Surgical fastener applying apparatus

Information

  • Patent Grant
  • 10517593
  • Patent Number
    10,517,593
  • Date Filed
    Monday, November 4, 2013
    10 years ago
  • Date Issued
    Tuesday, December 31, 2019
    4 years ago
Abstract
The present disclosure relates to a surgical fastener applying apparatus comprising: an anvil half-section including a distal anvil portion and a proximal handle portion; a cartridge receiving half section defining an elongated channel member and including at least one hinge member (173, 1194) supported on a bottom wall of the elongated channel member, the elongated channel member having a distal portion dimensioned to releasably receive a single use loading unit and a proximal portion configured to support a firing assembly, and wherein the at least one hinge member defines an opening; and a clamping lever (16) pivotally secured to the cartridge receiving half-section, the clamping lever having a proximal end, a distal end and a pivot member (187, 1187) supported in cantilevered fashion on the distal end of the clamping lever; the pivot member of the clamping lever being slidably received within the opening of the at least one hinge member to pivotally secure the clamping lever to the cartridge receiving half-section, the clamping lever being movable from an undamped position to a clamped position to releasably secure the anvil portion of the anvil half-section in close approximation with the single use loading unit supported within the elongated channel member.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a National Stage Application of PCT/US2013/068263 under 35 USC § 371 (a), the disclosure of the above-identified application is hereby incorporated by reference in its entirety.


BACKGROUND

1. Technical Field


The present disclosure relates to a surgical fastener applying apparatus and, more particularly, to a surgical fastener applying apparatus having reusable and disposable components.


2. Discussion of Related Art


Surgical fastener applying apparatus, wherein tissue is first grasped or clamped between opposing jaw structures and then joined by means of surgical fasteners, are well known in the art. In some such apparatus, a knife is provided to cut the tissue which has been joined by the fasteners, such as surgical staples.


Surgical fastener applying apparatus typically include two elongated beam members which are used to capture or clamp tissue therebetween. Typically, one of the beam members carries a disposable cartridge assembly which houses a plurality of staples arranged in at least two lateral rows, while the other beam member includes an anvil which defines a surface for forming the staple legs as the staples are driven from the cartridge assembly. Where two part fasteners are used, the beam member which includes the anvil carries a mating part of the two part fastener, e.g. the receiver. Generally, the staple formation process is affected by the interaction between one or more longitudinally moving camming members and a series of individual staple pushers. As the camming members travel longitudinally through the cartridge carrying beam member, the individual pusher members are biased upwardly into a backspan of the staples supported within the cartridge assembly to sequentially eject the staples from the cartridge. A knife may be provided to travel with the camming members between the staple rows to cut the tissue between the rows of formed staples. An example of such an instrument is disclosed in U.S. Pat. No. 7,631,794, which is incorporated herein in its entirety by reference.


Because of the dangers associated with improper sterilization, e.g. of surgical apparatus fastener applying apparatus are typically disposable after use. Although the cartridge assembly may be replaced to perform multiple fastener applying operations on a single patient, the staple applying apparatus is typically disposable after a surgical procedure has been completed. This requirement of disposability may increase the costs associated with surgical procedures. Although reusable fastener applying apparatus have been developed, such apparatus can be overly complex and prove difficult to sterilize.


A need exists in the art for a fastener applying apparatus which includes reusable components, is not overly complex and is configured to facilitate proper sterilization after use in a surgical procedure.


SUMMARY

The present disclosure relates to a surgical fastener applying apparatus comprising an anvil half-section including a distal anvil portion and a proximal handle portion. A cartridge receiving half-section defines an elongated channel member and includes at least one hinge member supported on a bottom wall of the elongated channel member. The elongated channel member has a distal portion dimensioned to releasably receive a single use loading unit and a proximal portion configured to support a firing assembly. The at least one hinge member defines an opening. A clamping lever is pivotally secured to the cartridge receiving half-section and has a proximal end, a distal end and a pivot member supported in cantilevered fashion on the distal end of the clamping lever. The pivot member of the clamping lever is slidably received within the opening of the at least one hinge member to pivotally secure the clamping lever to the cartridge receiving half-section. The clamping lever is movable from an unclamped position to a clamped position to releasably secure the anvil portion of the anvil half-section in close approximation with the single use loading unit supported within the elongated channel member.


In an embodiment, the firing assembly is configured to be releasably secured within the proximal portion of the cartridge receiving half-section and includes a firing lever and a cam bar fixedly secured to the firing lever.


The firing assembly may further include a stationary housing which is configured to be releasably supported in the proximal portion of the cartridge receiving portion and includes a bottom wall having a downwardly extending protrusion.


In an embodiment, the elongated channel member defines an opening dimensioned to receive the downwardly extending protrusion to properly position the firing assembly within the elongated channel member.


The firing assembly may further include a knife actuating bar which is configured to engage a knife supported within the single use loading unit.


In an embodiment, the firing assembly includes a spring member secured to the stationary housing and the elongated channel member defines an elongated slot which is dimensioned to allow passage of the spring member. The spring member is positioned to extend through the elongated slot and engage the clamping lever to urge the clamping lever towards the unclamped position.


In an embodiment, the distal anvil portion has a triangular transverse cross-section and is solid and defines a longitudinal slot dimensioned to receive a knife of the single use loading unit.


In an embodiment, the clamping lever includes a locking member having a central pivot member. The locking member has a first end including an engagement member and a second end including a finger engagement surface. The locking member is pivotable about the central pivot member to engage a catch member formed on the cartridge receiving half-section in a snap-fit type engagement to retain the clamping lever in the clamped position. In embodiments, the finger engagement surface is positioned to be depressible to pivot the engagement member about the central pivot member out of engagement with the catch member.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the presently disclosed surgical fastener applying apparatus will now be described herein with reference to the accompanying figures wherein:



FIG. 1 is a side perspective view of an embodiment of the presently disclosed surgical fastener applying apparatus in the clamped position;



FIG. 2 is a side perspective view of the surgical fastener applying apparatus shown in FIG. 1 in the open position;



FIG. 2A is a side view of a portion of the cartridge receiving half-section and the clamping lever during assembly of the clamping lever and the cartridge receiving half-section;



FIG. 2B is a side perspective view of the fastener applying apparatus shown in FIG. 1 in the closed, unclamped position;



FIG. 3 is a side perspective view of the surgical fastener applying apparatus shown in FIG. 1 with parts separated;



FIG. 3A is a bottom, side cross-sectional view of the clamping lever of the surgical fastener applying apparatus shown in FIG. 1;



FIG. 4 is a side perspective view of the cartridge receiving half-section of the surgical fastener applying apparatus with the single use loading unit (“SULU”) and the firing assembly supported within the cartridge receiving half-section;



FIG. 5 is an enlarged view of the indicated area of detail shown in FIG. 4;



FIG. 6 is a perspective view from above of the cartridge receiving half-section of the surgical fastener applying apparatus with the SULU and the firing assembly supported therein;



FIG. 7 is an enlarged view of the indicated area of detail shown in FIG. 6;



FIG. 8 is a front end perspective view from above the firing assembly of the surgical fastener applying apparatus shown in FIG. 3;



FIG. 9 is an enlarged view of the indicated area of detail shown in FIG. 8;



FIG. 9A is a side perspective view of the channel member with the firing assembly releasably supported therein;



FIG. 9B is an enlarged view of the indicated area of detail shown in FIG. 9A;



FIG. 9C is a side perspective view of a central portion of the channel member;



FIG. 10 is a rear end perspective view from above of the firing assembly shown in FIG. 8;



FIG. 11 is an enlarged view of the indicated area of detail shown in FIG. 10;



FIG. 12 is a side perspective view of the firing assembly shown in FIG. 10 with parts separated;



FIG. 12A is a bottom, side perspective view of the cam bar of the firing assembly shown in FIG. 12;



FIG. 12B is a bottom, side perspective view of the firing lever of the firing assembly shown in FIG. 12;



FIG. 13 is a side perspective view of the SULU of the surgical fastener applying apparatus shown in FIG. 1;



FIG. 14 is an enlarged view of the indicated area of detail shown in FIG. 13;



FIG. 15 is a front perspective view of the SULU shown in FIG. 13;



FIG. 16 is an enlarged view of the indicated area of detail shown in FIG. 15;



FIG. 17 is a side perspective view with parts separated of the SULU shown in FIG. 15;



FIG. 18 is a side cross-sectional view of the surgical fastener applying apparatus shown in FIG. 1 in the open position;



FIG. 19 is an enlarged view of the indicated area of detail shown in FIG. 18;



FIG. 20 is an enlarged view of the indicated area of detail shown in FIG. 18;



FIG. 21 is a perspective view of the proximal end of the surgical fastener applying apparatus shown in FIG. 18 in the open position;



FIG. 22 is an enlarged view of the indicated area of detail shown in FIG. 18;



FIG. 23 is a perspective view of the proximal end of the clamping lever of the surgical fastener applying apparatus shown in FIG. 1;



FIG. 24 is a side perspective view of the surgical fastener applying apparatus shown in FIG. 1 in the clamped position;



FIG. 25 is a side cross-sectional view of the surgical fastener applying apparatus shown in FIG. 24 in the clamped position;



FIG. 26 is an enlarged view of the indicated area of detail shown in FIG. 25;



FIG. 27 is an enlarged view of the indicated area of detail shown in FIG. 25;



FIG. 28 is a cross-sectional view taken along section lines 28-28 of FIG. 26;



FIG. 29 is a top view of the surgical fastener applying apparatus shown in FIG. 1 as the firing assembly is moved through an actuating stroke to eject fasteners from the apparatus;



FIG. 30 is a side cross-sectional view of the surgical fastener applying apparatus shown in FIG. 29 with the firing assembly in the actuated position;



FIG. 31 is an enlarged view of the indicated area of detail shown in FIG. 30;



FIG. 32 is an enlarged view of the indicated are of detail shown in FIG. 30;



FIG. 33 is a side cross-sectional view of the surgical fastener applying apparatus shown in FIG. 1 after the apparatus has been fired and moved to the open position;



FIG. 34 is an enlarged view of the indicated area of detail shown in FIG. 33;



FIG. 35 is a side perspective view of another embodiment of the presently disclosed fastener applying apparatus in the clamped position;



FIG. 36 is a side perspective view of the fastener applying apparatus shown in FIG. 35 with parts separated;



FIG. 37 is a bottom perspective view of the firing assembly of the fastener applying apparatus shown in FIG. 36;



