple cartridge comprises a sled assembly configured to translate distally during the firing stroke, wherein the lock is configured to translate along a lock path during the firing stroke, and wherein the sled assembly in the unfired staple cartridge is configured to deflect the inwardly-protruding tab out of the lock path.


Example 58

The surgical end effector of Examples 56 or 57, wherein the first jaw comprises a cartridge support surface, wherein a recess is defined in the cartridge support surface, and wherein the inwardly-protruding tab is deflected into the recess when the unfired staple cartridge is positioned in the first jaw.


Example 59

The surgical end effector of Examples 56, 57, or 58, wherein the lockout spring comprises a leaf spring. The leaf spring comprises a first portion fixed to the first jaw, and a second portion supporting the laterally-protruding tab. The leaf spring further comprises a spring arm extending intermediate the first portion and the second portion, wherein the spring arm is laterally offset from the firing member.


Example 60

The surgical end effector of Examples 56, 57, 58, or 59, further comprising a firing member, wherein the firing member comprises a support comprising a cutting edge and the lock. The firing member further comprises a first flange extending from the support, wherein the first flange is configured to cammingly engage the first jaw, and a second flange extending from the support, wherein the second flange is configured to cammingly engage the second jaw.


Example 61

A surgical end effector comprising a first jaw, a second jaw comprising a closure surface and an opening surface, and a pivot joint, wherein the second jaw is configured to pivot relative to the first jaw at the pivot joint, wherein the closure surface is positioned distal to the pivot joint and wherein the opening surface is positioned proximal to the pivot joint. The surgical end effector further comprises a firing member configured to move distally during a firing stroke. The firing member comprises a first flange positioned to engage the first jaw, and a second flange positioned to engage the second jaw, wherein the second flange is configured to engage the closure surface to pivot the second jaw toward a closed position, and wherein the second flange is configured to engage the opening surface to pivot the second jaw toward an open position.


Example 62

The surgical end effector of Example 61, wherein the firing member is movable distally from a home position to pivot the second jaw toward the closed position, and wherein the firing member is movable proximally from the home position to pivot the second jaw toward the open position.


Example 63

The surgical end effector of Examples 61 or 62, wherein the second jaw comprises an intermediate surface between the closure surface and the opening surface, and wherein the second flange is spaced apart from the intermediate surface when the firing member is in the home position.


Example 64

The surgical end effector of Examples 61, 62, or 63, wherein the firing member further comprises a knife intermediate the first flange and the second flange.


Example 65

The surgical end effector of Examples 61, 62, 63, or 64, wherein the first jaw is configured to receive a staple cartridge.


Example 66

The surgical end effector of Examples 61, 62, 63, 64, or 65, wherein the second jaw comprises a staple-forming anvil.


Example 67

The surgical end effector of Examples 61, 62, 63, 64, 65, or 66, wherein the first jaw comprises a first passageway for the first flange, and wherein the second jaw comprises a second passageway for the second flange.


Example 68

The surgical end effector of Examples 61, 62, 63, 64, 65, 66, or 67, further comprising a spring configured to bias the second jaw toward the open position when the firing member is proximal to a home position.


Example 69

A surgical end effector comprising a first jaw, a second jaw comprising a closure surface and an opening surface, and a pivot joint, wherein the second jaw is configured to pivot relative to the first jaw at the pivot joint. The surgical end effector further comprises a firing member configured to move distally from a home position during a firing stroke. The firing member comprises a first flange positioned to engage the first jaw, and a second flange positioned to engage the second jaw, wherein the second flange is configured to engage the closure surface when the firing member is moved distally from the home position, and wherein the second flange is configured to engage the opening surface when the firing member is moved proximally from the home position.


Example 70

The surgical end effector of Example 69, wherein the second flange is configured to engage the closure surface to pivot the second jaw toward a closed position, and wherein the second flange is configured to engage the opening surface to pivot the second jaw toward an open position.


Example 71

The surgical end effector of Examples 69 or 70, wherein the second jaw comprises an intermediate surface between the closure surface and the opening surface, and wherein the second flange is spaced apart from the intermediate surface when the firing member is in the home position.


Example 72

The surgical end effector of Examples 69, 70, or 71, wherein the firing member further comprises a knife intermediate the first flange and the second flange.


Example 73

The surgical end effector of Examples 69, 70, 71, or 72, wherein the first jaw is configured to receive a staple cartridge.


Example 74

The surgical end effector of Examples 69, 70, 71, 72, or 73, wherein the second jaw comprises an anvil.


Example 75

The surgical end effector of Examples 69, 70, 71, 72, 73, or 74, wherein the first jaw comprises a first passageway for the first flange, and wherein the second jaw comprises a second passageway for the second flange.


Example 76

The surgical end effector of Examples 69, 70, 71, 72, 73, 74, or 75, further comprising a spring configured to bias the second jaw away from the first jaw when the firing member is in the home position.


Example 77

A surgical end effector, comprising a first jaw, a second jaw comprising a first camming means and a second camming means, and a pivot joint, wherein the second jaw is configured to pivot relative to the first jaw at the pivot joint. The surgical end effector further comprises a firing member configured to move distally from a home position during a firing stroke. The firing member comprises a first flange positioned to engage the first jaw, and a second flange positioned to engage the second jaw, wherein the second flange is configured to engage the first camming means when the firing member is moved distally from the home position, and wherein the second flange is configured to engage the second camming means when the firing member is moved proximally from the home position.


Example 78

The surgical end effector of Example 77, wherein the first camming means is configured to cam the second jaw toward a closed position, and wherein the second camming means is configured to cam the second jaw toward an open position.


Example 79

The surgical end effector of Examples 77 or 78, wherein the first camming means comprises a distal closure ramp extending upward from an intermediate surface into a passageway in the second jaw, and wherein the second camming means comprises a proximal closure surface extending upward from the intermediate surface.


Example 80

The surgical end effector of Examples 77, 78, or 79, wherein the home position comprises a range of positions.


Example 81

A surgical end effector comprising a first jaw, a second jaw rotatably coupled to the first jaw, and a lockout arrangement configured to prevent rotational movement of the second jaw toward the first jaw unless an unfired staple cartridge is positioned in the first jaw, wherein the lockout arrangement comprises a pivotable lock configured to pivot between a locked orientation and an unlocked orientation. The pivotable lock comprises a first leg configured to engage the second jaw when the pivotable lock is in the locked orientation, and a second leg configured to engage the unfired staple cartridge when the unfired staple cartridge is positioned in the first jaw.


Example 82

The surgical end effector of Example 81, further comprising a spring comprising a distal end, wherein the distal end is engaged with the pivotable lock, and wherein the spring is configured to bias the pivotable lock toward the locked orientation.


Example 83

The surgical end effector of Example 82, wherein the spring comprises a leaf spring.


Example 84

The surgical end effector of Examples 81, 82, or 83, wherein the pivotable lock comprises a third leg, and wherein the distal end is positioned against the third leg.


Example 85

The surgical end effector of Examples 81, 82, 83, or 84, wherein a lockout notch is defined in the first jaw, and wherein the second leg is positioned at least partially in the lockout notch when the pivotable lock is in the unlocked orientation.


Example 86

The surgical end effector of Examples 81, 82, 83, 84, or 85, wherein the first jaw comprises an elongate channel, wherein the second jaw comprises an anvil comprising an inner rail extending into the elongate channel, and wherein an end portion of the first leg abuts the inner rail when the pivotable lock is in the locked orientation.


Example 87

The surgical end effector of Examples 81, 82, 83, 84, 85, or 86, wherein the lockout arrangement comprises a second pivotable lock.


Example 88

The surgical end effector of Examples 81, 82, 83, 84, 85, 86, or 87, further comprising the unfired staple cartridge comprising a sled assembly, wherein the sled assembly is configured to engage the second leg when the sled assembly is in a pre-fired position.


Example 89

An interchangeable surgical tool assembly comprising an end effector configured to receive a staple cartridge, and a shaft. The shaft comprises a firing assembly, wherein the firing assembly comprises a distal portion, a proximal portion comprising a notch, and a spring intermediate the proximal portion and the distal portion. The shaft further comprises a lockout lever movable between an unlocked orientation and a locked orientation, wherein the lockout lever extends into the notch when the lockout lever is in the locked orientation, and wherein a displacement of the distal portion of the firing assembly is configured to move the lockout lever to the unlocked orientation.


Example 90

The interchangeable surgical tool assembly of Example 89, further comprising the staple cartridge, wherein the staple cartridge comprises a proximal end, a longitudinal slot extending distally from the proximal end, and a frangible gate extending across the longitudinal slot at the proximal end. The frangible gate is configured to shift the distal portion of the firing assembly proximally when the staple cartridge is installed in the end effector.


Example 91

The interchangeable surgical tool assembly of Examples 89 or 90, wherein the spring is configured to compress between the proximal portion and the distal portion when the staple cartridge is installed in the end effector.


Example 92

The interchangeable surgical tool assembly of Examples 89, 90, or 91, wherein the distal portion comprises a proximally-extending wedge configured to move the lockout lever to the unlocked orientation when the distal portion is shifted proximally.


Example 93

The interchangeable surgical tool assembly of Examples 90, 91, or 92, wherein the staple cartridge comprises a cartridge body comprising a cutout, and wherein the frangible gate comprises a first end pivotably coupled to the cartridge body, and a second end friction-fit in the cutout.


Example 94

The interchangeable surgical tool assembly of Examples 90, 91, 92, or 93, wherein the firing assembly is configured to break the frangible gate during a firing stroke.


Example 95

The interchangeable surgical tool assembly of Examples 89, 90, 91, 92, 93, or 94, wherein the shaft further comprises a reset spring configured to bias the lockout lever toward the locked orientation.


Example 96

The interchangeable surgical tool assembly of Examples 89, 90, 91, 92, 93, 94, or 95, wherein the distal portion of the firing assembly is advanced from a pre-fired proximal position to a distal position during a firing stroke and is retracted from the distal position to a post-fired proximal position after the firing stroke, and wherein the post-fired proximal position is distal to the pre-fired proximal position.


Example 97

A surgical end effector comprising a first jaw, and a second jaw rotatably coupled to the first jaw, wherein the second jaw comprises a pin movable between a locked configuration and an unlocked configuration. The surgical end effector further comprises a lockout arrangement configured to prevent rotational movement of the second jaw toward the first jaw unless a staple cartridge is positioned in the first jaw, wherein the lockout arrangement comprises a lock bar configured to translate within the first jaw from a distal position to a proximal position when the staple cartridge is positioned in the first jaw, and wherein the lock bar is configured to move the pin to the unlocked configuration when the lock bar moves to the proximal position.


Example 98

The surgical end effector of Example 97, further comprising a spring extending between the first jaw and the second jaw, wherein the spring is configured to bias the second jaw toward the first jaw.


Example 99

The surgical end effector of Example 98, wherein the first jaw comprises a contoured slot, wherein the pin is configured to move along the contoured slot when the second jaw rotates toward the first jaw, wherein the first jaw further comprises a lockout notch extending from the contoured slot, and wherein the spring biases the pin into the lockout notch.


Example 100

The surgical end effector of Examples 97, 98, or 99, wherein the pin comprises a semicircular perimeter.


Example 101

A surgical end effector comprising a first jaw, a second jaw, and a firing member configured to translate relative to the first jaw and the second jaw during a firing stroke. The firing member comprises a support portion comprising a slot, a first flange extending from the support portion, wherein the first flange is configured to engage the first jaw during the firing stroke. The firing member further comprises a second flange positioned in the slot, wherein the second flange is configured to engage the second jaw during the firing stroke, and wherein the second flange is configured to move in the slot away from the first flange when a threshold force is applied to the second flange.


Example 102

The surgical end effector of Example 101, wherein the slot comprises a wedge-shaped slot.


Example 103

The surgical end effector of Examples 101 or 102, wherein the slot comprises a proximal end and a distal end, and wherein the second flange is friction-fit in the distal end of the slot.


Example 104

The surgical end effector of Example 103, wherein the threshold force is configured to overcome the friction securing the second flange in the distal end.


Example 105

The surgical end effector of Examples 101, 102, 103, or 104, wherein the slot comprises a contoured upper edge, and wherein the second flange is configured to slide along the contoured upper edge when the threshold force is applied to the second flange.


Example 106

The surgical end effector of Examples 101, 102, 103, 104, or 105, wherein the second flange comprises a groove aligned with the slot.


Example 107

The surgical end effector of Examples 101, 102, 103, 104, 105, or 106, wherein the firing member further comprises a guide secured to the second flange.


Example 108

The surgical end effector of Examples 101, 102, 103, 104, 105, 106, or 107, wherein the second jaw is rotatably coupled to the first jaw.


Example 109

A surgical end effector comprising a first jaw, a second jaw, and a firing member configured to translate relative to the first jaw and the second jaw during a firing stroke. The firing member comprises a fixed flange configured to engage the first jaw during the firing stroke, a floating flange configured to engage the second jaw during the firing stroke, and a spring configured to bias the floating flange toward a first position.


Example 110

The surgical end effector of Example 109, wherein a slot is defined in the firing member, and wherein the floating flange is configured to slide along the slot when a threshold force is applied to the floating flange.


Example 111

The surgical end effector of Example 110, wherein the slot comprises a proximal end, a distal end, wherein the distal end is closer to the fixed flange than the proximal end, and an upper edge extending from the proximal end to the distal end.


Example 112

The surgical end effector of Example 111, wherein the first position is adjacent to the distal end.


Example 113

The surgical end effector of Examples 111 or 112, wherein the spring comprises a coil spring extending between the floating flange and the proximal end of the slot.


Example 114

The surgical end effector of Examples 110, 111, 112, or 113, wherein the floating flange comprises a groove aligned with the slot.


Example 115

The surgical end effector of Examples 109, 110, 111, 112, 113, or 114, wherein the firing member further comprises a guide.


Example 116

A surgical end effector comprising a first jaw, a second jaw, and a firing member configured to translate relative to the first jaw and the second jaw during a firing stroke. The firing member comprises a fixed flange configured to engage the first jaw during the firing stroke, and a compliant portion comprising a floating flange, wherein the floating flange is configured to engage the second jaw during the firing stroke.


Example 117

The surgical end effector of Example 116, wherein the compliant portion is comprised of nitinol.


Example 118

The surgical end effector of Examples 116 or 117, wherein a cutout is defined in the firing member, and wherein the compliant portion is embedded in the cutout.


Example 119

The surgical end effector of Example 118, wherein the cutout comprises a lower portion, and wherein the compliant portion comprises a foot positioned in the lower portion.


Example 120

The surgical end effector of Examples 116, 117, 118, or 119, wherein the floating flange is configured to move away from the fixed flange when a threshold force is applied to the floating flange.


Many of the surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In various instances, the surgical instrument systems described herein can be motivated by a manually-operated trigger, for example. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. Moreover, any of the end effectors and/or tool assemblies disclosed herein can be utilized with a robotic surgical instrument system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, for example, discloses several examples of a robotic surgical instrument system in greater detail.


The surgical instrument systems described herein have been described in connection with the deployment and deformation of staples; however, the embodiments described herein are not so limited. Various embodiments are envisioned which deploy fasteners other than staples, such as clamps or tacks, for example. Moreover, various embodiments are envisioned which utilize any suitable means for sealing tissue. For instance, an end effector in accordance with various embodiments can comprise electrodes configured to heat and seal the tissue. Also, for instance, an end effector in accordance with certain embodiments can apply vibrational energy to seal the tissue.


The entire disclosures of:


U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995;


U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006;


U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008;


U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS, which issued on Dec. 16, 2008;


U.S. Pat. No. 7,670,334, entitled SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR, which issued on Mar. 2, 2010;


U.S. Pat. No. 7,753,245, entitled SURGICAL STAPLING INSTRUMENTS, which issued on Jul. 13, 2010;


U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013;


U.S. patent application Ser. No. 11/343,803, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES; now U.S. Pat. No. 7,845,537;


U.S. patent application Ser. No. 12/031,573, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING RF ELECTRODES, filed Feb. 14, 2008;


U.S. patent application Ser. No. 12/031,873, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, filed Feb. 15, 2008, now U.S. Pat. No. 7,980,443;


U.S. patent application Ser. No. 12/235,782, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, now U.S. Pat. No. 8,210,411;


U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Pat. No. 8,608,045;


U.S. patent application Ser. No. 12/647,100, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY, filed Dec. 24, 2009; now U.S. Pat. No. 8,220,688;


U.S. patent application Ser. No. 12/893,461, entitled STAPLE CARTRIDGE, filed Sep. 29, 2012, now U.S. Pat. No. 8,733,613;


U.S. patent application Ser. No. 13/036,647, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 28, 2011, now U.S. Pat. No. 8,561,870;


U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535;


U.S. patent application Ser. No. 13/524,049, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed on Jun. 15, 2012; now U.S. Pat. No. 9,101,358;


U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Pat. No. 9,345,481;


U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Patent Application Publication No. 2014/0263552;


U.S. Patent Application Publication No. 2007/0175955, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM, filed Jan. 31, 2006; and


U.S. Patent Application Publication No. 2010/0264194, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, filed Apr. 22, 2010, now U.S. Pat. No. 8,308,040, are hereby incorporated by reference herein.


Although various devices have been described herein in connection with certain embodiments, modifications and variations to those embodiments may be implemented. Particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined in whole or in part, with the features, structures or characteristics of one ore more other embodiments without limitation. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, a device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps including, but not limited to, the disassembly of the device, followed by cleaning or replacement of particular pieces of the device, and subsequent reassembly of the device. In particular, a reconditioning facility and/or surgical team can disassemble a device and, after cleaning and/or replacing particular parts of the device, the device can be reassembled for subsequent use. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


The devices disclosed herein may be processed before surgery. First, a new or used instrument may be obtained and, when necessary, cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, and/or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta radiation, gamma radiation, ethylene oxide, plasma peroxide, and/or steam.