FIG. 38 is a cutaway, cross-sectional view of the distal end of the firing assembly;



FIG. 39 is a side, perspective view of the anvil half-section of the fastener applying apparatus shown in FIG. 36;



FIG. 40 is a top view of the distal end of the distal anvil portion of the anvil half-section shown in in FIG. 39;



FIG. 41 is a cross-sectional view taken along section line 41-41 of FIG. 40;



FIG. 42 is a side view of the anvil half-section of the fastener applying apparatus shown in FIG. 36;



FIG. 43 is a perspective, cutaway view of an inner surface of the proximal end of the proximal handle portion of the anvil half-section shown in FIG. 42;



FIG. 44 is a top, perspective view of the clamping lever of the fastener applying apparatus shown in FIG. 36;



FIG. 44A is a bottom, perspective view of the clamping lever shown in FIG. 44;



FIG. 45 is a side view of the clamping lever shown in FIG. 44;



FIG. 46 is a perspective, cutaway view of the proximal end of the clamping lever;



FIG. 47 is a side cross-sectional view of the proximal end of the clamping lever shown in FIG. 46;



FIG. 48 is a side, perspective view of the cartridge receiving half-section of the fastener applying apparatus shown in FIG. 36;



FIG. 49 is a side view of the cartridge receiving half-section shown in FIG. 48;



FIG. 50 is a perspective, cutaway view of the proximal end of the cartridge receiving half-section shown in FIG. 49; and



FIG. 51 is an enlarged, perspective cutaway view of a central portion of the cartridge receiving half-section shown in FIG. 51.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed surgical fastener applying apparatus in accordance with the present disclosure will now be described in detail with reference to the drawings wherein like reference numerals identify similar or identical structural elements. As used herein, as is traditional, the term “proximal” refers to the part of the apparatus which is closer to the user and the term distal refers to the part of the apparatus which is further away from the user.


Referring specifically to FIGS. 1-3, surgical stapler 10 includes an anvil half-section 12, a cartridge receiving half-section 14, a clamping lever 16, a single use loading unit 18 (hereinafter “SULU”) and a firing assembly 20. In one embodiment, anvil half-section 12, cartridge receiving half-section 14 and clamping lever 16 are constructed to be reusable components and, as such, are constructed from a biocompatible material suitable for sterilization and repeated use, e.g., stainless steel. In contrast, SULU 18 and firing assembly 20 are constructed to be disposable and, as such, may be constructed from any suitable biocompatible material, e.g., plastics, metals, combinations thereof, having the requisite strength characteristics.


Referring to FIGS. 3-7, cartridge receiving half-section 14 defines an elongated channel member 22 which defines a U-shaped channel 24 having a distal portion 24a dimensioned to releasably receive a SULU 18 and a proximal portion 24b dimensioned to releasably receive firing assembly 20. U-shaped channel may have a flat bottom and straight legs in cross-section or it may have a slightly rounded bottom and/or at least one curved leg. In cross-section, the bottom of the U may connect with the legs by a sharp corner or at least one slightly rounded corner. Firing assembly 20 includes a stationary housing 26 (see also FIG. 12) having a proximal end including protrusions 28 which extend into recesses 30 formed in a proximal portion of cartridge receiving half-section 14 to releasably secure the proximal end of firing assembly 20 within the proximal portion 24b of channel member 22. The distal end of firing assembly 20 defines a triangular cutout 64d which is positioned to receive a protrusion 65 formed on an inner wall of channel member 22 (see FIGS. 9A-9C) to releasably secure the distal end of firing assembly 20 within channel member 22. Triangular cutout may be a triangle or may be a triangle having sharp corners or at least one rounded or chamfered corner, and may have no equal sides or two or three equal sides. The structure of firing assembly 20 will be discussed in further detail below. Likewise, SULU 18 includes a pair of distal protrusions 32 which are positioned in cutouts 34 formed at the distal end of channel member 22 to releasably secure SULU 18 within the distal portion 24a of channel member 22. During assembly, firing assembly 20 must be inserted into proximal portion 24b of channel member 22 before SULU 18 is inserted into distal portion 24a of channel member 22 as will be discussed below. To position SULU 18 in channel member 22, protrusions 32 on SULU 18 are positioned within cutouts 34 while SULU 18 is positioned above and at an angle to channel member 22. Thereafter, SULU 18 can be rotated downwardly into distal portion 24a of U-shaped channel 24. This allows for the drive components of firing assembly 20 to properly align with components of SULU 18 and also facilitates engagement of the firing assembly 20 with a knife 40 (FIG. 17) supported within SULU 18. A proximal end of SULU 18 includes an outwardly extending serrated surface 42 (FIG. 7) to facilitate gripping of the proximal end of SULU 18 to allow for removal and/or replacement of SULU 18 from channel member 22. Prior to movement of stapler 10 to the clamped position, as will be discussed below, serrated gripping surface 42 will not fully seat within distal portion 24a of channel member 22.


Referring to FIGS. 8-12, firing assembly 20 includes stationary housing 26, a knife actuating bar 44, a cam bar 46, a guide block 48, a firing lever 50, a slide block 52 and a pedal 54 (FIG. 12). In an embodiment, stationary housing 26 includes a U-shaped frame 60 including a bottom wall 62 and a pair of sidewalls 64. Each sidewall 64 is slotted at its proximal end to define a cantilevered section 64a (FIG. 11) which supports a respective protrusion 28. Cantilevered sections 64a allow protrusions 28 to flex inwardly into recesses 30 of channel member 22 (FIG. 21) to releasably secure firing assembly 20 within proximal portion 24b (FIG. 3) of channel member 22 as discussed above. The distal end of each sidewall 64 defines a proximal step 64b, a distal angled portion 64c (FIG. 9) and the triangular cutout 64d. As discussed above, triangular cutout 64d is positioned to receive a protrusion 65 (FIG. 9B) formed on an inner wall of channel member 22 to retain the distal end of firing assembly 20 within channel member 22. Bottom wall 62 includes a spring arm 66 (FIG. 11) which engages a proximal end of slide block 52 to prevent proximal movement of slide block 52 beyond a predetermined point within stationary housing 26.


In an alternative embodiment shown in FIGS. 35-51, the surgical stapler 1000 includes a firing assembly 1020 (FIG. 36) which comprises a stationary housing 1026 having a bottom wall 1026a (FIG. 37) defining a downwardly extending protrusion 1027. Protrusion 1027 is dimensioned to be received within an opening (not shown) formed in the channel member 1022 of cartridge receiving half-section 1014. Positioning protrusion 1027 within the opening formed in channel member 1022 functions to properly locate and align the firing assembly 1020 within the channel member 1022 of the cartridge receiving half-section 1014.


Guide block 48 includes a body defining three longitudinal slots 70a-c and a pair of outwardly extending protrusions 72. In an embodiment, each protrusion 72 is cylindrical and includes a tapered portion 72a (FIG. 9). Alternately, other protrusion configurations are envisioned. Cylindrical protrusion 72 may be a cylinder with a circular cross-section, or may have a slightly oblong cross-section. Additionally, cylindrical protrusion 72 may have a blunt end or a slightly rounded or tapered end. Protrusions 72 are dimensioned to be received in openings 74 (FIG. 12) formed in sidewalls 64 of stationary housing 26 to axially fix guide block 48 within the distal end of stationary housing 26. Protrusions 72 allow for a degree of pivotal movement of guide block 48 within U-shaped frame 60. As will be discussed in further detail below, guide block 48 is pivotal from a first position (FIG. 19) in locking engagement with notches 49 and 51 of knife actuating bar 44 to a second position (FIG. 26) disengaged from notches 49 and 51 of knife actuating bar 44 in response to movement of stapler 10 to the clamped position. Each of slots 70a and 70c is dimensioned to slidably receive a respective sidewall 114 of cam bar 46. Similarly, slot 70b is dimensioned to slidably receive knife actuating bar 44.


Slide block 52 includes a hub 80 which includes a resilient finger 80a configured to be snap-fit into a pivot hole 82 formed in firing lever 50. Firing lever 50 is pivotal about hub 80 when the slide block 52 is in a retracted position to facilitate actuation of the firing assembly 20 from either side of stapler 10. Pedal 54 is reciprocally received within a hole 84 formed in slide block 52. Pedal 54 includes a split body portion 54a which is configured to straddle a proximal end 102 of knife actuating bar 44. In an embodiment, split body portion 54a includes an angled distal surface 86. A pin 88 extends upwardly from pedal 54 through hole 84 in slide block 52. A biasing member 90 is positioned between split body portion 54a and slide block 52, about pin 88 to urge pedal 54 downwardly away from slide block 52. In the retracted position of slide block 52, pedal 54 is received in a cutout 55 formed in a bottom wall 22a of channel member 22 (FIG. 20).


Firing lever 50 includes first and second finger engagement members 50a and 50b, either one of which can be selectively engaged to move the firing lever 50 through a firing stroke from either side of stapler 10. An arcuate recess 94 (FIG. 12B) is formed in a bottom surface of firing lever 50 which slidably receives pin 88 of pedal 54 to define the range of rotation through which firing lever 50 can pivot about hub 80 of slide block 52. As used herein, a firing stroke is defined as movement of firing lever 50 from a fully retracted position (FIG. 25) to a fully advanced position (FIG. 30). A stop recess 94a is formed at each end of arcuate recess 94. Stop recesses 94a are configured and dimensioned to receive the end of pin 88 of pedal 54 to prevent pivotal movement of firing lever 50 about hub 80 during a firing stroke of surgical stapler 10. More specifically, when the firing assembly 20 is actuated to advance slide block 52 distally within stationary housing 26, angled distal surface 86 of pedal 54 engages channel member 22 and is cammed out of cutout 55 (FIG. 27) to urge pin 88 upwardly into a stop recess 94a to prevent pivotal movement of firing lever 50 during movement of firing lever 50 through a firing stroke. As is evident, pin 88 must be positioned beneath a stop recess 94a to allow pedal 54 to lift upwardly from cutout 55 to allow firing lever 50 to be moved through the firing stroke. Thus, firing lever 50 must be pivoted to one side or the other of firing assembly 20 before the firing lever 50 can be moved through a firing stroke.


Knife actuating bar 44 includes a proximal end having a stepped portion 100 which includes a proximal first step 102 having a first height and a second step 104 having a second height which is greater than the first height. A distal end of actuating bar 44 includes an upturned hook portion 106 and upper and lower notches 49 and 51. A finger 108 projects upwardly from knife actuating bar 44 between first and second steps 102 and 104. As shown in FIG. 27, finger 108 is slidably received within a recess 110 formed in an underside of slide block 52. When slide block 52 is advanced distally within stationary housing 26, finger 108 moves within recess 110 such that slide block 52 moves in relation to knife actuating bar 44 until finger 108 engages a wall 112 (FIG. 32) defining a proximal end of recess 110. When finger 108 engages wall 112, further distal movement of slide block 52 will also effect distal movement of knife actuating bar 44. As will be evident below, this arrangement allows for staples to be ejected from SULU 18 prior to cutting of tissue.


Referring to FIGS. 12 and 12A, cam bar 46 includes a pair of sidewalls 114 and a base wall 116 (FIG. 12A). The proximal end 114a of each sidewall 114 includes a raised wall portion 118. Each raised wall portion 118 is configured to be fixedly received in a slot (not shown) formed in an underside of slide block 52 to fixedly secure the proximal end of cam bar 46 to slide block 52. Alternately, slide block 52 may be molded about the proximal end of knife actuating bar 44. The distal end of each sidewall 114 includes an angled camming surface 114b. Base wall 116 defines a distally extending elongated slot 123 (FIG. 12A) which extends from the distal end of cam bar 46 along a substantial length of the cam bar 46 and a proximally extending longitudinal slot 121. Slot 121 is positioned to facilitate the passage of pedal 54 through cutout 55 of channel member 22 when slide block 52 is in the retracted position. See FIG. 27.


Sidewalls 114 of cam bar 46 are slidably positioned in slots 70a and 70c of guide block 48 and knife actuating bar 44 is slidably positioned in longitudinal slot 70b of guide block 48. When firing assembly 20 is supported in channel member 22 and firing lever 50 is pivoted to one side of stationary housing 26 and pushed distally, slide block 52 is moved distally within stationary housing 26. As slide block 52 begins to move distally, tapered surface 86 of pedal 54 engages a distal edge of channel member 22 defining cutout 55 to urge pedal 54 upwardly out of cutout 55, through slot 121 of cam bar 46, and onto an inner surface of stationary housing 26 of firing assembly 20 (FIG. 27). As this occurs, pin 88 of pedal 54 moves into a stop recess 94a to prevent further pivotal movement of firing lever 50. If firing lever 50 is not pivoted to a position in which pin 88 is positioned beneath a stop recess 94a, pedal 54 will be prevented from moving upwardly out of cutout 55 and firing lever 50 will be prevented from moving through a firing stroke. As firing lever 50 is moved distally, finger 108 moves within recess 110 such that knife actuating bar 44 remains stationary as cam bar 46 is advanced distally. When finger 108 engages proximal wall 112 defining recess 110, knife actuating bar 44 is moved distally with slide block 52 and cam bar 46. As will be discussed below, when cam bar 46 and knife actuating bar 44 are moved distally within stationary housing 26 of firing assembly 20 and channel member 22, angled camming surfaces 114b of cam bar 46 are moved through SULU 18 to eject fasteners from SULU 18. Simultaneously, although with a preset delay equal to the length of recess 112 (FIG. 32), knife actuating bar 44 drives a knife blade 40 through SULU 18 to dissect tissue.


Referring to FIG. 38, in one embodiment, a spring, such as leaf spring 1029, is provided in the distal end of stationary housing 1026. Spring 1029 is positioned to prevent a SULU 1018 from fully seating in the distal end of stationary housing 1026 until the stapler 1000 has been moved to the clamped position. In the clamped position, the SULU 1018 is urged by the anvil half-section 1012 downwardly into operative engagement with the firing assembly 1020 (FIG. 35). Spring 1029 prevents SULU 1018 from operatively engaging the firing assembly 1020 until stapler 1000 has been moved to the clamped position.


U.S. Pat. No. 7,631,794 (“the '794 patent”) discloses a surgical fastener applying apparatus which includes a firing assembly similar to that described above. The '794 patent is incorporated herein by reference in its entirety.



FIGS. 13-17 illustrate SULU 18. Referring to FIG. 17, SULU 18 includes a body 120, a plurality of staple pushers 122 (only one is shown), a bottom cover 124, a knife 40 having an angled sharpened leading edge or blade 40a, a plurality of staples 126 (only one is shown), and a pivotally mounted safety lockout 128. A proximal end of body 120 includes a flexible finger 120a which projects slightly beyond the outer wall defining body 120. Finger 120a frictionally engages an inner wall of channel member 22 to retain the proximal end of SULU 18 within channel member 22 when SULU 18 is releasably positioned within channel member 22. As is known in the art, body 120 has a plurality of rows of staple retaining slots 130, e.g., four, six, etc. and a linear slotted knife track 132 centrally disposed in body 120. Surgical stapler 10 can be dimensioned to receive or accommodate SULU's of different staple line lengths including, e.g., 60 mm, 80 mm and 100 mm. Knife 40 includes a downturned hook portion 40b which is positioned to engage upturned hook portion 106 of knife actuating bar 44 when SULU 18 is positioned within channel member 22.


In the illustrated embodiment, body 120 includes two staggered rows of slots 130 formed on either side of linear slotted knife track 132. The staggered rows of slots 130 extend beyond the distal end of knife track 132 to facilitate staple formation beyond the distal end of the stroke of the knife blade 40.


Staple pushers 122 may be configured to extend into one or more slots 130. In an embodiment, a single pusher is associated with each slot 130. Alternately, as illustrated in FIG. 17, each pusher 122 can be configured to extend into two adjacent slots 130 and is positioned beneath respective staples 126 which are retained in slots 130. As is known in the art, each pusher 122 includes a lower cam surface 122a which is positioned to engage one of cam surfaces 114b on the distal end of cam bar 46 such that movement of cam bar 46 through SULU 18 sequentially lifts each respective pusher 122 within its respective slot or slots 130 to eject staples from slots 130.


Bottom cover 124 partially encloses a channel 125 (FIG. 18) formed within the cartridge body 120. A longitudinal ridge 134 is formed on an upper surface of bottom cover 124 and provides a bearing surface for a knife supporting member 136 which is secured to a bottom edge of knife 40. Knife 40 may be secured to supporting member 136 via pins, welding or other known fastening techniques. During a firing stroke, knife 40 is guided along knife track 132 as the firing lever 50 is advanced through channel member 22. A pair of slots 138 are defined between the sides of ridge 134 and an outer wall of cartridge body 120. Longitudinal ridge 134 is positioned within body 120 and dimensioned to be slidably received in elongated slot 120 (FIG. 12a) of cam bar 46 such that cam bar 46 is slidably movable through cartridge body 120 about longitudinal ridge 134 to eject staples 126 from SULU 18.


Safety lockout 128 is pivotally disposed on an upper proximal end of body 120 and is pivotal about a pivot member 150 from a locked orientation (FIG. 26) to unlocked orientation (FIG. 34). Pivot member 150 is received in openings 154 in body 120. A biasing member, e.g., spring 152, is positioned between knife supporting member 136 and safety lockout 128 to urge safety lockout 128 towards the unlocked orientation. Safety lockout 128 includes a proximal hook 156 which is positioned to receive an engagement member 158 formed on the knife 40 to retain the safety lockout 128 in the locked orientation when the knife 40 is in the retracted position (FIG. 19). When the knife 40 is moved towards the advanced position during a firing stroke, engagement member 158 is moved away from proximal hook 156 to allow safety lockout 128 to pivot towards the unlocked position in response to the urging of spring 152. It is noted that safety lockout 128 is prevented from pivoting to the unlocked position when the anvil half-section 12 and cartridge receiving half-section 14 are in the clamped position because the top surface 128a of safety lockout 128 engages an inner surface of anvil half-section 12 to prevent pivoting of safety lockout 128. Safety lockout 128 defines a slot 160 dimensioned to slidably receive the knife 40. In the retracted position of the knife 40, the leading edge 40a of knife 40 is confined within slot 160 safety lockout 128 to prevent accidental engagement and injury to medical personnel with leading edge 40a of knife 40.


Referring again to FIGS. 2-3, anvil half-section 12 includes a proximal handle portion 12a and a distal anvil portion 12b. Anvil portion 12b includes a staple deforming portion 198 which, as known in the art, includes a plurality of staple deforming recesses and faces a top surface of SULU 18 when SULU 18 is positioned in the channel member 22. As is also known in the art, the staple deforming portion 198 includes a central longitudinal slot (not shown) for receiving the knife 40 (FIG. 17) as the knife 40 is moved through the SULU 18. The staple deforming portion 198 can be formed integrally with anvil half-section 12, or in the alternative, secured to anvil half-section 12 by a fastening process such as welding. A pair of locating fingers 170 are positioned adjacent the proximal end of the staple deforming portion 198 of anvil portion 12b and function to properly align SULU 18 with staple deforming portion 198.


In the alternative embodiment shown in FIGS. 35-51, surgical stapler 1000 includes an anvil half-section 1012 having a distal anvil portion 1012b which has a solid triangular cross-sectional configuration (FIG. 41). Anvil portion 1012b includes a staple deforming portion 1198 (FIG. 40) which defines a longitudinal slot 1198a dimensioned to slidably receive the knife 40 of SULU 1018.


A central portion of anvil half-section 12 includes a pair of cylindrical lateral support members 172. During assembly of anvil half-section 12 and cartridge receiving half-section 14, lateral support members 172 are supported in U-shaped recesses 174 formed on a central portion 173 of cartridge receiving half-section 14 (FIG. 28). Lateral support members 172 are also positioned to be received in cutouts 176 formed on spaced flange portions 178 of clamping lever 16 when the clamping lever 16 is moved to the clamped position (FIG. 2B). Proximal handle portion 12a is ergonomically formed and includes a thumb-engaging abutment 180 and a gripping portion 182. A proximal end of handle portion 12a includes a downwardly extending finger 184 which includes a pair of opposed teardrop shaped protrusions 186 which will be discussed in further detail below. Alternately, protrusions 186 may assume a variety of configurations.


In the alternative embodiment shown in FIGS. 35-51, the anvil half-section 1012 of surgical stapler 1000 includes a pair of spaced, solid locator fingers 1084 (FIGS. 42 and 43) on opposite sides of an inside surface 1084a of the proximal end of handle portion 1012a. Locator fingers 1084 are received in vertical slots 1188a of vertical support members 1188 (FIG. 49) of cartridge receiving half-section 1014. The receipt of fingers 1084 within vertical slots 1188a of vertical support members 1188 pivotally supports and aligns anvil half-section 1012 with respect to cartridge receiving half-section 1014.