While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials do not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims
  • 1. A surgical end effector, comprising: a first jaw comprising a first tissue-supporting surface;a second jaw comprising a second tissue-supporting surface; anda firing member configured to translate relative to said first jaw and said second jaw during a firing stroke, wherein said firing member comprises: a support portion comprising a slot;a first flange extending from said support portion, wherein said first flange is configured to engage said first jaw during the firing stroke, wherein said first flange comprises a proximal end and a distal end, and wherein a plane extends between said proximal end and said distal end; anda second flange positioned in said slot, wherein said second flange is configured to engage said second jaw during the firing stroke, wherein said second flange is configured to maintain a first tissue gap between said first tissue-supporting surface and said second tissue-supporting surface when a first force is applied to said second flange, wherein said second flange is configured to move proximally in said slot toward an apex of said slot when a threshold force is applied to said second flange to move said second flange a farther distance from the plane and adopt a second tissue gap between said first tissue-supporting surface and said second tissue-supporting surface, wherein the first tissue gap is less than the second tissue gap, and wherein the first force is less than the threshold force.
  • 2. The surgical end effector of claim 1, wherein said slot comprises a wedge-shaped slot.
  • 3. The surgical end effector of claim 1, wherein said slot comprises a proximal end and a distal end, and wherein said second flange is friction-fit in said distal end of said slot.
  • 4. The surgical end effector of claim 3, wherein the threshold force is configured to overcome a friction-fit securing said second flange in said distal end.
  • 5. The surgical end effector of claim 1, wherein said slot comprises a contoured upper edge, and wherein said second flange is configured to slide along said contoured upper edge when the threshold force is applied to said second flange.
  • 6. The surgical end effector of claim 1, wherein said second flange comprises a groove aligned with said slot.
  • 7. The surgical end effector of claim 1, wherein said firing member further comprises a guide secured to said second flange.
  • 8. The surgical end effector of claim 1, wherein said second jaw is rotatably coupled to said first jaw.
  • 9. A surgical end effector, comprising: a first jaw comprising a first tissue-supporting surface;a second jaw comprising a second tissue-supporting surface; anda firing member configured to translate relative to said first jaw and said second jaw during a firing stroke, wherein said firing member comprises: a fixed flange configured to engage said first jaw during the firing stroke, wherein said fixed flange comprises a proximal end and a distal end, and wherein a plane extends between said proximal end and said distal end;a floating flange configured to engage said second jaw during the firing stroke; anda spring configured to bias said floating flange distally toward a first position;wherein a first tissue gap is defined between said first tissue-supporting surface and said second tissue-supporting surface when said floating flange is in the first position, and wherein the first tissue gap is less than a second tissue gap defined between said first tissue-supporting surface and said second tissue-supporting surface when said floating flange shifts proximally from the first position to move a farther distance from the plane.
  • 10. The surgical end effector of claim 9, wherein a slot is defined in said firing member, and wherein said floating flange is configured to slide along said slot when a threshold force is applied to said floating flange.
  • 11. The surgical end effector of claim 10, wherein said slot comprises: a proximal end;a distal end; andan upper edge slanting downward from said proximal end to said distal end.
  • 12. The surgical end effector of claim 11, wherein the first position is adjacent to said distal end.
  • 13. The surgical end effector of claim 12, wherein said spring comprises a coil spring extending between said floating flange and said proximal end of said slot.
  • 14. The surgical end effector of claim 10, wherein said floating flange comprises a groove aligned with said slot.
  • 15. The surgical end effector of claim 9, wherein said firing member further comprises a guide.
  • 16. A surgical end effector, comprising: a first jaw comprising a first tissue-supporting surface;a second jaw comprising a second tissue-supporting surface, wherein a tissue gap is defined between said first tissue-supporting surface and said second tissue-supporting surface; anda firing member configured to translate distally relative to said first jaw and said second jaw during a distal firing stroke, wherein said firing member comprises: a fixed flange configured to engage said first jaw during the distal firing stroke, wherein said fixed flange comprises a proximal end and a distal end, and wherein a plane extends between said proximal end and said distal end; anda floating flange configured to engage said second jaw during the distal firing stroke, wherein said floating flange is configured to move proximally relative to said fixed flange during the distal firing stroke to move farther away from the plane and increase the tissue gap in response to a threshold force being applied to said floating flange.
US Referenced Citations (6277)
Number Name Date Kind
66052 Smith Jun 1867 A
662587 Blake Nov 1900 A
670748 Weddeler Mar 1901 A
719487 Minor Feb 1903 A
804229 Hutchinson Nov 1905 A
951393 Hahn Mar 1910 A
1188721 Bittner Jun 1916 A
1306107 Elliott Jun 1919 A
1314601 McCaskey Sep 1919 A
1677337 Grove Jul 1928 A
1794907 Kelly Mar 1931 A
1849427 Hook Mar 1932 A
1944116 Stratman Jan 1934 A
1954048 Jeffrey et al. Apr 1934 A
2037727 La Chapelle Apr 1936 A
2132295 Hawkins Oct 1938 A
2161632 Nattenheimer Jun 1939 A
D120434 Gold May 1940 S
2211117 Hess Aug 1940 A
2214870 West Sep 1940 A
2224882 Peck Dec 1940 A
2318379 Davis et al. May 1943 A
2329440 La Place Sep 1943 A
2377581 Shaffrey Jun 1945 A
2406389 Lee Aug 1946 A
2441096 Happe May 1948 A
2448741 Scott et al. Sep 1948 A
2450527 Smith Oct 1948 A
2507872 Unsinger May 1950 A
2526902 Rublee Oct 1950 A
2527256 Jackson Oct 1950 A
2578686 Fish Dec 1951 A
2638901 Sugarbaker May 1953 A
2674149 Benson Apr 1954 A
2701489 Osborn Feb 1955 A
2711461 Happe Jun 1955 A
2742955 Dominguez Apr 1956 A
2804848 O'Farrell et al. Sep 1957 A
2808482 Zanichkowsky et al. Oct 1957 A
2853074 Olson Sep 1958 A
2887004 Stewart May 1959 A
2957353 Lewis Oct 1960 A
2959974 Emrick Nov 1960 A
3032769 Palmer May 1962 A
3060972 Sheldon Oct 1962 A
3075062 Iaccarino Jan 1963 A
3078465 Bobrov Feb 1963 A
3079606 Bobrov et al. Mar 1963 A
3080564 Strekopitov et al. Mar 1963 A
3166072 Sullivan, Jr. Jan 1965 A
3180236 Beckett Apr 1965 A
3196869 Scholl Jul 1965 A
3204731 Bent et al. Sep 1965 A
3266494 Brownrigg et al. Aug 1966 A
3269630 Fleischer Aug 1966 A
3269631 Takaro Aug 1966 A
3275211 Hirsch et al. Sep 1966 A
3317103 Cullen et al. May 1967 A
3317105 Astafjev et al. May 1967 A
3357296 Lefever Dec 1967 A
3359978 Smith, Jr. Dec 1967 A
3377893 Shorb Apr 1968 A
3480193 Ralston Nov 1969 A
3490675 Green et al. Jan 1970 A
3494533 Green et al. Feb 1970 A
3499591 Green Mar 1970 A
3503396 Pierie et al. Mar 1970 A
3509629 Kidokoro May 1970 A
3551987 Wilkinson Jan 1971 A
3568675 Harvey Mar 1971 A
3572159 Tschanz Mar 1971 A
3583393 Takahashi Jun 1971 A
3589589 Akopov Jun 1971 A
3598943 Barrett Aug 1971 A
3608549 Merrill Sep 1971 A
3618842 Bryan Nov 1971 A
3638652 Kelley Feb 1972 A
3640317 Panfili Feb 1972 A
3643851 Green et al. Feb 1972 A
3650453 Smith, Jr. Mar 1972 A
3661666 Foster et al. May 1972 A
3662939 Bryan May 1972 A
3688966 Perkins et al. Sep 1972 A
3695646 Mommsen Oct 1972 A
3709221 Riely Jan 1973 A
3717294 Green Feb 1973 A
3726755 Shannon Apr 1973 A
3727904 Gabbey Apr 1973 A
3734207 Fishbein May 1973 A
3740994 De Carlo, Jr. Jun 1973 A
3744495 Johnson Jul 1973 A
3746002 Haller Jul 1973 A
3747603 Adler Jul 1973 A
3747692 Davidson Jul 1973 A
3751902 Kingsbury et al. Aug 1973 A
3752161 Bent Aug 1973 A
3799151 Fukaumi et al. Mar 1974 A
3808452 Hutchinson Apr 1974 A
3815476 Green et al. Jun 1974 A
3819100 Noiles et al. Jun 1974 A
3821919 Knohl Jul 1974 A
3836171 Hayashi et al. Sep 1974 A
3837555 Green Sep 1974 A
3841474 Maier Oct 1974 A
3851196 Hinds Nov 1974 A
3863639 Kleaveland Feb 1975 A
3883624 McKenzie et al. May 1975 A
3885491 Curtis May 1975 A
3892228 Mitsui Jul 1975 A
3894174 Cartun Jul 1975 A
3902247 Fleer et al. Sep 1975 A
3940844 Colby et al. Mar 1976 A
3944163 Hayashi et al. Mar 1976 A
3950686 Randall Apr 1976 A
3952747 Kimmell, Jr. Apr 1976 A
3955581 Spasiano et al. May 1976 A
3959879 Sellers Jun 1976 A
RE28932 Noiles et al. Aug 1976 E
3972734 King Aug 1976 A
3981051 Brumlik Sep 1976 A
4025216 Hives May 1977 A
4027746 Kine Jun 1977 A
4034143 Sweet Jul 1977 A
4038987 Komiya Aug 1977 A
4054108 Gill Oct 1977 A
4060089 Noiles Nov 1977 A
4066133 Voss Jan 1978 A
4085337 Moeller Apr 1978 A
4100820 Evett Jul 1978 A
4106446 Yamada et al. Aug 1978 A
4106620 Brimmer et al. Aug 1978 A
4108211 Tanaka Aug 1978 A
4111206 Vishnevsky et al. Sep 1978 A
4127227 Green Nov 1978 A
4129059 Van Eck Dec 1978 A
4132146 Uhlig Jan 1979 A
4135517 Reale Jan 1979 A
4154122 Severin May 1979 A
4169990 Lerdman Oct 1979 A
4180285 Reneau Dec 1979 A
4185701 Boys Jan 1980 A
4190042 Sinnreich Feb 1980 A
4198734 Brumlik Apr 1980 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4213562 Garrett et al. Jul 1980 A
4226242 Jarvik Oct 1980 A
4239431 Davini Dec 1980 A
4241861 Fleischer Dec 1980 A
4244372 Kapitanov et al. Jan 1981 A
4250436 Weissman Feb 1981 A
4261244 Becht et al. Apr 1981 A
4272002 Moshofsky Jun 1981 A
4272662 Simpson Jun 1981 A
4274304 Curtiss Jun 1981 A
4274398 Scott, Jr. Jun 1981 A
4275813 Noiles Jun 1981 A
4278091 Borzone Jul 1981 A
4289131 Mueller Sep 1981 A
4289133 Rothfuss Sep 1981 A
4290542 Fedotov et al. Sep 1981 A
D261356 Robinson Oct 1981 S
4293604 Campbell Oct 1981 A
4296654 Mercer Oct 1981 A
4296881 Lee Oct 1981 A
4304236 Conta et al. Dec 1981 A
4305539 Korolkov et al. Dec 1981 A
4312363 Rothfuss et al. Jan 1982 A
4312685 Riedl Jan 1982 A
4317451 Cerwin et al. Mar 1982 A
4319576 Rothfuss Mar 1982 A
4321002 Froehlich Mar 1982 A
4321746 Grinage Mar 1982 A
4328839 Lyons et al. May 1982 A
4331277 Green May 1982 A
4340331 Savino Jul 1982 A
4347450 Colligan Aug 1982 A
4348603 Huber Sep 1982 A
4349028 Green Sep 1982 A
4350151 Scott Sep 1982 A
4353371 Cosman Oct 1982 A
4357940 Muller Nov 1982 A
4361057 Kochera Nov 1982 A
4366544 Shima et al. Dec 1982 A
4369013 Abildgaard et al. Jan 1983 A
4373147 Carlson, Jr. Feb 1983 A
4376380 Burgess Mar 1983 A
4379457 Gravener et al. Apr 1983 A
4380312 Landrus Apr 1983 A
4382326 Rabuse May 1983 A
4383634 Green May 1983 A
4393728 Larson et al. Jul 1983 A
4394613 Cole Jul 1983 A
4396139 Hall et al. Aug 1983 A
4397311 Kanshin et al. Aug 1983 A
4402445 Green Sep 1983 A
4406621 Bailey Sep 1983 A
4408692 Sigel et al. Oct 1983 A
4409057 Molenda et al. Oct 1983 A
4415112 Green Nov 1983 A
4416276 Newton et al. Nov 1983 A
4417890 Dennehey et al. Nov 1983 A
4423456 Zaidenweber Dec 1983 A
4428376 Mericle Jan 1984 A
4429695 Green Feb 1984 A
4430997 DiGiovanni et al. Feb 1984 A
4434796 Karapetian et al. Mar 1984 A
4438659 Desplats Mar 1984 A
4442964 Becht Apr 1984 A
4448194 DiGiovanni et al. May 1984 A
4451743 Suzuki et al. May 1984 A
4452376 Klieman et al. Jun 1984 A
4454887 Kruger Jun 1984 A
4461305 Cibley Jul 1984 A
4467805 Fukuda Aug 1984 A
4468597 Baumard et al. Aug 1984 A
4469481 Kobayashi Sep 1984 A
4470414 Imagawa et al. Sep 1984 A
4471780 Menges et al. Sep 1984 A
4471781 Di Giovanni et al. Sep 1984 A
4473077 Noiles et al. Sep 1984 A
4475679 Fleury, Jr. Oct 1984 A
4478220 Di Giovanni et al. Oct 1984 A
4480641 Failla et al. Nov 1984 A
4485816 Krumme Dec 1984 A
4485817 Swiggett Dec 1984 A
4486928 Tucker et al. Dec 1984 A
4488523 Shichman Dec 1984 A
4489875 Crawford et al. Dec 1984 A
4493983 Taggert Jan 1985 A
4494057 Hotta Jan 1985 A
4499895 Takayama Feb 1985 A
4500024 DiGiovanni et al. Feb 1985 A
D278081 Green Mar 1985 S
4503842 Takayama Mar 1985 A
4505272 Utyamyshev et al. Mar 1985 A
4505273 Braun et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4506671 Green Mar 1985 A
4512038 Alexander et al. Apr 1985 A
4520817 Green Jun 1985 A
4522327 Korthoff et al. Jun 1985 A
4526174 Froehlich Jul 1985 A
4527724 Chow et al. Jul 1985 A
4530357 Pawloski et al. Jul 1985 A
4530453 Green Jul 1985 A
4531522 Bedi et al. Jul 1985 A
4532927 Miksza, Jr. Aug 1985 A
4540202 Amphoux et al. Sep 1985 A
4548202 Duncan Oct 1985 A
4556058 Green Dec 1985 A
4560915 Soultanian Dec 1985 A
4565109 Tsay Jan 1986 A
4565189 Mabuchi Jan 1986 A
4566620 Green et al. Jan 1986 A
4569346 Poirier Feb 1986 A
4569469 Mongeon et al. Feb 1986 A
4571213 Ishimoto Feb 1986 A
4573468 Conta et al. Mar 1986 A
4573469 Golden et al. Mar 1986 A
4573622 Green et al. Mar 1986 A
4576165 Green et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4580712 Green Apr 1986 A
4585153 Failla et al. Apr 1986 A
4586501 Claracq May 1986 A
4586502 Bedi et al. May 1986 A
4589416 Green May 1986 A
4589582 Bilotti May 1986 A
4589870 Citrin et al. May 1986 A
4591085 Di Giovanni May 1986 A
RE32214 Schramm Jul 1986 E
4597753 Turley Jul 1986 A
4600037 Hatten Jul 1986 A
4604786 Howie, Jr. Aug 1986 A
4605001 Rothfuss et al. Aug 1986 A
4605004 Di Giovanni et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4607636 Kula Aug 1986 A
4607638 Crainich Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610250 Green Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4612933 Brinkerhoff et al. Sep 1986 A
D286180 Korthoff Oct 1986 S
D286442 Korthoff et al. Oct 1986 S
4617893 Donner et al. Oct 1986 A
4617914 Ueda Oct 1986 A
4619262 Taylor Oct 1986 A
4619391 Sharkany et al. Oct 1986 A
D287278 Spreckelmeier Dec 1986 S
4628459 Shinohara et al. Dec 1986 A
4628636 Folger Dec 1986 A
4629107 Fedotov et al. Dec 1986 A
4632290 Green et al. Dec 1986 A
4633861 Chow et al. Jan 1987 A
4633874 Chow et al. Jan 1987 A
4634419 Kreizman et al. Jan 1987 A
4635638 Weintraub et al. Jan 1987 A
4641076 Linden Feb 1987 A
4642618 Johnson et al. Feb 1987 A
4643173 Bell et al. Feb 1987 A
4643731 Eckenhoff Feb 1987 A
4646722 Silverstein et al. Mar 1987 A
4646745 Noiles Mar 1987 A
4652820 Maresca Mar 1987 A
4654028 Suma Mar 1987 A
4655222 Florez et al. Apr 1987 A
4662555 Thornton May 1987 A
4663874 Sano et al. May 1987 A
4664305 Blake, III et al. May 1987 A
4665916 Green May 1987 A
4667674 Korthoff et al. May 1987 A
4669647 Storace Jun 1987 A
4671278 Chin Jun 1987 A
4671280 Dorband et al. Jun 1987 A
4671445 Barker et al. Jun 1987 A
4672964 Dee et al. Jun 1987 A
4675944 Wells Jun 1987 A
4676245 Fukuda Jun 1987 A
4679460 Yoshigai Jul 1987 A
4679719 Kramer Jul 1987 A
4684051 Akopov et al. Aug 1987 A
4688555 Wardle Aug 1987 A
4691703 Auth et al. Sep 1987 A
4693248 Failla Sep 1987 A
4698579 Richter et al. Oct 1987 A
4700703 Resnick et al. Oct 1987 A
4705038 Sjostrom et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4709120 Pearson Nov 1987 A
4715520 Roehr, Jr. et al. Dec 1987 A
4719917 Barrows et al. Jan 1988 A
4721099 Chikama Jan 1988 A
4724840 McVay et al. Feb 1988 A
4727308 Huljak et al. Feb 1988 A
4728020 Green et al. Mar 1988 A
4728876 Mongeon et al. Mar 1988 A
4729260 Dudden Mar 1988 A
4730726 Holzwarth Mar 1988 A
4741336 Failla et al. May 1988 A
4743214 Tai-Cheng May 1988 A
4744363 Hasson May 1988 A
4747820 Hornlein et al. May 1988 A
4750902 Wuchinich et al. Jun 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4761326 Barnes et al. Aug 1988 A
4763669 Jaeger Aug 1988 A
4767044 Green Aug 1988 A
D297764 Hunt et al. Sep 1988 S
4773420 Green Sep 1988 A
4777780 Holzwarth Oct 1988 A
4781186 Simpson et al. Nov 1988 A
4784137 Kulik et al. Nov 1988 A
4787387 Burbank, III et al. Nov 1988 A
4788485 Kawagishi et al. Nov 1988 A
D298967 Hunt Dec 1988 S
4790225 Moody et al. Dec 1988 A
4790314 Weaver Dec 1988 A
4805617 Bedi et al. Feb 1989 A
4805823 Rothfuss Feb 1989 A
4807628 Peters et al. Feb 1989 A
4809695 Gwathmey et al. Mar 1989 A
4815460 Porat et al. Mar 1989 A
4817643 Olson Apr 1989 A
4817847 Redtenbacher et al. Apr 1989 A
4819853 Green Apr 1989 A
4821939 Green Apr 1989 A
4827911 Broadwin et al. May 1989 A
4828542 Hermann May 1989 A
4828944 Yabe et al. May 1989 A
4830855 Stewart May 1989 A
4832158 Farrar et al. May 1989 A
4833937 Nagano May 1989 A
4834720 Blinkhorn May 1989 A
4838859 Strassmann Jun 1989 A
4844068 Arata et al. Jul 1989 A
4848637 Pruitt Jul 1989 A
4856078 Konopka Aug 1989 A
4860644 Kohl et al. Aug 1989 A
4862891 Smith Sep 1989 A
4863423 Wallace Sep 1989 A
4865030 Polyak Sep 1989 A
4868530 Ahs Sep 1989 A
4869414 Green et al. Sep 1989 A
4869415 Fox Sep 1989 A
4873977 Avant et al. Oct 1989 A
4875486 Rapoport et al. Oct 1989 A
4880015 Nierman Nov 1989 A
4890613 Golden et al. Jan 1990 A
4892244 Fox et al. Jan 1990 A
4893622 Green et al. Jan 1990 A
4894051 Shiber Jan 1990 A
4896584 Stoll et al. Jan 1990 A
4896678 Ogawa Jan 1990 A
4900303 Lemelson Feb 1990 A
4903697 Resnick et al. Feb 1990 A
4909789 Taguchi et al. Mar 1990 A
4915100 Green Apr 1990 A
4919679 Averill et al. Apr 1990 A
4921479 Grayzel May 1990 A
4925082 Kim May 1990 A
4928699 Sasai May 1990 A
4930503 Pruitt Jun 1990 A
4930674 Barak Jun 1990 A
4931047 Broadwin et al. Jun 1990 A
4931737 Hishiki Jun 1990 A
4932960 Green et al. Jun 1990 A
4933800 Yang Jun 1990 A
4933843 Scheller et al. Jun 1990 A
D309350 Sutherland et al. Jul 1990 S
4938408 Bedi et al. Jul 1990 A
4941623 Pruitt Jul 1990 A
4943182 Hoblingre Jul 1990 A
4944443 Oddsen et al. Jul 1990 A
4946067 Kelsall Aug 1990 A
4948327 Crupi, Jr. Aug 1990 A
4949707 LeVahn et al. Aug 1990 A
4951860 Peters et al. Aug 1990 A
4951861 Schulze et al. Aug 1990 A
4955959 Tompkins et al. Sep 1990 A
4957212 Duck et al. Sep 1990 A
4962877 Hervas Oct 1990 A
4964559 Deniega et al. Oct 1990 A
4964863 Kanshin et al. Oct 1990 A
4965709 Ngo Oct 1990 A
4973274 Hirukawa Nov 1990 A
4973302 Armour et al. Nov 1990 A
4978049 Green Dec 1990 A
4978333 Broadwin et al. Dec 1990 A
4979952 Kubota et al. Dec 1990 A
4984564 Yuen Jan 1991 A
4986808 Broadwin et al. Jan 1991 A
4987049 Komamura et al. Jan 1991 A
4988334 Hornlein et al. Jan 1991 A
4995877 Ams et al. Feb 1991 A
4995959 Metzner Feb 1991 A
4996975 Nakamura Mar 1991 A
5002543 Bradshaw et al. Mar 1991 A
5002553 Shiber Mar 1991 A
5005754 Van Overloop Apr 1991 A
5009661 Michelson Apr 1991 A
5012411 Policastro et al. Apr 1991 A
5014898 Heidrich May 1991 A
5014899 Presty et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5018515 Gilman May 1991 A
5018657 Pedlick et al. May 1991 A
5024652 Dumenek et al. Jun 1991 A
5024671 Tu et al. Jun 1991 A
5025559 McCullough Jun 1991 A
5027834 Pruitt Jul 1991 A
5030226 Green et al. Jul 1991 A
5031814 Tompkins et al. Jul 1991 A
5035040 Kerrigan et al. Jul 1991 A
5038109 Goble et al. Aug 1991 A
5038247 Kelley et al. Aug 1991 A
5040715 Green et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5061269 Muller Oct 1991 A
5062491 Takeshima et al. Nov 1991 A
5062563 Green et al. Nov 1991 A
5065929 Schulze et al. Nov 1991 A
5071052 Rodak et al. Dec 1991 A
5071430 de Sails et al. Dec 1991 A
5074454 Peters Dec 1991 A
5077506 Krause Dec 1991 A
5079006 Urquhart Jan 1992 A
5080556 Carreno Jan 1992 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5088979 Filipi et al. Feb 1992 A
5088997 Delahuerga et al. Feb 1992 A
5089606 Cole et al. Feb 1992 A
5094247 Hernandez et al. Mar 1992 A
5098004 Kerrigan Mar 1992 A
5098360 Hirota Mar 1992 A
5100042 Gravener et al. Mar 1992 A
5100420 Green et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5104397 Vasconcelos et al. Apr 1992 A
5104400 Berguer et al. Apr 1992 A
5106008 Tompkins et al. Apr 1992 A
5108368 Hammerslag et al. Apr 1992 A
5109722 Hufnagle et al. May 1992 A
5111987 Moeinzadeh et al. May 1992 A
5116349 Aranyi May 1992 A
D327323 Hunt Jun 1992 S
5119009 McCaleb et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5124990 Williamson Jun 1992 A
5129570 Schulze et al. Jul 1992 A
5137198 Nobis et al. Aug 1992 A
5139513 Segato Aug 1992 A
5141144 Foslien et al. Aug 1992 A
5142932 Moya et al. Sep 1992 A
5155941 Takahashi et al. Oct 1992 A
5156315 Green et al. Oct 1992 A
5156609 Nakao et al. Oct 1992 A
5156614 Green et al. Oct 1992 A
5158567 Green Oct 1992 A
D330699 Gill Nov 1992 S
5163598 Peters et al. Nov 1992 A
5168605 Bartlett Dec 1992 A
5170925 Madden et al. Dec 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171253 Klieman Dec 1992 A
5173053 Swanson et al. Dec 1992 A
5173133 Morin et al. Dec 1992 A
5176677 Wuchinich Jan 1993 A
5176688 Narayan et al. Jan 1993 A
5187422 Izenbaard et al. Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
5188111 Yates et al. Feb 1993 A
5190517 Zieve et al. Mar 1993 A
5190544 Chapman et al. Mar 1993 A
5190560 Woods et al. Mar 1993 A
5190657 Heagle et al. Mar 1993 A
5192288 Thompson et al. Mar 1993 A
5193731 Aranyi Mar 1993 A
5195505 Josefsen Mar 1993 A
5195968 Lundquist et al. Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5197970 Green et al. Mar 1993 A
5200280 Karasa Apr 1993 A
5201750 Hocherl et al. Apr 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5207672 Roth et al. May 1993 A
5207697 Carusillo et al. May 1993 A
5209747 Knoepfler May 1993 A
5209756 Seedhom et al. May 1993 A
5211649 Kohler et al. May 1993 A
5211655 Hasson May 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217478 Rexroth Jun 1993 A
5219111 Bilotti et al. Jun 1993 A
5220269 Chen et al. Jun 1993 A
5221036 Takase Jun 1993 A
5221281 Klicek Jun 1993 A
5222945 Basnight Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5222975 Crainich Jun 1993 A
5222976 Yoon Jun 1993 A
5223675 Taft Jun 1993 A
D338729 Sprecklemeier et al. Aug 1993 S
5234447 Kaster et al. Aug 1993 A
5236269 Handy Aug 1993 A
5236424 Imran Aug 1993 A
5236440 Hlavacek Aug 1993 A
5239981 Anapliotis Aug 1993 A
5240163 Stein et al. Aug 1993 A
5242456 Nash et al. Sep 1993 A
5242457 Akopov et al. Sep 1993 A
5244462 Delahuerga et al. Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5246443 Mai Sep 1993 A
5253793 Green et al. Oct 1993 A
5258007 Spetzler et al. Nov 1993 A
5258008 Wilk Nov 1993 A
5258009 Conners Nov 1993 A
5258010 Green et al. Nov 1993 A
5258012 Luscombe et al. Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5259835 Clark et al. Nov 1993 A
5260637 Pizzi Nov 1993 A
5261135 Mitchell Nov 1993 A
5261877 Fine et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5263937 Shipp Nov 1993 A
5263973 Cook Nov 1993 A
5264218 Rogozinski Nov 1993 A
5268622 Philipp Dec 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
RE34519 Fox et al. Jan 1994 E
5275322 Brinkerhoff et al. Jan 1994 A
5275323 Schulze et al. Jan 1994 A
5275608 Forman et al. Jan 1994 A
5279416 Malec et al. Jan 1994 A
5281216 Klicek Jan 1994 A
5282806 Haber et al. Feb 1994 A
5282829 Hermes Feb 1994 A
5284128 Hart Feb 1994 A
5285381 Iskarous et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5286253 Fucci Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290271 Jernberg Mar 1994 A
5290310 Makower et al. Mar 1994 A
5292053 Bilotti et al. Mar 1994 A
5293024 Sugahara et al. Mar 1994 A
5297714 Kramer Mar 1994 A
5304204 Bregen Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5309387 Mori et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312024 Grant et al. May 1994 A
5312329 Beaty et al. May 1994 A
5313935 Kortenbach et al. May 1994 A
5313967 Lieber et al. May 1994 A
5314424 Nicholas May 1994 A
5314445 Heidmueller nee Degwitz et al. May 1994 A
5314466 Stern et al. May 1994 A
5318221 Green et al. Jun 1994 A
5320627 Sorensen et al. Jun 1994 A
D348930 Olson Jul 1994 S
5326013 Green et al. Jul 1994 A
5329923 Lundquist Jul 1994 A
5330487 Thornton et al. Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5331971 Bales et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5333422 Warren et al. Aug 1994 A
5333772 Rothfuss et al. Aug 1994 A
5333773 Main et al. Aug 1994 A
5334183 Wuchinich Aug 1994 A
5336130 Ray Aug 1994 A
5336229 Noda Aug 1994 A
5336232 Green et al. Aug 1994 A
5339799 Kami et al. Aug 1994 A
5341724 Vatel Aug 1994 A
5341807 Nardella Aug 1994 A
5341810 Dardel Aug 1994 A
5342380 Hood Aug 1994 A
5342381 Tidemand Aug 1994 A
5342385 Norelli et al. Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342396 Cook Aug 1994 A
5343382 Hale et al. Aug 1994 A
5343391 Mushabac Aug 1994 A
5344059 Green et al. Sep 1994 A
5344060 Gravener et al. Sep 1994 A
5344454 Clarke et al. Sep 1994 A
5346504 Ortiz et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350355 Sklar Sep 1994 A
5350388 Epstein Sep 1994 A
5350391 Iacovelli Sep 1994 A
5350400 Esposito et al. Sep 1994 A
5352229 Goble et al. Oct 1994 A
5352235 Koros et al. Oct 1994 A
5352238 Green et al. Oct 1994 A
5354250 Christensen Oct 1994 A
5354303 Spaeth et al. Oct 1994 A
5356006 Alpern et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5358510 Luscombe et al. Oct 1994 A
5359231 Flowers et al. Oct 1994 A
D352780 Glaeser et al. Nov 1994 S
5359993 Slater et al. Nov 1994 A
5360305 Kerrigan Nov 1994 A
5360428 Hutchinson, Jr. Nov 1994 A
5361902 Abidin et al. Nov 1994 A
5364001 Bryan Nov 1994 A
5364002 Green et al. Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5366133 Geiste Nov 1994 A
5366134 Green et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5368015 Wilk Nov 1994 A
5368592 Stern et al. Nov 1994 A
5369565 Chen et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5372124 Takayama et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5372602 Burke Dec 1994 A
5374277 Hassler Dec 1994 A
5375588 Yoon Dec 1994 A
5376095 Ortiz Dec 1994 A
5379933 Green et al. Jan 1995 A
5381649 Webb Jan 1995 A
5381782 DeLaRama et al. Jan 1995 A
5381943 Allen et al. Jan 1995 A
5382247 Cimino et al. Jan 1995 A
5383460 Jang et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383881 Green et al. Jan 1995 A
5383882 Buess et al. Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5383895 Holmes et al. Jan 1995 A
5388568 van Der Heide Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389102 Green et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391180 Tovey et al. Feb 1995 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395384 Duthoit et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403276 Schechter et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5404106 Matsuda Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5404960 Wada et al. Apr 1995 A
5405072 Zlock et al. Apr 1995 A
5405073 Porter Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5405360 Tovey Apr 1995 A
5407293 Crainich Apr 1995 A
5408409 Glassman et al. Apr 1995 A
5409498 Braddock et al. Apr 1995 A
5409703 McAnalley et al. Apr 1995 A
D357981 Green et al. May 1995 S
5411481 Allen et al. May 1995 A
5411508 Bessler et al. May 1995 A
5413107 Oakley et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5413268 Green et al. May 1995 A
5413272 Green et al. May 1995 A
5413573 Koivukangas May 1995 A
5415334 Williamson et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417203 Tovey et al. May 1995 A
5417361 Williamson, IV May 1995 A
5419766 Chang et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5422567 Matsunaga Jun 1995 A
5423471 Mastri et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5423835 Green et al. Jun 1995 A
5425745 Green et al. Jun 1995 A
5427298 Tegtmeier Jun 1995 A
5431322 Green et al. Jul 1995 A
5431323 Smith et al. Jul 1995 A
5431654 Nic Jul 1995 A
5431668 Burbank, III et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5437681 Meade et al. Aug 1995 A
5438302 Goble Aug 1995 A
5438997 Sieben et al. Aug 1995 A
5439155 Viola Aug 1995 A
5439156 Grant et al. Aug 1995 A
5439479 Shichman et al. Aug 1995 A
5441191 Linden Aug 1995 A
5441193 Gravener Aug 1995 A
5441483 Avitall Aug 1995 A
5441494 Ortiz Aug 1995 A
5443197 Malis et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5444113 Sinclair et al. Aug 1995 A
5445155 Sieben Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5445604 Lang Aug 1995 A
5445644 Pietrafitta et al. Aug 1995 A
5446646 Miyazaki Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5447417 Kuhl et al. Sep 1995 A
5447513 Davison et al. Sep 1995 A
5449355 Rhum et al. Sep 1995 A
5449365 Green et al. Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5452836 Huitema et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5454378 Palmer et al. Oct 1995 A
5454822 Schob et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456401 Green et al. Oct 1995 A
5456917 Wise et al. Oct 1995 A
5458279 Plyley Oct 1995 A
5458579 Chodorow et al. Oct 1995 A
5462215 Viola et al. Oct 1995 A
5464013 Lemelson Nov 1995 A
5464144 Guy et al. Nov 1995 A
5464300 Crainich Nov 1995 A
5465819 Weilant et al. Nov 1995 A
5465894 Clark et al. Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5465896 Allen et al. Nov 1995 A
5466020 Page et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5468253 Bezwada et al. Nov 1995 A
5470006 Rodak Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470008 Rodak Nov 1995 A
5470009 Rodak Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5471129 Mann Nov 1995 A
5472132 Savage et al. Dec 1995 A
5472442 Klicek Dec 1995 A
5473204 Temple Dec 1995 A
5474057 Makower et al. Dec 1995 A
5474223 Viola et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5474570 Kockerling et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5476481 Schondorf Dec 1995 A
5478003 Green et al. Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5480409 Riza Jan 1996 A
5482197 Green et al. Jan 1996 A
5483952 Aranyi Jan 1996 A
5484095 Green et al. Jan 1996 A
5484398 Stoddard Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5489256 Adair Feb 1996 A
5489290 Furnish Feb 1996 A
5490819 Nicholas et al. Feb 1996 A
5492671 Krafft Feb 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5497933 DeFonzo et al. Mar 1996 A
5498164 Ward et al. Mar 1996 A
5498838 Furman Mar 1996 A
5501654 Failla et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5503635 Sauer et al. Apr 1996 A
5503638 Cooper et al. Apr 1996 A
5505363 Green et al. Apr 1996 A
5507425 Ziglioli Apr 1996 A
5507426 Young et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5509916 Taylor Apr 1996 A
5511564 Wilk Apr 1996 A
5514129 Smith May 1996 A
5514149 Green et al. May 1996 A
5514157 Nicholas et al. May 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5520609 Moll et al. May 1996 A
5520634 Fox et al. May 1996 A
5520678 Heckele et al. May 1996 A
5520700 Beyar et al. May 1996 A
5522817 Sander et al. Jun 1996 A
5522831 Sleister et al. Jun 1996 A
5527264 Moll et al. Jun 1996 A
5527320 Carruthers et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
D372086 Grasso et al. Jul 1996 S
5531305 Roberts et al. Jul 1996 A
5531744 Nardella et al. Jul 1996 A
5531856 Moll et al. Jul 1996 A
5533521 Granger Jul 1996 A
5533581 Barth et al. Jul 1996 A
5533661 Main et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540705 Meade et al. Jul 1996 A
5541376 Ladtkow et al. Jul 1996 A
5541489 Dunstan Jul 1996 A
5542594 McKean et al. Aug 1996 A
5542949 Yoon Aug 1996 A
5543119 Sutter et al. Aug 1996 A
5543695 Culp et al. Aug 1996 A
5544802 Crainich Aug 1996 A
5547117 Hamblin et al. Aug 1996 A
5549583 Sanford et al. Aug 1996 A
5549621 Bessler et al. Aug 1996 A
5549627 Kieturakis Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5551622 Yoon Sep 1996 A
5553624 Francese et al. Sep 1996 A
5553675 Pitzen et al. Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554148 Aebischer et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5556020 Hou Sep 1996 A
5556416 Clark et al. Sep 1996 A
5558533 Hashizawa et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5558671 Yates Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5561881 Klinger et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562690 Green et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5563481 Krause Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569161 Ebling et al. Oct 1996 A
5569270 Weng Oct 1996 A
5569284 Young et al. Oct 1996 A
5571090 Sheds Nov 1996 A
5571100 Goble et al. Nov 1996 A
5571116 Bolanos et al. Nov 1996 A
5571285 Chow et al. Nov 1996 A
5571488 Beerstecher et al. Nov 1996 A
5573169 Green et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5574431 McKeown et al. Nov 1996 A
5575054 Klinzing et al. Nov 1996 A
5575789 Bell et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5575805 Li Nov 1996 A
5577654 Bishop Nov 1996 A
5578052 Koros et al. Nov 1996 A
5579978 Green et al. Dec 1996 A
5580067 Hamblin et al. Dec 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Kliennan et al. Dec 1996 A
5582907 Pall Dec 1996 A
5583114 Barrows et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5591170 Spievack et al. Jan 1997 A
5591187 Dekel Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5599151 Daum et al. Feb 1997 A
5599279 Slotman et al. Feb 1997 A
5599344 Paterson Feb 1997 A
5599350 Schulze et al. Feb 1997 A
5599852 Scopelianos et al. Feb 1997 A
5601224 Bishop et al. Feb 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601604 Vincent Feb 1997 A
5602449 Krause et al. Feb 1997 A
5603443 Clark et al. Feb 1997 A
5605272 Witt et al. Feb 1997 A
5605273 Hamblin et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5607095 Smith et al. Mar 1997 A
5607433 Polla et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5607474 Athanasiou et al. Mar 1997 A
5609285 Grant et al. Mar 1997 A
5609601 Kolesa et al. Mar 1997 A
5611709 McAnulty Mar 1997 A
5613499 Palmer et al. Mar 1997 A
5613937 Garrison et al. Mar 1997 A
5613966 Makower et al. Mar 1997 A
5614887 Buchbinder Mar 1997 A
5615820 Viola Apr 1997 A
5618294 Aust et al. Apr 1997 A
5618303 Marlow et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5620289 Curry Apr 1997 A
5620326 Younker Apr 1997 A
5620452 Yoon Apr 1997 A
5624398 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5628446 Geiste et al. May 1997 A
5628743 Cimino May 1997 A
5628745 Bek May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5630541 Williamson, IV et al. May 1997 A
5630782 Adair May 1997 A
5632432 Schulze et al. May 1997 A
5632433 Grant et al. May 1997 A
5633374 Humphrey et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5636780 Green et al. Jun 1997 A
5638582 Klatt et al. Jun 1997 A
5639008 Gallagher et al. Jun 1997 A
D381077 Hunt Jul 1997 S
5643291 Pier et al. Jul 1997 A
5643293 Kogasaka et al. Jul 1997 A
5643294 Tovey et al. Jul 1997 A
5643319 Green et al. Jul 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5649956 Jensen et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5651762 Bridges Jul 1997 A
5651821 Uchida Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5653677 Okada et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5653748 Strecker Aug 1997 A
5655698 Yoon Aug 1997 A
5657417 Di Troia Aug 1997 A
5657429 Wang et al. Aug 1997 A
5657921 Young et al. Aug 1997 A
5658238 Suzuki et al. Aug 1997 A
5658281 Heard Aug 1997 A
5658298 Vincent et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5658307 Exconde Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5667517 Hooven Sep 1997 A
5667526 Levin Sep 1997 A
5667527 Cook Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5669904 Platt, Jr. et al. Sep 1997 A
5669907 Platt, Jr. et al. Sep 1997 A
5669918 Balazs et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5674286 D'Alessio et al. Oct 1997 A
5678748 Plyley et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5681341 Lunsford et al. Oct 1997 A
5683349 Makower et al. Nov 1997 A
5685474 Seeber Nov 1997 A
5686090 Schilder et al. Nov 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5693020 Rauh Dec 1997 A
5693042 Boiarski et al. Dec 1997 A
5693051 Schulze et al. Dec 1997 A
5695494 Becker Dec 1997 A
5695502 Pier et al. Dec 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695524 Kelley et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5697543 Burdorff Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5697943 Sauer et al. Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700276 Benecke Dec 1997 A
5702387 Arts et al. Dec 1997 A
5702408 Wales et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5704087 Strub Jan 1998 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5706998 Plyley et al. Jan 1998 A
5707392 Kortenbach Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5709335 Heck Jan 1998 A
5709680 Yates et al. Jan 1998 A
5709706 Kienzle et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5712460 Carr et al. Jan 1998 A
5713128 Schrenk et al. Feb 1998 A
5713505 Huitema Feb 1998 A
5713895 Lontine et al. Feb 1998 A
5713896 Nardella Feb 1998 A
5713920 Bezwada et al. Feb 1998 A
5715604 Lanzoni Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5715988 Palmer Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5718548 Cotellessa Feb 1998 A
5718714 Livneh Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
D393067 Geary et al. Mar 1998 S
5724025 Tavori Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5728113 Sheds Mar 1998 A
5728121 Bimbo et al. Mar 1998 A
5730758 Allgeyer Mar 1998 A
5732821 Stone et al. Mar 1998 A
5732871 Clark et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5733308 Daugherty et al. Mar 1998 A
5735445 Vidal et al. Apr 1998 A
5735848 Yates et al. Apr 1998 A
5735874 Measamer et al. Apr 1998 A
5738474 Blewett Apr 1998 A
5738629 Moll et al. Apr 1998 A
5738648 Lands et al. Apr 1998 A
5741271 Nakao et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5747953 Philipp May 1998 A
5749889 Bacich et al. May 1998 A
5749893 Vidal et al. May 1998 A
5749896 Cook May 1998 A
5749968 Melanson et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5752965 Francis et al. May 1998 A
5752970 Yoon May 1998 A
5755717 Yates et al. May 1998 A
5758814 Gallagher et al. Jun 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5765565 Adair Jun 1998 A
5766188 Igaki Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769303 Knodel et al. Jun 1998 A
5769748 Eyerly et al. Jun 1998 A
5769791 Benaron et al. Jun 1998 A
5769892 Kingwell Jun 1998 A
5772379 Evensen Jun 1998 A
5772578 Heimberger et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5773991 Chen Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5778939 Hok-Yin Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782748 Palmer et al. Jul 1998 A
5782749 Riza Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5784934 Izumisawa Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5785647 Tompkins et al. Jul 1998 A
5787897 Kieturakis Aug 1998 A
5791231 Cohn et al. Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5792162 Jolly et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5792573 Pitzen et al. Aug 1998 A
5794834 Hamblin et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5797637 Ervin Aug 1998 A
5797906 Rhum et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5799857 Robertson et al. Sep 1998 A
5800379 Edwards Sep 1998 A
5800423 Jensen Sep 1998 A
5804726 Geib et al. Sep 1998 A
5804936 Brodsky et al. Sep 1998 A
5806676 Wasgien Sep 1998 A
5807376 Viola et al. Sep 1998 A
5807378 Jensen et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5809441 McKee Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810846 Virnich et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5812188 Adair Sep 1998 A
5813813 Daum et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817091 Nardella et al. Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5824333 Scopelianos et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827298 Hart et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5830598 Patterson Nov 1998 A
5833690 Yates et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5833696 Whitfield et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5836960 Kolesa et al. Nov 1998 A
5839369 Chatterjee et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5841284 Takahashi Nov 1998 A
5843021 Edwards et al. Dec 1998 A
5843096 Igaki et al. Dec 1998 A
5843097 Mayenberger et al. Dec 1998 A
5843122 Riza Dec 1998 A
5843132 Ilvento Dec 1998 A
5843169 Taheri Dec 1998 A
5846254 Schulze et al. Dec 1998 A
5847566 Marritt et al. Dec 1998 A
5849011 Jones et al. Dec 1998 A
5849020 Long et al. Dec 1998 A
5849023 Mericle Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5853366 Dowlatshahi Dec 1998 A
5855311 Hamblin et al. Jan 1999 A
5855583 Wang et al. Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5860975 Goble et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5865638 Trafton Feb 1999 A
5868361 Rinderer Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5868790 Vincent et al. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5873885 Weidenbenner Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5878607 Nunes et al. Mar 1999 A
5878937 Green et al. Mar 1999 A
5878938 Bittner et al. Mar 1999 A
5881777 Bassi et al. Mar 1999 A
5891094 Masterson et al. Apr 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5891558 Bell et al. Apr 1999 A
5893506 Powell Apr 1999 A
5893835 Witt et al. Apr 1999 A
5893878 Pierce Apr 1999 A
5894979 Powell Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5899824 Kurtz et al. May 1999 A
5899914 Zirps et al. May 1999 A
5901895 Heaton et al. May 1999 A
5902312 Frater et al. May 1999 A
5903117 Gregory May 1999 A
5904647 Ouchi May 1999 A
5904693 Dicesare et al. May 1999 A
5904702 Ek et al. May 1999 A
5906577 Beane et al. May 1999 A
5906625 Bito et al. May 1999 A
5907211 Hall et al. May 1999 A
5908402 Blythe Jun 1999 A
5908427 McKean et al. Jun 1999 A
5909062 Krietzman Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5916225 Kugel Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5921956 Grinberg et al. Jul 1999 A
5924864 Loge et al. Jul 1999 A
5928137 Green Jul 1999 A
5928256 Riza Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5931853 McEwen et al. Aug 1999 A
5937951 Izuchukwu et al. Aug 1999 A
5938667 Peyser et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5941890 Voegele et al. Aug 1999 A
5944172 Hannula Aug 1999 A
5944715 Goble et al. Aug 1999 A
5946978 Yamashita Sep 1999 A
5947984 Whipple Sep 1999 A
5947996 Logeman Sep 1999 A
5948030 Miller et al. Sep 1999 A
5948429 Bell et al. Sep 1999 A
5951301 Younker Sep 1999 A
5951516 Bunyan Sep 1999 A
5951552 Long et al. Sep 1999 A
5951574 Stefanchik et al. Sep 1999 A
5951575 Bolduc et al. Sep 1999 A
5951581 Saadat et al. Sep 1999 A
5954259 Viola et al. Sep 1999 A
5957831 Adair Sep 1999 A
5964394 Robertson Oct 1999 A
5964774 McKean et al. Oct 1999 A
5966126 Szabo Oct 1999 A
5971916 Koren Oct 1999 A
5973221 Collyer et al. Oct 1999 A
D416089 Barton et al. Nov 1999 S
5976122 Madhani et al. Nov 1999 A
5977746 Hershberger et al. Nov 1999 A
5980248 Kusakabe et al. Nov 1999 A
5984949 Levin Nov 1999 A
5988479 Palmer Nov 1999 A
5990379 Gregory Nov 1999 A
5993466 Yoon Nov 1999 A
5997528 Bisch et al. Dec 1999 A
5997552 Person et al. Dec 1999 A
6001108 Wang et al. Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004319 Goble et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6007521 Bidwell et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6010513 Tormala et al. Jan 2000 A
6010520 Pattison Jan 2000 A
6012494 Balazs Jan 2000 A
6013076 Goble et al. Jan 2000 A
6015406 Goble et al. Jan 2000 A
6015417 Reynolds, Jr. Jan 2000 A
6017322 Snoke et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6018227 Kumar et al. Jan 2000 A
6019745 Gray Feb 2000 A
6022352 Vandewalle Feb 2000 A
6023641 Thompson Feb 2000 A
6024708 Bales et al. Feb 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024748 Manzo et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6024764 Schroeppel Feb 2000 A
6027501 Goble et al. Feb 2000 A
6030384 Nezhat Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6033105 Barker et al. Mar 2000 A
6033378 Lundquist et al. Mar 2000 A
6033399 Gines Mar 2000 A
6033427 Lee Mar 2000 A
6036641 Taylor et al. Mar 2000 A
6036667 Manna et al. Mar 2000 A
6037724 Buss et al. Mar 2000 A
6037927 Rosenberg Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6039734 Goble Mar 2000 A
6042601 Smith Mar 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6043626 Snyder et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6047861 Vidal et al. Apr 2000 A
6049145 Austin et al. Apr 2000 A
6050172 Corves et al. Apr 2000 A
6050472 Shibata Apr 2000 A
6050989 Fox et al. Apr 2000 A
6050990 Tankovich et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053390 Green et al. Apr 2000 A
6053899 Slanda et al. Apr 2000 A
6053922 Krause et al. Apr 2000 A
6054142 Li et al. Apr 2000 A
6055062 Dina et al. Apr 2000 A
RE36720 Green et al. May 2000 E
6056735 Okada et al. May 2000 A
6056746 Goble et al. May 2000 A
6059806 Hoegerle May 2000 A
6062360 Shields May 2000 A
6063020 Jones et al. May 2000 A
6063025 Bridges et al. May 2000 A
6063050 Manna et al. May 2000 A
6063095 Wang et al. May 2000 A
6063097 Oi et al. May 2000 A
6063098 Houser et al. May 2000 A
6065679 Levie et al. May 2000 A
6065919 Peck May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6074401 Gardiner et al. Jun 2000 A
6077280 Fossum Jun 2000 A
6077286 Cuschieri et al. Jun 2000 A
6077290 Marini Jun 2000 A
6079606 Milliman et al. Jun 2000 A
6080181 Jensen et al. Jun 2000 A
6082577 Coates et al. Jul 2000 A
6083191 Rose Jul 2000 A
6083223 Baker Jul 2000 A
6083234 Nicholas et al. Jul 2000 A
6083242 Cook Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6086600 Kortenbach Jul 2000 A
6090106 Goble et al. Jul 2000 A
6093186 Goble Jul 2000 A
6099537 Sugai et al. Aug 2000 A
6099551 Gabbay Aug 2000 A
6102271 Longo et al. Aug 2000 A
6104162 Sainsbury et al. Aug 2000 A
6104304 Clark et al. Aug 2000 A
6106511 Jensen Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110187 Donlon Aug 2000 A
6113618 Nic Sep 2000 A
6117148 Ravo et al. Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6120433 Mizuno et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6123241 Walter et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126058 Adams et al. Oct 2000 A
6126359 Dittrich et al. Oct 2000 A
6126670 Walker et al. Oct 2000 A
6131789 Schulze et al. Oct 2000 A
6131790 Piraka Oct 2000 A
6132368 Cooper Oct 2000 A
6134962 Sugitani Oct 2000 A
6139546 Koenig et al. Oct 2000 A
6142149 Steen Nov 2000 A
6142933 Longo et al. Nov 2000 A
6147135 Yuan et al. Nov 2000 A
6149660 Laufer et al. Nov 2000 A
6151323 O'Connell et al. Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6155473 Tompkins et al. Dec 2000 A
6156056 Kearns et al. Dec 2000 A
6157169 Lee Dec 2000 A
6159146 El Gazayerli Dec 2000 A
6159200 Verdura et al. Dec 2000 A
6159224 Yoon Dec 2000 A
6162208 Hipps Dec 2000 A
6162220 Nezhat Dec 2000 A
6162537 Martin et al. Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6165184 Verdura et al. Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6167185 Smiley et al. Dec 2000 A
6168605 Measamer et al. Jan 2001 B1
6171305 Sherman Jan 2001 B1
6171316 Kovac et al. Jan 2001 B1
6171330 Benchetrit Jan 2001 B1
6173074 Russo Jan 2001 B1
6174308 Goble et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6175290 Forsythe et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6181105 Cutolo et al. Jan 2001 B1
6182673 Kindermann et al. Feb 2001 B1
6185356 Parker et al. Feb 2001 B1
6186142 Schmidt et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193129 Bittner et al. Feb 2001 B1
6197042 Ginn et al. Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6206894 Thompson et al. Mar 2001 B1
6206897 Jamiolkowski et al. Mar 2001 B1
6206903 Ramans Mar 2001 B1
6206904 Ouchi Mar 2001 B1
6209414 Uneme Apr 2001 B1
6210403 Klicek Apr 2001 B1
6213999 Platt, Jr. et al. Apr 2001 B1
6214028 Yoon et al. Apr 2001 B1
6220368 Ark et al. Apr 2001 B1
6221007 Green Apr 2001 B1
6221023 Matsuba et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6223835 Habedank et al. May 2001 B1
6224617 Saadat et al. May 2001 B1
6228080 Gines May 2001 B1
6228081 Goble May 2001 B1
6228083 Lands et al. May 2001 B1
6228084 Kirwan, Jr. May 2001 B1
6228089 Wahrburg May 2001 B1
6228098 Kayan et al. May 2001 B1
6231565 Tovey et al. May 2001 B1
6234178 Goble et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238384 Peer May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6241140 Adams et al. Jun 2001 B1
6241723 Heim et al. Jun 2001 B1
6245084 Mark et al. Jun 2001 B1
6248116 Chevillon et al. Jun 2001 B1
6248117 Blatter Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6249105 Andrews et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6251485 Harris et al. Jun 2001 B1
D445745 Norman Jul 2001 S
6254534 Butler et al. Jul 2001 B1
6254619 Garabet et al. Jul 2001 B1
6254642 Taylor Jul 2001 B1
6258107 Balazs et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6261679 Chen et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6264617 Bales et al. Jul 2001 B1
6270508 Klieman et al. Aug 2001 B1
6270916 Sink et al. Aug 2001 B1
6273252 Mitchell Aug 2001 B1
6273876 Klima et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6277114 Bullivant et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6293927 McGuckin, Jr. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6296640 Wampler et al. Oct 2001 B1
6302311 Adams et al. Oct 2001 B1
6302743 Chiu et al. Oct 2001 B1
6305891 Burlingame Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6306149 Meade Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6309397 Julian et al. Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6309403 Minor et al. Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6315184 Whitman Nov 2001 B1
6319510 Yates Nov 2001 B1
6320123 Reimers Nov 2001 B1
6322494 Bullivant et al. Nov 2001 B1
6324339 Hudson et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6325805 Ogilvie et al. Dec 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6328498 Mersch Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6331181 Tierney et al. Dec 2001 B1
6331761 Kumar et al. Dec 2001 B1
6333029 Vyakarnam et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6336926 Goble Jan 2002 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6346077 Taylor et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
D454951 Bon Mar 2002 S
6352503 Matsui et al. Mar 2002 B1
6352532 Kramer et al. Mar 2002 B1
6355699 Vyakarnam et al. Mar 2002 B1
6356072 Chass Mar 2002 B1
6358224 Tims et al. Mar 2002 B1
6358263 Mark et al. Mar 2002 B2
6358459 Ziegler et al. Mar 2002 B1
6364877 Goble et al. Apr 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6366441 Ozawa et al. Apr 2002 B1
6370981 Watarai Apr 2002 B2
6371114 Schmidt et al. Apr 2002 B1
6373152 Wang et al. Apr 2002 B1
6377011 Ben-Ur Apr 2002 B1
6383201 Dong May 2002 B1
6387092 Burnside et al. May 2002 B1
6387113 Hawkins et al. May 2002 B1
6387114 Adams May 2002 B2
6391038 Vargas et al. May 2002 B2
6392854 O'Gorman May 2002 B1
6394998 Wallace et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6398781 Goble et al. Jun 2002 B1
6398797 Bombard et al. Jun 2002 B2
6402766 Bowman et al. Jun 2002 B2
6406440 Stefanchik Jun 2002 B1
6406472 Jensen Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6412639 Hickey Jul 2002 B1
6413274 Pedros Jul 2002 B1
6415542 Bates et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6419695 Gabbay Jul 2002 B1
6423079 Blake, III Jul 2002 B1
6424885 Niemeyer et al. Jul 2002 B1
RE37814 Allgeyer Aug 2002 E
6428070 Takanashi et al. Aug 2002 B1
6428487 Burdorff et al. Aug 2002 B1
6429611 Li Aug 2002 B1
6430298 Kettl et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6436097 Nardella Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6436110 Bowman et al. Aug 2002 B2
6436115 Beaupre Aug 2002 B1
6436122 Frank et al. Aug 2002 B1
6439439 Rickard et al. Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6440146 Nicholas et al. Aug 2002 B2
6441577 Blumenkranz et al. Aug 2002 B2
D462758 Epstein et al. Sep 2002 S
6443973 Whitman Sep 2002 B1
6445530 Baker Sep 2002 B1
6447518 Krause et al. Sep 2002 B1
6447523 Middleman et al. Sep 2002 B1
6447799 Ullman Sep 2002 B1
6447864 Johnson et al. Sep 2002 B2
6450391 Kayan et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6454781 Witt et al. Sep 2002 B1
6457625 Tormala et al. Oct 2002 B1
6458077 Boebel et al. Oct 2002 B1
6458147 Cruise et al. Oct 2002 B1
6460627 Below et al. Oct 2002 B1
6468275 Wampler et al. Oct 2002 B1
6468286 Mastri et al. Oct 2002 B2
6471106 Reining Oct 2002 B1
6471659 Eggers et al. Oct 2002 B2
6478210 Adams et al. Nov 2002 B2
6482200 Shipped Nov 2002 B2
6482217 Pintor et al. Nov 2002 B1
6485490 Wampler et al. Nov 2002 B2
6485503 Jacobs et al. Nov 2002 B2
6485667 Tan Nov 2002 B1
6486286 McGall et al. Nov 2002 B1
6488196 Fenton, Jr. Dec 2002 B1
6488197 Whitman Dec 2002 B1
6488659 Rosenman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491702 Heilbrun et al. Dec 2002 B2
6492785 Kasten et al. Dec 2002 B1
6494882 Lebouitz et al. Dec 2002 B1
6494885 Dhindsa Dec 2002 B1
6494888 Laufer et al. Dec 2002 B1
6494896 D'Alessio et al. Dec 2002 B1
6498480 Manara Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500194 Benderev et al. Dec 2002 B2
6503139 Coral Jan 2003 B2
6503257 Grant et al. Jan 2003 B2
6503259 Huxel et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6506197 Rollero et al. Jan 2003 B1
6510854 Goble Jan 2003 B2
6511468 Cragg et al. Jan 2003 B1
6512360 Goto et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6516073 Schulz et al. Feb 2003 B1
6517528 Pantages et al. Feb 2003 B1
6517535 Edwards Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6520971 Perry et al. Feb 2003 B1
6520972 Peters Feb 2003 B2
6522101 Malackowski Feb 2003 B2
6524180 Simms et al. Feb 2003 B1
6525499 Naganuma Feb 2003 B2
6527782 Hogg et al. Mar 2003 B2
6527785 Sancoff et al. Mar 2003 B2
6530942 Fogarty et al. Mar 2003 B2
6532958 Buan et al. Mar 2003 B1
6533157 Whitman Mar 2003 B1
6533723 Lockery et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6535764 Imran et al. Mar 2003 B2
6539297 Weiberle et al. Mar 2003 B2
D473239 Cockerill Apr 2003 S
6539816 Kogiso et al. Apr 2003 B2
6543456 Freeman Apr 2003 B1
6545384 Pelrine et al. Apr 2003 B1
6547786 Goble Apr 2003 B1
6550546 Thurler et al. Apr 2003 B2
6551333 Kuhns et al. Apr 2003 B2
6554861 Knox et al. Apr 2003 B2
6555770 Kawase Apr 2003 B2
6558378 Sherman et al. May 2003 B2
6558379 Batchelor et al. May 2003 B1
6558429 Taylor May 2003 B2
6561187 Schmidt et al. May 2003 B2
6565560 Goble et al. May 2003 B1
6566619 Gillman et al. May 2003 B2
6569085 Kortenbach et al. May 2003 B2
6569171 DeGuillebon et al. May 2003 B2
6578751 Hartwick Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6582427 Goble et al. Jun 2003 B1
6582441 He et al. Jun 2003 B1
6583533 Pelrine et al. Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6585664 Burdorif et al. Jul 2003 B2
6586898 King et al. Jul 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6588277 Giordano et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6588931 Betzner et al. Jul 2003 B2
6589118 Soma et al. Jul 2003 B1
6589164 Flaherty Jul 2003 B1
6592538 Hotchkiss et al. Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6594552 Nowlin et al. Jul 2003 B1
6596296 Nelson et al. Jul 2003 B1
6596304 Bayon et al. Jul 2003 B1
6596432 Kawakami et al. Jul 2003 B2
6599295 Tornier et al. Jul 2003 B1
6599323 Melican et al. Jul 2003 B2
D478665 Isaacs et al. Aug 2003 S
D478986 Johnston et al. Aug 2003 S
6601749 Sullivan et al. Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6602262 Griego et al. Aug 2003 B2
6603050 Heaton Aug 2003 B2
6605078 Adams Aug 2003 B2
6605669 Awokola et al. Aug 2003 B2
6605911 Klesing Aug 2003 B1
6607475 Doyle et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6613069 Boyd et al. Sep 2003 B2
6616686 Coleman et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620111 Stephens et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6620166 Wenstrom, Jr. et al. Sep 2003 B1
6625517 Bogdanov et al. Sep 2003 B1
6626834 Dunne et al. Sep 2003 B2
H2086 Amsler Oct 2003 H
6629630 Adams Oct 2003 B2
6629974 Penny et al. Oct 2003 B2
6629988 Weadock Oct 2003 B2
6635838 Kornelson Oct 2003 B1
6636412 Smith Oct 2003 B2
6638108 Tachi Oct 2003 B2
6638285 Gabbay Oct 2003 B2
6638297 Huitema Oct 2003 B1
RE38335 Aust et al. Nov 2003 E
6641528 Torii Nov 2003 B2
6644532 Green et al. Nov 2003 B2
6645201 Utley et al. Nov 2003 B1
6646307 Yu et al. Nov 2003 B1
6648816 Irion et al. Nov 2003 B2
6648901 Fleischman et al. Nov 2003 B2
6652595 Nicolo Nov 2003 B1
D484243 Ryan et al. Dec 2003 S
D484595 Ryan et al. Dec 2003 S
D484596 Ryan et al. Dec 2003 S
6656177 Truckai et al. Dec 2003 B2
6656193 Grant et al. Dec 2003 B2
6659940 Adler Dec 2003 B2
6660008 Foerster et al. Dec 2003 B1
6663623 Oyama et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6667825 Lu et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6670806 Wendt et al. Dec 2003 B2
6671185 Duval Dec 2003 B2
D484977 Ryan et al. Jan 2004 S
6676660 Wampler et al. Jan 2004 B2
6677687 Ho et al. Jan 2004 B2
6679269 Swanson Jan 2004 B2
6679410 Wursch et al. Jan 2004 B2
6681978 Geiste et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6682544 Mastri et al. Jan 2004 B2
6685698 Morley et al. Feb 2004 B2
6685727 Fisher et al. Feb 2004 B2
6689153 Skiba Feb 2004 B1
6692507 Pugsley et al. Feb 2004 B2
6692692 Stetzel Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6695774 Hale et al. Feb 2004 B2
6695849 Michelson Feb 2004 B2
6696814 Henderson et al. Feb 2004 B2
6697048 Rosenberg et al. Feb 2004 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6699214 Gellman Mar 2004 B2
6699235 Wallace et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6705503 Pedicini et al. Mar 2004 B1
6709445 Boebel et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6716223 Leopold et al. Apr 2004 B2
6716232 Vidal et al. Apr 2004 B1
6716233 Whitman Apr 2004 B1
6720734 Norris Apr 2004 B2
6722550 Ricordi et al. Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6723087 O'Neill et al. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
6723109 Solingen Apr 2004 B2
6726697 Nicholas et al. Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6729119 Schnipke et al. May 2004 B2
6731976 Penn et al. May 2004 B2
6736825 Blatter et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6740030 Martone et al. May 2004 B2
6743230 Lutze et al. Jun 2004 B2
6744385 Kazuya et al. Jun 2004 B2
6747121 Gogolewski Jun 2004 B2
6747300 Nadd et al. Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6749600 Levy Jun 2004 B1
6752768 Burdorif et al. Jun 2004 B2
6752816 Culp et al. Jun 2004 B2
6754959 Guiette, III et al. Jun 2004 B1
6755195 Lemke et al. Jun 2004 B1
6755338 Hahnen et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6756705 Pulford, Jr. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761685 Adams et al. Jul 2004 B2
6762339 Klun et al. Jul 2004 B1
6764445 Ramans et al. Jul 2004 B2
6766957 Matsuura et al. Jul 2004 B2
6767352 Field et al. Jul 2004 B2
6767356 Kanner et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6770027 Banik et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6770072 Truckai et al. Aug 2004 B1
6770078 Bonutti Aug 2004 B2
6773409 Truckai et al. Aug 2004 B2
6773437 Ogilvie et al. Aug 2004 B2
6773438 Knodel et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6777838 Miekka et al. Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786864 Matsuura et al. Sep 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6790173 Saadat et al. Sep 2004 B2
6793652 Whitman et al. Sep 2004 B1
6793661 Hamilton et al. Sep 2004 B2
6793663 Kneifel et al. Sep 2004 B2
6793669 Nakamura et al. Sep 2004 B2
6796921 Buck et al. Sep 2004 B1
6799669 Fukumura et al. Oct 2004 B2
6802822 Dodge Oct 2004 B1
6802843 Truckai et al. Oct 2004 B2
6802844 Ferree Oct 2004 B2
6805273 Bilotti et al. Oct 2004 B2
6806808 Watters et al. Oct 2004 B1
6808525 Latterell et al. Oct 2004 B2
6810359 Sakaguchi Oct 2004 B2
6814154 Chou Nov 2004 B2
6814741 Bowman et al. Nov 2004 B2
6817508 Racenet et al. Nov 2004 B1
6817509 Geiste et al. Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6818018 Sawhney Nov 2004 B1
6820791 Adams Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6821284 Sturtz et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6827712 Tovey et al. Dec 2004 B2
6827725 Batchelor et al. Dec 2004 B2
6828902 Casden Dec 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6831629 Nishino et al. Dec 2004 B2
6832998 Goble Dec 2004 B2
6834001 Myono Dec 2004 B2
6835173 Couvillon, Jr. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835336 Watt Dec 2004 B2
6836611 Popovic et al. Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6837883 Moll et al. Jan 2005 B2
6838493 Williams et al. Jan 2005 B2
6840423 Adams et al. Jan 2005 B2
6841967 Kim et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6843789 Goble Jan 2005 B2
6843793 Brock et al. Jan 2005 B2
6846307 Whitman et al. Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6847190 Schaefer et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6850817 Green Feb 2005 B1
6852122 Rush Feb 2005 B2
6852330 Bowman et al. Feb 2005 B2
6853879 Sunaoshi Feb 2005 B2
6858005 Ohline et al. Feb 2005 B2
6859882 Fung Feb 2005 B2
RE38708 Bolanos et al. Mar 2005 E
D502994 Blake, III Mar 2005 S
6861142 Wilkie et al. Mar 2005 B1
6861954 Levin Mar 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6863694 Boyce et al. Mar 2005 B1
6863924 Ranganathan et al. Mar 2005 B2
6866178 Adams et al. Mar 2005 B2
6866668 Giannetti et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6867248 Martin et al. Mar 2005 B1
6869430 Balbierz et al. Mar 2005 B2
6869435 Blake, III Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6878106 Herrmann Apr 2005 B1
6884392 Malkin et al. Apr 2005 B2
6884428 Binette et al. Apr 2005 B2
6886730 Fujisawa et al. May 2005 B2
6887710 Call et al. May 2005 B2
6889116 Jinno May 2005 B2
6893435 Goble May 2005 B2
6894140 Roby May 2005 B2
6895176 Archer et al. May 2005 B2
6899538 Matoba May 2005 B2
6899593 Moeller et al. May 2005 B1
6899915 Yelick et al. May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6905497 Truckai et al. Jun 2005 B2
6905498 Hooven Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6911033 de Guillebon et al. Jun 2005 B2
6911916 Wang et al. Jun 2005 B1
6913579 Truckai et al. Jul 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6913613 Schwarz et al. Jul 2005 B2
6921397 Corcoran et al. Jul 2005 B2
6921412 Black et al. Jul 2005 B1
6923093 Ullah Aug 2005 B2
6923803 Goble Aug 2005 B2
6923819 Meade et al. Aug 2005 B2
6925849 Jairam Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6928902 Eyssallenne Aug 2005 B1
6929641 Goble et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6931830 Liao Aug 2005 B2
6932218 Kosann et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6936042 Wallace et al. Aug 2005 B2
6936948 Bell et al. Aug 2005 B2
D509297 Wells Sep 2005 S
D509589 Wells Sep 2005 S
6938706 Ng Sep 2005 B2
6939358 Palacios et al. Sep 2005 B2
6942662 Goble et al. Sep 2005 B2
6942674 Belef et al. Sep 2005 B2
6945444 Gresham et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6951562 Zwirnmann Oct 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6953461 McClurken et al. Oct 2005 B2
6957758 Aranyi Oct 2005 B2
6958035 Friedman et al. Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6960107 Schaub et al. Nov 2005 B1
6960163 Ewers et al. Nov 2005 B2
6960220 Marino et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6963792 Green Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6966907 Goble Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6968908 Tokunaga et al. Nov 2005 B2
6969385 Moreyra Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6971988 Orban, III Dec 2005 B2
6972199 Lebouitz et al. Dec 2005 B2
6974435 Daw et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6981978 Gannoe Jan 2006 B2
6984203 Tartaglia et al. Jan 2006 B2
6984231 Goble et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6988650 Schwemberger et al. Jan 2006 B2
6989034 Hammer et al. Jan 2006 B2
6990731 Haytayan Jan 2006 B2
6990796 Schnipke et al. Jan 2006 B2
6993200 Tastl et al. Jan 2006 B2
6993413 Sunaoshi Jan 2006 B2
6994708 Manzo Feb 2006 B2
6995729 Govari et al. Feb 2006 B2
6996433 Burbank et al. Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
6997935 Anderson et al. Feb 2006 B2
6998736 Lee et al. Feb 2006 B2
6998816 Wieck et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7000911 McCormick et al. Feb 2006 B2
7001380 Goble Feb 2006 B2
7001408 Knodel et al. Feb 2006 B2
7004174 Eggers et al. Feb 2006 B2
7007176 Goodfellow et al. Feb 2006 B2
7008433 Voellmicke et al. Mar 2006 B2
7008435 Cummins Mar 2006 B2
7009039 Yayon et al. Mar 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014640 Kemppainen et al. Mar 2006 B2
7018357 Emmons Mar 2006 B2
7018390 Turovskiy et al. Mar 2006 B2
7021669 Lindermeir et al. Apr 2006 B1
7022131 Derowe et al. Apr 2006 B1
7023159 Gorti et al. Apr 2006 B2
7025064 Wang et al. Apr 2006 B2
7025732 Thompson et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7025774 Freeman et al. Apr 2006 B2
7025775 Gadberry et al. Apr 2006 B2
7028570 Ohta et al. Apr 2006 B2
7029435 Nakao Apr 2006 B2
7029439 Roberts et al. Apr 2006 B2
7030904 Adair et al. Apr 2006 B2
7032798 Whitman et al. Apr 2006 B2
7032799 Viola et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7035716 Harris et al. Apr 2006 B2
7035762 Menard et al. Apr 2006 B2
7036680 Flannery May 2006 B1
7037314 Armstrong May 2006 B2
7037344 Kagan et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7041868 Greene et al. May 2006 B2
7043852 Hayashida et al. May 2006 B2
7044350 Kameyama et al. May 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7046082 Komiya et al. May 2006 B2
7048165 Haramiishi May 2006 B2
7048687 Reuss et al. May 2006 B1
7048745 Tierney et al. May 2006 B2
7052454 Taylor May 2006 B2
7052494 Goble et al. May 2006 B2
7052499 Steger et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056284 Martone et al. Jun 2006 B2
7056330 Gayton Jun 2006 B2
7059331 Adams et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7063671 Couvillon, Jr. Jun 2006 B2
7063712 Vargas et al. Jun 2006 B2
7064509 Fu et al. Jun 2006 B1
7066879 Fowler et al. Jun 2006 B2
7066944 Laufer et al. Jun 2006 B2
7067038 Trokhan et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7070559 Adams et al. Jul 2006 B2
7070597 Truckai et al. Jul 2006 B2
7071287 Rhine et al. Jul 2006 B2
7075770 Smith Jul 2006 B1
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083073 Yoshie et al. Aug 2006 B2
7083075 Swayze et al. Aug 2006 B2
7083571 Wang et al. Aug 2006 B2
7083615 Peterson et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7083626 Hart et al. Aug 2006 B2
7086267 Dworak et al. Aug 2006 B2
7087049 Nowlin et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7090637 Danitz et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7090684 McGuckin, Jr. et al. Aug 2006 B2
7091191 Laredo et al. Aug 2006 B2
7091412 Wang et al. Aug 2006 B2
7093492 Treiber et al. Aug 2006 B2
7094202 Nobis et al. Aug 2006 B2
7094247 Monassevitch et al. Aug 2006 B2
7094916 DeLuca et al. Aug 2006 B2
7096972 Orozco, Jr. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7097644 Long Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7098794 Lindsay et al. Aug 2006 B2
7100949 Williams et al. Sep 2006 B2
7101187 Deconinck et al. Sep 2006 B1
7101394 Hamm et al. Sep 2006 B2
7104741 Krohn Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7108701 Evens et al. Sep 2006 B2
7108709 Cummins Sep 2006 B2
7111768 Cummins et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112214 Peterson et al. Sep 2006 B2
RE39358 Goble Oct 2006 E
7114642 Whitman Oct 2006 B2
7116100 Mock et al. Oct 2006 B1
7118020 Lee et al. Oct 2006 B2
7118528 Piskun Oct 2006 B1
7118563 Weckwerth et al. Oct 2006 B2
7118582 Wang et al. Oct 2006 B1
7119534 Butzmann Oct 2006 B2
7121446 Arad et al. Oct 2006 B2
7121773 Mikiya et al. Oct 2006 B2
7122028 Looper et al. Oct 2006 B2
7125403 Julian et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7126303 Farritor et al. Oct 2006 B2
7126879 Snyder Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7133601 Phillips et al. Nov 2006 B2
7134364 Kageler et al. Nov 2006 B2
7134587 Schwemberger et al. Nov 2006 B2
7135027 Delmotte Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7139016 Squilla et al. Nov 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7146191 Kerner et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7147139 Schwemberger et al. Dec 2006 B2
7147140 Wukusick et al. Dec 2006 B2
7147637 Goble Dec 2006 B2
7147648 Lin Dec 2006 B2
7147650 Lee Dec 2006 B2
7150748 Ebbutt et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7156863 Sonnenschein et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7161036 Oikawa et al. Jan 2007 B2
7161580 Bailey et al. Jan 2007 B2
7162758 Skinner Jan 2007 B2
7163563 Schwartz et al. Jan 2007 B2
7166133 Evans et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7170910 Chen et al. Jan 2007 B2
7171279 Buckingham et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7172593 Trieu et al. Feb 2007 B2
7172615 Morriss et al. Feb 2007 B2
7174202 Bladen et al. Feb 2007 B2
7174636 Lowe Feb 2007 B2
7177533 McFarlin et al. Feb 2007 B2
7179223 Motoki et al. Feb 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7182763 Nardella Feb 2007 B2
7183737 Kitagawa Feb 2007 B2
7187960 Abreu Mar 2007 B2
7188758 Viola et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7190147 Gileff et al. Mar 2007 B2
7193199 Jang Mar 2007 B2
7195627 Amoah et al. Mar 2007 B2
7196911 Takano et al. Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7199537 Okamura et al. Apr 2007 B2
7202576 Dechene et al. Apr 2007 B1
7202653 Pai Apr 2007 B2
7204404 Nguyen et al. Apr 2007 B2
7204835 Latterell et al. Apr 2007 B2
7206626 Quaid, III Apr 2007 B2
7207233 Wadge Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207472 Wukusick et al. Apr 2007 B2
7207556 Saitoh et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7210609 Leiboff et al. May 2007 B2
7211081 Goble May 2007 B2
7211084 Goble et al. May 2007 B2
7211092 Hughett May 2007 B2
7211979 Khatib et al. May 2007 B2
7213736 Wales et al. May 2007 B2
7214224 Goble May 2007 B2
7215517 Takamatsu May 2007 B2
7217285 Vargas et al. May 2007 B2
7220260 Fleming et al. May 2007 B2
7220272 Weadock May 2007 B2
7225959 Patton et al. Jun 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226450 Athanasiou et al. Jun 2007 B2
7228505 Shimazu et al. Jun 2007 B2
7229408 Douglas et al. Jun 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235072 Sartor et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7235302 Jing et al. Jun 2007 B2
7237708 Guy et al. Jul 2007 B1
7238195 Viola Jul 2007 B2
7238901 Kim et al. Jul 2007 B2
7239657 Gunnarsson Jul 2007 B1
7241288 Braun Jul 2007 B2