Cartridge receiving half-section 14 includes a central portion 173 which defines spaced centrally disposed U-shaped recesses 174 positioned to support lateral support members 172 of anvil half-section 12. A distal wall 173a of central portion 173 defines a tissue stop (FIG. 3). A pair of lateral cylindrical pivot members 187 are positioned beneath recesses 174. Each pivot member may define a flat 187a (FIG. 2a). Pivot member 187 may include a rounded or tapered end. The proximal end of cartridge receiving half-section 14 also includes a pair of vertical support members 188. Each vertical support member 188 includes an elongated vertical slot 188a having a rounded bottom surface. Vertical slots 188a are dimensioned to receive protrusions 186 formed on finger 184 of anvil half-section 12 (FIG. 21) when the anvil half-section 12 is supported on the cartridge receiving half-section 14 during assembly. By positioning protrusions 186 within vertical slots 188a, anvil half-section 12 can be pivoted in a scissor-like action with respect to the cartridge receiving half-section 14 between open and closed positions. In an embodiment, protrusions 186 have a tear drop profile. At least one sidewall of cartridge receiving half-section 14 includes a depression 189 (see FIG. 3) which will be discussed in further detail below.


Clamping lever 16 also includes a handle portion 190 including a grip 190a and a thumb engaging abutment 192. As discussed above, a pair of spaced flange portions 178 are supported on the distal end of clamping lever 16. Each flange portion 178 defines a cutout 176 dimensioned to receive a respective lateral support member 172 of anvil half-section 12 when stapler 10 is moved towards clamped position (FIG. 2B). The distal end of clamping lever 16 also defines a pair of distal C-shaped recesses 194 which are dimensioned to receive pivot members 187. C-shaped recesses 194 may have a flat side and straight top and bottom in cross-section or it may have a slightly rounded side and/or at least one curved top and/or bottom. In cross-section, the top and bottom of the C may connect with the side by a sharp corner or at least one slightly rounded corner. Top and bottom of the C may extend out from the sides at an angle, for example obtuse. Each recess 194 defines a mouth which is smaller in width than the diameter of the pivot members 187. Because the mouth of each C-shaped recess 194 is smaller in width than the diameter of the pivot member 187, when clamp lever 16 is secured to cartridge receiving half-section 14 (FIG. 24), the pivot members 187 must be slid into recesses 194 along the surface of flats 187a of the pivot members 187. As such, clamping lever 16 must be positioned as shown in FIG. 2A to pivotally secure clamping lever 16 about pivot members 187 of cartridge receiving half-section 14. After positioning pivot members 187 in C-shaped recesses 194, clamping lever 16 can be rotated in a counter-clockwise direction as shown in FIG. 2A to the position shown in FIG. 2 to secure clamp lever 16 to cartridge receiving half-section 14.


In the alternative embodiment shown in FIGS. 35-51, the clamping lever 1016 has a transverse pivot member 1187 supported at its distal end 1016a. See FIGS. 36, 44 and 44A. The pivot member 1187 is supported at one end in cantilevered fashion to the distal end 1016a of clamping lever 1016. One or more hinge members 1194 (FIG. 49) are supported on a bottom wall of channel member 1022. In one embodiment, two spaced hinge members 1194 are provided on the bottom wall of channel member 1022. Each hinge member 1194 includes an opening 1194a dimensioned to receive the pivot member 1187.


In use, clamping lever 1016 is mounted on channel member 1022 by sliding a free end of pivot member 1187 (FIG. 44A) through openings 1194a (FIG. 51) of hinge members 1194. Once pivot member 1187 has been positioned through openings 1194a, the clamping lever 1016 can be pivoted in relation to channel member 1022 to move cutouts 1176 (FIG. 45) of spaced flange portions 1178 of clamping lever 1016 to a position to receive lateral support members 1172 of anvil half-section 1012. When lateral support members 1172 are received in cutouts 1176 and clamping lever 1016 is pivoted further towards cartridge receiving half-section 1014, anvil half-section 1012 is pulled towards cartridge receiving half-section 1014 to clamp anvil half-section 1012 to cartridge receiving half-section 1014 as discussed above with respect to surgical stapler 10 (FIG. 35). As clamping lever 1016 is moved to a fully clamped position, tissue gap pin 1172a (FIG. 35) formed on anvil half-section 1012 is moved into abutment with a raised surface 1175 of cartridge receiving half-section 1014 to control the spacing or gap between the anvil half-section 1012 and cartridge receiving half-section 1014 when the stapler 1000 is in the clamped position.


As shown in FIG. 3A, an inner wall of clamping lever 16 includes a protrusion 201. As clamping lever 16 is rotated from the position shown in FIG. 2A to the position shown in FIG. 2B, protrusion 201 moves along and is deformed by an outer wall of cartridge receiving half-section 14 until protrusion 201 moves into depression 189 (FIG. 2A) formed in the sidewall of cartridge receiving half-section 14. By positioning protrusion 201 in depression 189, clamping lever 16 is prevented from rotating to a position in which the clamping lever 16 can be disengaged with the cartridge receiving half-section 14 (FIG. 2A) and is, thus, retained in the open position (FIG. 2B).


Referring to FIG. 2, after clamping lever 16 has been secured to cartridge receiving half-section 14 and SULU 18 and firing assembly 20 are loaded into channel member 22, anvil section 12 can be assembled to cartridge receiving half-section 14. It is noted that SULU 18 and firing assembly 20 can be loaded into channel member 22 prior to or after securement of clamping lever 16 to cartridge receiving half-section 14. To attach anvil half-section 12 to cartridge receiving half-section 14, protrusions 186 of finger 184 are positioned in vertical slots 188a of vertical support member 188 of cartridge receiving half-section 14. Thereafter, anvil half-section 12 is rotated towards cartridge receiving half-section 14 to position lateral supports members 172 in U-shaped recesses 174.


In order to position surgical stapler 10 in the clamped position, clamping lever 16 is rotated in a counter-clockwise direction from the position shown in FIG. 2B. As clamping lever 16 is rotated, lateral support members 172 are received in cutouts 176 of flange portions 178 and cammed towards cartridge receiving half-section 14. As shown in FIG. 3, a spring member 200 is secured to an inner surface of clamping lever 16, such as by welding, at a position to engage cartridge receiving portion 14 to urge clamping lever 16 to the non-clamped position shown in FIG. 2B. In the clamped position shown in FIG. 1, the staple deforming portion 198 (FIG. 2) is positioned in close approximation with the top surface of SULU 18.


In the alternate embodiment shown in FIGS. 35-51, spring member 1200 (FIG. 36) may be secured to bottom wall 1026a of stationary housing 1026 of firing assembly 1020 such as by welding or other known fastening techniques. Spring member 1200 is positioned to extend through an elongated slot 1200a (FIG. 48) formed in channel member 1022 and engage an inner surface 1017 (FIG. 36) of clamping lever 1016. Engagement between spring 1200 and clamping lever 1016, as described above with respect to spring 200, urges clamping lever 1016 to a non-clamped position. By providing spring 1200 as an integral component of the disposable firing assembly 1020, rather than as part of the clamping lever, the reusable components of stapler 1000 can be more easily cleaned and sterilized for re-use.


Referring to FIGS. 18 and 22-27, the proximal end of clamping lever 16 includes a cutout 204, a resilient cantilevered locking member 206 positioned within the cutout 204, and a resilient engagement member 208 supported on the locking member 206. Locking member 206 defines an opening 210 and a finger engagement surface 212. Engagement member 208 defines a hook portion which is positioned within opening 210 and includes a locking surface 208a. In one embodiment, the cantilevered locking member 206 is integrally formed with clamping lever 16 and is connected to clamping lever 16 by a living hinge 213 (FIG. 23). Referring to FIGS. 3, 25 and 27, the proximal end of cartridge receiving half-section 14 includes a catch member 214 which extends downwardly from cartridge receiving half-section 14. In one embodiment, catch member 214 is integrally formed with half-section 14 and has a transverse locking surface 214a. Catch member 214 is positioned to be received within opening 210 and to engage and deflect engagement member 208 inwardly when clamping lever 16 is moved to the clamped position such that locking surface 208a of engagement member 208 automatically snaps into releasable engagement with locking surface 214a when clamp lever 16 is moved to the clamped position to retain clamping lever 16 in the clamped position. To accomplish this, locking member 214 and engagement member 208 define angled cam surfaces which abut during movement of the clamping lever 16 to the clamped position to deflect engagement member 208 inwardly past catch member 214. In order to release engagement member 208 from catch member 214, cantilevered locking member 206 can be depressed by pressing on finger engagement surface 212 to move engagement member 208 inwardly out of engagement with catch member 214. When this occurs, spring member 200 automatically urges clamping lever 16 to the unclamped position.


In the alternative embodiment shown in FIGS. 35-51, clamping lever 1016 of stapler 1000 includes a resilient locking member 1206 (FIGS. 45-57) which includes a centrally located pivot member 1206a. The locking member 1206 is positioned within a cutout 1204 defined in a proximal end of clamping lever 1016 and includes an engagement member 1208 on one end and a finger engagement surface 1212 on the other end opposite the engagement member 1208. The engagement member 1208 includes a protrusion 1208a (FIG. 47) which is positioned to engage a catch member 1214 formed on the proximal end of the cartridge receiving half-section 1014.


Referring to FIGS. 44-47, the engagement member 1208 is resilient and is positioned to flex proximally and pass over the catch member 1214 and then snap into engagement with the catch member 1214 as the clamping lever 1016 is pivoted towards the cartridge receiving half-section 1014. To disengage engagement member 1208 from catch member 1214, the finger engagement surface 1212 can be pressed inwardly into cutout 1204 to pivot the engagement member 1208 outwardly of cutout 1204 about central pivot member 1206a. As the engagement member 1208 pivots outwardly of cutout 1204, protrusion 1208a disengages from catch member 1214 to allow spring member 1200 to pivot clamping lever 1016 to the unclamped position.