7241289 Braun Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7247161 Johnston et al. Jul 2007 B2
7249267 Chapuis Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7252660 Kunz Aug 2007 B2
7255012 Hedtke Aug 2007 B2
7255696 Goble et al. Aug 2007 B2
7256695 Hamel et al. Aug 2007 B2
7258262 Mastri et al. Aug 2007 B2
7258546 Beier et al. Aug 2007 B2
7260431 Libbus et al. Aug 2007 B2
7265374 Lee et al. Sep 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267679 McGuckin, Jr. et al. Sep 2007 B2
7272002 Drapeau Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
D552623 Vong et al. Oct 2007 S
7275674 Racenet et al. Oct 2007 B2
7276044 Ferry et al. Oct 2007 B2
7276068 Johnson et al. Oct 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7278949 Bader Oct 2007 B2
7278994 Goble Oct 2007 B2
7282048 Goble et al. Oct 2007 B2
7283096 Geisheimer et al. Oct 2007 B2
7286850 Frielink et al. Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7289139 Amling et al. Oct 2007 B2
7293685 Ehrenfels et al. Nov 2007 B2
7295893 Sunaoshi Nov 2007 B2
7295907 Lu et al. Nov 2007 B2
7296722 Ivanko Nov 2007 B2
7296724 Green et al. Nov 2007 B2
7297149 Vitali et al. Nov 2007 B2
7300373 Jinno et al. Nov 2007 B2
7300431 Dubrovsky Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7303502 Thompson Dec 2007 B2
7303556 Metzger Dec 2007 B2
7306597 Manzo Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7311238 Liu Dec 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7314473 Jinno et al. Jan 2008 B2
7322859 Evans Jan 2008 B2
7322975 Goble et al. Jan 2008 B2
7322994 Nicholas et al. Jan 2008 B2
7324572 Chang Jan 2008 B2
7326203 Papineau et al. Feb 2008 B2
7326213 Benderev et al. Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7330004 DeJonge et al. Feb 2008 B2
7331340 Barney Feb 2008 B2
7331343 Schmidt et al. Feb 2008 B2
7331403 Berry et al. Feb 2008 B2
7331406 Wottreng, Jr. et al. Feb 2008 B2
7331969 Inganas et al. Feb 2008 B1
7334717 Rethy et al. Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335199 Goble et al. Feb 2008 B2
7335401 Finke et al. Feb 2008 B2
7336045 Clermonts Feb 2008 B2
7336048 Lohr Feb 2008 B2
7336184 Smith et al. Feb 2008 B2
7337774 Webb Mar 2008 B2
7338505 Belson Mar 2008 B2
7338513 Lee et al. Mar 2008 B2
7341554 Sekine et al. Mar 2008 B2
7341555 Ootawara et al. Mar 2008 B2
7341591 Grinberg Mar 2008 B2
7343920 Toby et al. Mar 2008 B2
7344532 Goble et al. Mar 2008 B2
7344533 Pearson et al. Mar 2008 B2
7346344 Fontaine Mar 2008 B2
7346406 Brotto et al. Mar 2008 B2
7348763 Reinhart et al. Mar 2008 B1
7348875 Hughes et al. Mar 2008 B2
RE40237 Bilotti et al. Apr 2008 E
7351258 Ricotta et al. Apr 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7354502 Polat et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357806 Rivera et al. Apr 2008 B2
7361168 Makower et al. Apr 2008 B2
7361195 Schwartz et al. Apr 2008 B2
7362062 Schneider et al. Apr 2008 B2
7364060 Milliman Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7367485 Shelton, IV et al. May 2008 B2
7368124 Chun et al. May 2008 B2
7371210 Brock et al. May 2008 B2
7371403 McCarthy et al. May 2008 B2
7375493 Calhoon et al. May 2008 B2
7377918 Amoah May 2008 B2
7377928 Zubik et al. May 2008 B2
7378817 Calhoon et al. May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7384403 Sherman Jun 2008 B2
7384417 Cucin Jun 2008 B2
7386365 Nixon Jun 2008 B2
7386730 Uchikubo Jun 2008 B2
7388217 Buschbeck et al. Jun 2008 B2
7388484 Hsu Jun 2008 B2
7391173 Schena Jun 2008 B2
7394190 Huang Jul 2008 B2
7396356 Mollenauer Jul 2008 B2
7397364 Govari Jul 2008 B2
7398707 Morley et al. Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7398908 Holsten et al. Jul 2008 B2
7400107 Schneider et al. Jul 2008 B2
7400752 Zacharias Jul 2008 B2
7401000 Nakamura Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7404449 Bermingham et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7404822 Viart et al. Jul 2008 B2
7407074 Ortiz et al. Aug 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407076 Racenet et al. Aug 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7408310 Hong et al. Aug 2008 B2
7410085 Wolf et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7410483 Danitz et al. Aug 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7418078 Blanz et al. Aug 2008 B2
RE40514 Mastri et al. Sep 2008 E
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7419321 Tereschouk Sep 2008 B2
7419495 Menn et al. Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422138 Bilotti et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7427607 Suzuki Sep 2008 B2
D578644 Shumer et al. Oct 2008 S
7430772 Van Es Oct 2008 B2
7431188 Marczyk Oct 2008 B1
7431189 Shelton, IV et al. Oct 2008 B2
7431230 McPherson et al. Oct 2008 B2
7431694 Stefanchik et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7435249 Buysse et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7438718 Milliman et al. Oct 2008 B2
7439354 Lenges et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7442201 Pugsley et al. Oct 2008 B2
7443547 Moreno et al. Oct 2008 B2
7446131 Liu et al. Nov 2008 B1
7448525 Shelton, IV et al. Nov 2008 B2
7450010 Gravelle et al. Nov 2008 B1
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
D582934 Byeon Dec 2008 S
7461767 Viola et al. Dec 2008 B2
7462187 Johnston et al. Dec 2008 B2
7464845 Chou Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464848 Green et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7467849 Silverbrook et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7473221 Ewers et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7476237 Taniguchi et al. Jan 2009 B2
7479608 Smith Jan 2009 B2
7481347 Roy Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7485124 Kuhns et al. Feb 2009 B2
7485133 Cannon et al. Feb 2009 B2
7485142 Milo Feb 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7489055 Jeong et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7491232 Bolduc et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7494460 Haarstad et al. Feb 2009 B2
7494499 Nagase et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7501198 Barlev et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7507202 Schoellhorn Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510534 Burdorif et al. Mar 2009 B2
7510566 Jacobs et al. Mar 2009 B2
7513407 Chang Apr 2009 B1
7513408 Shelton, IV et al. Apr 2009 B2
7517356 Heinrich Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7527632 Houghton et al. May 2009 B2
7530984 Sonnenschein et al. May 2009 B2
7530985 Takemoto et al. May 2009 B2
7533906 Luettgen et al. May 2009 B2
7534259 Lashinski et al. May 2009 B2
7540867 Jinno et al. Jun 2009 B2
7540872 Schechter et al. Jun 2009 B2
7542807 Bertolero et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547287 Boecker et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7549563 Mather et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7549998 Braun Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7553173 Kowalick Jun 2009 B2
7553275 Padget et al. Jun 2009 B2
7554343 Bromfield Jun 2009 B2
7556185 Viola Jul 2009 B2
7556186 Milliman Jul 2009 B2
7556647 Drews et al. Jul 2009 B2
7559449 Viola Jul 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7561637 Jonsson et al. Jul 2009 B2
7562910 Kertesz et al. Jul 2009 B2
7563269 Hashiguchi Jul 2009 B2
7563862 Sieg et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7566300 Devierre et al. Jul 2009 B2
7567045 Fristedt Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7568619 Todd et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7578825 Huebner Aug 2009 B2
D600712 LaManna et al. Sep 2009 S
7583063 Dooley Sep 2009 B2
7584880 Racenet et al. Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7591783 Boulais et al. Sep 2009 B2
7591818 Bertolero et al. Sep 2009 B2
7593766 Faber et al. Sep 2009 B2
7595642 Doyle Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7597230 Racenet et al. Oct 2009 B2
7597693 Garrison Oct 2009 B2
7597699 Rogers Oct 2009 B2
7598972 Tomita Oct 2009 B2
7600663 Green Oct 2009 B2
7604118 Iio et al. Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7604668 Farnsworth et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
D604325 Ebeling et al. Nov 2009 S
7611038 Racenet et al. Nov 2009 B2
7611474 Hibner et al. Nov 2009 B2
7615003 Stefanchik et al. Nov 2009 B2
7615006 Abe Nov 2009 B2
7615067 Lee et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
D605201 Lorenz et al. Dec 2009 S
D607010 Kocmick Dec 2009 S
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7625370 Hart et al. Dec 2009 B2
7630841 Comisky et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7631794 Rethy et al. Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7635922 Becker Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7638958 Philipp et al. Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641092 Kruszynski et al. Jan 2010 B2
7641093 Doll et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644783 Roberts et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645230 Mikkaichi et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7648457 Stefanchik et al. Jan 2010 B2
7648519 Lee et al. Jan 2010 B2
7650185 Maile et al. Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7651498 Shifrin et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655004 Long Feb 2010 B2
7655288 Bauman et al. Feb 2010 B2
7655584 Biran et al. Feb 2010 B2
7656131 Embrey et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7658705 Melvin et al. Feb 2010 B2
7659219 Biran et al. Feb 2010 B2
7661448 Kim et al. Feb 2010 B2
7662161 Briganti et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7674253 Fisher et al. Mar 2010 B2
7674255 Braun Mar 2010 B2
7674263 Ryan Mar 2010 B2
7674270 Layer Mar 2010 B2
7682307 Danitz et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7682686 Curro et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7691103 Fernandez et al. Apr 2010 B2
7691106 Schenberger et al. Apr 2010 B2
7694864 Okada et al. Apr 2010 B2
7694865 Scirica Apr 2010 B2
7695485 Whitman et al. Apr 2010 B2
7695493 Saadat et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7699835 Lee et al. Apr 2010 B2
7699844 Utley et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7699856 Van Wyk et al. Apr 2010 B2
7699859 Bombard et al. Apr 2010 B2
7699860 Huitema et al. Apr 2010 B2
7699868 Frank et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7705559 Powell et al. Apr 2010 B2
7708180 Murray et al. May 2010 B2
7708181 Cole et al. May 2010 B2
7708182 Viola May 2010 B2
7708758 Lee et al. May 2010 B2
7712182 Zeiler et al. May 2010 B2
7713190 Brock et al. May 2010 B2
7713542 Xu et al. May 2010 B2
7714239 Smith May 2010 B2
7714334 Lin May 2010 B2
7717312 Beetel May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7717846 Zirps et al. May 2010 B2
7717873 Swick May 2010 B2
7717915 Miyazawa May 2010 B2
7717926 Whitfield et al. May 2010 B2
7718180 Karp May 2010 B2
7718556 Matsuda et al. May 2010 B2
7721930 McKenna et al. May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721934 Shelton, IV et al. May 2010 B2
7721936 Shalton, IV et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
7722610 Viola et al. May 2010 B2
7725214 Diolaiti May 2010 B2
7726171 Langlotz et al. Jun 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7727954 McKay Jun 2010 B2
7728553 Carrier et al. Jun 2010 B2
7729742 Govari Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7731073 Wixey et al. Jun 2010 B2
7731724 Huitema et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7736254 Schena Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7742036 Grant et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744624 Bettuchi Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7744628 Viola Jun 2010 B2
7747146 Milano et al. Jun 2010 B2
7748587 Haramiishi et al. Jul 2010 B2
7748632 Coleman et al. Jul 2010 B2
7749204 Dhanaraj et al. Jul 2010 B2
7751870 Whitman Jul 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753246 Scirica Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7757924 Gerbi et al. Jul 2010 B2
7758594 Lamson et al. Jul 2010 B2
7758612 Shipp Jul 2010 B2
7762462 Gelbman Jul 2010 B2
7762998 Birk et al. Jul 2010 B2
7766207 Mather et al. Aug 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766821 Brunnen et al. Aug 2010 B2
7766894 Weitzner et al. Aug 2010 B2
7770658 Ito et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7770776 Chen et al. Aug 2010 B2
7771396 Stefanchik et al. Aug 2010 B2
7772720 McGee et al. Aug 2010 B2
7772725 Siman-Tov Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7776065 Griffiths et al. Aug 2010 B2
7778004 Nerheim et al. Aug 2010 B2
7779737 Newman, Jr. et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7780309 McMillan et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7780685 Hunt et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7787256 Chan et al. Aug 2010 B2
7789283 Shah Sep 2010 B2
7789875 Brock et al. Sep 2010 B2
7789883 Takashino et al. Sep 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7799044 Johnston et al. Sep 2010 B2
7799965 Patel et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7806871 Li et al. Oct 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810690 Bilotti et al. Oct 2010 B2
7810691 Boyden et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811275 Birk et al. Oct 2010 B2
7814816 Alberti et al. Oct 2010 B2
7815092 Whitman et al. Oct 2010 B2
7815565 Stefanchik et al. Oct 2010 B2
7815662 Spivey et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819799 Merril et al. Oct 2010 B2
7819884 Lee et al. Oct 2010 B2
7819886 Whitfield et al. Oct 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7824401 Manzo et al. Nov 2010 B2
7824422 Benchetrit Nov 2010 B2
7824426 Racenet et al. Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7828794 Sartor Nov 2010 B2
7828808 Hinman et al. Nov 2010 B2
7831292 Quaid et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7833234 Bailly et al. Nov 2010 B2
7835823 Sillman et al. Nov 2010 B2
7836400 May et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7837425 Saeki et al. Nov 2010 B2
7837685 Weinberg et al. Nov 2010 B2
7837687 Harp Nov 2010 B2
7837694 Tethrake et al. Nov 2010 B2
7838789 Stoffers et al. Nov 2010 B2
7839109 Carmen, Jr. et al. Nov 2010 B2
7841503 Sonnenschein et al. Nov 2010 B2
7842025 Coleman et al. Nov 2010 B2
7842028 Lee Nov 2010 B2
7843158 Prisco Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846085 Silverman et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7848066 Yanagishima Dec 2010 B2
7850623 Griffin et al. Dec 2010 B2
7850642 Moll et al. Dec 2010 B2
7850982 Stopek et al. Dec 2010 B2
7853813 Lee Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
7854736 Ryan Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7857813 Schmitz et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7862502 Pool et al. Jan 2011 B2
7862546 Conlon et al. Jan 2011 B2
7862579 Ortiz et al. Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7866528 Olson et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7871418 Thompson et al. Jan 2011 B2
7871440 Schwartz et al. Jan 2011 B2
7875055 Cichocki, Jr. Jan 2011 B2
7879063 Khosravi Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7883461 Albrecht et al. Feb 2011 B2
7883465 Donofrio et al. Feb 2011 B2
7886951 Hessler Feb 2011 B2
7886952 Scirica et al. Feb 2011 B2
7887530 Zemlok et al. Feb 2011 B2
7887535 Lands et al. Feb 2011 B2
7887536 Johnson et al. Feb 2011 B2
7887563 Cummins Feb 2011 B2
7891531 Ward Feb 2011 B1
7891532 Mastri et al. Feb 2011 B2
7892200 Birk et al. Feb 2011 B2
7892245 Liddicoat et al. Feb 2011 B2
7893586 West et al. Feb 2011 B2
7896214 Farascioni Mar 2011 B2
7896215 Adams et al. Mar 2011 B2
7896869 DiSilvestro et al. Mar 2011 B2
7896877 Hall et al. Mar 2011 B2
7896895 Boudreaux et al. Mar 2011 B2
7896897 Gresham et al. Mar 2011 B2
7898198 Murphree Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7900806 Chen et al. Mar 2011 B2
7901381 Birk et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7905889 Catanese, III et al. Mar 2011 B2
7905890 Whitfield et al. Mar 2011 B2
7905902 Huitema et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909191 Baker et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7909224 Prommersberger Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7913893 Mastri et al. Mar 2011 B2
7914521 Wang et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7914551 Ortiz et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918376 Knodel et al. Apr 2011 B1
7918377 Measamer et al. Apr 2011 B2
7918845 Saadat et al. Apr 2011 B2
7918848 Lau et al. Apr 2011 B2
7918861 Brock et al. Apr 2011 B2
7918867 Dana et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7923144 Kohn et al. Apr 2011 B2
7926691 Viola et al. Apr 2011 B2
7927328 Orszulak et al. Apr 2011 B2
7928281 Augustine Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7930065 Larkin et al. Apr 2011 B2
7931660 Aranyi et al. Apr 2011 B2
7931695 Ringeisen Apr 2011 B2
7931877 Steffens et al. Apr 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7934631 Balbierz et al. May 2011 B2
7934896 Schnier May 2011 B2
7935130 Williams May 2011 B2
7935773 Hadba et al. May 2011 B2
7936142 Otsuka et al. May 2011 B2
7938307 Bettuchi May 2011 B2
7941865 Seman, Jr. et al. May 2011 B2
7942303 Shah May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7944175 Mori et al. May 2011 B2
7945792 Cherpantier May 2011 B2
7945798 Carlson et al. May 2011 B2
7946453 Voegele et al. May 2011 B2
7947011 Birk et al. May 2011 B2
7950560 Zemlok et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951071 Whitman et al. May 2011 B2
7951166 Orban, III et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954684 Boudreaux Jun 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7955253 Ewers et al. Jun 2011 B2
7955257 Frasier et al. Jun 2011 B2
7955322 Devengenzo et al. Jun 2011 B2
7955327 Sailor et al. Jun 2011 B2
7955380 Chu et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7959052 Sonnenschein et al. Jun 2011 B2
7963432 Knodel et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7963913 Devengenzo et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7963964 Santilli et al. Jun 2011 B2
7964206 Suokas et al. Jun 2011 B2
7966236 Noriega et al. Jun 2011 B2
7966269 Bauer et al. Jun 2011 B2
7966799 Morgan et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7967791 Franer et al. Jun 2011 B2
7967839 Flock et al. Jun 2011 B2
7972298 Wallace et al. Jul 2011 B2
7972315 Birk et al. Jul 2011 B2
7976213 Bertolotti et al. Jul 2011 B2
7976563 Summerer Jul 2011 B2
7979137 Tracey et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981132 Dubrul et al. Jul 2011 B2
7987405 Turner et al. Jul 2011 B2
7988015 Mason, II et al. Aug 2011 B2
7988026 Knodel et al. Aug 2011 B2
7988027 Olson et al. Aug 2011 B2
7988028 Farascioni et al. Aug 2011 B2
7988779 Disalvo et al. Aug 2011 B2
7992757 Wheeler et al. Aug 2011 B2
7993360 Hacker et al. Aug 2011 B2
7994670 Ji Aug 2011 B2
7997054 Bertsch et al. Aug 2011 B2
7997468 Farascioni Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
8002696 Suzuki Aug 2011 B2
8002784 Jinno et al. Aug 2011 B2
8002785 Weiss et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006365 Levin et al. Aug 2011 B2
8006885 Marczyk Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8007370 Hirsch et al. Aug 2011 B2
8007465 Birk et al. Aug 2011 B2
8007479 Birk et al. Aug 2011 B2
8007511 Brock et al. Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8008598 Whitman et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8016176 Kasvikis et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016849 Wenchell Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8016881 Furst Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8021375 Aldrich et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8025896 Malaviya et al. Sep 2011 B2
8028882 Viola Oct 2011 B2
8028883 Stopek Oct 2011 B2
8028884 Sniffin et al. Oct 2011 B2
8028885 Smith et al. Oct 2011 B2
8029510 Hoegerle Oct 2011 B2
8031069 Cohn et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033439 Racenet et al. Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8034337 Simard Oct 2011 B2
8034363 Li et al. Oct 2011 B2
8035487 Malackowski Oct 2011 B2
8037591 Spivey et al. Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8038686 Huitema et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8043328 Hahnen et al. Oct 2011 B2
8044536 Nguyen et al. Oct 2011 B2
8044604 Hagino et al. Oct 2011 B2
8047236 Perry Nov 2011 B2
8048503 Farnsworth et al. Nov 2011 B2
8052636 Moll et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056789 White et al. Nov 2011 B1
8057508 Shelton, IV Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8060250 Reiland et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8061576 Cappola Nov 2011 B2
8062236 Soltz Nov 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8063619 Zhu et al. Nov 2011 B2
8066158 Vogel et al. Nov 2011 B2
8066166 Demmy et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066168 Vidal et al. Nov 2011 B2
8066720 Knodel et al. Nov 2011 B2
D650074 Hunt et al. Dec 2011 S
D650789 Arnold Dec 2011 S
8070033 Milliman et al. Dec 2011 B2
8070034 Knodel Dec 2011 B1
8070035 Holsten et al. Dec 2011 B2
8070743 Kagan et al. Dec 2011 B2
8074858 Marczyk Dec 2011 B2
8074861 Ehrenfels et al. Dec 2011 B2
8075476 Vargas Dec 2011 B2
8075571 Vitali et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8079989 Birk et al. Dec 2011 B2
8080004 Downey et al. Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8083119 Prommersberger Dec 2011 B2
8083120 Shelton, IV et al. Dec 2011 B2
8084001 Burns et al. Dec 2011 B2
8084969 David et al. Dec 2011 B2
8085013 Wei et al. Dec 2011 B2
8087562 Manoux et al. Jan 2012 B1
8087563 Milliman et al. Jan 2012 B2
8089509 Chatenever et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091756 Viola Jan 2012 B2
8092443 Bischoff Jan 2012 B2
8092932 Phillips et al. Jan 2012 B2
8093572 Kuduvalli Jan 2012 B2
8096458 Hessler Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8097017 Viola Jan 2012 B2
8100310 Zemlok Jan 2012 B2
8100824 Hegeman et al. Jan 2012 B2
8100872 Patel Jan 2012 B2
8102138 Sekine et al. Jan 2012 B2
8102278 Deck et al. Jan 2012 B2
8105350 Lee et al. Jan 2012 B2
8107925 Natsuno et al. Jan 2012 B2
8108033 Drew et al. Jan 2012 B2
8108072 Zhao et al. Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8110208 Hen Feb 2012 B1
8113405 Milliman Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8114017 Bacher Feb 2012 B2
8114100 Smith et al. Feb 2012 B2
8118206 Zand et al. Feb 2012 B2
8118207 Racenet et al. Feb 2012 B2
8120301 Goldberg et al. Feb 2012 B2
8122128 Burke, II et al. Feb 2012 B2
8123103 Milliman Feb 2012 B2
8123523 Carron et al. Feb 2012 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8125168 Johnson et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8127976 Scirica et al. Mar 2012 B2
8128624 Couture et al. Mar 2012 B2
8128643 Aranyi et al. Mar 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8128662 Altarac et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8132706 Marczyk et al. Mar 2012 B2
8133500 Ringeisen et al. Mar 2012 B2
8134306 Drader et al. Mar 2012 B2
8136711 Beardsley et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8136713 Hathaway et al. Mar 2012 B2
8137339 Jinno et al. Mar 2012 B2
8140417 Shibata Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8141763 Milliman Mar 2012 B2
8142200 Crunkilton et al. Mar 2012 B2
8142425 Eggers Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8142515 Therin et al. Mar 2012 B2
8143520 Cutler Mar 2012 B2
8146790 Milliman Apr 2012 B2
8147421 Farquhar et al. Apr 2012 B2
8147456 Fisher et al. Apr 2012 B2
8147485 Wham et al. Apr 2012 B2
8152041 Kostrzewski Apr 2012 B2
8152756 Webster et al. Apr 2012 B2
8154239 Katsuki et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157148 Scirica Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8157153 Shelton, IV et al. Apr 2012 B2
8157793 Omori et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162138 Bettenhausen et al. Apr 2012 B2
8162197 Mastri et al. Apr 2012 B2
8162668 Toly Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8162965 Reschke et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8167622 Zhou May 2012 B2
8167895 D'Agostino et al. May 2012 B2
8167898 Schaller et al. May 2012 B1
8170241 Roe et al. May 2012 B2
8172004 Ho May 2012 B2
8172120 Boyden et al. May 2012 B2
8172122 Kasvikis et al. May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8177776 Humayun et al. May 2012 B2
8177797 Shimoji et al. May 2012 B2
8179705 Chapuis May 2012 B2
8180458 Kane et al. May 2012 B2
8181839 Beetel May 2012 B2
8181840 Milliman May 2012 B2
8182422 Bayer et al. May 2012 B2
8182444 Uber, III et al. May 2012 B2
8183807 Tsai et al. May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186556 Viola May 2012 B2
8186558 Sapienza May 2012 B2
8186560 Hess et al. May 2012 B2
8191752 Scirica Jun 2012 B2
8192350 Ortiz et al. Jun 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8192651 Young et al. Jun 2012 B2
8193129 Tagawa et al. Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8197501 Shadeck et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8197837 Jamiolkowski et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8202549 Stucky et al. Jun 2012 B2
8205779 Ma et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8210415 Ward Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8210721 Chen et al. Jul 2012 B2
8211125 Spivey Jul 2012 B2
8214019 Govari et al. Jul 2012 B2
8215531 Shelton, IV et al. Jul 2012 B2
8215532 Marczyk Jul 2012 B2
8215533 Viola et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8221402 Francischelli et al. Jul 2012 B2
8221424 Cha Jul 2012 B2
8221433 Lozier et al. Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8226553 Shelton, IV et al. Jul 2012 B2
8226635 Petrie et al. Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8226715 Hwang et al. Jul 2012 B2
8227946 Kim Jul 2012 B2
8228020 Shin et al. Jul 2012 B2
8228048 Spencer Jul 2012 B2
8229549 Whitman et al. Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8235272 Nicholas et al. Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8236011 Harris et al. Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8237388 Jinno et al. Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241308 Kortenbach et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245594 Rogers et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245900 Scirica Aug 2012 B2
8245901 Stopek Aug 2012 B2
8246608 Omori et al. Aug 2012 B2
8246637 Viola et al. Aug 2012 B2
8252009 Weller et al. Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8256656 Milliman et al. Sep 2012 B2
8257251 Shelton, IV et al. Sep 2012 B2
8257356 Bleich et al. Sep 2012 B2
8257386 Lee et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8257634 Scirica Sep 2012 B2
8258745 Smith et al. Sep 2012 B2
8261958 Knodel Sep 2012 B1
8262560 Whitman Sep 2012 B2
8262655 Ghabrial et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267924 Zemlok et al. Sep 2012 B2
8267946 Whitfield et al. Sep 2012 B2
8267951 Whayne et al. Sep 2012 B2
8269121 Smith Sep 2012 B2
8272553 Mastri et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8272918 Lam Sep 2012 B2
8273404 Dave et al. Sep 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8276802 Kostrzewski Oct 2012 B2
8277473 Sunaoshi et al. Oct 2012 B2
8281446 Moskovich Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8281974 Hessler et al. Oct 2012 B2
8282654 Ferrari et al. Oct 2012 B2
8285367 Hyde et al. Oct 2012 B2
8286723 Puzio et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8286847 Taylor Oct 2012 B2
8287487 Estes Oct 2012 B2
8287522 Moses et al. Oct 2012 B2
8287561 Nunez et al. Oct 2012 B2
8288984 Yang Oct 2012 B2
8289403 Dobashi et al. Oct 2012 B2
8292147 Viola Oct 2012 B2
8292148 Viola Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8292157 Smith et al. Oct 2012 B2
8292158 Sapienza Oct 2012 B2
8292801 Dejima et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8294399 Suzuki et al. Oct 2012 B2
8298161 Vargas Oct 2012 B2
8298189 Fisher et al. Oct 2012 B2
8298233 Mueller Oct 2012 B2
8298677 Wiesner et al. Oct 2012 B2
8302323 Fortier et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8308041 Kostrzewski Nov 2012 B2
8308042 Aranyi Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8308659 Scheibe et al. Nov 2012 B2
8308725 Bell et al. Nov 2012 B2
8310188 Nakai Nov 2012 B2
8313496 Sauer et al. Nov 2012 B2
8313499 Magnusson et al. Nov 2012 B2
8313509 Kostrzewski Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8317071 Knodel Nov 2012 B1
8317074 Ortiz et al. Nov 2012 B2
8317437 Merkley et al. Nov 2012 B2
8317744 Kirschenman Nov 2012 B2
8317790 Bell et al. Nov 2012 B2
8319002 Daniels et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8322590 Patel et al. Dec 2012 B2
8322901 Michelotti Dec 2012 B2
8323789 Rozhin et al. Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8328064 Racenet et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328823 Aranyi et al. Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8333691 Schaaf Dec 2012 B2
8333764 Francischelli et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8336753 Olson et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8343150 Artale Jan 2013 B2
8347978 Forster et al. Jan 2013 B2
8348118 Segura Jan 2013 B2
8348123 Scirica et al. Jan 2013 B2
8348124 Scirica Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348126 Olson et al. Jan 2013 B2
8348127 Marczyk Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8348837 Wenchell Jan 2013 B2
8348959 Wolford et al. Jan 2013 B2
8348972 Soltz et al. Jan 2013 B2
8349987 Kapiamba et al. Jan 2013 B2
8352004 Mannheimer et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8356740 Knodel Jan 2013 B1
8357144 Whitman et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8357161 Mueller Jan 2013 B2
8359174 Nakashima et al. Jan 2013 B2
8360296 Zingman Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360298 Farascioni et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8361501 DiTizio et al. Jan 2013 B2
D676866 Chaudhri Feb 2013 S
8365972 Aranyi et al. Feb 2013 B2
8365973 White et al. Feb 2013 B1
8365975 Manoux et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8366559 Papenfuss et al. Feb 2013 B2
8366719 Markey et al. Feb 2013 B2
8366787 Brown et al. Feb 2013 B2
8369056 Senriuchi et al. Feb 2013 B2
8371393 Higuchi et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8371494 Racenet et al. Feb 2013 B2
8372094 Bettuchi et al. Feb 2013 B2
8376865 Forster et al. Feb 2013 B2
8377029 Nagao et al. Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8382773 Whitfield et al. Feb 2013 B2
8382790 Uenohara et al. Feb 2013 B2
D677273 Randall et al. Mar 2013 S
8387848 Johnson et al. Mar 2013 B2
8388633 Rousseau et al. Mar 2013 B2
8389588 Ringeisen et al. Mar 2013 B2
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393516 Kostrzewski Mar 2013 B2
8397832 Blickle et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8397973 Hausen Mar 2013 B1
8398633 Mueller Mar 2013 B2
8398669 Kim Mar 2013 B2
8398673 Hinchliffe et al. Mar 2013 B2
8398674 Prestel Mar 2013 B2
8400851 Byun Mar 2013 B2
8403138 Weisshaupt et al. Mar 2013 B2
8403196 Beardsley et al. Mar 2013 B2
8403198 Sorrentino et al. Mar 2013 B2
8403832 Cunningham et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403946 Whitfield et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8408439 Huang et al. Apr 2013 B2
8408442 Racenet et al. Apr 2013 B2
8409079 Okamoto et al. Apr 2013 B2
8409174 Omori Apr 2013 B2
8409175 Lee et al. Apr 2013 B2
8409222 Whitfield et al. Apr 2013 B2
8409223 Sorrentino et al. Apr 2013 B2
8411500 Gapihan et al. Apr 2013 B2
8413661 Rousseau et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8414598 Brock et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418907 Johnson et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8418909 Kostrzewski Apr 2013 B2
8419635 Shelton, IV et al. Apr 2013 B2
8419717 Diolaiti et al. Apr 2013 B2
8419747 Hinman et al. Apr 2013 B2
8419754 Laby et al. Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8424737 Scirica Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8425600 Maxwell Apr 2013 B2
8427430 Lee et al. Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8430892 Bindra et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439246 Knodel May 2013 B1
8444036 Shelton, IV May 2013 B2
8444037 Nicholas et al. May 2013 B2
8444549 Viola et al. May 2013 B2
8449536 Selig May 2013 B2
8449560 Roth et al. May 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453906 Huang et al. Jun 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8454495 Kawano et al. Jun 2013 B2
8454551 Allen et al. Jun 2013 B2
8454628 Smith et al. Jun 2013 B2
8454640 Johnston et al. Jun 2013 B2
8457757 Cauller et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459521 Zemlok et al. Jun 2013 B2
8459524 Pribanic et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8464924 Gresham et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8465475 Isbell, Jr. Jun 2013 B2
8465502 Zergiebel Jun 2013 B2
8465515 Drew et al. Jun 2013 B2
8469254 Czernik et al. Jun 2013 B2
8469946 Sugita Jun 2013 B2
8469973 Meade et al. Jun 2013 B2
8470355 Skalla et al. Jun 2013 B2
D686240 Lin Jul 2013 S
8474677 Woodard, Jr. et al. Jul 2013 B2
8475453 Marczyk et al. Jul 2013 B2
8475454 Alshemari Jul 2013 B1
8475474 Bombard et al. Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8483509 Matsuzaka Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8487199 Palmer et al. Jul 2013 B2
8487487 Dietz et al. Jul 2013 B2
8490851 Blier et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8491581 Deville et al. Jul 2013 B2
8491603 Yeung et al. Jul 2013 B2
8496153 Demmy et al. Jul 2013 B2
8496154 Marczyk et al. Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8499992 Whitman et al. Aug 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8500721 Jinno Aug 2013 B2
8500762 Sholev et al. Aug 2013 B2
8502091 Palmer et al. Aug 2013 B2
8505799 Viola et al. Aug 2013 B2
8505801 Ehrenfels et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8506557 Zemlok et al. Aug 2013 B2
8506580 Zergiebel et al. Aug 2013 B2
8506581 Wingardner, III et al. Aug 2013 B2
8511308 Hecox et al. Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8517239 Scheib et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8518024 Williams et al. Aug 2013 B2
8521273 Kliman Aug 2013 B2
8523042 Masiakos et al. Sep 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8523881 Cabiri et al. Sep 2013 B2
8523900 Jinno et al. Sep 2013 B2
8529588 Ahlberg et al. Sep 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8529819 Ostapoff et al. Sep 2013 B2
8532747 Nock et al. Sep 2013 B2
8534527 Brendel et al. Sep 2013 B2
8534528 Shelton, IV Sep 2013 B2
8535304 Sklar et al. Sep 2013 B2
8535340 Allen Sep 2013 B2
8539866 Nayak et al. Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540133 Bedi et al. Sep 2013 B2
8540733 Whitman et al. Sep 2013 B2
8540735 Mitelberg et al. Sep 2013 B2
8550984 Takemoto Oct 2013 B2
8551076 Duval et al. Oct 2013 B2
8555660 Takenaka et al. Oct 2013 B2
8556151 Viola Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8556935 Knodel et al. Oct 2013 B1
8560147 Taylor et al. Oct 2013 B2
8561617 Lindh et al. Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8568416 Schmitz et al. Oct 2013 B2
8568425 Ross et al. Oct 2013 B2
D692916 Granchi et al. Nov 2013 S
8573459 Smith et al. Nov 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573462 Smith et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574199 von Bulow et al. Nov 2013 B2
8574263 Mueller Nov 2013 B2
8575880 Grantz Nov 2013 B2
8575895 Garrastacho et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579178 Holsten et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8584921 Scirica Nov 2013 B2
8585583 Sakaguchi et al. Nov 2013 B2
8585721 Kirsch Nov 2013 B2
8590760 Cummins et al. Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8590764 Hartwick et al. Nov 2013 B2
8596515 Okoniewski Dec 2013 B2
8597745 Farnsworth et al. Dec 2013 B2
8599450 Kubo et al. Dec 2013 B2
8602287 Yates et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8603089 Viola Dec 2013 B2
8603110 Maruyama et al. Dec 2013 B2
8603135 Mueller Dec 2013 B2
8608043 Scirica Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8622275 Baxter, III et al. Jan 2014 B2
8627993 Smith et al. Jan 2014 B2
8627994 Zemlok et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8628518 Blumenkranz et al. Jan 2014 B2
8628544 Farascioni Jan 2014 B2
8628545 Cabrera et al. Jan 2014 B2
8631987 Shelton, IV et al. Jan 2014 B2
8631992 Hausen et al. Jan 2014 B1
8631993 Kostrzewski Jan 2014 B2
8632462 Yoo et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8632539 Twomey et al. Jan 2014 B2
8632563 Nagase et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636190 Zemlok et al. Jan 2014 B2
8636191 Meagher Jan 2014 B2
8636193 Whitman et al. Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8639936 Hu et al. Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8646674 Schulte et al. Feb 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652151 Lehman et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657175 Sonnenschein et al. Feb 2014 B2
8657176 Shelton, IV et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8657482 Malackowski et al. Feb 2014 B2
8657808 McPherson et al. Feb 2014 B2
8657814 Werneth et al. Feb 2014 B2
8657821 Palermo Feb 2014 B2
D701238 Lai et al. Mar 2014 S
8662370 Takei Mar 2014 B2
8663106 Stivoric et al. Mar 2014 B2
8663192 Hester et al. Mar 2014 B2
8663245 Francischelli et al. Mar 2014 B2
8663262 Smith et al. Mar 2014 B2
8663270 Donnigan et al. Mar 2014 B2
8664792 Rebsdorf Mar 2014 B2
8668129 Olson Mar 2014 B2
8668130 Hess et al. Mar 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8672207 Shelton, IV et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8672922 Loh et al. Mar 2014 B2
8672935 Okada et al. Mar 2014 B2
8672951 Smith et al. Mar 2014 B2
8673210 Deshays Mar 2014 B2
8675820 Baic et al. Mar 2014 B2
8678263 Viola Mar 2014 B2
8678994 Sonnenschein et al. Mar 2014 B2
8679093 Farra Mar 2014 B2
8679098 Hart Mar 2014 B2
8679137 Bauman et al. Mar 2014 B2
8679154 Smith et al. Mar 2014 B2
8679156 Smith et al. Mar 2014 B2
8679454 Guire et al. Mar 2014 B2
8684248 Milliman Apr 2014 B2
8684249 Racenet et al. Apr 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684253 Giordano et al. Apr 2014 B2
8684962 Kirschenman et al. Apr 2014 B2
8685004 Zemlock et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8690893 Deitch et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8701959 Shah Apr 2014 B2
8708210 Zemlok et al. Apr 2014 B2
8708211 Zemlok et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8714352 Farascioni et al. May 2014 B2
8714429 Demmy May 2014 B2
8714430 Natarajan et al. May 2014 B2
8715256 Greener May 2014 B2
8715302 Ibrahim et al. May 2014 B2
8720766 Hess et al. May 2014 B2
8721630 Ortiz et al. May 2014 B2
8721666 Schroeder et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727199 Wenchell May 2014 B2
8727200 Roy May 2014 B2
8727961 Ziv May 2014 B2
8728099 Cohn et al. May 2014 B2
8728119 Cummins May 2014 B2
8733470 Matthias et al. May 2014 B2
8733612 Ma May 2014 B2
8733613 Huitema et al. May 2014 B2
8733614 Ross et al. May 2014 B2
8734336 Bonadio et al. May 2014 B2
8734359 Ibanez et al. May 2014 B2
8734478 Widenhouse et al. May 2014 B2
8734831 Kim et al. May 2014 B2
8739033 Rosenberg May 2014 B2
8739417 Tokunaga et al. Jun 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740037 Shelton, IV et al. Jun 2014 B2
8740038 Shelton, IV et al. Jun 2014 B2
8740987 Geremakis et al. Jun 2014 B2
8746529 Shelton, IV et al. Jun 2014 B2
8746530 Giordano et al. Jun 2014 B2
8746533 Whitman et al. Jun 2014 B2
8746535 Shelton, IV et al. Jun 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747441 Konieczynski et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752699 Morgan et al. Jun 2014 B2
8752747 Shelton, IV et al. Jun 2014 B2
8752748 Whitman et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753664 Dao et al. Jun 2014 B2
8757287 Mak et al. Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8758235 Jaworek Jun 2014 B2
8758366 McLean et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8758438 Boyce et al. Jun 2014 B2
8763875 Morgan et al. Jul 2014 B2
8763877 Schall et al. Jul 2014 B2
8763879 Shelton, IV et al. Jul 2014 B2
8764732 Hartwell Jul 2014 B2
8770458 Scirica Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8770460 Belzer Jul 2014 B2
8771169 Whitman et al. Jul 2014 B2
8771260 Conlon et al. Jul 2014 B2
8777004 Shelton, IV et al. Jul 2014 B2
8777082 Scirica Jul 2014 B2
8777083 Racenet et al. Jul 2014 B2
8777898 Suon et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8783542 Riestenberg et al. Jul 2014 B2
8783543 Shelton, IV et al. Jul 2014 B2
8784304 Mikkaichi et al. Jul 2014 B2
8784404 Doyle et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8789739 Swensgard Jul 2014 B2
8789740 Baxter, III et al. Jul 2014 B2
8789741 Baxter, III et al. Jul 2014 B2
8790658 Cigarini et al. Jul 2014 B2
8790684 Dave et al. Jul 2014 B2
D711905 Morrison et al. Aug 2014 S
8794496 Scirica Aug 2014 B2
8794497 Zingman Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795308 Valin Aug 2014 B2
8795324 Kawai et al. Aug 2014 B2
8796995 Cunanan et al. Aug 2014 B2
8800681 Rousson et al. Aug 2014 B2
8800837 Zemlok Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800839 Beetel Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8801710 Ullrich et al. Aug 2014 B2
8801734 Shelton, IV et al. Aug 2014 B2
8801735 Shelton, IV et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8801801 Datta et al. Aug 2014 B2
8806973 Ross et al. Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8808161 Gregg et al. Aug 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8808274 Hartwell Aug 2014 B2
8808294 Fox et al. Aug 2014 B2
8808308 Boukhny et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8808325 Hess et al. Aug 2014 B2
8810197 Juergens Aug 2014 B2
8811017 Fujii et al. Aug 2014 B2
8813866 Suzuki Aug 2014 B2
8814024 Woodard, Jr. et al. Aug 2014 B2
8814025 Miller et al. Aug 2014 B2
8814836 Ignon et al. Aug 2014 B2
8815594 Harris et al. Aug 2014 B2
8818523 Olson et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820605 Shelton, IV Sep 2014 B2
8820606 Hodgkinson Sep 2014 B2
8820607 Marczyk Sep 2014 B2
8820608 Miyamoto Sep 2014 B2
8821514 Aranyi Sep 2014 B2
8822934 Sayeh et al. Sep 2014 B2
8825164 Tweden et al. Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8827134 Viola et al. Sep 2014 B2
8827903 Shelton, IV et al. Sep 2014 B2
8833219 Pierce Sep 2014 B2
8833630 Milliman Sep 2014 B2
8833632 Swensgard Sep 2014 B2
8834353 Dejima et al. Sep 2014 B2
8834498 Byrum et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8840603 Shelton, IV et al. Sep 2014 B2
8840609 Stuebe Sep 2014 B2
8840876 Eemeta et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8844790 Demmy et al. Sep 2014 B2
8851215 Goto Oct 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852174 Burbank Oct 2014 B2
8852185 Twomey Oct 2014 B2
8852199 Deslauriers et al. Oct 2014 B2
8852218 Hughett, Sr. et al. Oct 2014 B2
8857693 Schuckmann et al. Oct 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8858538 Belson et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8858590 Shelton, IV et al. Oct 2014 B2
8864007 Widenhouse et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8864010 Williams Oct 2014 B2
8870050 Hodgkinson Oct 2014 B2
8870867 Walberg et al. Oct 2014 B2
8870912 Brisson et al. Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8876857 Burbank Nov 2014 B2
8876858 Braun Nov 2014 B2
8887979 Mastri et al. Nov 2014 B2
8888688 Julian et al. Nov 2014 B2
8888695 Piskun et al. Nov 2014 B2
8888792 Harris et al. Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8893949 Shelton, IV et al. Nov 2014 B2
8894647 Beardsley et al. Nov 2014 B2
8894654 Anderson Nov 2014 B2
8899460 Wojcicki Dec 2014 B2
8899461 Farascioni Dec 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8899463 Schall et al. Dec 2014 B2
8899464 Hueil et al. Dec 2014 B2
8899465 Shelton, IV et al. Dec 2014 B2
8899466 Baxter, III et al. Dec 2014 B2
8900267 Woolfson et al. Dec 2014 B2
8905287 Racenet et al. Dec 2014 B2
8905977 Shelton et al. Dec 2014 B2
8910846 Viola Dec 2014 B2
8911426 Coppeta et al. Dec 2014 B2
8911448 Stein Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8911471 Spivey et al. Dec 2014 B2
8920433 Barrier et al. Dec 2014 B2
8920435 Smith et al. Dec 2014 B2
8920438 Aranyi et al. Dec 2014 B2
8920443 Hiles et al. Dec 2014 B2
8920444 Hiles et al. Dec 2014 B2
8922163 Macdonald Dec 2014 B2
8925782 Shelton, IV Jan 2015 B2
8925783 Zemlok et al. Jan 2015 B2
8925788 Hess et al. Jan 2015 B2
8926506 Widenhouse et al. Jan 2015 B2
8926598 Mollere et al. Jan 2015 B2
8931576 Iwata Jan 2015 B2
8931679 Kostrzewski Jan 2015 B2
8931680 Milliman Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939343 Milliman et al. Jan 2015 B2
8939344 Olson et al. Jan 2015 B2
8945163 Voegele et al. Feb 2015 B2
8955732 Zemlok et al. Feb 2015 B2
8956342 Russo et al. Feb 2015 B1
8956390 Shah et al. Feb 2015 B2
8958860 Banerjee et al. Feb 2015 B2
8960519 Whitman et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8960521 Kostrzewski Feb 2015 B2
8961191 Hanshew Feb 2015 B2
8961504 Hoarau et al. Feb 2015 B2
8963714 Medhal et al. Feb 2015 B2
D725674 Jung et al. Mar 2015 S
8967443 McCuen Mar 2015 B2
8967444 Beetel Mar 2015 B2
8967446 Beardsley et al. Mar 2015 B2
8967448 Carter et al. Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968308 Horner et al. Mar 2015 B2
8968312 Marczyk et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8968340 Chowaniec et al. Mar 2015 B2
8968355 Malkowski et al. Mar 2015 B2
8968358 Reschke Mar 2015 B2
8970507 Holbein et al. Mar 2015 B2
8973803 Hall et al. Mar 2015 B2
8973804 Hess et al. Mar 2015 B2
8973805 Scirica et al. Mar 2015 B2
8974440 Farritor et al. Mar 2015 B2
8974542 Fujimoto et al. Mar 2015 B2
8974932 McGahan et al. Mar 2015 B2
8978954 Shelton, IV et al. Mar 2015 B2
8978955 Aronhalt et al. Mar 2015 B2
8978956 Schall et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8982195 Claus et al. Mar 2015 B2
8985429 Balek et al. Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8991676 Hess et al. Mar 2015 B2
8991677 Moore et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992042 Eichenholz Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992565 Brisson et al. Mar 2015 B2
8996165 Wang et al. Mar 2015 B2
8998058 Moore et al. Apr 2015 B2
8998059 Smith et al. Apr 2015 B2
8998060 Bruewer et al. Apr 2015 B2
8998061 Williams et al. Apr 2015 B2
8998939 Price et al. Apr 2015 B2
9000720 Stulen et al. Apr 2015 B2
9002518 Manzo et al. Apr 2015 B2
9004339 Park Apr 2015 B1
9005230 Yates et al. Apr 2015 B2
9005238 DeSantis et al. Apr 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010611 Ross et al. Apr 2015 B2
9011439 Shalaby et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9016539 Kostrzewski et al. Apr 2015 B2
9016540 Whitman et al. Apr 2015 B2
9016541 Viola et al. Apr 2015 B2
9016542 Shelton, IV et al. Apr 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9017331 Fox Apr 2015 B2
9017355 Smith et al. Apr 2015 B2
9017369 Renger et al. Apr 2015 B2
9017371 Whitman et al. Apr 2015 B2
9021684 Lenker et al. May 2015 B2
9023014 Chowaniec et al. May 2015 B2
9023069 Kasvikis et al. May 2015 B2
9023071 Miller et al. May 2015 B2
9026347 Gadh et al. May 2015 B2
9027817 Milliman et al. May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028495 Mueller et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9030169 Christensen et al. May 2015 B2
9033203 Woodard, Jr. et al. May 2015 B2
9033204 Shelton, IV et al. May 2015 B2
9034505 Detry et al. May 2015 B2
9038881 Schaller et al. May 2015 B1
9039690 Kersten et al. May 2015 B2
9039694 Ross et al. May 2015 B2
9039720 Madan May 2015 B2
9043027 Durant et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044228 Woodard, Jr. et al. Jun 2015 B2
9044229 Scheib et al. Jun 2015 B2
9044230 Morgan et al. Jun 2015 B2
9044241 Barner et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9044281 Pool et al. Jun 2015 B2
9050083 Yates et al. Jun 2015 B2
9050084 Schmid et al. Jun 2015 B2
9050100 Yates et al. Jun 2015 B2
9050120 Swarup et al. Jun 2015 B2
9050123 Krause et al. Jun 2015 B2
9050176 Datta et al. Jun 2015 B2
9050192 Mansmann Jun 2015 B2
9055941 Schmid et al. Jun 2015 B2
9055942 Balbierz et al. Jun 2015 B2
9055943 Zemlok et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9060794 Kang et al. Jun 2015 B2
9060894 Wubbeling Jun 2015 B2
9061392 Forgues et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9072523 Houser et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9078653 Leimbach et al. Jul 2015 B2
9084601 Moore et al. Jul 2015 B2
9084602 Gleiman Jul 2015 B2
9086875 Harrat et al. Jul 2015 B2
9089326 Krumanaker et al. Jul 2015 B2
9089330 Widenhouse et al. Jul 2015 B2
9089352 Jeong Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9091588 Lefler Jul 2015 B2
D736792 Brinda et al. Aug 2015 S
9095339 Moore et al. Aug 2015 B2
9095346 Houser et al. Aug 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9096033 Holop et al. Aug 2015 B2
9099863 Smith et al. Aug 2015 B2
9099877 Banos et al. Aug 2015 B2
9101358 Kerr et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9101475 Wei et al. Aug 2015 B2
9107663 Swensgard Aug 2015 B2
9107690 Bales, Jr. et al. Aug 2015 B2
9110587 Kim et al. Aug 2015 B2
9113862 Morgan et al. Aug 2015 B2
9113864 Morgan et al. Aug 2015 B2
9113865 Shelton, IV et al. Aug 2015 B2
9113868 Felder et al. Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113874 Shelton, IV et al. Aug 2015 B2
9113876 Zemlok et al. Aug 2015 B2
9113879 Felder et al. Aug 2015 B2
9113880 Zemlok et al. Aug 2015 B2
9113881 Scirica Aug 2015 B2
9113883 Aronhalt et al. Aug 2015 B2
9113884 Shelton, IV et al. Aug 2015 B2
9113887 Behnke, II et al. Aug 2015 B2
9119615 Felder et al. Sep 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119898 Bayon et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9123286 Park Sep 2015 B2
9124097 Cruz Sep 2015 B2
9125654 Aronhalt et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9126317 Lawton et al. Sep 2015 B2
9131835 Widenhouse et al. Sep 2015 B2
9131940 Huitema et al. Sep 2015 B2
9131950 Matthew Sep 2015 B2
9131957 Skarbnik et al. Sep 2015 B2
9138225 Huang et al. Sep 2015 B2
9138226 Racenet et al. Sep 2015 B2
9144455 Kennedy et al. Sep 2015 B2
D741882 Shmilov et al. Oct 2015 S
9149274 Spivey et al. Oct 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9153994 Wood et al. Oct 2015 B2
9161753 Prior Oct 2015 B2
9161769 Stoddard et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9161807 Garrison Oct 2015 B2
9168038 Shelton, IV et al. Oct 2015 B2
9168039 Knodel Oct 2015 B1
9168042 Milliman Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168144 Rivin et al. Oct 2015 B2
9179911 Morgan et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9180223 Yu et al. Nov 2015 B2
9182244 Luke et al. Nov 2015 B2
9186046 Ramamurthy et al. Nov 2015 B2
9186137 Farascioni et al. Nov 2015 B2
9186140 Hiles et al. Nov 2015 B2
9186142 Fanelli et al. Nov 2015 B2
9186143 Timm et al. Nov 2015 B2
9186148 Felder et al. Nov 2015 B2
9186221 Burbank Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9192430 Rachlin et al. Nov 2015 B2
9192434 Twomey et al. Nov 2015 B2
9193045 Saur et al. Nov 2015 B2
9197079 Yip et al. Nov 2015 B2
D744528 Agrawal Dec 2015 S
9198642 Storz Dec 2015 B2
9198644 Balek et al. Dec 2015 B2
9198661 Swensgard Dec 2015 B2
9198662 Barton et al. Dec 2015 B2
9198683 Friedman et al. Dec 2015 B2
9204830 Zand et al. Dec 2015 B2
9204877 Whitman et al. Dec 2015 B2
9204878 Hall et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204880 Baxter, III et al. Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9204924 Marczyk et al. Dec 2015 B2
9211120 Scheib et al. Dec 2015 B2
9211121 Hall et al. Dec 2015 B2
9211122 Hagerty et al. Dec 2015 B2
9216013 Scirica et al. Dec 2015 B2
9216019 Schmid et al. Dec 2015 B2
9216020 Zhang et al. Dec 2015 B2
9216030 Fan et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9220500 Swayze et al. Dec 2015 B2
9220501 Baxter, III et al. Dec 2015 B2
9220502 Zemlok et al. Dec 2015 B2
9220508 Dannaher Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9220570 Kim et al. Dec 2015 B2
D746854 Shardlow et al. Jan 2016 S
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226754 D'Agostino et al. Jan 2016 B2
9226761 Burbank Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232941 Mandakolathur Vasudevan et al. Jan 2016 B2
9232945 Zingman Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9233610 Kim et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9237892 Hodgkinson Jan 2016 B2
9237895 McCarthy et al. Jan 2016 B2
9237900 Boudreaux et al. Jan 2016 B2
9237921 Messerly et al. Jan 2016 B2
9239064 Helbig et al. Jan 2016 B2
9240740 Zeng et al. Jan 2016 B2
9241711 Ivanko Jan 2016 B2
9241712 Zemlok et al. Jan 2016 B2
9241714 Timm et al. Jan 2016 B2
9241716 Whitman Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9244524 Inoue et al. Jan 2016 B2
D748668 Kim et al. Feb 2016 S
D749623 Gray et al. Feb 2016 S
D750122 Shardlow et al. Feb 2016 S
D750129 Kwon Feb 2016 S
9254131 Soltz et al. Feb 2016 B2
9259274 Prisco Feb 2016 B2
9259275 Burbank Feb 2016 B2
9261172 Solomon et al. Feb 2016 B2
9265500 Sorrentino et al. Feb 2016 B2
9265516 Casey et al. Feb 2016 B2
9265585 Wingardner et al. Feb 2016 B2
9271718 Milad et al. Mar 2016 B2
9271727 McGuckin, Jr. et al. Mar 2016 B2
9271753 Butler et al. Mar 2016 B2
9271799 Shelton, IV et al. Mar 2016 B2
9272406 Aronhalt et al. Mar 2016 B2
9274095 Humayun et al. Mar 2016 B2
9277919 Timmer et al. Mar 2016 B2
9277922 Carter et al. Mar 2016 B2
9282962 Schmid et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9282966 Shelton, IV et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283028 Johnson Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9283054 Morgan et al. Mar 2016 B2
9289206 Hess et al. Mar 2016 B2
9289207 Shelton, IV Mar 2016 B2
9289210 Baxter, III et al. Mar 2016 B2
9289211 Williams et al. Mar 2016 B2
9289212 Shelton, IV et al. Mar 2016 B2
9289225 Shelton, IV et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9293757 Toussaint et al. Mar 2016 B2
9295464 Shelton, IV et al. Mar 2016 B2
9295465 Farascioni Mar 2016 B2
9295466 Hodgkinson et al. Mar 2016 B2
9295467 Scirica Mar 2016 B2
9295468 Heinrich et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9295565 McLean Mar 2016 B2
9295784 Eggert et al. Mar 2016 B2
9301691 Hufnagel et al. Apr 2016 B2
9301752 Mandakolathur Vasudevan et al. Apr 2016 B2
9301753 Aldridge et al. Apr 2016 B2
9301755 Shelton, IV et al. Apr 2016 B2
9301759 Spivey et al. Apr 2016 B2
9307965 Ming et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9307987 Swensgard et al. Apr 2016 B2
9307988 Shelton, IV Apr 2016 B2
9307989 Shelton, IV et al. Apr 2016 B2
9307994 Gresham et al. Apr 2016 B2
9308009 Madan et al. Apr 2016 B2
9308011 Chao et al. Apr 2016 B2
9308646 Lim et al. Apr 2016 B2
9313915 Niu et al. Apr 2016 B2
9314246 Shelton, IV et al. Apr 2016 B2
9314247 Shelton, IV et al. Apr 2016 B2
9314261 Bales, Jr. et al. Apr 2016 B2
9314339 Mansmann Apr 2016 B2
9314908 Tanimoto et al. Apr 2016 B2
9320518 Henderson et al. Apr 2016 B2
9320520 Shelton, IV et al. Apr 2016 B2
9320521 Shelton, IV et al. Apr 2016 B2
9320523 Shelton, IV et al. Apr 2016 B2
9325516 Pera et al. Apr 2016 B2
D755196 Meyers et al. May 2016 S
D756373 Raskin et al. May 2016 S
D756377 Connolly et al. May 2016 S
D757028 Goldenberg et al. May 2016 S
9326767 Koch, Jr. et al. May 2016 B2
9326768 Shelton, IV May 2016 B2
9326769 Shelton, IV et al. May 2016 B2
9326770 Shelton, IV et al. May 2016 B2
9326771 Baxter, III et al. May 2016 B2
9326788 Batross et al. May 2016 B2
9326812 Waaler et al. May 2016 B2
9327061 Govil et al. May 2016 B2
9331721 Martinez Nuevo et al. May 2016 B2
9332890 Ozawa May 2016 B2
9332974 Henderson et al. May 2016 B2
9332984 Weaner et al. May 2016 B2
9332987 Leimbach et al. May 2016 B2
9333040 Shellenberger et al. May 2016 B2
9333082 Wei et al. May 2016 B2
9337668 Yip May 2016 B2
9339226 van der Walt et al. May 2016 B2
9345477 Anim et al. May 2016 B2
9345479 (Tarinelli) Racenet et al. May 2016 B2
9345480 Hessler et al. May 2016 B2
9345481 Hall et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351727 Leimbach et al. May 2016 B2
9351728 Sniffin et al. May 2016 B2
9351730 Schmid et al. May 2016 B2
9351731 Carter et al. May 2016 B2
9351732 Hodgkinson May 2016 B2
D758433 Lee et al. Jun 2016 S
D759063 Chen Jun 2016 S
9358003 Hall et al. Jun 2016 B2
9358005 Shelton, IV et al. Jun 2016 B2
9358015 Sorrentino et al. Jun 2016 B2
9358031 Manzo Jun 2016 B2
9364217 Kostrzewski et al. Jun 2016 B2
9364219 Olson et al. Jun 2016 B2
9364220 Williams Jun 2016 B2
9364226 Zemlok et al. Jun 2016 B2
9364229 D'Agostino et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9364231 Wenchell Jun 2016 B2
9364233 Alexander, III et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9368991 Qahouq Jun 2016 B2
9370341 Ceniccola et al. Jun 2016 B2
9370358 Shelton, IV et al. Jun 2016 B2
9370364 Smith et al. Jun 2016 B2
9375206 Vidal et al. Jun 2016 B2
9375218 Wheeler et al. Jun 2016 B2
9375230 Ross et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375255 Houser et al. Jun 2016 B2
D761309 Lee et al. Jul 2016 S
9381058 Houser et al. Jul 2016 B2
9383881 Day et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9386984 Aronhalt et al. Jul 2016 B2
9386985 Koch, Jr. et al. Jul 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9387003 Kaercher et al. Jul 2016 B2
9393015 Laurent et al. Jul 2016 B2
9393017 Flanagan et al. Jul 2016 B2
9393018 Wang et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
D763277 Ahmed et al. Aug 2016 S
D764498 Capela et al. Aug 2016 S
9402604 Williams et al. Aug 2016 B2
9402625 Coleman et al. Aug 2016 B2
9402626 Ortiz et al. Aug 2016 B2
9402627 Stevenson et al. Aug 2016 B2
9402629 Ehrenfels et al. Aug 2016 B2
9408604 Shelton, IV et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9411370 Benni et al. Aug 2016 B2
9413128 Tien et al. Aug 2016 B2
9414838 Shelton, IV et al. Aug 2016 B2
9414849 Nagashimada Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9420967 Zand et al. Aug 2016 B2
9421003 Williams et al. Aug 2016 B2
9421014 Ingmanson et al. Aug 2016 B2
9421030 Cole et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9421062 Houser et al. Aug 2016 B2
9427223 Park et al. Aug 2016 B2
9427231 Racenet et al. Aug 2016 B2
D767624 Lee et al. Sep 2016 S
9433411 Racenet et al. Sep 2016 B2
9433419 Gonzalez et al. Sep 2016 B2
9433420 Hodgkinson Sep 2016 B2
9439649 Shelton, IV et al. Sep 2016 B2
9439650 McGuckin, Jr. et al. Sep 2016 B2
9439651 Smith et al. Sep 2016 B2
9439668 Timm et al. Sep 2016 B2
9445808 Woodard, Jr. et al. Sep 2016 B2
9445813 Shelton, IV et al. Sep 2016 B2
9445817 Bettuchi Sep 2016 B2
9446226 Zilberman Sep 2016 B2
9451938 Overes et al. Sep 2016 B2
9451958 Shelton, IV et al. Sep 2016 B2
D768152 Gutierrez et al. Oct 2016 S
D768156 Frincke Oct 2016 S
D769315 Scotti Oct 2016 S
D769930 Agrawal Oct 2016 S
9461340 Li et al. Oct 2016 B2
9463040 Jeong et al. Oct 2016 B2
9463260 Stopek Oct 2016 B2
9468438 Baber et al. Oct 2016 B2
9468447 Aman et al. Oct 2016 B2
9470297 Aranyi et al. Oct 2016 B2
9471969 Zeng et al. Oct 2016 B2
9474506 Magnin et al. Oct 2016 B2
9474523 Meade et al. Oct 2016 B2
9474540 Stokes et al. Oct 2016 B2
9475180 Eshleman et al. Oct 2016 B2
D770476 Jitkoff et al. Nov 2016 S
D770515 Cho et al. Nov 2016 S
D771116 Dellinger et al. Nov 2016 S
D772905 Ingenlath Nov 2016 S
9480476 Aldridge et al. Nov 2016 B2
9480492 Aranyi et al. Nov 2016 B2
9483095 Tran et al. Nov 2016 B2
9486186 Fiebig et al. Nov 2016 B2
9486213 Altman et al. Nov 2016 B2
9486214 Shelton, IV Nov 2016 B2
9486302 Boey et al. Nov 2016 B2
9488197 Wi Nov 2016 B2
9492146 Kostrzewski et al. Nov 2016 B2
9492167 Shelton, IV et al. Nov 2016 B2
9492170 Bear et al. Nov 2016 B2
9492189 Williams et al. Nov 2016 B2
9492192 To et al. Nov 2016 B2
9498213 Marczyk et al. Nov 2016 B2
9498219 Moore et al. Nov 2016 B2
9498231 Haider et al. Nov 2016 B2
9504455 Whitman et al. Nov 2016 B2
9504483 Houser et al. Nov 2016 B2
9504521 Deutmeyer et al. Nov 2016 B2
D774547 Capela et al. Dec 2016 S
D775336 Shelton, IV et al. Dec 2016 S
9510827 Kostrzewski Dec 2016 B2
9510828 Yates et al. Dec 2016 B2
9510830 Shelton, IV et al. Dec 2016 B2
9510846 Sholev et al. Dec 2016 B2
9510895 Houser et al. Dec 2016 B2
9510925 Hotter et al. Dec 2016 B2
9517063 Swayze et al. Dec 2016 B2
9517068 Shelton, IV et al. Dec 2016 B2
9521996 Armstrong Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9526481 Storz et al. Dec 2016 B2
9526499 Kostrzewski et al. Dec 2016 B2
9526563 Twomey Dec 2016 B2
9526564 Rusin Dec 2016 B2
D776683 Gobinski et al. Jan 2017 S
D777773 Shi Jan 2017 S
9532783 Swayze et al. Jan 2017 B2
9539726 Simaan et al. Jan 2017 B2
9545253 Worrell et al. Jan 2017 B2
9545258 Smith et al. Jan 2017 B2
9549732 Yates et al. Jan 2017 B2
9549735 Shelton, IV et al. Jan 2017 B2
9554794 Baber et al. Jan 2017 B2
9554796 Kostrzewski Jan 2017 B2
9554812 Inkpen et al. Jan 2017 B2
9559624 Philipp Jan 2017 B2
9561013 Tsuchiya Feb 2017 B2
9561030 Zhang et al. Feb 2017 B2
9561031 Heinrich et al. Feb 2017 B2
9561032 Shelton, IV et al. Feb 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9561045 Hinman et al. Feb 2017 B2
9566061 Aronhalt et al. Feb 2017 B2
9566062 Boudreaux Feb 2017 B2
9566065 Knodel Feb 2017 B2
9566067 Milliman et al. Feb 2017 B2
9572574 Shelton, IV et al. Feb 2017 B2
9572577 Lloyd et al. Feb 2017 B2
9572592 Price et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9579088 Farritor et al. Feb 2017 B2
D780803 Gill et al. Mar 2017 S
D781879 Butcher et al. Mar 2017 S
D782530 Paek et al. Mar 2017 S
9585550 Abel et al. Mar 2017 B2
9585657 Shelton, IV et al. Mar 2017 B2
9585658 Shelton, IV Mar 2017 B2
9585659 Viola et al. Mar 2017 B2
9585660 Laurent et al. Mar 2017 B2
9585662 Shelton, IV et al. Mar 2017 B2
9585663 Shelton, IV et al. Mar 2017 B2
9585672 Bastia Mar 2017 B2
9590433 Li Mar 2017 B2
9592050 Schmid et al. Mar 2017 B2
9592052 Shelton, IV Mar 2017 B2
9592053 Shelton, IV et al. Mar 2017 B2
9592054 Schmid et al. Mar 2017 B2
9597073 Sorrentino et al. Mar 2017 B2
9597075 Shelton, IV et al. Mar 2017 B2
9597080 Milliman et al. Mar 2017 B2
9597104 Nicholas et al. Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9603595 Shelton, IV et al. Mar 2017 B2
9603598 Shelton, IV et al. Mar 2017 B2
9603599 Miller et al. Mar 2017 B2
9603991 Shelton, IV et al. Mar 2017 B2
D783658 Hurst et al. Apr 2017 S
9610080 Whitfield et al. Apr 2017 B2
9614258 Takahashi et al. Apr 2017 B2
9615826 Shelton, IV et al. Apr 2017 B2
9622745 Ingmanson et al. Apr 2017 B2
9629623 Lytle, IV et al. Apr 2017 B2
9629626 Soltz et al. Apr 2017 B2
9629627 Kostrzewski et al. Apr 2017 B2
9629628 Aranyi Apr 2017 B2
9629629 Leimbach et al. Apr 2017 B2
9629652 Mumaw et al. Apr 2017 B2
9629814 Widenhouse et al. Apr 2017 B2
D786280 Ma May 2017 S
D786896 Kim et al. May 2017 S
D787547 Basargin et al. May 2017 S
D788123 Shan et al. May 2017 S
D788140 Hemsley et al. May 2017 S
9636111 Wenchell May 2017 B2
9636113 Wenchell May 2017 B2
9636850 Stopek (nee Prommersberger) et al. May 2017 B2
9641122 Romanowich et al. May 2017 B2
9642620 Baxter, III et al. May 2017 B2
9649096 Sholev May 2017 B2
9649110 Parihar et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9655613 Schaller May 2017 B2
9655614 Swensgard et al. May 2017 B2
9655615 Knodel et al. May 2017 B2
9655616 Aranyi May 2017 B2
9655624 Shelton, IV et al. May 2017 B2
9662108 Williams May 2017 B2
9662110 Huang et al. May 2017 B2
9662116 Smith et al. May 2017 B2
9662131 Omori et al. May 2017 B2
D788792 Alessandri et al. Jun 2017 S
D789384 Lin et al. Jun 2017 S
D790570 Butcher et al. Jun 2017 S
9668728 Williams et al. Jun 2017 B2
9668729 Williams et al. Jun 2017 B2
9668732 Patel et al. Jun 2017 B2
9668733 Williams Jun 2017 B2
9668734 Kostrzewski et al. Jun 2017 B2
9675344 Combrowski et al. Jun 2017 B2
9675351 Hodgkinson et al. Jun 2017 B2
9675354 Weir et al. Jun 2017 B2
9675355 Shelton, IV et al. Jun 2017 B2
9675372 Laurent et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9675405 Trees et al. Jun 2017 B2
9675819 Dunbar et al. Jun 2017 B2
9681870 Baxter, III et al. Jun 2017 B2
9681873 Smith et al. Jun 2017 B2
9681884 Clem et al. Jun 2017 B2
9687230 Leimbach et al. Jun 2017 B2
9687231 Baxter, III et al. Jun 2017 B2
9687232 Shelton, IV et al. Jun 2017 B2
9687233 Fernandez et al. Jun 2017 B2
9687236 Leimbach et al. Jun 2017 B2
9687237 Schmid et al. Jun 2017 B2
9687253 Detry et al. Jun 2017 B2
9689466 Kanai et al. Jun 2017 B2
9690362 Leimbach et al. Jun 2017 B2
9693772 Ingmanson et al. Jul 2017 B2
9693774 Gettinger et al. Jul 2017 B2
9693777 Schellin et al. Jul 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9700310 Morgan et al. Jul 2017 B2
9700312 Kostrzewski et al. Jul 2017 B2
9700317 Aronhalt et al. Jul 2017 B2
9700318 Scirica et al. Jul 2017 B2
9700319 Motooka et al. Jul 2017 B2
9700320 Dinardo et al. Jul 2017 B2
9700321 Shelton, IV et al. Jul 2017 B2
9706981 Nicholas et al. Jul 2017 B2
9706991 Hess et al. Jul 2017 B2
9706993 Hessler et al. Jul 2017 B2
9707005 Strobl et al. Jul 2017 B2
9707026 Malackowski et al. Jul 2017 B2
9707043 Bozung Jul 2017 B2
9707684 Ruiz Morales et al. Jul 2017 B2
9713468 Harris et al. Jul 2017 B2
9713470 Scirica et al. Jul 2017 B2
9713474 Lorenz Jul 2017 B2
9717497 Zerkle et al. Aug 2017 B2
9717498 Aranyi et al. Aug 2017 B2
9722236 Sathrum Aug 2017 B2
9724091 Shelton, IV et al. Aug 2017 B2
9724092 Baxter, III et al. Aug 2017 B2
9724094 Baber et al. Aug 2017 B2
9724096 Thompson et al. Aug 2017 B2
9724098 Baxter, III et al. Aug 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724163 Orban Aug 2017 B2
9730692 Shelton, IV et al. Aug 2017 B2
9730695 Leimbach et al. Aug 2017 B2
9730697 Morgan et al. Aug 2017 B2
9730717 Katsuki et al. Aug 2017 B2
9731410 Hirabayashi et al. Aug 2017 B2
9733663 Leimbach et al. Aug 2017 B2
9737297 Racenet et al. Aug 2017 B2
9737301 Baber et al. Aug 2017 B2
9737302 Shelton, IV et al. Aug 2017 B2
9737303 Shelton, IV et al. Aug 2017 B2
9737365 Hegeman et al. Aug 2017 B2
9743927 Whitman Aug 2017 B2
9743928 Shelton, IV et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
D798319 Bergstrand et al. Sep 2017 S
9750498 Timm et al. Sep 2017 B2
9750499 Leimbach et al. Sep 2017 B2
9750501 Shelton, IV et al. Sep 2017 B2
9750502 Scirica et al. Sep 2017 B2
9750639 Barnes et al. Sep 2017 B2
9757123 Giordano et al. Sep 2017 B2
9757124 Schellin et al. Sep 2017 B2
9757126 Cappola Sep 2017 B2
9757128 Baber et al. Sep 2017 B2
9757129 Williams Sep 2017 B2
9757130 Shelton, IV Sep 2017 B2
9763662 Shelton, IV et al. Sep 2017 B2
9763668 Whitfield et al. Sep 2017 B2
9770245 Swayze et al. Sep 2017 B2
9770274 Pool et al. Sep 2017 B2
D798886 Prophete et al. Oct 2017 S
D800742 Rhodes Oct 2017 S
D800744 Jitkoff et al. Oct 2017 S
D800766 Park et al. Oct 2017 S
D800904 Leimbach et al. Oct 2017 S
9775608 Aronhalt et al. Oct 2017 B2
9775609 Shelton, IV et al. Oct 2017 B2
9775610 Nicholas et al. Oct 2017 B2
9775611 Kostrzewski Oct 2017 B2
9775613 Shelton, IV et al. Oct 2017 B2
9775614 Shelton, IV et al. Oct 2017 B2
9775618 Bettuchi et al. Oct 2017 B2
9775635 Takei Oct 2017 B2
9782169 Kimsey et al. Oct 2017 B2
9782170 Zemlok et al. Oct 2017 B2
9782180 Smith et al. Oct 2017 B2
9782193 Thistle Oct 2017 B2
9782214 Houser et al. Oct 2017 B2
9788834 Schmid et al. Oct 2017 B2
9788835 Morgan et al. Oct 2017 B2
9788836 Overmyer et al. Oct 2017 B2
9788847 Jinno Oct 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9788902 Inoue et al. Oct 2017 B2
9795379 Leimbach et al. Oct 2017 B2
9795380 Shelton, IV et al. Oct 2017 B2
9795381 Shelton, IV Oct 2017 B2
9795382 Shelton, IV Oct 2017 B2
9795383 Aldridge et al. Oct 2017 B2
9795384 Weaner et al. Oct 2017 B2
9797486 Zergiebel et al. Oct 2017 B2
9801626 Parihar et al. Oct 2017 B2
9801627 Harris et al. Oct 2017 B2
9801628 Harris et al. Oct 2017 B2
9801634 Shelton, IV et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9804618 Leimbach et al. Oct 2017 B2
D803234 Day et al. Nov 2017 S
D803235 Markson et al. Nov 2017 S
D803850 Chang et al. Nov 2017 S
9808244 Leimbach et al. Nov 2017 B2
9808246 Shelton, IV et al. Nov 2017 B2
9808247 Shelton, IV et al. Nov 2017 B2
9808248 Hoffman Nov 2017 B2
9808249 Shelton, IV Nov 2017 B2
9814460 Kimsey et al. Nov 2017 B2
9814462 Woodard, Jr. et al. Nov 2017 B2
9814463 Williams et al. Nov 2017 B2
9814530 Weir et al. Nov 2017 B2
9814561 Forsell Nov 2017 B2
9820445 Simpson et al. Nov 2017 B2
9820737 Beardsley et al. Nov 2017 B2
9820738 Lytle, IV et al. Nov 2017 B2
9820741 Kostrzewski Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9825455 Sandhu et al. Nov 2017 B2
9826976 Parihar et al. Nov 2017 B2
9826977 Leimbach et al. Nov 2017 B2
9826978 Shelton, IV et al. Nov 2017 B2
9829698 Haraguchi et al. Nov 2017 B2
D806108 Day Dec 2017 S
9833236 Shelton, IV et al. Dec 2017 B2
9833238 Baxter, III et al. Dec 2017 B2
9833239 Yates et al. Dec 2017 B2
9833241 Huitema et al. Dec 2017 B2
9833242 Baxter, III et al. Dec 2017 B2
9839420 Shelton, IV et al. Dec 2017 B2
9839421 Zerkle et al. Dec 2017 B2
9839422 Schellin et al. Dec 2017 B2
9839423 Vendely et al. Dec 2017 B2
9839427 Swayze et al. Dec 2017 B2
9839428 Baxter, III et al. Dec 2017 B2
9839429 Weisenburgh, II et al. Dec 2017 B2
9839480 Pribanic et al. Dec 2017 B2
9844368 Boudreaux et al. Dec 2017 B2
9844369 Huitema et al. Dec 2017 B2
9844372 Shelton, IV et al. Dec 2017 B2
9844373 Swayze et al. Dec 2017 B2
9844374 Lytle, IV et al. Dec 2017 B2
9844375 Overmyer et al. Dec 2017 B2
9844376 Baxter, III et al. Dec 2017 B2
9844379 Shelton, IV et al. Dec 2017 B2
9848871 Harris et al. Dec 2017 B2
9848873 Shelton, IV Dec 2017 B2
9848875 Aronhalt et al. Dec 2017 B2
9848877 Shelton, IV et al. Dec 2017 B2
9855039 Racenet et al. Jan 2018 B2
9855040 Kostrzewski Jan 2018 B2
9855662 Ruiz Morales et al. Jan 2018 B2
9861261 Shahinian Jan 2018 B2
9861359 Shelton, IV et al. Jan 2018 B2
9861361 Aronhalt et al. Jan 2018 B2
9861362 Whitman et al. Jan 2018 B2
9861382 Smith et al. Jan 2018 B2
9861446 Lang Jan 2018 B2
9867612 Parihar et al. Jan 2018 B2
9867618 Hall et al. Jan 2018 B2
9867620 Fischvogt et al. Jan 2018 B2
9868198 Nicholas et al. Jan 2018 B2
9872682 Hess et al. Jan 2018 B2
9872683 Hopkins et al. Jan 2018 B2
9872684 Hall et al. Jan 2018 B2
9872722 Lech Jan 2018 B2
9877721 Schellin et al. Jan 2018 B2
9877723 Hall et al. Jan 2018 B2
D810099 Riedel Feb 2018 S
9883843 Garlow Feb 2018 B2
9883860 Leimbach et al. Feb 2018 B2
9883861 Shelton, IV et al. Feb 2018 B2
9884456 Schellin et al. Feb 2018 B2
9888919 Leimbach et al. Feb 2018 B2