Referring to FIGS. 3, 12, 19 and 26, as discussed above, guide block 48 is pivotally supported in stationary housing 26 of firing assembly 20. Guide block 48 includes a distally extending nose portion 220 (FIGS. 12 and 26) which rests beneath SULU 18 when SULU 18 is supported in channel member 22. The internal surface of guide block 48 includes locking surfaces 222 (FIG. 19) which are received in notches 49 and 51 of knife actuating bar 44 when the stapler 10 is in an unclamped position. When the SULU 18 is positioned in the channel member 22, prior to moving clamp lever 16 to the clamped position, SULU 18 is positioned atop nose portion 220 and is not fully seated in the channel member 22, as discussed above. When the stapler 10 is moved to the clamped position, locating fingers 170 of anvil half-section 12 (FIG. 3) engage a top surface of body 120 of SULU 18 to fully seat SULU 18 in channel member 22. Locating fingers 170 engage SULU 18 to properly position SULU 18 in relation to anvil portion 12b. As SULU 18 is fully seated in channel member 22, SULU 18 presses downwardly on nose portion 220 of guide block 48 to pivot guide block 48 about protrusions 72. When guide block 48 pivots, locking surfaces 222 move from notches 49 and 51 to unlock knife actuating bar 44 (FIG. 26). This configuration prevents movement of the knife actuating bar 44 in relation to guide block 48 prior to clamping to ensure that the knife actuating bar 44 and SULU knife 40 remain properly positioned for operational engagement prior to use.


Referring to FIGS. 24-28, when stapler 10 is in the clamped, unfired position, slide block 52 of firing assembly 20 is in the retracted position at the proximal end of channel member 22 and stationary housing 26. See FIG. 27. In this position, pedal 54 is positioned in cutout 55 of channel member 22 and pin 88 of pedal 54 is positioned in arcuate recess 94 of firing lever 50 beneath stop recesses 94a. As such, firing lever 50 can be pivoted to facilitate actuation of stapler 10 from either side of the stapler 10. In addition, in this position of slide block 52, finger 108 of knife actuating bar 44 is positioned adjacent the distal wall of recess 110 of slide block 52. Engagement member 208 is also engaged with locking member 214 to retain clamping lever 16 in the clamped position.


Referring to FIG. 26, when slide block 52 is in the retracted position, knife 40 and cam surfaces 114b of cam bar 46 are positioned in the proximal end of SULU 18 and, proximal hook 156 of safety lockout 128 is positioned in engagement with engagement member 158 of knife 40 to retain safety lockout 128 in the locked orientation. In addition, downturned hook portion 40b of knife 40 is engaged with upturned hook portion 106 of knife actuating bar 44 to connect firing assembly 20 to knife 40 of SULU 18.


Referring to FIGS. 29-32, when the firing lever 50 is advanced distally in the direction indicated by arrow “A” in FIG. 29, slide block 52 is moved distally within stationary housing 26 of firing assembly 20 to effect corresponding movement of cam bar 46 and delayed movement of knife actuating bar 44. As discussed above, the delayed movement of the knife actuating bar 44 is equal to the length of recess 110 of slide block 52 and results from movement of finger 108 of knife actuating bar 44 within recess 110 of slide block 52. Movement of knife actuating bar 44 with slide block 52 begins when finger 108 abuts the proximal wall 112 of recess 110. As cam bar 46 is moved distally through stationary housing 26 of firing assembly 20, cam surfaces 114b on sidewalls 114 of cam bar 46 are advanced through SULU 18 to sequentially engage pushers 122 to eject staples 126 from slots 130 of body 120. Concurrently, since the distal end of knife actuating bar 44 is engaged with knife 40, knife 40, after the preset delay, is advanced through SULU 18 to incise tissue between the staple lines.


As shown in phantom in FIG. 32, when slide block 52 moves distally within stationary housing 26, pedal 54 rides up over channel member 22 and moves along inner surface of stationary housing 26 of firing assembly 20. When this occurs, pin 88 of pedal 54 moves into a stop recess 94a to prevent further pivotal movement of firing lever 50.


Referring to FIGS. 31 and 32, when knife 40 is moved distally within SULU 18, engagement member 158 of knife 40 is disengaged with proximal hook 156 of safety lockout 128.


Referring to FIGS. 33 and 34, when the firing lever 50 is returned to its proximal-most position to retract cam bar 46 and knife 40, and the cantilevered locking member 206 is depressed to disengage engagement member 208 from catch member 214, spring 200 urges clamping lever 16 to its unclamped position to allow stapler 10 to move to the open position. In the open position, anvil half-section 12 is spaced from cartridge receiving half-section 14 and spring 152 (FIG. 17) pivots safety lockout 128 in the direction indicated by arrow B in FIG. 34 about pivot member 150 to its unlocked position such that safety lockout 128 projects upwardly from SULU 18. In the unlocked position, safety lockout 128 prevents movement of the stapler 10 back to the clamped position. In order to reuse stapler 10, used SULU 18 must be replaced with a new SULU 18.


During a surgical procedure, SULU 18 can be replaced multiple times to facilitate multiple uses of stapler 10 on a single patient. Since each SULU 18 is provided with a fresh knife 40, tearing of tissue is minimized. After the surgical procedure, the used SULU(S) 18 and the firing assembly 20 can be removed from the channel member 22 and disposed of in an appropriate manner. Thereafter, clamping lever 16 can be removed from cartridge receiving half-section 14, by rotating clamping lever 16 to the position shown in FIG. 2A and disengaging pivot members 187 from C-shaped recesses 194. The anvil half-section 12, cartridge receiving half-section 14 and clamping lever 16 can now be sterilized, such as by autoclaving, and reused with a sterilized SULU 18 and firing assembly 20 in the manner discussed above.


With regard to the alternate embodiment of the surgical stapler 1000 shown in FIGS. 35-51, after use, the clamping lever 1016 can be removed from engagement with cartridge receiving half-section 1014 by sliding pivot member 1187 from openings 1194a of hinge members 1194. The SULU 1018 and the firing assembly can be removed from the cartridge receiving half-section 1014 to facilitate cleaning and sterilization of the anvil half-section 1012, cartridge receiving half-section 1014 and clamping lever 1016.


It will be understood that various modifications may be made to the embodiments of the surgical fastener applying apparatus disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.