9888921 Williams et al. Feb 2018 B2
9888924 Ebersole et al. Feb 2018 B2
9889230 Bennett et al. Feb 2018 B2
9895147 Shelton, IV Feb 2018 B2
9895148 Shelton, IV et al. Feb 2018 B2
9895813 Blumenkranz et al. Feb 2018 B2
9901339 Farascioni Feb 2018 B2
9901341 Kostrzewski Feb 2018 B2
9901342 Shelton, IV et al. Feb 2018 B2
9901344 Moore et al. Feb 2018 B2
9901345 Moore et al. Feb 2018 B2
9901346 Moore et al. Feb 2018 B2
9901406 State et al. Feb 2018 B2
9901412 Lathrop et al. Feb 2018 B2
D813899 Erant et al. Mar 2018 S
9907456 Miyoshi Mar 2018 B2
9907553 Cole et al. Mar 2018 B2
9907600 Stulen et al. Mar 2018 B2
9907620 Shelton, IV et al. Mar 2018 B2
9913642 Leimbach et al. Mar 2018 B2
9913644 McCuen Mar 2018 B2
9913646 Shelton, IV Mar 2018 B2
9913647 Weisenburgh, II et al. Mar 2018 B2
9913648 Shelton, IV et al. Mar 2018 B2
9913694 Brisson Mar 2018 B2
9913733 Piron et al. Mar 2018 B2
9918704 Shelton, IV et al. Mar 2018 B2
9918714 Gibbons, Jr. Mar 2018 B2
9918715 Menn Mar 2018 B2
9918716 Baxter, III et al. Mar 2018 B2
9918717 Czernik Mar 2018 B2
9924941 Burbank Mar 2018 B2
9924942 Swayze et al. Mar 2018 B2
9924944 Shelton, IV et al. Mar 2018 B2
9924945 Zheng et al. Mar 2018 B2
9924946 Vendely et al. Mar 2018 B2
9924947 Shelton, IV et al. Mar 2018 B2
9924961 Shelton, IV et al. Mar 2018 B2
9931106 Au et al. Apr 2018 B2
9931116 Racenet et al. Apr 2018 B2
9931118 Shelton, IV et al. Apr 2018 B2
9936949 Measamer et al. Apr 2018 B2
9936950 Shelton, IV et al. Apr 2018 B2
9936951 Hufnagel et al. Apr 2018 B2
9936954 Shelton, IV et al. Apr 2018 B2
9937626 Rockrohr Apr 2018 B2
9943309 Shelton, IV et al. Apr 2018 B2
9943310 Harris et al. Apr 2018 B2
9943312 Posada et al. Apr 2018 B2
D819072 Clediere May 2018 S
9955954 Destoumieux et al. May 2018 B2
9955965 Chen et al. May 2018 B2
9955966 Zergiebel May 2018 B2
9962158 Hall et al. May 2018 B2
9962159 Heinrich et al. May 2018 B2
9962161 Scheib et al. May 2018 B2
9968354 Shelton, IV et al. May 2018 B2
9968355 Shelton, IV et al. May 2018 B2
9968356 Shelton, IV et al. May 2018 B2
9968397 Taylor et al. May 2018 B2
9974529 Shelton, IV et al. May 2018 B2
9974538 Baxter, III et al. May 2018 B2
9974539 Yates et al. May 2018 B2
9974541 Calderoni May 2018 B2
9974542 Hodgkinson May 2018 B2
9980713 Aronhalt et al. May 2018 B2
9980724 Farascioni et al. May 2018 B2
9980729 Moore et al. May 2018 B2
9980769 Trees et al. May 2018 B2
D819680 Nguyen Jun 2018 S
D819682 Howard et al. Jun 2018 S
D819684 Dart Jun 2018 S
D820307 Jian et al. Jun 2018 S
D820867 Dickens et al. Jun 2018 S
9987000 Shelton, IV et al. Jun 2018 B2
9987003 Timm et al. Jun 2018 B2
9987006 Morgan et al. Jun 2018 B2
9987095 Chowaniec et al. Jun 2018 B2
9987099 Chen et al. Jun 2018 B2
9993248 Shelton, IV et al. Jun 2018 B2
9993258 Shelton, IV et al. Jun 2018 B2
9999408 Boudreaux et al. Jun 2018 B2
9999423 Schuckmann et al. Jun 2018 B2
9999426 Moore et al. Jun 2018 B2
9999431 Shelton, IV et al. Jun 2018 B2
9999472 Weir et al. Jun 2018 B2
10004497 Overmyer et al. Jun 2018 B2
10004498 Morgan et al. Jun 2018 B2
10004500 Shelton, IV et al. Jun 2018 B2
10004501 Shelton, IV et al. Jun 2018 B2
10004505 Moore et al. Jun 2018 B2
10004506 Shelton, IV et al. Jun 2018 B2
D822206 Shelton, IV et al. Jul 2018 S
10010322 Shelton, IV et al. Jul 2018 B2
10010324 Huitema et al. Jul 2018 B2
10013049 Leimbach et al. Jul 2018 B2
10016199 Baber et al. Jul 2018 B2
10022125 (Prommersberger) Stopek et al. Jul 2018 B2
10024407 Aranyi et al. Jul 2018 B2
10028742 Shelton, IV et al. Jul 2018 B2
10028743 Shelton, IV et al. Jul 2018 B2
10028744 Shelton, IV et al. Jul 2018 B2
10028761 Leimbach et al. Jul 2018 B2
10029125 Shapiro et al. Jul 2018 B2
10034344 Yoshida Jul 2018 B2
10034668 Ebner Jul 2018 B2
D826405 Shelton, IV et al. Aug 2018 S
10039440 Fenech et al. Aug 2018 B2
10039529 Kerr et al. Aug 2018 B2
10039532 Srinivas et al. Aug 2018 B2
10039545 Sadowski et al. Aug 2018 B2
10041822 Zemlok Aug 2018 B2
10045769 Aronhalt et al. Aug 2018 B2
10045776 Shelton, IV et al. Aug 2018 B2
10045778 Yates et al. Aug 2018 B2
10045779 Savage et al. Aug 2018 B2
10045781 Cropper et al. Aug 2018 B2
10052044 Shelton, IV et al. Aug 2018 B2
10052099 Morgan et al. Aug 2018 B2
10052100 Morgan et al. Aug 2018 B2
10052102 Baxter, III et al. Aug 2018 B2
10052104 Shelton, IV et al. Aug 2018 B2
10052164 Overmyer Aug 2018 B2
10058317 Fan et al. Aug 2018 B2
10058327 Weisenburgh, II et al. Aug 2018 B2
10058395 Devengenzo et al. Aug 2018 B2
10058963 Shelton, IV et al. Aug 2018 B2
10064620 Gettinger et al. Sep 2018 B2
10064621 Kerr et al. Sep 2018 B2
10064624 Shelton, IV et al. Sep 2018 B2
10064639 Ishida et al. Sep 2018 B2
10064649 Golebieski et al. Sep 2018 B2
10064688 Shelton, IV et al. Sep 2018 B2
10070861 Spivey et al. Sep 2018 B2
10070863 Swayze et al. Sep 2018 B2
10071452 Shelton, IV et al. Sep 2018 B2
10076325 Huang et al. Sep 2018 B2
10076326 Yates et al. Sep 2018 B2
10076340 Belagali et al. Sep 2018 B2
D831209 Huitema et al. Oct 2018 S
D831676 Park et al. Oct 2018 S
D832301 Smith Oct 2018 S
10085624 Isoda et al. Oct 2018 B2
10085643 Bandic et al. Oct 2018 B2
10085728 Jogasaki et al. Oct 2018 B2
10085748 Morgan et al. Oct 2018 B2
10085749 Cappola et al. Oct 2018 B2
10085751 Overmyer et al. Oct 2018 B2
10085754 Sniffin et al. Oct 2018 B2
10085806 Hagn et al. Oct 2018 B2
10092292 Boudreaux et al. Oct 2018 B2
10098635 Burbank Oct 2018 B2
10098636 Shelton, IV et al. Oct 2018 B2
10098638 Viola et al. Oct 2018 B2
10098640 Bertolero et al. Oct 2018 B2
10098642 Baxter, III et al. Oct 2018 B2
10099303 Yoshida et al. Oct 2018 B2
10101861 Kiyoto Oct 2018 B2
10105128 Cooper et al. Oct 2018 B2
10105136 Yates et al. Oct 2018 B2
10105139 Yates et al. Oct 2018 B2
10105140 Malinouskas et al. Oct 2018 B2
10106932 Anderson et al. Oct 2018 B2
10111657 McCuen Oct 2018 B2
10111679 Baber et al. Oct 2018 B2
10111698 Scheib et al. Oct 2018 B2
10111702 Kostrzewski Oct 2018 B2
10117649 Baxter, III et al. Nov 2018 B2
10117652 Schmid et al. Nov 2018 B2
10117653 Leimbach et al. Nov 2018 B2
10117654 Ingmanson et al. Nov 2018 B2
10123798 Baxter, III et al. Nov 2018 B2
10124493 Rothfuss et al. Nov 2018 B2
10130352 Widenhouse et al. Nov 2018 B2
10130359 Hess et al. Nov 2018 B2
10130361 Yates et al. Nov 2018 B2
10130363 Huitema et al. Nov 2018 B2
10130366 Shelton, IV et al. Nov 2018 B2
10130367 Cappola et al. Nov 2018 B2
10130738 Shelton, IV et al. Nov 2018 B2
10130830 Miret Carceller et al. Nov 2018 B2
10133248 Fitzsimmons et al. Nov 2018 B2
10135242 Baber et al. Nov 2018 B2
10136879 Ross et al. Nov 2018 B2
10136887 Shelton, IV et al. Nov 2018 B2
10136889 Shelton, IV et al. Nov 2018 B2
10136890 Shelton, IV et al. Nov 2018 B2
10136891 Shelton, IV et al. Nov 2018 B2
D835659 Anzures et al. Dec 2018 S
D836124 Fan Dec 2018 S
10143474 Bucciaglia et al. Dec 2018 B2
10149679 Shelton, IV et al. Dec 2018 B2
10149680 Parihar et al. Dec 2018 B2
10149682 Shelton, IV et al. Dec 2018 B2
10149683 Smith et al. Dec 2018 B2
10149712 Manwaring et al. Dec 2018 B2
10154841 Weaner et al. Dec 2018 B2
10159482 Swayze et al. Dec 2018 B2
10159483 Beckman et al. Dec 2018 B2
10163589 Zergiebel et al. Dec 2018 B2
D837244 Kuo et al. Jan 2019 S
D837245 Kuo et al. Jan 2019 S
10166025 Leimbach et al. Jan 2019 B2
10166026 Shelton, IV et al. Jan 2019 B2
10172611 Shelton, IV et al. Jan 2019 B2
10172615 Marczyk et al. Jan 2019 B2
10172616 Murray et al. Jan 2019 B2
10172617 Shelton, IV et al. Jan 2019 B2
10172619 Harris et al. Jan 2019 B2
10172620 Harris et al. Jan 2019 B2
10172636 Stulen et al. Jan 2019 B2
10175127 Collins et al. Jan 2019 B2
10178992 Wise et al. Jan 2019 B2
10180463 Beckman et al. Jan 2019 B2
10182813 Leimbach et al. Jan 2019 B2
10182815 Williams et al. Jan 2019 B2
10182816 Shelton, IV et al. Jan 2019 B2
10182818 Hensel et al. Jan 2019 B2
10182819 Shelton, IV Jan 2019 B2
10188385 Kerr et al. Jan 2019 B2
10188393 Smith et al. Jan 2019 B2
10188394 Shelton, IV et al. Jan 2019 B2
D839900 Gan Feb 2019 S
D841667 Coren Feb 2019 S
10194801 Elhawary et al. Feb 2019 B2
10194904 Viola et al. Feb 2019 B2
10194907 Marczyk et al. Feb 2019 B2
10194910 Shelton, IV et al. Feb 2019 B2
10194913 Nalagatla et al. Feb 2019 B2
10194976 Boudreaux Feb 2019 B2
10201348 Scheib et al. Feb 2019 B2
10201349 Leimbach et al. Feb 2019 B2
10201363 Shelton, IV Feb 2019 B2
10201364 Leimbach et al. Feb 2019 B2
10201365 Boudreaux et al. Feb 2019 B2
10201381 Zergiebel et al. Feb 2019 B2
10206605 Shelton, IV et al. Feb 2019 B2
10206676 Shelton, IV Feb 2019 B2
10206677 Harris et al. Feb 2019 B2
10206678 Shelton, IV et al. Feb 2019 B2
10206748 Burbank Feb 2019 B2
10210244 Branavan et al. Feb 2019 B1
10211586 Adams et al. Feb 2019 B2
10213198 Aronhalt Feb 2019 B2
10213201 Shelton, IV Feb 2019 B2
10213202 Flanagan et al. Feb 2019 B2
10213203 Swayze Feb 2019 B2
10213262 Shelton, IV Feb 2019 B2
D842328 Jian et al. Mar 2019 S
10219811 Haider et al. Mar 2019 B2
10219832 Bagwell Mar 2019 B2
10220522 Rockrohr Mar 2019 B2
10226239 Nicholas et al. Mar 2019 B2
10226251 Scheib et al. Mar 2019 B2
10226274 Worrell et al. Mar 2019 B2
10231734 Thompson et al. Mar 2019 B2
10238390 Harris et al. Mar 2019 B2
D844666 Espeleta et al. Apr 2019 S
D844667 Espeleta et al. Apr 2019 S
D845342 Espeleta et al. Apr 2019 S
10245027 Shelton, IV et al. Apr 2019 B2
10251648 Harris et al. Apr 2019 B2
10251649 Schellin et al. Apr 2019 B2
10258322 Fanton et al. Apr 2019 B2
10265073 Scheib et al. Apr 2019 B2
D847989 Shelton, IV et al. May 2019 S
D848473 Zhu et al. May 2019 S
D849046 Kuo et al. May 2019 S
10278696 Gurumurthy et al. May 2019 B2
10278703 Nativ et al. May 2019 B2
10278707 Thompson et al. May 2019 B2
D850617 Shelton, IV et al. Jun 2019 S
D851676 Foss et al. Jun 2019 S
D851762 Shelton, IV et al. Jun 2019 S
10307161 Jankowski Jun 2019 B2
10307202 Smith et al. Jun 2019 B2
10314559 Razzaque et al. Jun 2019 B2
10314587 Harris et al. Jun 2019 B2
10315566 Choi et al. Jun 2019 B2
10327743 St. Goar et al. Jun 2019 B2
D854032 Jones et al. Jul 2019 S
D854151 Shelton, IV et al. Jul 2019 S
10335147 Rector et al. Jul 2019 B2
10337148 Rouse et al. Jul 2019 B2
10342535 Scheib et al. Jul 2019 B2
10342623 Huelman et al. Jul 2019 B2
10349939 Shelton, IV et al. Jul 2019 B2
10357252 Harris et al. Jul 2019 B2
10363045 Whitfield et al. Jul 2019 B2
D855634 Kim Aug 2019 S
D856359 Huang et al. Aug 2019 S
10376262 Zemlok et al. Aug 2019 B2
10383628 Kang et al. Aug 2019 B2
10390830 Schulz Aug 2019 B2
10390897 Kostrzewski Aug 2019 B2
D860219 Rasmussen et al. Sep 2019 S
10405932 Overmyer Sep 2019 B2
10413370 Yates et al. Sep 2019 B2
10413373 Yates et al. Sep 2019 B2
10420548 Whitman et al. Sep 2019 B2
10420559 Marczyk et al. Sep 2019 B2
D861707 Yang Oct 2019 S
10426468 Contini et al. Oct 2019 B2
10456122 Koltz et al. Oct 2019 B2
10471576 Totsu Nov 2019 B2
20010000531 Casscells et al. Apr 2001 A1
20010025183 Shahidi Sep 2001 A1
20010025184 Messerly Sep 2001 A1
20010034530 Malackowski et al. Oct 2001 A1
20020014510 Richter et al. Feb 2002 A1
20020022810 Urich Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020022861 Jacobs et al. Feb 2002 A1
20020029032 Arkin Mar 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020042620 Julian et al. Apr 2002 A1
20020087048 Brock et al. Jul 2002 A1
20020091374 Cooper Jul 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020103494 Pacey Aug 2002 A1
20020116063 Giannetti et al. Aug 2002 A1
20020117534 Green et al. Aug 2002 A1
20020127265 Bowman et al. Sep 2002 A1
20020128633 Brock et al. Sep 2002 A1
20020134811 Napier et al. Sep 2002 A1
20020135474 Sylliassen Sep 2002 A1
20020143340 Kaneko Oct 2002 A1
20020151770 Noll et al. Oct 2002 A1
20020158593 Henderson et al. Oct 2002 A1
20020185514 Adams et al. Dec 2002 A1
20020188170 Santamore et al. Dec 2002 A1
20020188287 Zvuloni et al. Dec 2002 A1
20030009193 Corsaro Jan 2003 A1
20030011245 Fiebig Jan 2003 A1
20030012805 Chen et al. Jan 2003 A1
20030018331 Dycus Jan 2003 A1
20030040670 Govari Feb 2003 A1
20030045835 Anderson et al. Mar 2003 A1
20030066858 Holgersson Apr 2003 A1
20030078647 Vallana et al. Apr 2003 A1
20030083648 Wang et al. May 2003 A1
20030084983 Rangachari et al. May 2003 A1
20030093103 Malackowski et al. May 2003 A1
20030094356 Waldron May 2003 A1
20030096158 Takano et al. May 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030121586 Mitra et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030149406 Martineau et al. Aug 2003 A1
20030153908 Goble et al. Aug 2003 A1
20030153968 Geis et al. Aug 2003 A1
20030163085 Tanner et al. Aug 2003 A1
20030164172 Chumas et al. Sep 2003 A1
20030181900 Long Sep 2003 A1
20030190584 Heasley Oct 2003 A1
20030195387 Kortenbach et al. Oct 2003 A1
20030205029 Chapolini et al. Nov 2003 A1
20030212005 Petito et al. Nov 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20040006335 Garrison Jan 2004 A1
20040006340 Latterell et al. Jan 2004 A1
20040007608 Ehrenfels et al. Jan 2004 A1
20040024457 Boyce et al. Feb 2004 A1
20040028502 Cummins Feb 2004 A1
20040030333 Goble Feb 2004 A1
20040034357 Beane et al. Feb 2004 A1
20040044295 Reinert et al. Mar 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040049121 Yaron Mar 2004 A1
20040049172 Root et al. Mar 2004 A1
20040059362 Knodel et al. Mar 2004 A1
20040068161 Couvillon Apr 2004 A1
20040068224 Couvillon et al. Apr 2004 A1
20040068307 Goble Apr 2004 A1
20040070369 Sakakibara Apr 2004 A1
20040073222 Koseki Apr 2004 A1
20040078037 Batchelor et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040085180 Juang May 2004 A1
20040093024 Lousararian et al. May 2004 A1
20040098040 Taniguchi et al. May 2004 A1
20040101822 Wiesner et al. May 2004 A1
20040102783 Sutterlin et al. May 2004 A1
20040108357 Milliman et al. Jun 2004 A1
20040110439 Chaikof et al. Jun 2004 A1
20040115022 Albertson et al. Jun 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040119185 Chen Jun 2004 A1
20040122419 Neuberger Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040133095 Dunki-Jacobs et al. Jul 2004 A1
20040133189 Sakurai Jul 2004 A1
20040143297 Ramsey Jul 2004 A1
20040147909 Johnston et al. Jul 2004 A1
20040153100 Ahlberg et al. Aug 2004 A1
20040158261 Vu Aug 2004 A1
20040164123 Racenet et al. Aug 2004 A1
20040166169 Malaviya et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040181219 Goble et al. Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040197367 Rezania et al. Oct 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040204735 Shiroff et al. Oct 2004 A1
20040218451 Said et al. Nov 2004 A1
20040222268 Bilotti et al. Nov 2004 A1
20040225186 Horne et al. Nov 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20040236352 Wang et al. Nov 2004 A1
20040243147 Lipow Dec 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040243163 Casiano et al. Dec 2004 A1
20040247415 Mangone Dec 2004 A1
20040249366 Kunz Dec 2004 A1
20040254455 Iddan Dec 2004 A1
20040254566 Plicchi et al. Dec 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050010158 Brugger et al. Jan 2005 A1
20050010213 Stad et al. Jan 2005 A1
20050021078 Vleugels et al. Jan 2005 A1
20050032511 Malone et al. Feb 2005 A1
20050033352 Zepf et al. Feb 2005 A1
20050051163 Deem et al. Mar 2005 A1
20050054946 Krzyzanowski Mar 2005 A1
20050057225 Marquet Mar 2005 A1
20050058890 Brazell et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050075561 Golden Apr 2005 A1
20050080342 Gilreath et al. Apr 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050116673 Carl et al. Jun 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050125897 Wyslucha et al. Jun 2005 A1
20050130682 Takara et al. Jun 2005 A1
20050131173 McDaniel et al. Jun 2005 A1
20050131211 Bayley et al. Jun 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050131436 Johnston et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050137455 Ewers et al. Jun 2005 A1
20050139636 Schwemberger et al. Jun 2005 A1
20050143759 Kelly Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050145671 Viola Jul 2005 A1
20050150928 Kameyama et al. Jul 2005 A1
20050154258 Tartaglia et al. Jul 2005 A1
20050154406 Bombard et al. Jul 2005 A1
20050159778 Heinrich et al. Jul 2005 A1
20050165419 Sauer et al. Jul 2005 A1
20050169974 Tenerz et al. Aug 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050177249 Kladakis et al. Aug 2005 A1
20050182298 Ikeda et al. Aug 2005 A1
20050182443 Jonn et al. Aug 2005 A1
20050184121 Heinrich Aug 2005 A1
20050186240 Ringeisen et al. Aug 2005 A1
20050187545 Hooven et al. Aug 2005 A1
20050203550 Laufer et al. Sep 2005 A1
20050209614 Fenter et al. Sep 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050222587 Jinno et al. Oct 2005 A1
20050222611 Weitkamp Oct 2005 A1
20050222616 Rethy et al. Oct 2005 A1
20050222665 Aranyi Oct 2005 A1
20050228224 Okada et al. Oct 2005 A1
20050228446 Mooradian et al. Oct 2005 A1
20050230453 Viola Oct 2005 A1
20050240178 Morley et al. Oct 2005 A1
20050245965 Orban, III et al. Nov 2005 A1
20050246881 Kelly et al. Nov 2005 A1
20050251063 Basude Nov 2005 A1
20050256452 DeMarchi et al. Nov 2005 A1
20050261676 Hall et al. Nov 2005 A1
20050263563 Racenet et al. Dec 2005 A1
20050267455 Eggers et al. Dec 2005 A1
20050274034 Hayashida et al. Dec 2005 A1
20050283188 Loshakove et al. Dec 2005 A1
20060008787 Hayman et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060020258 Strauss et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025812 Shelton Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060047275 Goble Mar 2006 A1
20060049229 Milliman et al. Mar 2006 A1
20060052824 Ransick et al. Mar 2006 A1
20060052825 Ransick et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060079735 Martone et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060086032 Valencic et al. Apr 2006 A1
20060087746 Lipow Apr 2006 A1
20060089535 Raz et al. Apr 2006 A1
20060097699 Kamenoff May 2006 A1
20060100643 Laufer et al. May 2006 A1
20060100649 Hart May 2006 A1
20060111210 Hinman May 2006 A1
20060111711 Goble May 2006 A1
20060111723 Chapolini et al. May 2006 A1
20060116634 Shachar Jun 2006 A1
20060142772 Ralph et al. Jun 2006 A1
20060154546 Murphy et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060161185 Saadat et al. Jul 2006 A1
20060167471 Phillips Jul 2006 A1
20060173290 Lavallee et al. Aug 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060176031 Forman et al. Aug 2006 A1
20060178556 Hasser et al. Aug 2006 A1
20060180633 Emmons Aug 2006 A1
20060180634 Shelton et al. Aug 2006 A1
20060185682 Marczyk Aug 2006 A1
20060199999 Ikeda et al. Sep 2006 A1
20060201989 Ojeda Sep 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060235368 Oz Oct 2006 A1
20060241666 Briggs et al. Oct 2006 A1
20060244460 Weaver Nov 2006 A1
20060252990 Kubach Nov 2006 A1
20060252993 Freed et al. Nov 2006 A1
20060258904 Stefanchik et al. Nov 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060261763 Lott et al. Nov 2006 A1
20060263444 Ming et al. Nov 2006 A1
20060264831 Skwarek et al. Nov 2006 A1
20060264929 Goble et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060282064 Shimizu et al. Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20060287576 Tsuji et al. Dec 2006 A1
20060289602 Wales et al. Dec 2006 A1
20060291981 Viola et al. Dec 2006 A1
20070009570 Kim et al. Jan 2007 A1
20070010702 Wang et al. Jan 2007 A1
20070010838 Shelton et al. Jan 2007 A1
20070016235 Tanaka et al. Jan 2007 A1
20070026039 Drumheller et al. Feb 2007 A1
20070026040 Crawley et al. Feb 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070027551 Farnsworth et al. Feb 2007 A1
20070043387 Vargas et al. Feb 2007 A1
20070049951 Menn Mar 2007 A1
20070049966 Bonadio et al. Mar 2007 A1
20070051375 Milliman Mar 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070073389 Bolduc et al. Mar 2007 A1
20070078328 Ozaki et al. Apr 2007 A1
20070078484 Talarico et al. Apr 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070088376 Zacharias Apr 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070093869 Bloom et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070106113 Ravo May 2007 A1
20070106317 Shelton et al. May 2007 A1
20070134251 Ashkenazi et al. Jun 2007 A1
20070135686 Pruitt et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070152612 Chen et al. Jul 2007 A1
20070155010 Farnsworth et al. Jul 2007 A1
20070170225 Shelton et al. Jul 2007 A1
20070173687 Shima et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070179477 Danger Aug 2007 A1
20070185545 Duke Aug 2007 A1
20070187857 Riley et al. Aug 2007 A1
20070190110 Pameijer et al. Aug 2007 A1
20070191868 Theroux et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20070197954 Keenan Aug 2007 A1
20070198039 Jones et al. Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070207010 Caspi Sep 2007 A1
20070208359 Hoffman Sep 2007 A1
20070208375 Nishizawa et al. Sep 2007 A1
20070213750 Weadock Sep 2007 A1
20070225562 Spivey et al. Sep 2007 A1
20070233163 Bombard et al. Oct 2007 A1
20070243227 Gertner Oct 2007 A1
20070244471 Malackowski Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20070262592 Hwang et al. Nov 2007 A1
20070275035 Herman et al. Nov 2007 A1
20070276409 Ortiz et al. Nov 2007 A1
20070279011 Jones et al. Dec 2007 A1
20070286892 Herzberg et al. Dec 2007 A1
20070296286 Avenell Dec 2007 A1
20080003196 Jonn et al. Jan 2008 A1
20080015598 Prommersberger Jan 2008 A1
20080021486 Oyola et al. Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080042861 Dacquay et al. Feb 2008 A1
20080051833 Gramuglia et al. Feb 2008 A1
20080064921 Larkin et al. Mar 2008 A1
20080065153 Allard et al. Mar 2008 A1
20080071328 Haubrich et al. Mar 2008 A1
20080078801 Shelton Apr 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080078804 Shelton Apr 2008 A1
20080082114 McKenna et al. Apr 2008 A1
20080082125 Murray et al. Apr 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080083807 Beardsley et al. Apr 2008 A1
20080085296 Powell et al. Apr 2008 A1
20080086078 Powell et al. Apr 2008 A1
20080091072 Omori et al. Apr 2008 A1
20080108443 Jinno et al. May 2008 A1
20080114250 Urbano et al. May 2008 A1
20080125634 Ryan et al. May 2008 A1
20080125749 Olson May 2008 A1
20080128469 Dalessandro et al. Jun 2008 A1
20080129253 Shiue et al. Jun 2008 A1
20080135600 Hiranuma et al. Jun 2008 A1
20080140115 Stopek Jun 2008 A1
20080140159 Bornhoft et al. Jun 2008 A1
20080154299 Livneh Jun 2008 A1
20080154335 Thrope et al. Jun 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080172087 Fuchs et al. Jul 2008 A1
20080177392 Williams et al. Jul 2008 A1
20080183193 Omori et al. Jul 2008 A1
20080190989 Crews et al. Aug 2008 A1
20080196253 Ezra et al. Aug 2008 A1
20080196419 Dube Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080200755 Bakos Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080200835 Monson et al. Aug 2008 A1
20080200911 Long Aug 2008 A1
20080200933 Bakos et al. Aug 2008 A1
20080200934 Fox Aug 2008 A1
20080206186 Butler et al. Aug 2008 A1
20080234709 Houser Sep 2008 A1
20080242939 Johnston Oct 2008 A1
20080249536 Stahler et al. Oct 2008 A1
20080249608 Dave Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080281171 Fennell et al. Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080293910 Kapiamba et al. Nov 2008 A1
20080294179 Balbierz et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080297287 Shachar et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20080312687 Blier Dec 2008 A1
20080315829 Jones et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090004455 Gravagna et al. Jan 2009 A1
20090005809 Hess et al. Jan 2009 A1
20090012534 Madhani et al. Jan 2009 A1
20090015195 Loth-Krausser Jan 2009 A1
20090020958 Soul Jan 2009 A1
20090048583 Williams et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090078736 Van Lue Mar 2009 A1
20090081313 Aghion et al. Mar 2009 A1
20090088659 Graham et al. Apr 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090092651 Shah et al. Apr 2009 A1
20090099579 Nentwick et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090112234 Crainich et al. Apr 2009 A1
20090118762 Crainch et al. May 2009 A1
20090119011 Kondo et al. May 2009 A1
20090131819 Ritchie et al. May 2009 A1
20090132400 Conway May 2009 A1
20090143855 Weber et al. Jun 2009 A1
20090149871 Kagan et al. Jun 2009 A9
20090171147 Lee et al. Jul 2009 A1
20090177226 Reinprecht et al. Jul 2009 A1
20090181290 Baldwin et al. Jul 2009 A1
20090188964 Orlov Jul 2009 A1
20090192534 Ortiz et al. Jul 2009 A1
20090198272 Kerver et al. Aug 2009 A1
20090204108 Steffen Aug 2009 A1
20090204109 Grove et al. Aug 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090221993 Sohi et al. Sep 2009 A1
20090227834 Nakamoto et al. Sep 2009 A1
20090234273 Intoccia et al. Sep 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090247368 Chiang Oct 2009 A1
20090247901 Zimmer Oct 2009 A1
20090248041 Williams et al. Oct 2009 A1
20090253959 Yoshie et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090262078 Pizzi Oct 2009 A1
20090270895 Churchill et al. Oct 2009 A1
20090278406 Hoffman Nov 2009 A1
20090290016 Suda Nov 2009 A1
20090292283 Odom Nov 2009 A1
20090306639 Nevo et al. Dec 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20090318557 Stockel Dec 2009 A1
20090325859 Ameer et al. Dec 2009 A1
20100005035 Carpenter et al. Jan 2010 A1
20100012703 Calabrese et al. Jan 2010 A1
20100015104 Fraser et al. Jan 2010 A1
20100016888 Calabrese et al. Jan 2010 A1
20100017715 Balassanian Jan 2010 A1
20100023024 Zeiner et al. Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100057118 Dietz et al. Mar 2010 A1
20100065604 Weng Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100076483 Imuta Mar 2010 A1
20100076489 Stopek et al. Mar 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094340 Stopek et al. Apr 2010 A1
20100100123 Bennett Apr 2010 A1
20100100124 Calabrese et al. Apr 2010 A1
20100116519 Gareis May 2010 A1
20100122339 Boccacci May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100137990 Apatsidis et al. Jun 2010 A1
20100145146 Melder Jun 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100179022 Shirokoshi Jul 2010 A1
20100179540 Marczyk Jul 2010 A1
20100180711 Kilibarda et al. Jul 2010 A1
20100191262 Harris et al. Jul 2010 A1
20100191292 DeMeo et al. Jul 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100204717 Knodel Aug 2010 A1
20100204721 Young et al. Aug 2010 A1
20100217281 Matsuoka et al. Aug 2010 A1
20100222901 Swayze et al. Sep 2010 A1
20100241137 Doyle et al. Sep 2010 A1
20100249497 Peine et al. Sep 2010 A1
20100249947 Lesh et al. Sep 2010 A1
20100256675 Romans Oct 2010 A1
20100258327 Esenwein et al. Oct 2010 A1
20100267662 Fielder et al. Oct 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100292540 Hess et al. Nov 2010 A1
20100298636 Castro et al. Nov 2010 A1
20100301097 Scirica et al. Dec 2010 A1
20100310623 Laurencin et al. Dec 2010 A1
20100312261 Suzuki et al. Dec 2010 A1
20100318085 Austin et al. Dec 2010 A1
20100331856 Carlson et al. Dec 2010 A1
20110006101 Hall et al. Jan 2011 A1
20110011916 Levine Jan 2011 A1
20110016960 Debrailly Jan 2011 A1
20110021871 Berkelaar Jan 2011 A1
20110022032 Zemlok et al. Jan 2011 A1
20110024477 Hall Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110025311 Chauvin et al. Feb 2011 A1
20110034910 Ross et al. Feb 2011 A1
20110036891 Zemlok et al. Feb 2011 A1
20110046667 Culligan et al. Feb 2011 A1
20110052660 Yang et al. Mar 2011 A1
20110060363 Hess et al. Mar 2011 A1
20110066156 McGahan et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110088921 Forgues et al. Apr 2011 A1
20110091515 Zilberman et al. Apr 2011 A1
20110095064 Taylor et al. Apr 2011 A1
20110101069 Bombard et al. May 2011 A1
20110101794 Schroeder et al. May 2011 A1
20110112517 Peine et al. May 2011 A1
20110112530 Keller May 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125176 Yates et al. May 2011 A1
20110127945 Yoneda Jun 2011 A1
20110129706 Takahashi et al. Jun 2011 A1
20110144764 Bagga et al. Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110160725 Kabaya et al. Jun 2011 A1
20110163146 Ortiz et al. Jul 2011 A1
20110172495 Armstrong Jul 2011 A1
20110174861 Shelton, IV et al. Jul 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110199225 Touchberry et al. Aug 2011 A1
20110218400 Ma et al. Sep 2011 A1
20110218550 Ma Sep 2011 A1
20110225105 Scholer et al. Sep 2011 A1
20110230713 Kleemann et al. Sep 2011 A1
20110238044 Main et al. Sep 2011 A1
20110241597 Zhu et al. Oct 2011 A1
20110271186 Owens Nov 2011 A1
20110275901 Shelton, IV Nov 2011 A1
20110276083 Shelton, IV et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110279268 Konishi et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110313894 Dye et al. Dec 2011 A1
20110315413 Fisher et al. Dec 2011 A1
20120004636 Lo Jan 2012 A1
20120007442 Rhodes et al. Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120016467 Chen et al. Jan 2012 A1
20120029272 Shelton, IV et al. Feb 2012 A1
20120033360 Hsu Feb 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120064483 Lint et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120078071 Bohm et al. Mar 2012 A1
20120078139 Aldridge et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120086276 Sawyers Apr 2012 A1
20120095458 Cybulski et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116261 Mumaw et al. May 2012 A1
20120116262 Houser et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116266 Houser et al. May 2012 A1
20120118595 Pellenc May 2012 A1
20120123203 Riva May 2012 A1
20120123463 Jacobs May 2012 A1
20120125792 Cassivi May 2012 A1
20120130217 Kauphusman et al. May 2012 A1
20120132286 Lim et al. May 2012 A1
20120171539 Rejman et al. Jul 2012 A1
20120175398 Sandborn et al. Jul 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120239068 Morris et al. Sep 2012 A1
20120241503 Baxter, III Sep 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120251861 Liang et al. Oct 2012 A1
20120253328 Cunningham et al. Oct 2012 A1
20120283707 Giordano et al. Nov 2012 A1
20120289811 Viola et al. Nov 2012 A1
20120289979 Eskaros et al. Nov 2012 A1
20120292367 Morgan et al. Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20120303002 Chowaniec et al. Nov 2012 A1
20130006227 Takashino Jan 2013 A1
20130008937 Viola Jan 2013 A1
20130012983 Kleyman Jan 2013 A1
20130018400 Milton et al. Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130023861 Shelton, IV et al. Jan 2013 A1
20130023910 Solomon et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130030462 Keating et al. Jan 2013 A1
20130041292 Cunningham Feb 2013 A1
20130057162 Pollischansky Mar 2013 A1
20130068816 Mandakolathur Vasudevan et al. Mar 2013 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130090534 Burns et al. Apr 2013 A1
20130096568 Justis Apr 2013 A1
20130098970 Racenet et al. Apr 2013 A1
20130105552 Weir et al. May 2013 A1
20130106352 Nagamine May 2013 A1
20130116669 Shelton, IV et al. May 2013 A1
20130123816 Hodgkinson et al. May 2013 A1
20130126202 Oomori et al. May 2013 A1
20130131476 Siu et al. May 2013 A1
20130131651 Strobl et al. May 2013 A1
20130136969 Yasui et al. May 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130158390 Tan et al. Jun 2013 A1
20130162198 Yokota et al. Jun 2013 A1
20130169217 Watanabe et al. Jul 2013 A1
20130172878 Smith Jul 2013 A1
20130172929 Hess Jul 2013 A1
20130175317 Yates et al. Jul 2013 A1
20130181033 Shelton, IV et al. Jul 2013 A1
20130181034 Shelton, IV et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130233906 Hess et al. Sep 2013 A1
20130238021 Gross et al. Sep 2013 A1
20130248578 Arteaga Gonzalez Sep 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130256373 Schmid et al. Oct 2013 A1
20130256379 Schmid et al. Oct 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130267978 Trissel Oct 2013 A1
20130270322 Scheib et al. Oct 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130306704 Balbierz et al. Nov 2013 A1
20130317753 Kamen et al. Nov 2013 A1
20130324982 Smith et al. Dec 2013 A1
20130327552 Lovelass et al. Dec 2013 A1
20130333910 Tanimoto et al. Dec 2013 A1
20130334280 Krehel et al. Dec 2013 A1
20130334283 Swayze et al. Dec 2013 A1
20130334285 Swayze et al. Dec 2013 A1
20130341374 Shelton, IV et al. Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140012299 Stoddard et al. Jan 2014 A1
20140014705 Baxter, III Jan 2014 A1
20140018832 Shelton, IV Jan 2014 A1
20140039549 Belsky et al. Feb 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140081176 Hassan Mar 2014 A1
20140094681 Valentine et al. Apr 2014 A1
20140100558 Schmitz et al. Apr 2014 A1
20140107640 Yates et al. Apr 2014 A1
20140110456 Taylor Apr 2014 A1
20140115229 Kothamasu et al. Apr 2014 A1
20140131418 Kostrzewski May 2014 A1
20140135832 Park et al. May 2014 A1
20140151433 Shelton, IV et al. Jun 2014 A1
20140158747 Measamer et al. Jun 2014 A1
20140166723 Beardsley et al. Jun 2014 A1
20140166724 Schellin et al. Jun 2014 A1
20140166725 Schellin et al. Jun 2014 A1
20140166726 Schellin et al. Jun 2014 A1
20140171966 Giordano et al. Jun 2014 A1
20140175147 Manoux et al. Jun 2014 A1
20140175150 Shelton, IV et al. Jun 2014 A1
20140175152 Hess et al. Jun 2014 A1
20140181710 Baalu et al. Jun 2014 A1
20140188091 Vidal et al. Jul 2014 A1
20140188159 Steege Jul 2014 A1
20140200561 Ingmanson et al. Jul 2014 A1
20140207124 Aldridge et al. Jul 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140209658 Skalla et al. Jul 2014 A1
20140224857 Schmid Aug 2014 A1
20140228867 Thomas et al. Aug 2014 A1
20140230595 Butt et al. Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20140243865 Swayze et al. Aug 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140248167 Sugimoto et al. Sep 2014 A1
20140249557 Koch, Jr. et al. Sep 2014 A1
20140249573 Arav Sep 2014 A1
20140252061 Estrella et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140263554 Leimbach et al. Sep 2014 A1
20140263558 Hausen et al. Sep 2014 A1
20140276730 Boudreaux et al. Sep 2014 A1
20140284371 Morgan et al. Sep 2014 A1
20140288460 Ouyang et al. Sep 2014 A1
20140291378 Shelton, IV et al. Oct 2014 A1
20140291379 Schellin et al. Oct 2014 A1
20140291383 Spivey et al. Oct 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303645 Morgan et al. Oct 2014 A1
20140303660 Boyden et al. Oct 2014 A1
20140305991 Parihar Oct 2014 A1
20140309666 Shelton, IV et al. Oct 2014 A1
20140330161 Swayze et al. Nov 2014 A1
20140330298 Arshonsky et al. Nov 2014 A1
20140330579 Cashman et al. Nov 2014 A1
20140332578 Fernandez Nov 2014 A1
20140367445 Ingmanson et al. Dec 2014 A1
20140374130 Nakamura et al. Dec 2014 A1
20140378950 Chiu Dec 2014 A1
20150002089 Rejman et al. Jan 2015 A1
20150008248 Giordano et al. Jan 2015 A1
20150038961 Clark et al. Feb 2015 A1
20150053737 Leimbach et al. Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053743 Yates et al. Feb 2015 A1
20150053746 Shelton, IV et al. Feb 2015 A1
20150053748 Yates et al. Feb 2015 A1
20150060518 Shelton, IV et al. Mar 2015 A1
20150060519 Shelton, IV et al. Mar 2015 A1
20150060520 Shelton, IV et al. Mar 2015 A1
20150060521 Weisenburgh, II et al. Mar 2015 A1
20150066000 An et al. Mar 2015 A1
20150076207 Boudreaux et al. Mar 2015 A1
20150076208 Shelton, IV Mar 2015 A1
20150076209 Shelton, IV et al. Mar 2015 A1
20150076210 Shelton, IV et al. Mar 2015 A1
20150076212 Shelton, IV Mar 2015 A1
20150080868 Kerr Mar 2015 A1
20150083781 Giordano et al. Mar 2015 A1
20150083782 Scheib et al. Mar 2015 A1
20150088547 Balram et al. Mar 2015 A1
20150090760 Giordano et al. Apr 2015 A1
20150090761 Giordano et al. Apr 2015 A1
20150090762 Giordano et al. Apr 2015 A1
20150108199 Shelton, IV et al. Apr 2015 A1
20150122870 Zemlok et al. May 2015 A1
20150134077 Shelton, IV et al. May 2015 A1
20150148830 Stulen et al. May 2015 A1
20150150554 Soltz Jun 2015 A1
20150150620 Miyamoto et al. Jun 2015 A1
20150173744 Shelton, IV et al. Jun 2015 A1
20150173746 Baxter, III Jun 2015 A1
20150173749 Shelton, IV et al. Jun 2015 A1
20150173756 Baxter, III et al. Jun 2015 A1
20150173789 Baxter, III et al. Jun 2015 A1
20150182220 Yates et al. Jul 2015 A1
20150196295 Shelton, IV et al. Jul 2015 A1
20150196296 Swayze et al. Jul 2015 A1
20150196299 Swayze et al. Jul 2015 A1
20150196347 Yates et al. Jul 2015 A1
20150196348 Yates et al. Jul 2015 A1
20150201918 Kumar et al. Jul 2015 A1
20150201932 Swayze et al. Jul 2015 A1
20150201936 Swayze et al. Jul 2015 A1
20150201937 Swayze et al. Jul 2015 A1
20150201938 Swayze et al. Jul 2015 A1
20150201939 Swayze et al. Jul 2015 A1
20150201940 Swayze et al. Jul 2015 A1
20150201941 Swayze et al. Jul 2015 A1
20150222212 Iwata Aug 2015 A1
20150223868 Brandt et al. Aug 2015 A1
20150231409 Racenet et al. Aug 2015 A1
20150238118 Legassey et al. Aug 2015 A1
20150239180 Schellin Aug 2015 A1
20150245835 Racenet et al. Sep 2015 A1
20150272557 Overmyer et al. Oct 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272580 Leimbach et al. Oct 2015 A1
20150272582 Leimbach et al. Oct 2015 A1
20150272604 Chowaniec et al. Oct 2015 A1
20150282810 Shelton, IV et al. Oct 2015 A1
20150297200 Fitzsimmons et al. Oct 2015 A1
20150297222 Huitema et al. Oct 2015 A1
20150297223 Huitema et al. Oct 2015 A1
20150297225 Huitema et al. Oct 2015 A1
20150297228 Huitema et al. Oct 2015 A1
20150297229 Schellin et al. Oct 2015 A1
20150297232 Huitema et al. Oct 2015 A1
20150297233 Huitema et al. Oct 2015 A1
20150297234 Schellin et al. Oct 2015 A1
20150297235 Harris Oct 2015 A1
20150297236 Harris et al. Oct 2015 A1
20150302539 Mazar et al. Oct 2015 A1
20150303417 Koeder et al. Oct 2015 A1
20150313594 Shelton, IV et al. Nov 2015 A1
20150324317 Collins et al. Nov 2015 A1
20150327864 Hodgkinson et al. Nov 2015 A1
20150336249 Iwata et al. Nov 2015 A1
20150342607 Shelton, IV et al. Dec 2015 A1
20150351758 Shelton, IV Dec 2015 A1
20150351762 Vendely et al. Dec 2015 A1
20150351765 Valentine et al. Dec 2015 A1
20150352699 Sakai et al. Dec 2015 A1
20150366220 Zhang et al. Dec 2015 A1
20150366585 Lemay et al. Dec 2015 A1
20150372265 Morisaku et al. Dec 2015 A1
20150374360 Scheib et al. Dec 2015 A1
20150374361 Gettinger et al. Dec 2015 A1
20150374363 Laurent, IV et al. Dec 2015 A1
20150374368 Swayze et al. Dec 2015 A1
20150374369 Yates et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374374 Shelton, IV et al. Dec 2015 A1
20150374375 Shelton, IV et al. Dec 2015 A1
20150374376 Shelton, IV Dec 2015 A1
20150374378 Giordano et al. Dec 2015 A1
20150374379 Shelton, IV Dec 2015 A1
20160000430 Ming et al. Jan 2016 A1
20160000431 Giordano et al. Jan 2016 A1
20160000437 Giordano et al. Jan 2016 A1
20160000438 Swayze et al. Jan 2016 A1
20160000442 Shelton, IV Jan 2016 A1
20160000452 Yates et al. Jan 2016 A1
20160000453 Yates et al. Jan 2016 A1
20160000513 Shelton, IV et al. Jan 2016 A1
20160007992 Yates et al. Jan 2016 A1
20160008023 Yates et al. Jan 2016 A1
20160015391 Shelton, IV et al. Jan 2016 A1
20160023342 Koenig et al. Jan 2016 A1
20160030042 Heinrich et al. Feb 2016 A1
20160051257 Shelton, IV et al. Feb 2016 A1
20160058443 Yates et al. Mar 2016 A1
20160066815 Mei et al. Mar 2016 A1
20160066913 Swayze et al. Mar 2016 A1
20160069449 Kanai et al. Mar 2016 A1
20160073909 Zand et al. Mar 2016 A1
20160074040 Widenhouse et al. Mar 2016 A1
20160074103 Sartor Mar 2016 A1
20160082161 Zilberman et al. Mar 2016 A1
20160089137 Hess et al. Mar 2016 A1
20160089142 Harris et al. Mar 2016 A1
20160089146 Harris et al. Mar 2016 A1
20160089149 Harris et al. Mar 2016 A1
20160089198 Arya et al. Mar 2016 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160106431 Shelton, IV et al. Apr 2016 A1
20160113653 Zingman Apr 2016 A1
20160120544 Shelton, IV et al. May 2016 A1
20160120545 Shelton, IV et al. May 2016 A1
20160120594 Privitera May 2016 A1
20160135835 Onuma May 2016 A1
20160166248 Deville et al. Jun 2016 A1
20160166256 Baxter, III et al. Jun 2016 A1
20160166308 Manwaring et al. Jun 2016 A1
20160174972 Shelton, IV et al. Jun 2016 A1
20160174974 Schmid et al. Jun 2016 A1
20160174985 Baxter, III et al. Jun 2016 A1
20160183939 Shelton, IV et al. Jun 2016 A1
20160183943 Shelton, IV Jun 2016 A1
20160183944 Swensgard et al. Jun 2016 A1
20160183945 Shelton, IV et al. Jun 2016 A1
20160192916 Shelton, IV et al. Jul 2016 A1
20160192917 Shelton, IV et al. Jul 2016 A1
20160192918 Shelton, IV et al. Jul 2016 A1
20160192933 Shelton, IV Jul 2016 A1
20160192936 Leimbach et al. Jul 2016 A1
20160192960 Bueno et al. Jul 2016 A1
20160192977 Manwaring et al. Jul 2016 A1
20160199059 Shelton, IV et al. Jul 2016 A1
20160199061 Shelton, IV et al. Jul 2016 A1
20160199063 Mandakolathur Vasudevan et al. Jul 2016 A1
20160199064 Shelton, IV et al. Jul 2016 A1
20160199089 Hess et al. Jul 2016 A1
20160199956 Shelton, IV et al. Jul 2016 A1
20160206310 Shelton, IV Jul 2016 A1
20160206314 Scheib et al. Jul 2016 A1
20160220248 Timm et al. Aug 2016 A1
20160220249 Shelton, IV et al. Aug 2016 A1
20160220266 Shelton, IV et al. Aug 2016 A1
20160220268 Shelton, IV et al. Aug 2016 A1
20160235403 Shelton, IV et al. Aug 2016 A1
20160235404 Shelton, IV Aug 2016 A1
20160235405 Shelton, IV et al. Aug 2016 A1
20160235406 Shelton, IV et al. Aug 2016 A1
20160235408 Shelton, IV et al. Aug 2016 A1
20160235409 Shelton, IV et al. Aug 2016 A1
20160235467 Godara et al. Aug 2016 A1
20160235494 Shelton, IV et al. Aug 2016 A1
20160242775 Shelton, IV et al. Aug 2016 A1
20160242776 Shelton, IV et al. Aug 2016 A1
20160242777 Shelton, IV et al. Aug 2016 A1
20160242781 Shelton, IV et al. Aug 2016 A1
20160242782 Shelton, IV et al. Aug 2016 A1
20160242783 Shelton, IV et al. Aug 2016 A1
20160249909 Shelton, IV et al. Sep 2016 A1
20160249910 Shelton, IV et al. Sep 2016 A1
20160249911 Timm et al. Sep 2016 A1
20160249916 Shelton, IV et al. Sep 2016 A1
20160249922 Morgan et al. Sep 2016 A1
20160249927 Beckman et al. Sep 2016 A1
20160256071 Shelton, IV et al. Sep 2016 A1
20160256154 Shelton, IV et al. Sep 2016 A1
20160256159 Pinjala et al. Sep 2016 A1
20160256160 Shelton, IV et al. Sep 2016 A1
20160256161 Overmyer et al. Sep 2016 A1
20160256185 Shelton, IV et al. Sep 2016 A1
20160256229 Morgan et al. Sep 2016 A1
20160262745 Morgan et al. Sep 2016 A1
20160262746 Shelton, IV et al. Sep 2016 A1
20160262921 Balbierz et al. Sep 2016 A1
20160270780 Hall et al. Sep 2016 A1
20160278765 Shelton, IV et al. Sep 2016 A1
20160278771 Shelton, IV et al. Sep 2016 A1
20160287249 Alexander, III et al. Oct 2016 A1
20160287250 Shelton, IV et al. Oct 2016 A1
20160287253 Shelton, IV et al. Oct 2016 A1
20160287279 Bovay et al. Oct 2016 A1
20160310143 Bettuchi Oct 2016 A1
20160331375 Shelton, IV et al. Nov 2016 A1
20160345971 Bucciaglia Dec 2016 A1
20160345976 Gonzalez et al. Dec 2016 A1
20160346034 Arya et al. Dec 2016 A1
20160354085 Shelton, IV et al. Dec 2016 A1
20160354088 Cabrera et al. Dec 2016 A1
20160367122 Ichimura et al. Dec 2016 A1
20160367246 Baxter, III et al. Dec 2016 A1
20160367254 Baxter, III et al. Dec 2016 A1
20160367255 Wise et al. Dec 2016 A1
20160374672 Bear et al. Dec 2016 A1
20160374675 Shelton, IV et al. Dec 2016 A1
20160374678 Becerra et al. Dec 2016 A1
20170000485 Shelton, IV et al. Jan 2017 A1
20170007236 Shelton, IV et al. Jan 2017 A1
20170007237 Yates et al. Jan 2017 A1
20170007238 Yates et al. Jan 2017 A1
20170007239 Shelton, IV Jan 2017 A1
20170007241 Shelton, IV et al. Jan 2017 A1
20170007242 Shelton, IV et al. Jan 2017 A1
20170007243 Shelton, IV et al. Jan 2017 A1
20170007244 Shelton, IV et al. Jan 2017 A1
20170007245 Shelton, IV et al. Jan 2017 A1
20170007246 Shelton, IV et al. Jan 2017 A1
20170007247 Shelton, IV et al. Jan 2017 A1
20170007248 Shelton, IV et al. Jan 2017 A1
20170007249 Shelton, IV et al. Jan 2017 A1
20170007250 Shelton, IV et al. Jan 2017 A1
20170007251 Yates et al. Jan 2017 A1
20170007254 Jaworek et al. Jan 2017 A1
20170007255 Jaworek et al. Jan 2017 A1
20170007341 Swensgard et al. Jan 2017 A1
20170007347 Jaworek et al. Jan 2017 A1
20170014125 Shelton, IV et al. Jan 2017 A1
20170027572 Nalagatla et al. Feb 2017 A1
20170027573 Nalagatla et al. Feb 2017 A1
20170027574 Nalagatla et al. Feb 2017 A1
20170049444 Schellin et al. Feb 2017 A1
20170049447 Barton et al. Feb 2017 A1
20170049448 Widenhouse et al. Feb 2017 A1
20170055986 Harris et al. Mar 2017 A1
20170055989 Shelton, IV et al. Mar 2017 A1
20170055998 Baxter, III et al. Mar 2017 A1
20170055999 Baxter, III et al. Mar 2017 A1
20170056000 Nalagatla et al. Mar 2017 A1
20170056002 Nalagatla et al. Mar 2017 A1
20170056005 Shelton, IV et al. Mar 2017 A1
20170056006 Shelton, IV et al. Mar 2017 A1
20170056007 Eckert et al. Mar 2017 A1
20170079640 Overmyer et al. Mar 2017 A1
20170079642 Overmyer et al. Mar 2017 A1
20170079643 Yates et al. Mar 2017 A1
20170079644 Overmyer et al. Mar 2017 A1
20170086827 Vendely et al. Mar 2017 A1
20170086829 Vendely et al. Mar 2017 A1
20170086830 Yates et al. Mar 2017 A1
20170086831 Shelton, IV et al. Mar 2017 A1
20170086832 Harris et al. Mar 2017 A1
20170086835 Harris et al. Mar 2017 A1
20170086836 Harris et al. Mar 2017 A1
20170086837 Vendely et al. Mar 2017 A1
20170086838 Harris et al. Mar 2017 A1
20170086839 Vendely et al. Mar 2017 A1
20170086841 Vendely et al. Mar 2017 A1
20170086842 Shelton, IV et al. Mar 2017 A1
20170086843 Vendely et al. Mar 2017 A1
20170086844 Vendely et al. Mar 2017 A1
20170086845 Vendely et al. Mar 2017 A1
20170086936 Shelton, IV et al. Mar 2017 A1
20170095250 Kostrzewski et al. Apr 2017 A1
20170105733 Scheib et al. Apr 2017 A1
20170119386 Scheib et al. May 2017 A1
20170119387 Dalessandro et al. May 2017 A1
20170119388 Kostrzewski May 2017 A1
20170119389 Turner et al. May 2017 A1
20170119390 Schellin et al. May 2017 A1
20170119392 Shelton, IV et al. May 2017 A1
20170119397 Harris et al. May 2017 A1
20170128149 Heinrich et al. May 2017 A1
20170135695 Shelton, IV et al. May 2017 A1
20170135697 Mozdzierz et al. May 2017 A1
20170143335 Gupta et al. May 2017 A1
20170150965 Williams Jun 2017 A1
20170150983 Ingmanson et al. Jun 2017 A1
20170172382 Nir et al. Jun 2017 A1
20170172550 Mukherjee et al. Jun 2017 A1
20170172662 Panescu et al. Jun 2017 A1
20170172672 Bailey et al. Jun 2017 A1
20170182211 Raxworthy et al. Jun 2017 A1
20170189018 Harris et al. Jul 2017 A1
20170189019 Harris et al. Jul 2017 A1
20170189020 Harris et al. Jul 2017 A1
20170196558 Morgan et al. Jul 2017 A1
20170196561 Shelton, IV et al. Jul 2017 A1
20170196562 Shelton, IV et al. Jul 2017 A1
20170196637 Shelton, IV et al. Jul 2017 A1
20170196648 Ward et al. Jul 2017 A1
20170196649 Yates et al. Jul 2017 A1
20170202571 Shelton, IV et al. Jul 2017 A1
20170202596 Shelton, IV et al. Jul 2017 A1
20170202770 Friedrich et al. Jul 2017 A1
20170209145 Swayze et al. Jul 2017 A1
20170209146 Yates et al. Jul 2017 A1
20170209226 Overmyer et al. Jul 2017 A1
20170215881 Shelton, IV et al. Aug 2017 A1
20170215943 Allen, IV Aug 2017 A1
20170224330 Worthington et al. Aug 2017 A1
20170224331 Worthington et al. Aug 2017 A1
20170224332 Hunter et al. Aug 2017 A1
20170224333 Hunter et al. Aug 2017 A1
20170224334 Worthington et al. Aug 2017 A1
20170224335 Weaner et al. Aug 2017 A1
20170224336 Hunter et al. Aug 2017 A1
20170224339 Huang et al. Aug 2017 A1
20170224342 Worthington et al. Aug 2017 A1
20170224343 Baxter, III et al. Aug 2017 A1
20170231623 Shelton, IV et al. Aug 2017 A1
20170231626 Shelton, IV et al. Aug 2017 A1
20170231627 Shelton, IV et al. Aug 2017 A1
20170231628 Shelton, IV et al. Aug 2017 A1
20170238928 Morgan et al. Aug 2017 A1
20170238929 Yates et al. Aug 2017 A1
20170245854 Zemlok et al. Aug 2017 A1
20170245952 Shelton, IV et al. Aug 2017 A1
20170245953 Shelton, IV et al. Aug 2017 A1
20170249431 Shelton, IV et al. Aug 2017 A1
20170258469 Shelton, IV et al. Sep 2017 A1
20170265774 Johnson et al. Sep 2017 A1
20170265856 Shelton, IV et al. Sep 2017 A1
20170281155 Shelton, IV et al. Oct 2017 A1
20170281161 Shelton, IV et al. Oct 2017 A1
20170281162 Shelton, IV et al. Oct 2017 A1
20170281163 Shelton, IV et al. Oct 2017 A1
20170281164 Harris et al. Oct 2017 A1
20170281165 Harris et al. Oct 2017 A1
20170281166 Morgan et al. Oct 2017 A1
20170281167 Shelton, IV et al. Oct 2017 A1
20170281168 Shelton, IV et al. Oct 2017 A1
20170281169 Harris et al. Oct 2017 A1
20170281170 Shelton, IV et al. Oct 2017 A1
20170281171 Shelton, IV et al. Oct 2017 A1
20170281172 Shelton, IV et al. Oct 2017 A1
20170281173 Shelton, IV et al. Oct 2017 A1
20170281174 Harris et al. Oct 2017 A1
20170281177 Harris et al. Oct 2017 A1
20170281178 Shelton, IV et al. Oct 2017 A1
20170281179 Shelton, IV et al. Oct 2017 A1
20170281180 Morgan et al. Oct 2017 A1
20170281183 Miller et al. Oct 2017 A1
20170281184 Shelton, IV et al. Oct 2017 A1
20170281185 Miller et al. Oct 2017 A1
20170281186 Shelton, IV et al. Oct 2017 A1
20170281187 Shelton, IV et al. Oct 2017 A1
20170281188 Shelton, IV et al. Oct 2017 A1
20170281189 Nalagatla et al. Oct 2017 A1
20170290584 Jasemian Oct 2017 A1
20170290585 Shelton, IV et al. Oct 2017 A1
20170296169 Yates et al. Oct 2017 A1
20170296170 Shelton, IV et al. Oct 2017 A1
20170296171 Shelton, IV et al. Oct 2017 A1
20170296172 Harris et al. Oct 2017 A1
20170296173 Shelton, IV et al. Oct 2017 A1
20170296177 Harris et al. Oct 2017 A1
20170296178 Miller et al. Oct 2017 A1
20170296179 Shelton, IV et al. Oct 2017 A1
20170296180 Harris et al. Oct 2017 A1
20170296183 Shelton, IV et al. Oct 2017 A1
20170296184 Harris et al. Oct 2017 A1
20170296185 Swensgard et al. Oct 2017 A1
20170296189 Vendely et al. Oct 2017 A1
20170296190 Aronhalt et al. Oct 2017 A1
20170296191 Shelton, IV et al. Oct 2017 A1
20170296213 Swensgard et al. Oct 2017 A1
20170311944 Morgan et al. Nov 2017 A1
20170311949 Shelton, IV Nov 2017 A1
20170311950 Shelton, IV et al. Nov 2017 A1
20170312040 Giordano et al. Nov 2017 A1
20170312041 Giordano et al. Nov 2017 A1
20170312042 Giordano et al. Nov 2017 A1
20170319201 Morgan et al. Nov 2017 A1
20170319207 Shelton, IV et al. Nov 2017 A1
20170319209 Morgan et al. Nov 2017 A1
20170319777 Shelton, IV et al. Nov 2017 A1
20170325813 Aranyi et al. Nov 2017 A1
20170333033 Valentine et al. Nov 2017 A1
20170333034 Morgan et al. Nov 2017 A1
20170333035 Morgan et al. Nov 2017 A1
20170333070 Laurent et al. Nov 2017 A1
20170348010 Chiang Dec 2017 A1
20170348043 Wang et al. Dec 2017 A1
20170354413 Chen et al. Dec 2017 A1
20170354415 Casasanta, Jr. et al. Dec 2017 A1
20170358052 Yuan Dec 2017 A1
20170360439 Chen et al. Dec 2017 A1
20170360441 Sgroi Dec 2017 A1
20170360442 Shelton, IV et al. Dec 2017 A1
20170364183 Xiao Dec 2017 A1
20170367695 Shelton, IV et al. Dec 2017 A1
20170367696 Shelton, IV et al. Dec 2017 A1
20170367697 Shelton, IV et al. Dec 2017 A1
20170367698 Shelton, IV et al. Dec 2017 A1
20170367699 Shelton, IV et al. Dec 2017 A1
20170367700 Leimbach et al. Dec 2017 A1
20170367991 Widenhouse et al. Dec 2017 A1
20180000483 Leimbach et al. Jan 2018 A1
20180000545 Giordano et al. Jan 2018 A1
20180008269 Moore et al. Jan 2018 A1
20180008270 Moore et al. Jan 2018 A1
20180008271 Moore et al. Jan 2018 A1
20180008356 Giordano et al. Jan 2018 A1
20180008357 Giordano et al. Jan 2018 A1
20180028184 Shelton, IV et al. Feb 2018 A1
20180028185 Shelton, IV et al. Feb 2018 A1
20180042611 Swayze et al. Feb 2018 A1
20180049819 Harris et al. Feb 2018 A1
20180049824 Harris et al. Feb 2018 A1
20180049883 Moskowitz et al. Feb 2018 A1
20180055510 Schmid et al. Mar 2018 A1
20180055513 Shelton, IV et al. Mar 2018 A1
20180055524 Shelton, IV et al. Mar 2018 A1
20180055525 Shelton, IV et al. Mar 2018 A1
20180055526 Shelton, IV et al. Mar 2018 A1
20180064437 Yates et al. Mar 2018 A1
20180064440 Shelton, IV et al. Mar 2018 A1
20180064441 Shelton, IV et al. Mar 2018 A1
20180064442 Shelton, IV et al. Mar 2018 A1
20180064443 Shelton, IV et al. Mar 2018 A1
20180070939 Giordano et al. Mar 2018 A1
20180070942 Shelton, IV et al. Mar 2018 A1
20180070946 Shelton, IV et al. Mar 2018 A1
20180078248 Swayze et al. Mar 2018 A1
20180078268 Messerly et al. Mar 2018 A1
20180085116 Yates et al. Mar 2018 A1
20180085117 Shelton, IV et al. Mar 2018 A1
20180085123 Shelton, IV et al. Mar 2018 A1
20180103952 Aronhalt et al. Apr 2018 A1
20180103953 Shelton, IV et al. Apr 2018 A1
20180103955 Shelton, IV et al. Apr 2018 A1
20180110516 Baxter, III et al. Apr 2018 A1
20180110518 Overmyer et al. Apr 2018 A1
20180110519 Lytle, IV et al. Apr 2018 A1
20180110520 Shelton, IV et al. Apr 2018 A1
20180110521 Shelton, IV et al. Apr 2018 A1
20180110522 Shelton, IV et al. Apr 2018 A1
20180110523 Shelton, IV Apr 2018 A1
20180110574 Shelton, IV et al. Apr 2018 A1
20180110575 Shelton, IV et al. Apr 2018 A1
20180114591 Pribanic et al. Apr 2018 A1
20180116658 Aronhalt, IV et al. May 2018 A1
20180116662 Shelton, IV et al. May 2018 A1
20180116665 Hall et al. May 2018 A1
20180125481 Yates et al. May 2018 A1
20180125484 Kostrzewski May 2018 A1
20180125487 Beardsley May 2018 A1
20180125488 Morgan et al. May 2018 A1
20180125489 Leimbach et al. May 2018 A1
20180125590 Giordano et al. May 2018 A1
20180125594 Beardsley May 2018 A1
20180126504 Shelton, IV et al. May 2018 A1
20180132845 Schmid et al. May 2018 A1
20180132849 Miller et al. May 2018 A1
20180132850 Leimbach et al. May 2018 A1
20180132851 Hall et al. May 2018 A1
20180132926 Asher et al. May 2018 A1
20180132952 Spivey et al. May 2018 A1
20180133856 Shelton, IV et al. May 2018 A1
20180140299 Weaner et al. May 2018 A1
20180140368 Shelton, IV et al. May 2018 A1
20180146960 Shelton, IV et al. May 2018 A1
20180150153 Yoon et al. May 2018 A1
20180153542 Shelton, IV et al. Jun 2018 A1
20180161034 Scheib et al. Jun 2018 A1
20180168575 Simms et al. Jun 2018 A1
20180168576 Hunter et al. Jun 2018 A1
20180168577 Aronhalt et al. Jun 2018 A1
20180168578 Aronhalt et al. Jun 2018 A1
20180168579 Aronhalt et al. Jun 2018 A1
20180168580 Hunter et al. Jun 2018 A1
20180168581 Hunter et al. Jun 2018 A1
20180168582 Swayze et al. Jun 2018 A1
20180168583 Hunter et al. Jun 2018 A1
20180168584 Harris et al. Jun 2018 A1
20180168585 Shelton, IV et al. Jun 2018 A1
20180168586 Shelton, IV et al. Jun 2018 A1
20180168589 Swayze et al. Jun 2018 A1
20180168590 Overmyer et al. Jun 2018 A1
20180168591 Swayze et al. Jun 2018 A1
20180168592 Overmyer et al. Jun 2018 A1
20180168593 Overmyer et al. Jun 2018 A1
20180168594 Shelton, IV et al. Jun 2018 A1
20180168595 Overmyer et al. Jun 2018 A1
20180168596 Beckman et al. Jun 2018 A1
20180168597 Fanelli et al. Jun 2018 A1
20180168598 Shelton, IV et al. Jun 2018 A1
20180168599 Bakos et al. Jun 2018 A1
20180168600 Shelton, IV et al. Jun 2018 A1
20180168601 Bakos et al. Jun 2018 A1
20180168602 Bakos et al. Jun 2018 A1
20180168603 Morgan et al. Jun 2018 A1
20180168604 Shelton, IV et al. Jun 2018 A1
20180168605 Baber et al. Jun 2018 A1
20180168606 Shelton, IV et al. Jun 2018 A1
20180168607 Shelton, IV et al. Jun 2018 A1
20180168608 Shelton, IV et al. Jun 2018 A1
20180168609 Fanelli et al. Jun 2018 A1
20180168610 Shelton, IV et al. Jun 2018 A1
20180168611 Shelton, IV et al. Jun 2018 A1
20180168612 Shelton, IV et al. Jun 2018 A1
20180168613 Shelton, IV et al. Jun 2018 A1
20180168614 Shelton, IV et al. Jun 2018 A1
20180168615 Shelton, IV et al. Jun 2018 A1
20180168616 Shelton, IV et al. Jun 2018 A1
20180168617 Shelton, IV et al. Jun 2018 A1
20180168618 Scott et al. Jun 2018 A1
20180168619 Scott et al. Jun 2018 A1
20180168620 Huang et al. Jun 2018 A1
20180168621 Shelton, IV et al. Jun 2018 A1
20180168622 Shelton, IV et al. Jun 2018 A1
20180168623 Simms et al. Jun 2018 A1
20180168624 Shelton, IV et al. Jun 2018 A1
20180168625 Posada et al. Jun 2018 A1
20180168626 Shelton, IV et al. Jun 2018 A1
20180168627 Weaner et al. Jun 2018 A1
20180168628 Hunter et al. Jun 2018 A1
20180168629 Shelton, IV et al. Jun 2018 A1
20180168630 Shelton, IV et al. Jun 2018 A1
20180168631 Harris et al. Jun 2018 A1
20180168632 Harris et al. Jun 2018 A1
20180168633 Shelton, IV et al. Jun 2018 A1
20180168634 Harris et al. Jun 2018 A1
20180168635 Shelton, IV et al. Jun 2018 A1
20180168636 Shelton, IV et al. Jun 2018 A1
20180168637 Harris et al. Jun 2018 A1
20180168638 Harris et al. Jun 2018 A1
20180168639 Shelton, IV et al. Jun 2018 A1
20180168640 Shelton, IV et al. Jun 2018 A1
20180168641 Harris et al. Jun 2018 A1
20180168642 Shelton, IV et al. Jun 2018 A1
20180168643 Shelton, IV et al. Jun 2018 A1
20180168644 Shelton, IV et al. Jun 2018 A1
20180168645 Shelton, IV et al. Jun 2018 A1
20180168646 Shelton, IV et al. Jun 2018 A1
20180168647 Shelton, IV et al. Jun 2018 A1
20180168648 Shelton, IV et al. Jun 2018 A1
20180168649 Shelton, IV et al. Jun 2018 A1
20180168650 Shelton, IV et al. Jun 2018 A1
20180168651 Shelton, IV et al. Jun 2018 A1
20180168715 Strobl Jun 2018 A1
20180199940 Zergiebel et al. Jul 2018 A1
20180206843 Yates et al. Jul 2018 A1
20180206906 Moua et al. Jul 2018 A1
20180214147 Merchant et al. Aug 2018 A1
20180221046 Demmy et al. Aug 2018 A1
20180221050 Kostrzewski et al. Aug 2018 A1
20180228490 Richard et al. Aug 2018 A1
20180242962 Walen et al. Aug 2018 A1
20180250001 Aronhalt et al. Sep 2018 A1
20180250020 Carusillo Sep 2018 A1
20180250086 Grubbs Sep 2018 A1
20180256184 Shelton, IV et al. Sep 2018 A1
20180271520 Shelton, IV et al. Sep 2018 A1
20180273597 Stimson Sep 2018 A1
20180280020 Hess et al. Oct 2018 A1
20180280021 Timm et al. Oct 2018 A1
20180280022 Timm et al. Oct 2018 A1
20180280023 Timm et al. Oct 2018 A1
20180286274 Kamiguchi et al. Oct 2018 A1
20180289369 Shelton, IV et al. Oct 2018 A1
20180296211 Timm et al. Oct 2018 A1
20180296215 Baxter, III et al. Oct 2018 A1
20180296216 Shelton, IV et al. Oct 2018 A1
20180296217 Moore et al. Oct 2018 A1
20180303481 Shelton, IV et al. Oct 2018 A1
20180303482 Shelton, IV et al. Oct 2018 A1
20180310931 Hall et al. Nov 2018 A1
20180311002 Giordano et al. Nov 2018 A1
20180317907 Kostrzewski Nov 2018 A1
20180317916 Wixey Nov 2018 A1
20180317917 Huang et al. Nov 2018 A1
20180317918 Shelton, IV Nov 2018 A1
20180317919 Shelton, IV et al. Nov 2018 A1
20180325528 Windolf et al. Nov 2018 A1
20180333155 Hall et al. Nov 2018 A1
20180333169 Leimbach et al. Nov 2018 A1
20180344319 Shelton, IV et al. Dec 2018 A1
20180353170 Overmyer et al. Dec 2018 A1
20180353176 Shelton, IV et al. Dec 2018 A1
20180353177 Shelton, IV et al. Dec 2018 A1
20180353178 Shelton, IV et al. Dec 2018 A1
20180353179 Shelton, IV et al. Dec 2018 A1
20180360443 Shelton, IV et al. Dec 2018 A1
20180360444 Harris et al. Dec 2018 A1
20180360445 Shelton, IV et al. Dec 2018 A1
20180360446 Shelton, IV et al. Dec 2018 A1
20180360447 Shelton, IV et al. Dec 2018 A1
20180360448 Harris et al. Dec 2018 A1
20180360449 Shelton, IV et al. Dec 2018 A1
20180360450 Shelton, IV et al. Dec 2018 A1
20180360451 Shelton, IV et al. Dec 2018 A1
20180360452 Shelton, IV et al. Dec 2018 A1
20180360454 Shelton, IV et al. Dec 2018 A1
20180360455 Shelton, IV et al. Dec 2018 A1
20180360456 Shelton, IV et al. Dec 2018 A1
20180360469 Shelton, IV et al. Dec 2018 A1
20180360470 Parfett et al. Dec 2018 A1
20180360471 Parfett et al. Dec 2018 A1
20180360472 Harris et al. Dec 2018 A1
20180360473 Shelton, IV et al. Dec 2018 A1
20180360549 Hares et al. Dec 2018 A1
20180368822 Shelton, IV et al. Dec 2018 A1
20180368833 Shelton, IV et al. Dec 2018 A1
20180368837 Morgan et al. Dec 2018 A1
20180368838 Shelton, IV et al. Dec 2018 A1
20180368839 Shelton, IV et al. Dec 2018 A1
20180368840 Shelton, IV et al. Dec 2018 A1
20180368841 Shelton, IV et al. Dec 2018 A1
20180368842 Shelton, IV et al. Dec 2018 A1
20180368843 Shelton, IV et al. Dec 2018 A1
20180368844 Bakos et al. Dec 2018 A1
20180368845 Bakos et al. Dec 2018 A1
20180368846 Shelton, IV et al. Dec 2018 A1
20180368847 Shelton, IV et al. Dec 2018 A1
20190000446 Shelton, IV et al. Jan 2019 A1
20190000447 Shelton, IV et al. Jan 2019 A1
20190000448 Shelton, IV et al. Jan 2019 A1
20190000450 Shelton, IV et al. Jan 2019 A1
20190000454 Swayze et al. Jan 2019 A1
20190000456 Shelton, IV et al. Jan 2019 A1
20190000457 Shelton, IV et al. Jan 2019 A1
20190000458 Shelton, IV et al. Jan 2019 A1
20190000459 Shelton, IV et al. Jan 2019 A1
20190000460 Shelton, IV et al. Jan 2019 A1
20190000461 Shelton, IV et al. Jan 2019 A1
20190000462 Shelton, IV et al. Jan 2019 A1
20190000463 Shelton, IV et al. Jan 2019 A1
20190000464 Shelton, IV et al. Jan 2019 A1
20190000465 Shelton, IV et al. Jan 2019 A1
20190000466 Shelton, IV et al. Jan 2019 A1
20190000467 Shelton, IV et al. Jan 2019 A1
20190000468 Adams et al. Jan 2019 A1
20190000469 Shelton, IV et al. Jan 2019 A1
20190000470 Yates et al. Jan 2019 A1
20190000471 Shelton, IV et al. Jan 2019 A1
20190000472 Shelton, IV et al. Jan 2019 A1
20190000473 Shelton, IV et al. Jan 2019 A1
20190000474 Shelton, IV et al. Jan 2019 A1
20190000475 Shelton, IV et al. Jan 2019 A1
20190000476 Shelton, IV et al. Jan 2019 A1
20190000477 Shelton, IV et al. Jan 2019 A1
20190000478 Messerly et al. Jan 2019 A1
20190000479 Harris et al. Jan 2019 A1
20190000525 Messerly et al. Jan 2019 A1
20190000528 Yates et al. Jan 2019 A1
20190000530 Yates et al. Jan 2019 A1
20190000531 Messerly et al. Jan 2019 A1
20190000534 Messerly et al. Jan 2019 A1
20190000538 Widenhouse et al. Jan 2019 A1
20190000555 Schings et al. Jan 2019 A1
20190000565 Shelton, IV et al. Jan 2019 A1
20190000577 Shelton, IV et al. Jan 2019 A1
20190003292 Balan et al. Jan 2019 A1
20190008509 Shelton, IV et al. Jan 2019 A1
20190008511 Kerr et al. Jan 2019 A1
20190015096 Shelton, IV et al. Jan 2019 A1
20190015102 Baber et al. Jan 2019 A1
20190015165 Giordano et al. Jan 2019 A1
20190029675 Yates et al. Jan 2019 A1
20190029676 Yates et al. Jan 2019 A1
20190029677 Yates et al. Jan 2019 A1
20190029678 Shelton, IV et al. Jan 2019 A1
20190029681 Swayze et al. Jan 2019 A1
20190029682 Huitema et al. Jan 2019 A1
20190029701 Shelton, IV et al. Jan 2019 A1
20190033955 Leimbach et al. Jan 2019 A1
20190038279 Shelton, IV et al. Feb 2019 A1
20190038281 Shelton, IV et al. Feb 2019 A1
20190038282 Shelton, IV et al. Feb 2019 A1
20190038283 Shelton, IV et al. Feb 2019 A1
20190038292 Zhang Feb 2019 A1
20190038371 Wixey et al. Feb 2019 A1
20190046181 McCuen Feb 2019 A1
20190046187 Yates et al. Feb 2019 A1
20190059886 Shelton, IV et al. Feb 2019 A1
20190090870 Shelton, IV et al. Mar 2019 A1
20190090871 Shelton, IV et al. Mar 2019 A1
20190091183 Tomat et al. Mar 2019 A1
20190099177 Yates et al. Apr 2019 A1
20190099178 Leimbach et al. Apr 2019 A1
20190099179 Leimbach et al. Apr 2019 A1
20190099180 Leimbach et al. Apr 2019 A1
20190099181 Shelton, IV et al. Apr 2019 A1
20190099182 Bakos et al. Apr 2019 A1
20190099183 Leimbach et al. Apr 2019 A1
20190099184 Setser et al. Apr 2019 A1
20190099224 Leimbach et al. Apr 2019 A1
20190099229 Spivey et al. Apr 2019 A1
20190102930 Leimbach et al. Apr 2019 A1
20190105035 Shelton, IV et al. Apr 2019 A1
20190105036 Morgan et al. Apr 2019 A1
20190105037 Morgan et al. Apr 2019 A1
20190105038 Schmid et al. Apr 2019 A1
20190105039 Morgan et al. Apr 2019 A1
20190105043 Jaworek et al. Apr 2019 A1
20190105044 Shelton, IV et al. Apr 2019 A1
20190105049 Moore et al. Apr 2019 A1
20190110791 Shelton, IV et al. Apr 2019 A1
20190110792 Shelton, IV et al. Apr 2019 A1
20190110793 Parihar et al. Apr 2019 A1
20190117216 Overmyer et al. Apr 2019 A1
20190117217 Overmyer et al. Apr 2019 A1
20190117222 Shelton, IV et al. Apr 2019 A1
20190117224 Setser et al. Apr 2019 A1
20190117225 Moore et al. Apr 2019 A1
20190125343 Wise et al. May 2019 A1
20190125344 DiNardo et al. May 2019 A1
20190125345 Baber et al. May 2019 A1
20190125365 Parfett et al. May 2019 A1
20190125380 Hunter et al. May 2019 A1
20190125475 Wise et al. May 2019 A1
20190133585 Smith et al. May 2019 A1
20190142421 Shelton, IV May 2019 A1
20190183490 Shelton, IV et al. Jun 2019 A1
20190183491 Shelton, IV et al. Jun 2019 A1
20190183492 Shelton, IV et al. Jun 2019 A1
20190183493 Shelton, IV et al. Jun 2019 A1
20190183494 Shelton, IV et al. Jun 2019 A1
20190183495 Shelton, IV et al. Jun 2019 A1
20190183496 Shelton, IV et al. Jun 2019 A1
20190183497 Shelton, IV et al. Jun 2019 A1
20190183498 Shelton, IV et al. Jun 2019 A1
20190183499 Shelton, IV et al. Jun 2019 A1
20190183500 Shelton, IV et al. Jun 2019 A1
20190183501 Shelton, IV et al. Jun 2019 A1
20190183502 Shelton, IV et al. Jun 2019 A1
20190183503 Shelton, IV et al. Jun 2019 A1
20190183504 Shelton, IV et al. Jun 2019 A1
20190183505 Vendely et al. Jun 2019 A1
20190183592 Shelton, IV et al. Jun 2019 A1
20190183594 Shelton, IV et al. Jun 2019 A1
20190183597 Shelton, IV et al. Jun 2019 A1
20190192137 Shelton, IV et al. Jun 2019 A1
20190192138 Shelton, IV et al. Jun 2019 A1
20190192141 Shelton, IV et al. Jun 2019 A1
20190192144 Parfett et al. Jun 2019 A1
20190192145 Shelton, IV et al. Jun 2019 A1
20190192146 Widenhouse et al. Jun 2019 A1
20190192147 Shelton, IV et al. Jun 2019 A1
20190192148 Shelton, IV et al. Jun 2019 A1
20190192149 Shelton, IV et al. Jun 2019 A1
20190192150 Widenhouse et al. Jun 2019 A1
20190192151 Shelton, IV et al. Jun 2019 A1
20190192152 Morgan et al. Jun 2019 A1
20190192153 Shelton, IV et al. Jun 2019 A1
20190192154 Shelton, IV et al. Jun 2019 A1
20190192155 Shelton, IV et al. Jun 2019 A1
20190192156 Simms et al. Jun 2019 A1
20190192157 Scott et al. Jun 2019 A1
20190192158 Scott et al. Jun 2019 A1
20190192159 Simms et al. Jun 2019 A1
20190192227 Shelton, IV et al. Jun 2019 A1
20190192235 Harris et al. Jun 2019 A1
20190192236 Shelton, IV et al. Jun 2019 A1
20190200895 Shelton, IV et al. Jul 2019 A1
20190200991 Moore et al. Jul 2019 A1
20190200992 Moore et al. Jul 2019 A1
20190200993 Moore et al. Jul 2019 A1
20190200994 Moore et al. Jul 2019 A1
20190209164 Timm et al. Jul 2019 A1
20190209165 Timm et al. Jul 2019 A1
20190209171 Shelton, IV et al. Jul 2019 A1
20190209172 Shelton, IV et al. Jul 2019 A1
20190209247 Giordano et al. Jul 2019 A1
20190209248 Giordano et al. Jul 2019 A1
20190209249 Giordano et al. Jul 2019 A1
20190209250 Giordano et al. Jul 2019 A1
20190216558 Giordano et al. Jul 2019 A1
20190223865 Shelton, IV et al. Jul 2019 A1
20190223871 Moore et al. Jul 2019 A1
20190261991 Beckman et al. Aug 2019 A1
20190267403 Li et al. Aug 2019 A1
20190269400 Mandakolathur Vasudevan et al. Sep 2019 A1
20190269402 Murray et al. Sep 2019 A1
20190269403 Baxter, III et al. Sep 2019 A1
20190269407 Swensgard et al. Sep 2019 A1
20190290263 Morgan et al. Sep 2019 A1
20190290264 Morgan et al. Sep 2019 A1
20190290265 Shelton, IV et al. Sep 2019 A1
20190290274 Shelton, IV Sep 2019 A1
20190321040 Shelton, IV Oct 2019 A1
20190321041 Shelton, IV Oct 2019 A1
20190350582 Shelton, IV et al. Nov 2019 A1
Foreign Referenced Citations (1404)
Number Date Country
2008207624 Mar 2009 AU
2010214687 Sep 2010 AU
2011218702 Jun 2013 AU
2012200178 Jul 2013 AU
1015829 Aug 1977 CA
1125615 Jun 1982 CA
2458946 Mar 2003 CA
2477181 Apr 2004 CA
2512960 Jan 2006 CA
2514274 Jan 2006 CA
2520413 Mar 2007 CA
2725181 Nov 2007 CA
2851239 Nov 2007 CA
2639177 Feb 2009 CA
2664874-1 Nov 2009 CA
2813230 Apr 2012 CA
2576347 Aug 2015 CA
2940510 Aug 2015 CA
2698728 Aug 2016 CA
86100996 Sep 1986 CN
1163558 Oct 1997 CN
2488482 May 2002 CN
1424891 Jun 2003 CN
1523725 Aug 2004 CN
1545154 Nov 2004 CN
1634601 Jul 2005 CN
1636525 Jul 2005 CN
1636526 Jul 2005 CN
2716900 Aug 2005 CN
2738962 Nov 2005 CN
1726874 Feb 2006 CN
1726878 Feb 2006 CN
1777406 May 2006 CN
2796654 Jul 2006 CN
1868411 Nov 2006 CN
1915180 Feb 2007 CN
2868212 Feb 2007 CN
1960679 May 2007 CN
101011286 Aug 2007 CN
200942099 Sep 2007 CN
200984209 Dec 2007 CN
200991269 Dec 2007 CN
101095621 Jan 2008 CN
101111196 Jan 2008 CN
201001747 Jan 2008 CN
101137402 Mar 2008 CN
101143105 Mar 2008 CN
201029899 Mar 2008 CN
101224122 Jul 2008 CN
101224124 Jul 2008 CN
101254126 Sep 2008 CN
101378791 Mar 2009 CN
101507620 Aug 2009 CN
101507622 Aug 2009 CN
101507623 Aug 2009 CN
101507625 Aug 2009 CN
101507628 Aug 2009 CN
101522120 Sep 2009 CN
101534724 Sep 2009 CN
101626731 Jan 2010 CN
101669833 Mar 2010 CN
101675898 Mar 2010 CN
101683280 Mar 2010 CN
101721236 Jun 2010 CN
101801284 Aug 2010 CN
101828940 Sep 2010 CN
101868203 Oct 2010 CN
101873834 Oct 2010 CN
101073509 Dec 2010 CN
101912285 Dec 2010 CN
101028205 Jan 2011 CN
101933824 Jan 2011 CN
101934098 Jan 2011 CN
201719298 Jan 2011 CN
102038531 May 2011 CN
102038532 May 2011 CN
101534722 Jun 2011 CN
201879759 Jun 2011 CN
101361666 Aug 2011 CN
201949071 Aug 2011 CN
101224119 Sep 2011 CN
101336835 Sep 2011 CN
102188270 Sep 2011 CN
102217961 Oct 2011 CN
102217963 Oct 2011 CN
101779977 Dec 2011 CN
101534723 Jan 2012 CN
101310680 Apr 2012 CN
101912284 Jul 2012 CN
102125450 Jul 2012 CN
202313537 Jul 2012 CN
202397539 Aug 2012 CN
202426586 Sep 2012 CN
101317782 Oct 2012 CN
202489990 Oct 2012 CN
101507639 Nov 2012 CN
101541251 Nov 2012 CN
102228387 Nov 2012 CN
102835977 Dec 2012 CN
202568350 Dec 2012 CN
101507633 Feb 2013 CN
101023879 Mar 2013 CN
101507624 Mar 2013 CN
101327137 Jun 2013 CN
101401736 Jun 2013 CN
101332110 Jul 2013 CN
101683281 Jan 2014 CN
103648408 Mar 2014 CN
103690212 Apr 2014 CN
203564285 Apr 2014 CN
203564287 Apr 2014 CN
203597997 May 2014 CN
103829981 Jun 2014 CN
103829983 Jun 2014 CN
103908313 Jul 2014 CN
203693685 Jul 2014 CN
203736251 Jul 2014 CN
103981635 Aug 2014 CN
203815517 Sep 2014 CN
102783741 Oct 2014 CN
102973300 Oct 2014 CN
102793571 Dec 2014 CN
104337556 Feb 2015 CN
204158440 Feb 2015 CN
204158441 Feb 2015 CN
102166129 Mar 2015 CN
102469995 Mar 2015 CN
102113902 Apr 2015 CN
204636451 Sep 2015 CN
102247177 Feb 2016 CN
103860225 Mar 2016 CN
103750872 May 2016 CN
273689 May 1914 DE
1775926 Jan 1972 DE
3036217 Apr 1982 DE
3212828 Nov 1982 DE
3210466 Sep 1983 DE
3709067 Sep 1988 DE
4228909 Mar 1994 DE
9412228 Sep 1994 DE
19509116 Sep 1996 DE
19534043 Mar 1997 DE
19707373 Feb 1998 DE
19851291 Jan 2000 DE
19924311 Nov 2000 DE
69328576 Jan 2001 DE
20016423 Feb 2001 DE
19941859 Mar 2001 DE
10052679 May 2001 DE
20112837 Oct 2001 DE
20121753 Apr 2003 DE
10314827 Apr 2004 DE
202004012389 Sep 2004 DE
10314072 Oct 2004 DE
102004014011 Oct 2005 DE
102004063606 Jul 2006 DE
202007003114 Jun 2007 DE
102010013150 Sep 2011 DE
0000756 Feb 1979 EP
0033633 Aug 1981 EP
0122046 Oct 1984 EP
0070230 Apr 1985 EP
0156774 Oct 1985 EP
0072754 Apr 1986 EP
0033548 May 1986 EP
0077262 Aug 1986 EP
0189807 Aug 1986 EP
0212278 Mar 1987 EP
0129442 Nov 1987 EP
0255631 Feb 1988 EP
0276104 Jul 1988 EP
0178940 Jan 1991 EP
0178941 Jan 1991 EP
0169044 Jun 1991 EP
0248844 Jan 1993 EP
0539762 May 1993 EP
0541950 May 1993 EP
0545029 Jun 1993 EP
0548998 Jun 1993 EP
0379721 Sep 1993 EP
0277959 Oct 1993 EP
0233940 Nov 1993 EP
0261230 Nov 1993 EP
0324636 Mar 1994 EP
0591946 Apr 1994 EP
0593920 Apr 1994 EP
0594148 Apr 1994 EP
0427949 Jun 1994 EP
0523174 Jun 1994 EP
0600182 Jun 1994 EP
0310431 Nov 1994 EP
0375302 Nov 1994 EP
0376562 Nov 1994 EP
0623311 Nov 1994 EP
0630612 Dec 1994 EP
0630614 Dec 1994 EP
0634144 Jan 1995 EP
0639349 Feb 1995 EP
0646356 Apr 1995 EP
0646357 Apr 1995 EP
0505036 May 1995 EP
0653189 May 1995 EP
0669104 Aug 1995 EP
0387980 Oct 1995 EP
0511470 Oct 1995 EP
0674876 Oct 1995 EP
0676173 Oct 1995 EP
0679367 Nov 1995 EP
0392547 Dec 1995 EP
0685204 Dec 1995 EP
0686374 Dec 1995 EP
0364216 Jan 1996 EP
0699418 Mar 1996 EP
0702937 Mar 1996 EP
0488768 Apr 1996 EP
0705571 Apr 1996 EP
0528478 May 1996 EP
0711611 May 1996 EP
0541987 Jul 1996 EP
0667119 Jul 1996 EP
0737446 Oct 1996 EP
0741996 Nov 1996 EP
0748614 Dec 1996 EP
0708618 Mar 1997 EP
0770355 May 1997 EP
0503662 Jun 1997 EP
0447121 Jul 1997 EP
0621009 Jul 1997 EP
0625077 Jul 1997 EP
0633749 Aug 1997 EP
0710090 Aug 1997 EP
0578425 Sep 1997 EP
0623312 Sep 1997 EP
0621006 Oct 1997 EP
0625335 Nov 1997 EP