Claims
  • 1. A surgical fastener applying apparatus comprising: an anvil half-section including a distal anvil portion and a proximal handle portion;a cartridge receiving half-section defining an elongated channel member and including at least one hinge member supported on a bottom wall of the elongated channel member, the elongated channel member having a distal portion dimensioned to releasably receive a single use loading unit and a proximal portion configured to support a firing assembly, and wherein the at least one hinge member defines an opening; anda clamping lever pivotally secured to the cartridge receiving half-section, the clamping lever having a proximal end, a distal end, and a pivot member supported at only one end in cantilevered fashion on the distal end of the clamping lever;the pivot member of the clamping lever being slidably received within the opening of the at least one hinge member to pivotally secure the clamping lever to the cartridge receiving half-section, the clamping lever being movable from an unclamped position to a clamped position to releasably secure the anvil portion of the anvil half-section in close approximation with the single use loading unit supported within the elongated channel member.
  • 2. The surgical fastener applying apparatus according to claim 1 further including the firing assembly, the firing assembly being configured to be releasably secured within the proximal portion of the cartridge receiving half-section and including a firing lever and a cam bar fixedly secured to the firing lever.
  • 3. The surgical fastener applying apparatus according to claim 2, wherein the firing assembly further includes a stationary housing, the stationary housing being configured to be releasably supported in the proximal portion of the cartridge receiving half-section.
  • 4. The surgical fastener applying apparatus according to claim 3, wherein the stationary housing includes a bottom wall having a downwardly extending protrusion.
  • 5. The surgical fastener applying assembly according to claim 4, wherein the elongated channel member defines an opening dimensioned to receive the downwardly extending protrusion to properly position the firing assembly within the elongated channel member.
  • 6. The surgical fastener applying apparatus according to claim 2, wherein the firing assembly further includes a knife actuating bar which is configured to engage a knife supported within the single use loading unit.
  • 7. The surgical fastener applying assembly according to claim 3, wherein the firing assembly includes a spring member secured to the stationary housing and the elongated channel member defines an elongated slot which is dimensioned to allow passage of the spring member, the spring member being positioned to extend through the elongated slot and engage the clamping lever to urge the clamping lever towards the unclamped position.
  • 8. The surgical fastener applying apparatus according to claim 1, wherein the distal anvil portion has a triangular transverse cross-section.
  • 9. The surgical fastener applying apparatus according to claim 8, wherein the distal anvil portion is solid and defines a longitudinal slot dimensioned to receive a knife of the single use loading unit.
  • 10. The surgical fastener applying apparatus according to claim 1, wherein the clamping lever includes a locking member having a central pivot member, the locking member having a first end including an engagement member and a second end including a finger engagement surface, the locking member being pivotable about the central pivot member to engage a catch member formed on the cartridge receiving half-section in a snap-fit type engagement to retain the clamping lever in the clamped position.
  • 11. The surgical fastener applying assembly according to claim 10, wherein the finger engagement surface is positioned to be depressible to pivot the engagement member about the central pivot member out of engagement with the catch member.
  • 12. The surgical fastener applying assembly according to claim 1, wherein the clamping lever including the pivot member is of unitary construction.
  • 13. The surgical fastener applying assembly according to claim 1, wherein the pivot member is fixedly secured to the distal end portion of the clamping lever.
  • 14. A surgical fastener applying apparatus comprising: an anvil half-section including a distal anvil portion and a proximal handle portion;a cartridge receiving half-section defining an elongated channel member and including at least one hinge member supported on a bottom wall of the elongated channel member, the elongated channel member having a distal portion dimensioned to releasably receive a single use loading unit and a proximal portion configured to support a firing assembly, and wherein the at least one hinge member defines an opening; anda clamping lever pivotally secured to the cartridge receiving half-section, the clamping lever having a proximal end portion, a distal end portion and a pivot member secured at only one end in cantilevered fashion on the distal end portion of the clamping lever;the pivot member of the clamping lever being slidably received within the opening of the at least one hinge member to pivotally secure the clamping lever to the cartridge receiving half section, the clamping lever being movable from an unclamped position to a clamped position to releasably secure the anvil portion of the anvil half-section in close approximation with the single use loading unit supported within the elongated channel member, wherein the pivot member can be slid from the opening of the at least one hinge member to facilitate cleaning and sterilization of the cartridge receiving half-section.
  • 15. The surgical fastener applying assembly according to claim 14, wherein the clamping lever including the pivot member is of unitary construction.
  • 16. The surgical fastener applying assembly according to claim 14, wherein the pivot member is fixedly secured to the distal end portion of the clamping lever.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/068263 11/4/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2015/065487 5/7/2015 WO A
US Referenced Citations (1340)
Number Name Date Kind
3079606 Bobrov et al. Mar 1963 A
3490675 Green et al. Jan 1970 A
3499591 Green Mar 1970 A
3777538 Weatherly et al. Dec 1973 A
3882854 Hulka et al. May 1975 A
4027510 Hiltebrandt Jun 1977 A
4086926 Green et al. May 1978 A
4241861 Fleischer Dec 1980 A
4244372 Kapitanov et al. Jan 1981 A
4429695 Green Feb 1984 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4589413 Malyshev et al. May 1986 A
4596351 Fedotov et al. Jun 1986 A
4602634 Barkley Jul 1986 A
4605001 Rothfuss et al. Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4633861 Chow et al. Jan 1987 A
4633874 Chow et al. Jan 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4728020 Green et al. Mar 1988 A
4752024 Green et al. Jun 1988 A
4784137 Kulik et al. Nov 1988 A
4863088 Redmond et al. Sep 1989 A
4869415 Fox Sep 1989 A
4892244 Fox et al. Jan 1990 A
4955959 Tompkins et al. Sep 1990 A
4978049 Green Dec 1990 A
4991764 Mericle Feb 1991 A
5014899 Presty et al. May 1991 A
5031814 Tompkins et al. Jul 1991 A
5040715 Green et al. Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5071430 de Salis et al. Dec 1991 A
5074454 Peters Dec 1991 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5106008 Tompkins et al. Apr 1992 A
5111987 Moeinzadeh et al. May 1992 A
5129570 Schulze et al. Jul 1992 A
5141144 Foslien et al. Aug 1992 A
5156315 Green et al. Oct 1992 A
5156614 Green et al. Oct 1992 A
5163943 Mohiuddin et al. Nov 1992 A
5170925 Madden et al. Dec 1992 A
5171247 Hughett et al. Dec 1992 A
5173133 Morin et al. Dec 1992 A
5180092 Crainich Jan 1993 A
5188274 Moeinzadeh et al. Feb 1993 A
5220928 Oddsen et al. Jun 1993 A
5221036 Takase Jun 1993 A
5242457 Akopov et al. Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5253793 Green et al. Oct 1993 A
5263629 Trumbull et al. Nov 1993 A
RE34519 Fox et al. Jan 1994 E
5275323 Schulze et al. Jan 1994 A
5282807 Knoepfler Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5312023 Green et al. May 1994 A
5318221 Green et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5328077 Lou Jul 1994 A
5330486 Wilk Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5336232 Green et al. Aug 1994 A
5344061 Crainich Sep 1994 A
5352238 Green et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5364001 Bryan Nov 1994 A
5364002 Green et al. Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5366133 Geiste Nov 1994 A
5376095 Ortiz Dec 1994 A
5379933 Green et al. Jan 1995 A
5381943 Allen et al. Jan 1995 A
5382255 Castro et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5405072 Zlock Apr 1995 A
5407293 Crainich Apr 1995 A
5413268 Green et al. May 1995 A
5415334 Williamson et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417361 Williamson, IV May 1995 A
5423471 Mastri et al. Jun 1995 A
5425745 Green et al. Jun 1995 A
5431322 Green et al. Jul 1995 A
5431323 Smith et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5441193 Gravener Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5456401 Green et al. Oct 1995 A
5464300 Crainich Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5465896 Allen Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5472132 Savage et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5482197 Green et al. Jan 1996 A
5484095 Green et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5486185 Freitas et al. Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5490856 Person et al. Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5501689 Green et al. Mar 1996 A
5505363 Green et al. Apr 1996 A
5507426 Young et al. Apr 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5529235 Boiarski et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5551622 Yoon Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554164 Wilson et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562701 Huiterna et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5573169 Green et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5607095 Smith et al. Mar 1997 A
5615820 Viola Apr 1997 A
5618291 Thompson et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5628446 Geiste et al. May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5630541 Williamson, IV et al. May 1997 A
5632432 Schulze et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5636780 Green et al. Jun 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657921 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662259 Yoon Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662666 Onuki et al. Sep 1997 A
5665085 Nardella Sep 1997 A
5667517 Hooven Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5690269 Bolanos et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5702409 Raybum et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713505 Huitema Feb 1998 A
5715988 Palmer Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5732806 Foshee et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5749893 Vidal et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5769303 Knodel et al. Jun 1998 A
5769892 Kingwell Jun 1998 A
5772099 Gravener Jun 1998 A
5772673 Cuny et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5785232 Vidal Jul 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5810811 Yates et al. Sep 1998 A
5810855 Raybum et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5836147 Schnipke Nov 1998 A
5862972 Green et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5878938 Bittner et al. Mar 1999 A
5893506 Powell Apr 1999 A
5894979 Powell Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5901895 Heaton et al. May 1999 A
5911352 Racenet et al. Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5922001 Yoon Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5980510 Tsonton et al. Nov 1999 A
5988479 Palmer Nov 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6079606 Milliman et al. Jun 2000 A
6099551 Gabbay Aug 2000 A
6109500 Alli et al. Aug 2000 A
6131789 Schulze et al. Oct 2000 A
6131790 Piraka Oct 2000 A
6155473 Tompkins et al. Dec 2000 A
6197017 Brock et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6279809 Nicolo Aug 2001 B1
6315183 Piraka Nov 2001 B1
6315184 Whitman Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6391038 Vargas et al. May 2002 B2
6398797 Bombard et al. Jun 2002 B2
6436097 Nardella Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6478804 Vargas et al. Nov 2002 B2
6488196 Fenton, Jr. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6544274 Danitz et al. Apr 2003 B2
6554844 Lee et al. Apr 2003 B2
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6592597 Grant et al. Jul 2003 B2
6594552 Nowlin et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6619529 Green et al. Sep 2003 B2
D480808 Wells et al. Oct 2003 S
6644532 Green et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6681978 Geiste et al. Jan 2004 B2
6698643 Whitman Mar 2004 B2
6716232 Vidal et al. Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6755338 Hahnen et al. Jun 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6817509 Geiste et al. Nov 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6843403 Whitman Jan 2005 B2
RE38708 Bolanos et al. Mar 2005 E
6877647 Green et al. Apr 2005 B2