0552423 Jan 1998 EP
0592244 Jan 1998 EP
0648476 Jan 1998 EP
0649290 Mar 1998 EP
0598618 Sep 1998 EP
0678007 Sep 1998 EP
0869104 Oct 1998 EP
0603472 Nov 1998 EP
0605351 Nov 1998 EP
0878169 Nov 1998 EP
0879742 Nov 1998 EP
0695144 Dec 1998 EP
0722296 Dec 1998 EP
0760230 Feb 1999 EP
0623316 Mar 1999 EP
0650701 Mar 1999 EP
0537572 Jun 1999 EP
0923907 Jun 1999 EP
0640317 Sep 1999 EP
0843906 Mar 2000 EP
0552050 May 2000 EP
0833592 May 2000 EP
0832605 Jun 2000 EP
0484677 Jul 2000 EP
0830094 Sep 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0726632 Oct 2000 EP
0694290 Nov 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1058177 Dec 2000 EP
1080694 Mar 2001 EP
1090592 Apr 2001 EP
1095627 May 2001 EP
0806914 Sep 2001 EP
0768840 Dec 2001 EP
0908152 Jan 2002 EP
0717959 Feb 2002 EP
0872213 May 2002 EP
0862386 Jun 2002 EP
1234587 Aug 2002 EP
0949886 Sep 2002 EP
1238634 Sep 2002 EP
0858295 Dec 2002 EP
0656188 Jan 2003 EP
0717960 Feb 2003 EP
1284120 Feb 2003 EP
1287788 Mar 2003 EP
0717966 Apr 2003 EP
0717967 May 2003 EP
0869742 May 2003 EP
0829235 Jun 2003 EP
0887046 Jul 2003 EP
1323384 Jul 2003 EP
0852480 Aug 2003 EP
0891154 Sep 2003 EP
0813843 Oct 2003 EP
0873089 Oct 2003 EP
0856326 Nov 2003 EP
1374788 Jan 2004 EP
0814712 Feb 2004 EP
1402837 Mar 2004 EP
0705570 Apr 2004 EP
0959784 Apr 2004 EP
1407719 Apr 2004 EP
1411626 Apr 2004 EP
1086713 May 2004 EP
0996378 Jun 2004 EP
1426012 Jun 2004 EP
0833593 Jul 2004 EP
1442694 Aug 2004 EP
0888749 Sep 2004 EP
0959786 Sep 2004 EP
1453432 Sep 2004 EP
1459695 Sep 2004 EP
1254636 Oct 2004 EP
1473819 Nov 2004 EP
1477119 Nov 2004 EP
1479345 Nov 2004 EP
1479347 Nov 2004 EP
1479348 Nov 2004 EP
0754437 Dec 2004 EP
1025807 Dec 2004 EP
1001710 Jan 2005 EP
1496805 Jan 2005 EP
1256318 Feb 2005 EP
1520521 Apr 2005 EP
1520522 Apr 2005 EP
1520523 Apr 2005 EP
1520525 Apr 2005 EP
1522264 Apr 2005 EP
1523942 Apr 2005 EP
1550408 Jul 2005 EP
1557129 Jul 2005 EP
1064883 Aug 2005 EP
1067876 Aug 2005 EP
0870473 Sep 2005 EP
1157666 Sep 2005 EP
0880338 Oct 2005 EP
1158917 Nov 2005 EP
1344498 Nov 2005 EP
0906764 Dec 2005 EP
1330989 Dec 2005 EP
0771176 Jan 2006 EP
1621138 Feb 2006 EP
1621139 Feb 2006 EP
1621141 Feb 2006 EP
1621143 Feb 2006 EP
1621145 Feb 2006 EP
1621151 Feb 2006 EP
1034746 Mar 2006 EP
1201196 Mar 2006 EP
1632191 Mar 2006 EP
1647231 Apr 2006 EP
1065981 May 2006 EP
1082944 May 2006 EP
1230899 May 2006 EP
1652481 May 2006 EP
1382303 Jun 2006 EP
1253866 Jul 2006 EP
1676539 Jul 2006 EP
1032318 Aug 2006 EP
1045672 Aug 2006 EP
1617768 Aug 2006 EP
1693015 Aug 2006 EP
1400214 Sep 2006 EP
1702567 Sep 2006 EP
1129665 Nov 2006 EP
1400206 Nov 2006 EP
1721568 Nov 2006 EP
1723914 Nov 2006 EP
1256317 Dec 2006 EP
1285633 Dec 2006 EP
1728473 Dec 2006 EP
1736105 Dec 2006 EP
1011494 Jan 2007 EP
1479346 Jan 2007 EP
1484024 Jan 2007 EP
1749485 Feb 2007 EP
1754445 Feb 2007 EP
1759812 Mar 2007 EP
1767157 Mar 2007 EP
1767163 Mar 2007 EP
1563792 Apr 2007 EP
1769756 Apr 2007 EP
1769758 Apr 2007 EP
1581128 May 2007 EP
1780825 May 2007 EP
1785097 May 2007 EP
1790293 May 2007 EP
1790294 May 2007 EP
1563793 Jun 2007 EP
1791473 Jun 2007 EP
1800610 Jun 2007 EP
1300117 Aug 2007 EP
1813199 Aug 2007 EP
1813200 Aug 2007 EP
1813201 Aug 2007 EP
1813202 Aug 2007 EP
1813203 Aug 2007 EP
1813207 Aug 2007 EP
1813209 Aug 2007 EP
1815950 Aug 2007 EP
1330991 Sep 2007 EP
1837041 Sep 2007 EP
0922435 Oct 2007 EP
1487359 Oct 2007 EP
1599146 Oct 2007 EP
1839596 Oct 2007 EP
1679096 Nov 2007 EP
1857057 Nov 2007 EP
1402821 Dec 2007 EP
1872727 Jan 2008 EP
1550410 Feb 2008 EP
1671593 Feb 2008 EP
1897502 Mar 2008 EP
1611856 Apr 2008 EP
1908417 Apr 2008 EP
1917929 May 2008 EP
1330201 Jun 2008 EP
1702568 Jul 2008 EP
1943955 Jul 2008 EP
1943957 Jul 2008 EP
1943959 Jul 2008 EP
1943962 Jul 2008 EP
1943964 Jul 2008 EP
1943976 Jul 2008 EP
1593337 Aug 2008 EP
1970014 Sep 2008 EP
1974678 Oct 2008 EP
1980213 Oct 2008 EP
1980214 Oct 2008 EP
1759645 Nov 2008 EP
1987780 Nov 2008 EP
1990014 Nov 2008 EP
1992296 Nov 2008 EP
1552795 Dec 2008 EP
1693008 Dec 2008 EP
1759640 Dec 2008 EP
1997439 Dec 2008 EP
2000101 Dec 2008 EP
2000102 Dec 2008 EP
2005894 Dec 2008 EP
2005897 Dec 2008 EP
2005901 Dec 2008 EP
2008595 Dec 2008 EP
2025293 Feb 2009 EP
1736104 Mar 2009 EP
1749486 Mar 2009 EP
1782743 Mar 2009 EP
2039302 Mar 2009 EP
2039308 Mar 2009 EP
2039316 Mar 2009 EP
1721576 Apr 2009 EP
1733686 Apr 2009 EP
2044890 Apr 2009 EP
2055243 May 2009 EP
1550409 Jun 2009 EP
1550413 Jun 2009 EP
1719461 Jun 2009 EP
1834594 Jun 2009 EP
1709911 Jul 2009 EP
2077093 Jul 2009 EP
1745748 Aug 2009 EP
2090231 Aug 2009 EP
2090237 Aug 2009 EP
2090241 Aug 2009 EP
2090245 Aug 2009 EP
2090254 Aug 2009 EP
2090256 Aug 2009 EP
2095777 Sep 2009 EP
2098170 Sep 2009 EP
2100562 Sep 2009 EP
2110082 Oct 2009 EP
2110083 Oct 2009 EP
2110084 Oct 2009 EP
2111803 Oct 2009 EP
1813208 Nov 2009 EP
1908426 Nov 2009 EP
2116195 Nov 2009 EP
2116196 Nov 2009 EP
2116197 Nov 2009 EP
1607050 Dec 2009 EP
1762190 Dec 2009 EP
1815804 Dec 2009 EP
1875870 Dec 2009 EP
1878395 Jan 2010 EP
2151204 Feb 2010 EP
1813211 Mar 2010 EP
2165654 Mar 2010 EP
2165656 Mar 2010 EP
2165660 Mar 2010 EP
2165663 Mar 2010 EP
2165664 Mar 2010 EP
1566150 Apr 2010 EP
1813206 Apr 2010 EP
2184014 May 2010 EP
1769754 Jun 2010 EP
1854416 Jun 2010 EP
1911408 Jun 2010 EP
2198787 Jun 2010 EP
2214610 Aug 2010 EP
2218409 Aug 2010 EP
1647286 Sep 2010 EP
1825821 Sep 2010 EP
1535565 Oct 2010 EP
1702570 Oct 2010 EP
1785098 Oct 2010 EP
2005896 Oct 2010 EP
2030578 Nov 2010 EP
2036505 Nov 2010 EP
2245993 Nov 2010 EP
2245994 Nov 2010 EP
2253280 Nov 2010 EP
1627605 Dec 2010 EP
2027811 Dec 2010 EP
2130498 Dec 2010 EP
2258282 Dec 2010 EP
2263568 Dec 2010 EP
1994890 Jan 2011 EP
2005900 Jan 2011 EP
2277667 Jan 2011 EP
2283780 Feb 2011 EP
2286738 Feb 2011 EP
1494595 Mar 2011 EP
1690502 Mar 2011 EP
1884201 Mar 2011 EP
2292153 Mar 2011 EP
1769755 Apr 2011 EP
2090240 Apr 2011 EP
2305135 Apr 2011 EP
2308388 Apr 2011 EP
2314254 Apr 2011 EP
2316345 May 2011 EP
2316366 May 2011 EP
2319443 May 2011 EP
2324776 May 2011 EP
1813205 Jun 2011 EP
2042107 Jun 2011 EP
2090243 Jun 2011 EP
2329773 Jun 2011 EP
2090239 Jul 2011 EP
2340771 Jul 2011 EP
1728475 Aug 2011 EP
2353545 Aug 2011 EP
2361562 Aug 2011 EP
2377472 Oct 2011 EP
1836986 Nov 2011 EP
1908414 Nov 2011 EP
2153781 Nov 2011 EP
2387943 Nov 2011 EP
2389928 Nov 2011 EP
1847225 Dec 2011 EP
2397079 Dec 2011 EP
2399538 Dec 2011 EP
1785102 Jan 2012 EP
1316290 Feb 2012 EP
1962711 Feb 2012 EP
2415416 Feb 2012 EP
2090253 Mar 2012 EP
2430986 Mar 2012 EP
1347638 May 2012 EP
1943956 May 2012 EP
2446834 May 2012 EP
2455007 May 2012 EP
2457519 May 2012 EP
2462878 Jun 2012 EP
2462880 Jun 2012 EP
1813204 Jul 2012 EP
2189121 Jul 2012 EP
2248475 Jul 2012 EP
2478845 Jul 2012 EP
2005895 Aug 2012 EP
2090248 Aug 2012 EP
2481359 Aug 2012 EP
2484304 Aug 2012 EP
2486860 Aug 2012 EP
2486862 Aug 2012 EP
2486868 Aug 2012 EP
1908412 Sep 2012 EP
1935351 Sep 2012 EP
2497431 Sep 2012 EP
1550412 Oct 2012 EP
1616549 Oct 2012 EP
2030579 Oct 2012 EP
2090252 Oct 2012 EP
2517637 Oct 2012 EP
2517638 Oct 2012 EP
2517642 Oct 2012 EP
2517645 Oct 2012 EP
2517649 Oct 2012 EP
2517651 Oct 2012 EP
2526877 Nov 2012 EP
2526883 Nov 2012 EP
1884206 Mar 2013 EP
2286735 Mar 2013 EP
2090238 Apr 2013 EP
1806103 May 2013 EP
2586380 May 2013 EP
2586383 May 2013 EP
2606812 Jun 2013 EP
2606834 Jun 2013 EP
1982657 Jul 2013 EP
2614782 Jul 2013 EP
2617369 Jul 2013 EP
2620117 Jul 2013 EP
2090234 Sep 2013 EP
2633830 Sep 2013 EP
2090244 Oct 2013 EP
2644124 Oct 2013 EP
2644209 Oct 2013 EP
2649948 Oct 2013 EP
2649949 Oct 2013 EP
1997438 Nov 2013 EP
2668910 Dec 2013 EP
2684529 Jan 2014 EP
2687164 Jan 2014 EP
2700367 Feb 2014 EP
2713902 Apr 2014 EP
1772105 May 2014 EP
2743042 Jun 2014 EP
2759267 Jul 2014 EP
2764826 Aug 2014 EP
2764827 Aug 2014 EP
2767243 Aug 2014 EP
2772206 Sep 2014 EP
2772209 Sep 2014 EP
2777520 Sep 2014 EP
2777524 Sep 2014 EP
2777528 Sep 2014 EP
2777537 Sep 2014 EP
2777538 Sep 2014 EP
2786714 Oct 2014 EP
2792313 Oct 2014 EP
2803324 Nov 2014 EP
2815704 Dec 2014 EP
2446835 Jan 2015 EP
2842500 Mar 2015 EP
2845545 Mar 2015 EP
1943960 Apr 2015 EP
2090255 Apr 2015 EP
2853220 Apr 2015 EP
2923647 Sep 2015 EP
2923653 Sep 2015 EP
2923660 Sep 2015 EP
2932913 Oct 2015 EP
2944270 Nov 2015 EP
1774914 Dec 2015 EP
2090235 Apr 2016 EP
2823773 Apr 2016 EP
2131750 May 2016 EP
2298220 Jun 2016 EP
2510891 Jun 2016 EP
3031404 Jun 2016 EP
3047806 Jul 2016 EP
1915957 Aug 2016 EP
2296559 Aug 2016 EP
2586379 Aug 2016 EP
2777533 Oct 2016 EP
3078334 Oct 2016 EP
2364651 Nov 2016 EP
2747235 Nov 2016 EP
2116192 Mar 2017 EP
2789299 May 2017 EP
2311386 Jun 2017 EP
2839787 Jun 2017 EP
2745782 Oct 2017 EP
3225190 Oct 2017 EP
3363378 Aug 2018 EP
2396594 Feb 2013 ES
459743 Nov 1913 FR
999646 Feb 1952 FR
1112936 Mar 1956 FR
2452275 Apr 1983 FR
2598905 Nov 1987 FR
2689749 Jul 1994 FR
2765794 Jan 1999 FR
2815842 May 2002 FR
939929 Oct 1963 GB
1210522 Oct 1970 GB
1217159 Dec 1970 GB
1339394 Dec 1973 GB
2024012 Jan 1980 GB
2109241 Jun 1983 GB
2090534 Jun 1984 GB
2272159 May 1994 GB
2284242 May 1995 GB
2286435 Aug 1995 GB
2336214 Oct 1999 GB
2425903 Nov 2006 GB
2426391 Nov 2006 GB
2423199 May 2009 GB
2509523 Jul 2014 GB
930100110 Nov 1993 GR
S4711908 May 1972 JP
S5033988 Apr 1975 JP
S5367286 Jun 1978 JP
S56112235 Sep 1981 JP
S58500053 Jan 1983 JP
S58501360 Aug 1983 JP
S59174920 Oct 1984 JP
S60100955 Jun 1985 JP
S60113007 Jun 1985 JP
S60212152 Oct 1985 JP
S6198249 May 1986 JP
S61502036 Sep 1986 JP
S62170011 Oct 1987 JP
S6359764 Mar 1988 JP
S63147449 Jun 1988 JP
S63203149 Aug 1988 JP
S63270040 Nov 1988 JP
H0129503 Jun 1989 JP
H02279149 Nov 1990 JP
H0312126 Jan 1991 JP
H0318354 Jan 1991 JP
H0378514 Aug 1991 JP
H0385009 Aug 1991 JP
H04215747 Aug 1992 JP
H04131860 Dec 1992 JP
H0584252 Apr 1993 JP
H05123325 May 1993 JP
H05212039 Aug 1993 JP
H 05226945 Sep 1993 JP
H067357 Jan 1994 JP
H0630945 Feb 1994 JP
H0654857 Mar 1994 JP
H0663054 Mar 1994 JP
H0626812 Apr 1994 JP
H06121798 May 1994 JP
H06125913 May 1994 JP
H06197901 Jul 1994 JP
H06237937 Aug 1994 JP
H06327684 Nov 1994 JP
H079622 Feb 1995 JP
H0731623 Feb 1995 JP
H0747070 Feb 1995 JP
H0751273 Feb 1995 JP
H07124166 May 1995 JP
H07163573 Jun 1995 JP
H07163574 Jun 1995 JP
H07171163 Jul 1995 JP
H07255735 Oct 1995 JP
H07285089 Oct 1995 JP
H07299074 Nov 1995 JP
H0833641 Feb 1996 JP
H0833642 Feb 1996 JP
H08164141 Jun 1996 JP
H08173437 Jul 1996 JP
H08182684 Jul 1996 JP
H08215201 Aug 1996 JP
H08507708 Aug 1996 JP
H08229050 Sep 1996 JP
H08289895 Nov 1996 JP
H08336540 Dec 1996 JP
H08336544 Dec 1996 JP
H09501081 Feb 1997 JP
H09501577 Feb 1997 JP
H09164144 Jun 1997 JP
H09-323068 Dec 1997 JP
H10113352 May 1998 JP
H10118090 May 1998 JP
H10-200699 Jul 1998 JP
H 10296660 Nov 1998 JP
H10512465 Dec 1998 JP
H10512469 Dec 1998 JP
2000014632 Jan 2000 JP
2000033071 Feb 2000 JP
2000112002 Apr 2000 JP
3056672 Jun 2000 JP
2000166932 Jun 2000 JP
2000171730 Jun 2000 JP
2000271141 Oct 2000 JP
2000287987 Oct 2000 JP
2000325303 Nov 2000 JP
2001037763 Feb 2001 JP
2001046384 Feb 2001 JP
2001087272 Apr 2001 JP
2001514541 Sep 2001 JP
2001276091 Oct 2001 JP
2001286477 Oct 2001 JP
2001517473 Oct 2001 JP
2002051974 Feb 2002 JP
2002054903 Feb 2002 JP
2002085415 Mar 2002 JP
2002143078 May 2002 JP
2002153481 May 2002 JP
2002204801 Jul 2002 JP
2002528161 Sep 2002 JP
2002314298 Oct 2002 JP
2002369820 Dec 2002 JP
2002542186 Dec 2002 JP
2003000603 Jan 2003 JP
2003500153 Jan 2003 JP
2003504104 Feb 2003 JP
2003135473 May 2003 JP
2003148903 May 2003 JP
2003164066 Jun 2003 JP
2003521301 Jul 2003 JP
2003521304 Jul 2003 JP
2003523251 Aug 2003 JP
2003523254 Aug 2003 JP
2003524431 Aug 2003 JP
3442423 Sep 2003 JP
2003300416 Oct 2003 JP
2004147701 May 2004 JP
2004162035 Jun 2004 JP
2004229976 Aug 2004 JP
2004524076 Aug 2004 JP
2004531280 Oct 2004 JP
2004532084 Oct 2004 JP
2004532676 Oct 2004 JP
2004-535217 Nov 2004 JP
2004329624 Nov 2004 JP
2004337617 Dec 2004 JP
2004344662 Dec 2004 JP
2004344663 Dec 2004 JP
2005013573 Jan 2005 JP
2005028147 Feb 2005 JP
2005028148 Feb 2005 JP
2005028149 Feb 2005 JP
2005505309 Feb 2005 JP
2005505322 Feb 2005 JP
2005505334 Feb 2005 JP
2005080702 Mar 2005 JP
2005103280 Apr 2005 JP
2005103281 Apr 2005 JP
2005103293 Apr 2005 JP
2005511131 Apr 2005 JP
2005511137 Apr 2005 JP
2005131163 May 2005 JP
2005131164 May 2005 JP
2005131173 May 2005 JP
2005131211 May 2005 JP
2005131212 May 2005 JP
2005137423 Jun 2005 JP
2005137919 Jun 2005 JP
2005144183 Jun 2005 JP
2005152416 Jun 2005 JP
2005516714 Jun 2005 JP
2005187954 Jul 2005 JP
2005521109 Jul 2005 JP
2005211455 Aug 2005 JP
2005523105 Aug 2005 JP
2005524474 Aug 2005 JP
2005296412 Oct 2005 JP
2005529675 Oct 2005 JP
2005529677 Oct 2005 JP
2005328882 Dec 2005 JP
2005335432 Dec 2005 JP
2005342267 Dec 2005 JP
2006034975 Feb 2006 JP
2006034977 Feb 2006 JP
2006034978 Feb 2006 JP
2006034980 Feb 2006 JP
2006043451 Feb 2006 JP
2006506106 Feb 2006 JP
2006510879 Mar 2006 JP
3791856 Jun 2006 JP
2006187649 Jul 2006 JP
2006218228 Aug 2006 JP
2006218297 Aug 2006 JP
2006223872 Aug 2006 JP
2006281405 Oct 2006 JP
2006289064 Oct 2006 JP
2006334412 Dec 2006 JP
2006334417 Dec 2006 JP
2006346445 Dec 2006 JP
2007000634 Jan 2007 JP
2007050253 Mar 2007 JP
2007061628 Mar 2007 JP
3906843 Apr 2007 JP
2007083051 Apr 2007 JP
2007098130 Apr 2007 JP
2007105481 Apr 2007 JP
2007117725 May 2007 JP
2007130471 May 2007 JP
2007130479 May 2007 JP
3934161 Jun 2007 JP
2007203047 Aug 2007 JP
2007203049 Aug 2007 JP
2007203051 Aug 2007 JP
2007203055 Aug 2007 JP
2007203057 Aug 2007 JP
2007524435 Aug 2007 JP
2007222615 Sep 2007 JP
2007229448 Sep 2007 JP
2007526026 Sep 2007 JP
4001860 Oct 2007 JP
2007252916 Oct 2007 JP
2007307373 Nov 2007 JP
2007325922 Dec 2007 JP
2008068073 Mar 2008 JP
2008510515 Apr 2008 JP
2008516669 May 2008 JP
2008528203 Jul 2008 JP
2008-220032 Sep 2008 JP
2008206967 Sep 2008 JP
2008212637 Sep 2008 JP
2008212638 Sep 2008 JP
2008212640 Sep 2008 JP
2008220956 Sep 2008 JP
2008237881 Oct 2008 JP
2008259860 Oct 2008 JP
2008264535 Nov 2008 JP
2008283459 Nov 2008 JP
2008307393 Dec 2008 JP
2009000531 Jan 2009 JP
2009006137 Jan 2009 JP
2009502351 Jan 2009 JP
2009502352 Jan 2009 JP
2009022742 Feb 2009 JP
2009506799 Feb 2009 JP
2009507526 Feb 2009 JP
200990113 Apr 2009 JP
2009072595 Apr 2009 JP
2009072599 Apr 2009 JP
2009090113 Apr 2009 JP
2009106752 May 2009 JP
2009189821 Aug 2009 JP
2009189823 Aug 2009 JP
2009189836 Aug 2009 JP
2009189837 Aug 2009 JP
2009189838 Aug 2009 JP
2009189846 Aug 2009 JP
2009189847 Aug 2009 JP
2009201998 Sep 2009 JP
2009207260 Sep 2009 JP
2009226028 Oct 2009 JP
2009536082 Oct 2009 JP
2009261944 Nov 2009 JP
2009268908 Nov 2009 JP
2009538684 Nov 2009 JP
2009539420 Nov 2009 JP
2009291604 Dec 2009 JP
2010504808 Feb 2010 JP
2010504809 Feb 2010 JP
2010504813 Feb 2010 JP
2010504846 Feb 2010 JP
2010505524 Feb 2010 JP
2010069307 Apr 2010 JP
2010069310 Apr 2010 JP
2010075694 Apr 2010 JP
2010075695 Apr 2010 JP
2010088876 Apr 2010 JP
2010094514 Apr 2010 JP
2010098844 Apr 2010 JP
4461008 May 2010 JP
2010-520025 Jun 2010 JP
2010-148879 Jul 2010 JP
2010142636 Jul 2010 JP
4549018 Sep 2010 JP
2010214128 Sep 2010 JP
2010214166 Sep 2010 JP
2010-240429 Oct 2010 JP
2010240411 Oct 2010 JP
2010246948 Nov 2010 JP
2010-540041 Dec 2010 JP
2010279690 Dec 2010 JP
2010540192 Dec 2010 JP
2011005260 Jan 2011 JP
2011504391 Feb 2011 JP
2011509786 Mar 2011 JP
2011072574 Apr 2011 JP
2011072797 Apr 2011 JP
2011078763 Apr 2011 JP
2011-115594 Jun 2011 JP
2011-520564 Jul 2011 JP
4722849 Jul 2011 JP
4783373 Sep 2011 JP
2011524199 Sep 2011 JP
2011251156 Dec 2011 JP
2012040398 Mar 2012 JP
2012507356 Mar 2012 JP
2012143283 Aug 2012 JP
2012145767 Aug 2012 JP
2012517289 Aug 2012 JP
5140421 Feb 2013 JP
5154710 Feb 2013 JP
5162595 Mar 2013 JP
2013517891 May 2013 JP
2013526342 Jun 2013 JP
2013128791 Jul 2013 JP
5333899 Nov 2013 JP
2014121599 Jul 2014 JP
2016-512057 Apr 2016 JP
20100110134 Oct 2010 KR
20110003229 Jan 2011 KR
1814161 May 1993 RU
2008830 Mar 1994 RU
2052979 Jan 1996 RU
2066128 Sep 1996 RU
2069981 Dec 1996 RU
2098025 Dec 1997 RU
2104671 Feb 1998 RU
2110965 May 1998 RU
2141279 Nov 1999 RU
2144791 Jan 2000 RU
2161450 Jan 2001 RU
2181566 Apr 2002 RU
2187249 Aug 2002 RU
2189091 Sep 2002 RU
32984 Oct 2003 RU
2225170 Mar 2004 RU
42750 Dec 2004 RU
61114 Feb 2007 RU
61122 Feb 2007 RU
2007103563 Aug 2008 RU
2430692 Oct 2011 RU
189517 Jan 1967 SU
297156 May 1971 SU
328636 Sep 1972 SU
511939 Apr 1976 SU
674747 Jul 1979 SU
728848 Apr 1980 SU
886900 Dec 1981 SU
1009439 Apr 1983 SU
1022703 Jun 1983 SU
1271497 Nov 1986 SU
1333319 Aug 1987 SU
1377052 Feb 1988 SU
1377053 Feb 1988 SU
1443874 Dec 1988 SU
1509051 Sep 1989 SU
1561964 May 1990 SU
1708312 Jan 1992 SU
1722476 Mar 1992 SU
1752361 Aug 1992 SU
1814161 May 1993 SU
WO-8202824 Sep 1982 WO
WO-8602254 Apr 1986 WO
WO-9115157 Oct 1991 WO
WO-9220295 Nov 1992 WO
WO-9221300 Dec 1992 WO
WO-9308755 May 1993 WO
WO-9313718 Jul 1993 WO
WO-9314690 Aug 1993 WO
WO-9315648 Aug 1993 WO
WO-9315850 Aug 1993 WO
WO-9319681 Oct 1993 WO
WO-9400060 Jan 1994 WO
WO-9411057 May 1994 WO
WO-9414129 Jun 1994 WO
WO-9412108 Jun 1994 WO
WO-9417737 Aug 1994 WO
WO-9418893 Sep 1994 WO
WO-9420030 Sep 1994 WO
WO-9422378 Oct 1994 WO
WO-9423659 Oct 1994 WO
WO-9424943 Nov 1994 WO
WO-9424947 Nov 1994 WO
WO-9502369 Jan 1995 WO
WO-9503743 Feb 1995 WO
WO-9506817 Mar 1995 WO
WO-9509576 Apr 1995 WO
WO-9509577 Apr 1995 WO
WO-9514436 Jun 1995 WO
WO-9517855 Jul 1995 WO
WO-9518383 Jul 1995 WO
WO-9518572 Jul 1995 WO
WO-9519739 Jul 1995 WO
WO-9520360 Aug 1995 WO
WO-9523557 Sep 1995 WO
WO-9524865 Sep 1995 WO
WO-9525471 Sep 1995 WO
WO-9526562 Oct 1995 WO
WO-9529639 Nov 1995 WO
WO-9604858 Feb 1996 WO
WO-9618344 Jun 1996 WO
WO-9619151 Jun 1996 WO
WO-9619152 Jun 1996 WO
WO-9620652 Jul 1996 WO
WO-9621119 Jul 1996 WO
WO-9622055 Jul 1996 WO
WO-9623448 Aug 1996 WO
WO-9624301 Aug 1996 WO
WO-9627337 Sep 1996 WO
WO-9631155 Oct 1996 WO
WO-9635464 Nov 1996 WO
WO-9639085 Dec 1996 WO
WO-9639086 Dec 1996 WO
WO-9639087 Dec 1996 WO
WO-9639088 Dec 1996 WO
WO-9639089 Dec 1996 WO
WO-9700646 Jan 1997 WO
WO-9700647 Jan 1997 WO
WO-9701989 Jan 1997 WO
WO-9706582 Feb 1997 WO
WO-9710763 Mar 1997 WO
WO-9710764 Mar 1997 WO
WO-9711648 Apr 1997 WO
WO-9711649 Apr 1997 WO
WO-9715237 May 1997 WO
WO-9724073 Jul 1997 WO
WO-9724993 Jul 1997 WO
WO-9730644 Aug 1997 WO
WO-9730659 Aug 1997 WO
WO-9734533 Sep 1997 WO
WO-9737598 Oct 1997 WO
WO-9739688 Oct 1997 WO
WO-9741767 Nov 1997 WO
WO-9801080 Jan 1998 WO
WO-9817180 Apr 1998 WO
WO-9822154 May 1998 WO
WO-9827880 Jul 1998 WO
WO-9830153 Jul 1998 WO
WO-9847436 Oct 1998 WO
WO-9858589 Dec 1998 WO
WO-9902090 Jan 1999 WO
WO-9903407 Jan 1999 WO
WO-9903408 Jan 1999 WO
WO-9903409 Jan 1999 WO
WO-9912483 Mar 1999 WO
WO-9912487 Mar 1999 WO
WO-9912488 Mar 1999 WO
WO-9915086 Apr 1999 WO
WO-9915091 Apr 1999 WO
WO-9923933 May 1999 WO
WO-9923959 May 1999 WO
WO-9925261 May 1999 WO
WO-9929244 Jun 1999 WO
WO-9934744 Jul 1999 WO
WO-9945849 Sep 1999 WO
WO-9948430 Sep 1999 WO
WO-9951158 Oct 1999 WO
WO-0024330 May 2000 WO
WO-2000024322 May 2000 WO
WO-0033755 Jun 2000 WO
WO-0041638 Jul 2000 WO
WO-0048506 Aug 2000 WO
WO-0053112 Sep 2000 WO
WO-0054653 Sep 2000 WO
WO-0057796 Oct 2000 WO
WO-0064365 Nov 2000 WO
WO-0072762 Dec 2000 WO
WO-0072765 Dec 2000 WO
WO-0078222 Dec 2000 WO
WO-0103587 Jan 2001 WO
WO-0105702 Jan 2001 WO
WO-0110482 Feb 2001 WO
WO-0135845 May 2001 WO
WO-0154594 Aug 2001 WO
WO-0158371 Aug 2001 WO
WO-0162158 Aug 2001 WO
WO-0162161 Aug 2001 WO
WO-0162162 Aug 2001 WO
WO-0162163 Aug 2001 WO
WO-0162164 Aug 2001 WO
WO-0162169 Aug 2001 WO
WO-0178605 Oct 2001 WO
WO-0180757 Nov 2001 WO
WO-0191646 Dec 2001 WO
WO-0200121 Jan 2002 WO
WO-0207608 Jan 2002 WO
WO-0207618 Jan 2002 WO
WO-0217799 Mar 2002 WO
WO-0219920 Mar 2002 WO
WO-0219932 Mar 2002 WO
WO-0226143 Apr 2002 WO
WO-0230297 Apr 2002 WO
WO-0232322 Apr 2002 WO
WO-0236028 May 2002 WO
WO-0243571 Jun 2002 WO
WO-02058568 Aug 2002 WO
WO-02060328 Aug 2002 WO
WO-02065933 Aug 2002 WO
WO-02067785 Sep 2002 WO
WO-02080781 Oct 2002 WO
WO-02085218 Oct 2002 WO
WO-02087586 Nov 2002 WO
WO-02098302 Dec 2002 WO
WO-03000138 Jan 2003 WO
WO-03001329 Jan 2003 WO
WO-03001986 Jan 2003 WO
WO-03013363 Feb 2003 WO
WO-03013372 Feb 2003 WO
WO-03015604 Feb 2003 WO
WO-03020106 Mar 2003 WO
WO-03020139 Mar 2003 WO
WO-03024339 Mar 2003 WO
WO-03030743 Apr 2003 WO
WO-03037193 May 2003 WO
WO-03055402 Jul 2003 WO
WO-03057048 Jul 2003 WO
WO-03057058 Jul 2003 WO
WO-03063694 Aug 2003 WO
WO-03077769 Sep 2003 WO
WO-03079911 Oct 2003 WO
WO-03082126 Oct 2003 WO
WO-03086206 Oct 2003 WO
WO-03088845 Oct 2003 WO
WO-03047436 Nov 2003 WO
WO-03090630 Nov 2003 WO
WO-03094743 Nov 2003 WO
WO-03094745 Nov 2003 WO
WO-03094746 Nov 2003 WO
WO-03094747 Nov 2003 WO
WO-03101313 Dec 2003 WO
WO-03105698 Dec 2003 WO
WO-03105702 Dec 2003 WO
WO-2004004578 Jan 2004 WO
WO-2004006980 Jan 2004 WO
WO-2004011037 Feb 2004 WO
WO-2004014238 Feb 2004 WO
WO-03079909 Mar 2004 WO
WO-2004019769 Mar 2004 WO
WO-2004019803 Mar 2004 WO
WO-2004021868 Mar 2004 WO
WO-2004028585 Apr 2004 WO
WO-2004030554 Apr 2004 WO
WO-2004032754 Apr 2004 WO
WO-2004032760 Apr 2004 WO
WO-2004032762 Apr 2004 WO
WO-2004032763 Apr 2004 WO
WO-2004032783 Apr 2004 WO
WO-2004034875 Apr 2004 WO
WO-2004047626 Jun 2004 WO
WO-2004047653 Jun 2004 WO
WO-2004049956 Jun 2004 WO
WO-2004050971 Jun 2004 WO
WO-2004052426 Jun 2004 WO
WO-2004056276 Jul 2004 WO
WO-2004056277 Jul 2004 WO
WO-2004062516 Jul 2004 WO
WO-2004064600 Aug 2004 WO
WO-2004078050 Sep 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004078236 Sep 2004 WO
WO-2004086987 Oct 2004 WO
WO-2004096015 Nov 2004 WO
WO-2004096057 Nov 2004 WO
WO-2004103157 Dec 2004 WO
WO-2004105593 Dec 2004 WO
WO-2004105621 Dec 2004 WO
WO-2004112618 Dec 2004 WO
WO-2004112652 Dec 2004 WO
WO-2005027983 Mar 2005 WO
WO-2005037329 Apr 2005 WO
WO-2005042041 May 2005 WO
WO-2005044078 May 2005 WO
WO-2005048809 Jun 2005 WO
WO-2005055846 Jun 2005 WO
WO-2005072634 Aug 2005 WO
WO-2005078892 Aug 2005 WO
WO-2005079675 Sep 2005 WO
WO-2005087128 Sep 2005 WO
WO-2005096954 Oct 2005 WO
WO-2005110243 Nov 2005 WO
WO-2005112806 Dec 2005 WO
WO-2005112808 Dec 2005 WO
WO-2005115251 Dec 2005 WO
WO-2005115253 Dec 2005 WO
WO-2005117735 Dec 2005 WO
WO-2005122936 Dec 2005 WO
WO-2006026520 Mar 2006 WO
WO-2006023486 Mar 2006 WO
WO-2006023578 Mar 2006 WO
WO-2006027014 Mar 2006 WO
WO-2006028314 Mar 2006 WO
WO-2006044490 Apr 2006 WO
WO-2006044581 Apr 2006 WO
WO-2006044810 Apr 2006 WO
WO-2006049852 May 2006 WO
WO-2006050360 May 2006 WO
WO-2006051252 May 2006 WO
WO-2006057702 Jun 2006 WO
WO-2006059067 Jun 2006 WO
WO-2006073581 Jul 2006 WO
WO-2006083748 Aug 2006 WO
WO-2006085389 Aug 2006 WO
WO-2006092563 Sep 2006 WO
WO-2006092565 Sep 2006 WO
WO-2006115958 Nov 2006 WO
WO-2006125940 Nov 2006 WO
WO-2006132992 Dec 2006 WO
WO-2007002180 Jan 2007 WO
WO-2007014355 Feb 2007 WO
WO-2007015971 Feb 2007 WO
WO-2007016290 Feb 2007 WO
WO-2007018898 Feb 2007 WO
WO-2007034161 Mar 2007 WO
WO-2007051000 May 2007 WO
WO-2007059233 May 2007 WO
WO-2007074430 Jul 2007 WO
WO-2007089603 Aug 2007 WO
WO-2007098220 Aug 2007 WO
WO-2007121579 Nov 2007 WO
WO-2007129121 Nov 2007 WO
WO-2007131110 Nov 2007 WO
WO-2007137304 Nov 2007 WO
WO-2007139734 Dec 2007 WO
WO-2007142625 Dec 2007 WO
WO-2007145825 Dec 2007 WO
WO-2007146987 Dec 2007 WO
WO-2007147439 Dec 2007 WO
WO-2008020964 Feb 2008 WO
WO-2008021687 Feb 2008 WO
WO-2008021969 Feb 2008 WO
WO-2008027972 Mar 2008 WO
WO-2008039237 Apr 2008 WO
WO-2008039249 Apr 2008 WO
WO-2008039270 Apr 2008 WO
WO-2008045383 Apr 2008 WO
WO-2008061566 May 2008 WO
WO-2008057281 May 2008 WO
WO-2008070763 Jun 2008 WO
WO-2008080148 Jul 2008 WO
WO-2008089404 Jul 2008 WO
WO-2008101080 Aug 2008 WO
WO-2008101228 Aug 2008 WO
WO-2008103797 Aug 2008 WO
WO-2008109123 Sep 2008 WO
WO-2008109125 Sep 2008 WO
WO-2008112912 Sep 2008 WO
WO-2008118728 Oct 2008 WO
WO-2008118928 Oct 2008 WO
WO-2008124748 Oct 2008 WO
WO-2008131357 Oct 2008 WO
WO-2009005969 Jan 2009 WO
WO-2009022614 Feb 2009 WO
WO-2009023851 Feb 2009 WO
WO-2009033057 Mar 2009 WO
WO-2009039506 Mar 2009 WO
WO-2009046394 Apr 2009 WO
WO-2009066105 May 2009 WO
WO-2009067649 May 2009 WO
WO-2009091497 Jul 2009 WO
WO-2009120944 Oct 2009 WO
WO-2009137761 Nov 2009 WO
WO-2009143092 Nov 2009 WO
WO-2009143331 Nov 2009 WO
WO-2009150650 Dec 2009 WO
WO-2009152307 Dec 2009 WO
WO-2010028332 Mar 2010 WO
WO-2010030434 Mar 2010 WO
WO-2010045425 Apr 2010 WO
WO-2010050771 May 2010 WO
WO-2010054404 May 2010 WO
WO-2010056714 May 2010 WO
WO-2010063795 Jun 2010 WO
WO-2010090940 Aug 2010 WO
WO-2010093333 Aug 2010 WO
WO-2010098871 Sep 2010 WO
WO-2010126129 Nov 2010 WO
WO-2010134913 Nov 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011013103 Feb 2011 WO
WO-2011044343 Apr 2011 WO
WO-2011056458 May 2011 WO
WO-2011060311 May 2011 WO
WO-2011084969 Jul 2011 WO
WO-2011127137 Oct 2011 WO
WO-2012006306 Jan 2012 WO
WO-2012009431 Jan 2012 WO
WO-2012013577 Feb 2012 WO
WO-2012021671 Feb 2012 WO
WO-2012040438 Mar 2012 WO
WO-2012044551 Apr 2012 WO
WO-2012044554 Apr 2012 WO
WO-2012044597 Apr 2012 WO
WO-2012044606 Apr 2012 WO
WO-2012044820 Apr 2012 WO
WO-2012044844 Apr 2012 WO
WO-2012044853 Apr 2012 WO
WO-2012044854 Apr 2012 WO
WO-2012058213 May 2012 WO
WO-2012061725 May 2012 WO
WO-2012068156 May 2012 WO
WO-2012072133 Jun 2012 WO
WO-2012109760 Aug 2012 WO
WO-2012127462 Sep 2012 WO
WO-2012135705 Oct 2012 WO
WO-2012143913 Oct 2012 WO
WO-2012148667 Nov 2012 WO
WO-2012148668 Nov 2012 WO
WO-2012148703 Nov 2012 WO
WO-2012160163 Nov 2012 WO
WO-2012166503 Dec 2012 WO
WO-2013009252 Jan 2013 WO
WO-2013009699 Jan 2013 WO
WO-2013023114 Feb 2013 WO
WO-2013036409 Mar 2013 WO
WO-2013043707 Mar 2013 WO
WO-2013043717 Mar 2013 WO
WO-2013043721 Mar 2013 WO
WO-2013062978 May 2013 WO
WO-2013087092 Jun 2013 WO
WO-2013116869 Aug 2013 WO
WO-2013148762 Oct 2013 WO
WO-2013151888 Oct 2013 WO
WO-2013167427 Nov 2013 WO
WO-2013188130 Dec 2013 WO
WO-2014008289 Jan 2014 WO
WO-2014004199 Jan 2014 WO
WO-2014004209 Jan 2014 WO
WO-2014004294 Jan 2014 WO
WO-2014113438 Jul 2014 WO
WO-2014134034 Sep 2014 WO
WO-2014172213 Oct 2014 WO
WO-2014158882 Oct 2014 WO
WO-2015032797 Mar 2015 WO
WO-2015138760 Sep 2015 WO
WO-2015148136 Oct 2015 WO
WO-2015148141 Oct 2015 WO
WO-2015153642 Oct 2015 WO
WO-2015187107 Dec 2015 WO
Non-Patent Literature Citations (78)
Entry
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001).
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98.
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51.
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages.
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12.
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246.
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986.
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986).
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345.
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages).
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages.
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages).
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008.
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005).
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005).
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000).
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010).
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523.
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004.
Covidien iDrive™ Ultra in Service Reference Card, “iDrive™ Ultra Powered Stapling Device,” (4 pages).
Covidien iDrive™ Ultra Powered Stapling System ibrochure, “The Power of iDrive™ Ultra Powered Stapling System and Tri-Staple™ Technology,” (23 pages).
Covidien “iDrive™ Ultra Powered Stapling System, a Guide for Surgeons,” (6 pages).
Covidien “iDrive™ Ultra Powered Stapling System, Cleaning and Sterilization Guide,” (2 pages).
“Indian Standard: Automotive Vehicles—Brakes and Braking Systems (IS 11852-1:2001)”, Mar. 1, 2001.
Patrick J. Sweeney: “RFID for Dummies”, Mar. 11, 2010, pp. 365-365, XP055150775, ISBN: 978-1-11-805447-5, Retrieved from the Internet: URL: books.google.de/books?isbn=1118054474 [retrieved on Nov. 4, 2014]—book not attached.
Covidien Brochure “iDrive™ Ultra Powered Stapling System,” (6 pages).
Allegro MicroSystems, LLC, Automotive Full Bridge MOSFET Driver, A3941-DS, Rev. 5, 21 pages, http://www.allegromicro.com/˜/media/Files/Datasheets/A3941-Datasheet.ashx?la=en.
Data Sheet of LM4F230H5QR, 2007.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages.
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages.
http://ninpgan.net/publications/51-100/89.pdf; 2004, Ning Pan, on Uniqueness of Fibrous Materials, Design & Nature II. Eds: Colins, M. and Brebbia, C. WIT Press, Boston, 493-504.
Sells et al., Covidien Summary: Clinical Study “UCONN Biodynamics: Final Report on Results,” (2 pages).
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161.
Fast, Versatile Blackfin Processors Handle Advanced RFID Reader Applications; Analog Dialogue: vol. 40—Sep. 2006; http://www.analog.com/library/analogDialogue/archives/40-09/rfid.pdf; Wayback Machine to Feb. 15, 2012.
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38 (2013), pp. 584-671.
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991).
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages.
“Biomedical Coatings,” Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page).
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, 2000, 3 pages.
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20., pp. 1744-1748.
Serial Communication Protocol; Michael Lemmon Feb. 1, 2009; http://www3.nd.edu/˜lemmon/courses/ee224/web-manual/web-manual/lab12/node2.html; Wayback Machine to Apr. 29, 2012.
Lyon et al. “The Relationship Between Current Load and Temperature for Quasi-Steady State and Transient Conditions,” SPIE—International Society for Optical Engineering. Proceedings, vol. 4020, (pp. 62-70), Mar. 30, 2000.
Anonymous: “Sense & Control Application Note Current Sensing Using Linear Hall Sensors,” Feb. 3, 2009, pp. 1-18. Retrieved from the Internet: URL: http://www.infineon.com/dgdl/Current_Sensing_Rev.1.1.pdf?fileId=db3a304332d040720132d939503e5f17 [retrieved on Oct. 18, 2016].
Mouser Electronics, “LM317M 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Mar. 31, 2014 (Mar. 31, 2014), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-8.
Mouser Electronics, “LM317 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Sep. 30, 2016 (Sep. 30, 2016), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-9.
Cuper et al., “The Use of Near-Infrared Light for Safe and Effective Visualization of Subsurface Blood Vessels to Facilitate Blood Withdrawal in Children,” Medical Engineering & Physics, vol. 35, No. 4, pp. 433-440 (2013).
Yan et al, Comparison of the effects of Mg—6Zn and Ti—3AI-2.5V alloys on TGF-β/INF-α/VEGF/b-FGF in the healing of the intestinal track in vivo, Biomed. Mater. 9 (2014), 11 pages.
Pellicer et al. “On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materials,” J Biomed Mater Res Part A ,2013:101A:502-517.
Anonymous, Analog Devices Wiki, Chapter 11: The Current Mirror, Aug. 20, 2017, 22 pages. https://wiki.analog.com/university/courses/electronics/text/chapter-11?rev=1503222341.
Yan et al., “Comparison of the effects of Mg—6Zn and titanium on intestinal tract in vivo,” J Mater Sci: Mater Med (2013), 11 pages.
Brar et al., “Investigation of the mechanical and degradation properties of Mg—Sr and Mg—Zn—Sr alloys for use as potential biodegradable implant materials,” J. Mech. Behavior of Biomed. Mater. 7 (2012) pp. 87-95.
Texas Instruments: “Current Recirculation and Decay Modes,” Application Report SLVA321—Mar. 2009; Retrieved from the Internet: URL:http://www.ti.com/lit/an/slva321/slva321 [retrieved on Apr. 25, 2017], 7 pages.
Qiu Li Loh et al.: “Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size”, Tissue Engineering Part B—Reviews, vol. 19, No. 6, Dec. 1, 2013, pp. 485-502.
Gao et al., “Mechanical Signature Enhancement of Response Vibrations in the Time Lag Domain,” Fifth International Congress on Sound and Vibration, Dec. 15-18, 1997, pp. 1-8.
Trendafilova et al., “Vibration-based Methods for Structural and Machinery Fault Diagnosis Based on Nonlinear Dynamics Tools,” In: Fault Diagnosis in Robotic and Industrial Systems, IConcept Press LTD, 2012, pp. 1-29.
Youtube.com; video by Fibran (retrieved from URL https://www.youtube.com/watch?v=vN2Qjt51gFQ); (Year: 2018).
“Foot and Ankle: Core Knowledge in Orthopaedics”; by DiGiovanni MD, Elsevier; (p. 27, left column, heading “Materials for Soft Orthoses”, 7th bullet point); (Year: 2007).
Lee, Youbok, “Antenna Circuit Design for RFID Applications,” 2003, pp. 1-50, DS00710C, Microchip Technology Inc., Available: http://ww1.microchip.com/downloads/en/AppNotes/00710c.pdf.
Kawamura, Atsuo, et al. “Wireless Transmission of Power and Information Through One High-Frequency Resonant AC Link Inverter for Robot Manipulator Applications,” Journal, May/Jun. 1996, pp. 503-508, vol. 32, No. 3, IEEE Transactions on Industry Applications.
Honda HS1332AT and ATD Model Info, powerequipment.honda.com [online], published on or before Mar. 22, 2016, [retrieved on May 31, 2019], retrieved from the Internet [URL: https://powerequipment.honda.com/snowblowers/models/hss1332at-hss1332atd] {Year: 2016).
Slow Safety Sign, shutterstock.com [online], published on or before May 9, 2017, [retrieved on May 31, 2019], retrieved from the https://www.shutterstock.com/image-victor/slow-safety-sign-twodimensional-turtle-symbolizing- . . . see PDF in file for full URL] (Year: 2017).
Warning Sign Beveled Buttons, by Peter, flarestock.com [online], published on or before Jan. 1, 2017, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL: https://www.flarestock.com/stock-images/warning-sign-beveled-buttons/70257] (Year: 2017).
Arrow Sign Icon Next Button, by Blan-k, shutterstock.com [online], published on or before Aug. 6, 2014, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL:https://www.shutterstock.com/de/image-vector/arrow-sign-icon-next-button-navigation-207700303?irgwc=1&utm . . . see PDF in file for full URL] (Year: 2014).
Elite Icons, by smart/icons, iconfinder.com [online], published on Aug. 18, 2016, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL: https://www.iconfinder.com/iconsets/elite] (Year: 2016).
“Tutorial overview of inductively coupled RFID Systems,” UPM, May 2003, pp. 1-7, UPM Rafsec,<http://cdn.mobiusconsulting.com/papers/rfidsystems.pdf>.
Schroeter, John, “Demystifying UHF Gen 2 RFID, HF RFID,” Online Article, Jun. 2, 2008, pp. 1-3, <https://www.edn.com/design/industrial-control/4019123/Demystifying-UHF-Gen-2-RFID-HF-RFID>.
Adeeb, et al., “An Inductive Link-Based Wireless Power Transfer System for Biomedical Applications,” Research Article, Nov. 14, 2011, pp. 1-12, vol. 2012, Article ID 879294, Hindawi Publishing Corporation.
“Pushing Pixels (GIF)”, published on dribble.com, 2013.
“Sodium stearate C18H35NaO2”, Chemspider Search and Share Chemistry, Royal Society of Chemistry, pp. 1-3, 2015, http://www.chemspider.com/Chemical-Structure.12639.html, accessed May 23, 2016.
NF Monographs: Sodium Stearate, U.S. Pharmacopeia, http://www.pharmacopeia.cn/v29240/usp29nf24s0_m77360.html, accessed May 23, 2016.
Fischer, Martin H, “Colloid-Chemical Studies on Soaps”, The Chemical Engineer, pp. 184-193, Aug. 1919.
V.K. Ahluwalia and Madhuri Goyal, A Textbook of Organic Chemistry, Section 19.11.3, p. 356, 2000.
A.V. Kasture and S.G. Wadodkar, Pharmaceutical Chemistry-II: Second Year Diploma in Pharmacy, Nirali Prakashan, p. 339, 2007.
Forum discussion regarding “Speed Is Faster”, published on Oct. 1, 2014 and retrieved on Nov. 8, 2019 from URL https://english.stackexchange.com/questions/199018/how-is-that-correct-speed-is-faster-or-prices-are-cheaper (Year: 2014).
Related Publications (1)
Number Date Country
20180168651 A1 Jun 2018 US