6889116 Jinno May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6962594 Thevenet Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6994714 Vargas et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7032799 Viola et al. Apr 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7111769 Wales et al. Sep 2006 B2
7114642 Whitman Oct 2006 B2
7121446 Arad et al. Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7159750 Racenet et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7188758 Viola et al. Mar 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7213736 Wales et al. May 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238195 Viola Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7258262 Mastri et al. Aug 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7287682 Ezzat et al. Oct 2007 B1
7293685 Ehrenfels et al. Nov 2007 B2
7296722 Ivanko Nov 2007 B2
7296724 Green et al. Nov 2007 B2
7296772 Wang Nov 2007 B2
7300444 Nielsen et al. Nov 2007 B1
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7326232 Viola et al. Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7334717 Rethy et al. Feb 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7367485 Shelton, IV et al. May 2008 B2
7377928 Zubik et al. May 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7399310 Edoga et al. Jul 2008 B2
7401720 Durrani Jul 2008 B1
7401721 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7407074 Ortiz et al. Aug 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7419495 Menn et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438208 Larson Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7448525 Shelton, IV et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7458494 Matsutani et al. Dec 2008 B2
7461767 Viola et al. Dec 2008 B2
7462185 Knodel Dec 2008 B1
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464848 Green et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7473258 Clauson et al. Jan 2009 B2
7481347 Roy Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7513408 Shelton, IV et al. Apr 2009 B2
7517356 Heinrich Apr 2009 B2
7537602 Whitman May 2009 B2
7543729 Ivanko Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7543731 Green et al. Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7556185 Viola Jul 2009 B2
7556186 Milliman Jul 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7559453 Heinrich et al. Jul 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7571845 Viola Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7584880 Racenet et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7597230 Racenet et al. Oct 2009 B2
7600663 Green Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7631794 Rethy et al. Dec 2009 B2
7635073 Heinrich Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7635373 Ortiz Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7678121 Knodel Mar 2010 B1
7681772 Green et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7682368 Bombard et al. Mar 2010 B1
7690547 Racenet et al. Apr 2010 B2
7694865 Scirica Apr 2010 B2
7699205 Ivanko Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721935 Racenet et al. May 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7740160 Viola Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744628 Viola Jun 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753248 Viola Jul 2010 B2
7757924 Gerbi et al. Jul 2010 B2
7757925 Viola et al. Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766924 Bombard et al. Aug 2010 B1
7766928 Ezzat et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7789283 Shah Sep 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798385 Boyden et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7810690 Bilotti et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815090 Marczyk Oct 2010 B2
7815091 Marczyk Oct 2010 B2
7815092 Whitman et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819796 Blake et al. Oct 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7823761 Boyden et al. Nov 2010 B2
7824426 Racenet et al. Nov 2010 B2
7828186 Wales Nov 2010 B2
7828187 Green et al. Nov 2010 B2
7828188 Jankowski Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7841503 Sonnenschein et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7850703 Bombard et al. Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7861907 Green et al. Jan 2011 B2
7866524 Krehel Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866526 Green et al. Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7866528 Olson et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7886952 Scirica et al. Feb 2011 B2
7891532 Mastri et al. Feb 2011 B2
7891533 Green et al. Feb 2011 B2
7891534 Wenchell et al. Feb 2011 B2
7896214 Farascioni Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7901416 Nolan et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7909224 Prommersberger Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7913893 Mastri et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7922064 Boyden et al. Apr 2011 B2
7926691 Viola et al. Apr 2011 B2
7926692 Racenet et al. Apr 2011 B2
7934628 Wenchell et al. May 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7934631 Balbierz et al. May 2011 B2
7942300 Rethy et al. May 2011 B2
7942303 Shah May 2011 B2
7950560 Zemlok et al. May 2011 B2
7950561 Aranyi May 2011 B2
7950562 Beardsley et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954683 Knodel et al. Jun 2011 B1
7954684 Boudreaux Jun 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963431 Scirica Jun 2011 B2
7963432 Knodel et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7975894 Boyden et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7988026 Knodel et al. Aug 2011 B2
7988027 Olson et al. Aug 2011 B2
7988028 Farascioni et al. Aug 2011 B2
7992758 Whitman et al. Aug 2011 B2
7997468 Farascioni Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006885 Marczyk Aug 2011 B2
8006887 Marczyk Aug 2011 B2
8007505 Weller et al. Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011552 Ivanko Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8015976 Shah Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028882 Viola Oct 2011 B2
8028883 Stopek Oct 2011 B2
8028884 Sniffin et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8033441 Marczyk Oct 2011 B2
8033442 Racenet et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8038044 Viola Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056791 Whitman Nov 2011 B2
8061577 Racenet et al. Nov 2011 B2
8066166 Demmy et al. Nov 2011 B2
8070033 Milliman et al. Dec 2011 B2
8070034 Knodel Dec 2011 B1
8070035 Holsten et al. Dec 2011 B2
8074858 Marczyk Dec 2011 B2
8074859 Kostrzewski Dec 2011 B2
8074862 Shah Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8083119 Prommersberger Dec 2011 B2
8083120 Shelton, IV et al. Dec 2011 B2
8087563 Milliman et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091754 Ehrenfels et al. Jan 2012 B2
8091756 Viola Jan 2012 B2
8092493 Marczyk Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8096460 Blier et al. Jan 2012 B2
8100309 Marczyk Jan 2012 B2
8100310 Zemlok Jan 2012 B2
8102008 Wells Jan 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113409 Cohen et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8123101 Racenet et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8127976 Scirica et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8132706 Marczyk et al. Mar 2012 B2
8136713 Hathaway et al. Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8152041 Kostrzewski Apr 2012 B2
8157148 Scirica Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8162197 Mastri et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8167186 Racenet et al. May 2012 B2
8172121 Krehel May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8181837 Roy May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186557 Cohen et al. May 2012 B2
8186558 Sapienza May 2012 B2
8186559 Whitman May 2012 B1
8186560 Hess et al. May 2012 B2
8193044 Kenneth Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8205619 Shah et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210412 Marczyk Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8216236 Heinrich et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8235272 Nicholas et al. Aug 2012 B2
8235273 Olson et al. Aug 2012 B2
8235274 Cappola Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8240536 Marczyk Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245897 Tzakis et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245931 Shigeta Aug 2012 B2
8252009 Weller et al. Aug 2012 B2
8256653 Farascioni Sep 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8256656 Milliman et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8272551 Knodel et al. Sep 2012 B2
8272553 Mastri et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8276594 Shah Oct 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8286847 Taylor Oct 2012 B2
8286848 Wenchell et al. Oct 2012 B2
8286850 Viola Oct 2012 B2
8292146 Holsten et al. Oct 2012 B2
8292147 Viola Oct 2012 B2
8292148 Viola Oct 2012 B2
8292149 Ivanko Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292153 Jankowski Oct 2012 B2
8292154 Marczyk Oct 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8292156 Kostrzewski Oct 2012 B2
8292158 Sapienza Oct 2012 B2
8308040 Huang et al. Nov 2012 B2
8308041 Kostrzewski Nov 2012 B2
8308042 Aranyi Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8308044 Viola Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8308757 Hillstead et al. Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8317071 Knodel Nov 2012 B1
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328065 Shah Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8336751 Scirica Dec 2012 B2
8336753 Olson et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8342380 Viola Jan 2013 B2
8348123 Scirica et al. Jan 2013 B2
8348124 Scirica Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348126 Olson et al. Jan 2013 B2
8348127 Marczyk Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8356740 Knodel Jan 2013 B1
8357174 Roth et al. Jan 2013 B2
8360294 Scirica Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360298 Farascioni et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8365971 Knodel Feb 2013 B1
8365972 Aranyi et al. Feb 2013 B2
8365973 White et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8381828 Whitman et al. Feb 2013 B2
8381961 Holsten et al. Feb 2013 B2
8387848 Johnson et al. Mar 2013 B2
8387849 Buesseler et al. Mar 2013 B2
8387850 Hathaway et al. Mar 2013 B2
8388652 Viola Mar 2013 B2
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393516 Kostrzewski Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8397972 Kostrzewski Mar 2013 B2
8403195 Beardsley et al. Mar 2013 B2
8403196 Beardsley et al. Mar 2013 B2
8403197 Vidal et al. Mar 2013 B2
8403198 Sorrentino et al. Mar 2013 B2
8403956 Thompson et al. Mar 2013 B1
8408439 Huang et al. Apr 2013 B2
8408440 Olson et al. Apr 2013 B2
8408442 Racenet et al. Apr 2013 B2
8413868 Cappola Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418907 Johnson et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8419768 Marczyk Apr 2013 B2
8424735 Viola et al. Apr 2013 B2
8424736 Scirica et al. Apr 2013 B2
8424737 Scirica Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8439244 Holcomb et al. May 2013 B2
8439245 Knodel et al. May 2013 B2
8439246 Knodel May 2013 B1
8444036 Shelton, IV May 2013 B2
8444037 Nicholas et al. May 2013 B2
8444038 Farascioni et al. May 2013 B2
8448832 Viola et al. May 2013 B2
8453652 Stopek Jun 2013 B2
8453905 Holcomb et al. Jun 2013 B2
8453906 Huang et al. Jun 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453909 Olson et al. Jun 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453913 Milliman Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8454628 Smith et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459521 Zemlok et al. Jun 2013 B2
8459522 Marczyk Jun 2013 B2
8459523 Whitman Jun 2013 B2
8459524 Pribanic et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8469252 Holcomb et al. Jun 2013 B2
8469254 Czernik et al. Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479967 Marczyk Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8479969 Shelton, IV Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8490852 Viola Jul 2013 B2
8496152 Viola Jul 2013 B2
8496154 Marczyk et al. Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8505799 Viola et al. Aug 2013 B2
8505802 Viola et al. Aug 2013 B2
8511575 Cok Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8517240 Mata et al. Aug 2013 B1
8517241 Nicholas et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8523041 Ishitsuki et al. Sep 2013 B2
8523042 Masiakos et al. Sep 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8534528 Shelton, IV Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540733 Whitman et al. Sep 2013 B2
8544711 Ma et al. Oct 2013 B2
8550325 Cohen et al. Oct 2013 B2
8556151 Viola Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573463 Scirica et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579177 Beetel Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8596515 Okoniewski Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8608047 Holsten et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8613384 Pastorelli et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8616430 (Prommersberger) Stopek et al. Dec 2013 B2
8627994 Zemlok et al. Jan 2014 B2
8628544 Farascioni Jan 2014 B2
8631988 Viola Jan 2014 B2
8631989 Aranyi et al. Jan 2014 B2
8631991 Cropper et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636190 Zemlok et al. Jan 2014 B2
8636192 Farascioni et al. Jan 2014 B2
8636762 Whitman et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8662371 Viola Mar 2014 B2
8668129 Olson Mar 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8672209 Crainich Mar 2014 B2
8678263 Viola Mar 2014 B2
8678990 Wazer et al. Mar 2014 B2
8679155 Knodel et al. Mar 2014 B2
8684247 Scirica et al. Apr 2014 B2
8684249 Racenet et al. Apr 2014 B2
8690039 Beardsley et al. Apr 2014 B2
8695865 Smith et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8701959 Shah Apr 2014 B2
8701961 Ivanko Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8714429 Demmy May 2014 B2
8715277 Weizman May 2014 B2
8720766 Hess et al. May 2014 B2
8721630 Ortiz et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727200 Roy May 2014 B2
8733612 Ma May 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740039 Farascioni Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8763877 Schall et al. Jul 2014 B2
8763879 Shelton, IV et al. Jul 2014 B2
8770458 Scirica Jul 2014 B2
8777082 Scirica Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8783542 Riestenberg et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8789738 Knodel et al. Jul 2014 B2
8789739 Swensgard Jul 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8814024 Woodard, Jr. et al. Aug 2014 B2
8814025 Miller et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820605 Shelton, IV Sep 2014 B2
8820607 Marczyk Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8827134 Viola et al. Sep 2014 B2
8833632 Swensgard Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8840603 Shelton, IV et al. Sep 2014 B2
8851355 Aranyi et al. Oct 2014 B2
9016546 Demmy et al. Apr 2015 B2
9027817 Milliman et al. May 2015 B2
20040108357 Milliman et al. Jun 2004 A1
20040199180 Knodel et al. Oct 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050103819 Racenet et al. May 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050222616 Rethy Oct 2005 A1
20060049229 Milliman et al. Mar 2006 A1
20060180634 Shelton et al. Aug 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070073341 Smith et al. Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070106317 Shelton et al. May 2007 A1
20070119901 Ehrenfels et al. May 2007 A1
20070125828 Rethy Jun 2007 A1
20070145096 Viola et al. Jun 2007 A1
20070170225 Shelton et al. Jul 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070194079 Hueil Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080110961 Voegele et al. May 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080287987 Boyden et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090090766 Knodel Apr 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090272787 Scirica Nov 2009 A1
20090277949 Viola et al. Nov 2009 A1
20090283568 Racenet et al. Nov 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20100012703 Calabrese et al. Jan 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100127041 Morgan et al. May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100155453 Bombard et al. Jun 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100249802 May et al. Sep 2010 A1
20100252611 Ezzat et al. Oct 2010 A1
20100305552 Shelton, IV et al. Dec 2010 A1
20110006099 Hall et al. Jan 2011 A1
20110006101 Hall et al. Jan 2011 A1
20110017801 Zemlok et al. Jan 2011 A1
20110024477 Hall Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110036891 Zemlok et al. Feb 2011 A1
20110068148 Hall et al. Mar 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110101069 Bombard et al. May 2011 A1
20110108603 Racenet et al. May 2011 A1
20110114702 Farascioni May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110132961 Whitman et al. Jun 2011 A1
20110132964 Weisenburgh, II et al. Jun 2011 A1
20110139851 McCuen Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110155781 Swensgard et al. Jun 2011 A1
20110155787 Baxter, III Jun 2011 A1
20110163146 Ortiz et al. Jul 2011 A1
20110163149 Viola Jul 2011 A1
20110192881 Balbierz et al. Aug 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110192883 Whitman et al. Aug 2011 A1
20110204119 McCuen Aug 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110288573 Yates et al. Nov 2011 A1
20110290851 Shelton, IV Dec 2011 A1
20110290853 Shelton, IV et al. Dec 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110290855 Moore Dec 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20120016362 Heinrich et al. Jan 2012 A1
20120037683 Lee Feb 2012 A1
20120053406 Conlon et al. Mar 2012 A1
20120061446 Knodel et al. Mar 2012 A1
20120061450 Kostrzewski Mar 2012 A1
20120074196 Shelton, IV et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120080474 Farascioni Apr 2012 A1
20120080475 Smith et al. Apr 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080479 Shelton, IV Apr 2012 A1
20120080481 Widenhouse et al. Apr 2012 A1
20120080482 Schall et al. Apr 2012 A1
20120080484 Morgan et al. Apr 2012 A1
20120080485 Woodard, Jr. et al. Apr 2012 A1
20120080486 Woodard, Jr. et al. Apr 2012 A1
20120080488 Shelton, IV et al. Apr 2012 A1
20120080489 Shelton, IV et al. Apr 2012 A1
20120080490 Shelton, IV et al. Apr 2012 A1
20120080491 Shelton, IV et al. Apr 2012 A1
20120080493 Shelton, IV et al. Apr 2012 A1
20120080494 Thompson et al. Apr 2012 A1
20120080495 Holcomb et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120080499 Schall et al. Apr 2012 A1
20120080502 Morgan et al. Apr 2012 A1
20120091183 Manoux et al. Apr 2012 A1
20120100200 Belcheva et al. Apr 2012 A1
20120138659 Marczyk et al. Jun 2012 A1
20120175399 Shelton et al. Jul 2012 A1
20120181322 Whitman et al. Jul 2012 A1
20120187179 Gleiman Jul 2012 A1
20120193394 Holcomb et al. Aug 2012 A1
20120193399 Holcomb et al. Aug 2012 A1
20120199632 Spivey et al. Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120223123 Baxter, III et al. Sep 2012 A1
20120228358 Zemlok et al. Sep 2012 A1
20120234893 Schuckmann et al. Sep 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120234899 Scheib et al. Sep 2012 A1
20120239009 Mollere et al. Sep 2012 A1
20120241491 Aldridge et al. Sep 2012 A1
20120241492 Shelton, IV et al. Sep 2012 A1
20120241493 Baxter, III et al. Sep 2012 A1
20120241496 Mandakolathur Vasudevan et al. Sep 2012 A1
20120241497 Mandakolathur Vasudevan et al. Sep 2012 A1
20120241498 Gonzalez et al. Sep 2012 A1
20120241499 Baxter, III et al. Sep 2012 A1
20120241500 Timmer et al. Sep 2012 A1
20120241501 Swayze et al. Sep 2012 A1
20120241502 Aldridge et al. Sep 2012 A1
20120241503 Baxter, III et al. Sep 2012 A1
20120241504 Soltz et al. Sep 2012 A1
20120241505 Alexander, III et al. Sep 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120248170 Marczyk Oct 2012 A1
20120255986 Petty et al. Oct 2012 A1
20120286021 Kostrzewski Nov 2012 A1
20120286022 Olson et al. Nov 2012 A1
20120292369 Munro, III et al. Nov 2012 A1
20120298719 Shelton, IV et al. Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20120312858 Patankar et al. Dec 2012 A1
20120312859 Gupta et al. Dec 2012 A1
20120312860 Ming et al. Dec 2012 A1
20120312861 Gurumurthy et al. Dec 2012 A1
20120318842 Anim et al. Dec 2012 A1
20120318843 Henderson et al. Dec 2012 A1
20120318844 Shelton, IV et al. Dec 2012 A1
20130008937 Viola Jan 2013 A1
20130012983 Kleyman Jan 2013 A1
20130015231 Kostrzewski Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130032626 Smith et al. Feb 2013 A1
20130037594 Dhakad et al. Feb 2013 A1
20130037595 Gupta et al. Feb 2013 A1
20130037596 Bear et al. Feb 2013 A1
20130037597 Katre Feb 2013 A1
20130037598 Marczyk Feb 2013 A1
20130041406 Bear et al. Feb 2013 A1
20130048697 Shelton, IV et al. Feb 2013 A1
20130056518 Swensgard Mar 2013 A1
20130056521 Swensgard Mar 2013 A1
20130062391 Boudreaux et al. Mar 2013 A1
20130062393 Bruewer et al. Mar 2013 A1
20130062394 Smith et al. Mar 2013 A1
20130068815 Bruewer et al. Mar 2013 A1
20130068816 Mandakolathur Vasudevan et al. Mar 2013 A1
20130068818 Kasvikis Mar 2013 A1
20130068821 Huitema et al. Mar 2013 A1
20130075443 Giordano et al. Mar 2013 A1
20130075444 Cappola et al. Mar 2013 A1
20130075445 Balek et al. Mar 2013 A1
20130075446 Wang et al. Mar 2013 A1
20130075447 Weisenburgh, II et al. Mar 2013 A1
20130075448 Schmid et al. Mar 2013 A1
20130075449 Schmid et al. Mar 2013 A1
20130075450 Schmid et al. Mar 2013 A1
20130075451 Balek et al. Mar 2013 A1
20130082086 Hueil et al. Apr 2013 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130087599 Krumanaker et al. Apr 2013 A1
20130087600 Scirica Apr 2013 A1
20130087601 Farascioni Apr 2013 A1
20130087602 Olson et al. Apr 2013 A1
20130087603 Viola Apr 2013 A1
20130092717 Marczyk et al. Apr 2013 A1
20130098964 Smith et al. Apr 2013 A1
20130098965 Kostrzewski et al. Apr 2013 A1
20130098966 Kostrzewski et al. Apr 2013 A1
20130098970 Racenet et al. Apr 2013 A1
20130105545 Burbank May 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105552 Weir et al. May 2013 A1
20130105553 (Tarinelli) Racenet et al. May 2013 A1
20130112730 Whitman et al. May 2013 A1
20130112732 Aranyi et al. May 2013 A1
20130112733 Aranyi et al. May 2013 A1
20130119109 Farascioni et al. May 2013 A1
20130126581 Yates et al. May 2013 A1
20130126582 Shelton, IV et al. May 2013 A1
20130126586 Zhang et al. May 2013 A1
20130140343 Knodel Jun 2013 A1
20130144333 Viola Jun 2013 A1
20130146641 Shelton, IV et al. Jun 2013 A1
20130146642 Shelton, IV et al. Jun 2013 A1
20130146643 Schmid et al. Jun 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130161374 Swayze et al. Jun 2013 A1
20130168431 Zemlok et al. Jul 2013 A1
20130175316 Thompson et al. Jul 2013 A1
20130193188 Shelton, IV et al. Aug 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130334280 Krehel et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140001232 Cappola et al. Jan 2014 A1
20140001233 Cappola et al. Jan 2014 A1
20140014704 Onukuri et al. Jan 2014 A1
20140014707 Onukuri et al. Jan 2014 A1
20140021242 Hodgkinson et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140027492 Williams Jan 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140061280 Ingmanson et al. Mar 2014 A1
20140076955 Lorenz Mar 2014 A1
20140103092 Kostrzewski et al. Apr 2014 A1
20140110453 Wingardner et al. Apr 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140131418 Kostrzewski May 2014 A1
20140131419 Bettuchi May 2014 A1
20140138423 Whitfield et al. May 2014 A1
20140151431 Hodgkinson et al. Jun 2014 A1
20140166720 Chowaniec et al. Jun 2014 A1
20140166721 Stevenson et al. Jun 2014 A1
20140166724 Schellin et al. Jun 2014 A1
20140166725 Schellin et al. Jun 2014 A1
20140166726 Schellin et al. Jun 2014 A1
20140175146 Knodel Jun 2014 A1
20140175150 Shelton, IV et al. Jun 2014 A1
20140203061 Hodgkinson Jul 2014 A1
20140203062 Viola Jul 2014 A1
20140203063 Hessler et al. Jul 2014 A1
20140239036 Zerkle et al. Aug 2014 A1
20140239037 Boudreaux et al. Aug 2014 A1
20140239038 Leimbach et al. Aug 2014 A1
20140239040 Fanelli et al. Aug 2014 A1
20140239041 Zerkle et al. Aug 2014 A1
20140239042 Simms et al. Aug 2014 A1
20140239043 Simms et al. Aug 2014 A1
20140239044 Hoffman Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20140246471 Jaworek et al. Sep 2014 A1
20140246472 Kimsey et al. Sep 2014 A1
20140246473 Auld Sep 2014 A1
20140246474 Hall et al. Sep 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140246476 Hall et al. Sep 2014 A1
20140246477 Koch, Jr. et al. Sep 2014 A1
20140246478 Baber et al. Sep 2014 A1
20140246479 Baber et al. Sep 2014 A1
20140252062 Mozdzierz Sep 2014 A1
20140252064 Mozdzierz et al. Sep 2014 A1
20140252065 Hessler et al. Sep 2014 A1
20140263537 Leimbach et al. Sep 2014 A1
20140263539 Leimbach et al. Sep 2014 A1
20140263540 Covach et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263542 Leimbach et al. Sep 2014 A1
20140263543 Leimbach et al. Sep 2014 A1
20140263544 Ranucci et al. Sep 2014 A1
20140263546 Aranyi Sep 2014 A1
20140263550 Aranyi et al. Sep 2014 A1
20140263551 Hall et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140263553 Leimbach et al. Sep 2014 A1
20140263554 Leimbach et al. Sep 2014 A1
20140263555 Hufnagel et al. Sep 2014 A1
20140263558 Hausen et al. Sep 2014 A1
20140263562 Patel et al. Sep 2014 A1
20140263564 Leimbach et al. Sep 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140263566 Williams et al. Sep 2014 A1
20140263570 Hopkins et al. Sep 2014 A1
20140284371 Morgan et al. Sep 2014 A1
20140284372 Kostrzewski Sep 2014 A1
20140291379 Schellin et al. Oct 2014 A1
20140291380 Weaner et al. Oct 2014 A1
20140291383 Spivey et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140309665 Parihar et al. Oct 2014 A1
20140332578 Fernandez et al. Nov 2014 A1
20140339286 Motooka et al. Nov 2014 A1
20140353358 Shelton, IV et al. Dec 2014 A1
20140367445 Ingmanson et al. Dec 2014 A1
20140367446 Ingmanson et al. Dec 2014 A1
20140367448 Cappola Dec 2014 A1
20150048143 Scheib et al. Feb 2015 A1
20150053740 Shelton, IV Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053744 Swayze et al. Feb 2015 A1
20150053749 Shelton, IV et al. Feb 2015 A1
20150054753 Morgan et al. Feb 2015 A1
20150060517 Williams Mar 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150076211 Irka et al. Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150133996 Shelton, IV et al. May 2015 A1
20150134076 Shelton, IV et al. May 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150173744 Shelton, IV et al. Jun 2015 A1
20150173745 Baxter, III et al. Jun 2015 A1
20150173746 Baxter, III et al. Jun 2015 A1
20150173747 Baxter, III et al. Jun 2015 A1
20150173748 Marczyk et al. Jun 2015 A1
20150173749 Shelton, IV et al. Jun 2015 A1
20150173750 Shelton, IV et al. Jun 2015 A1
20150173755 Baxter, III et al. Jun 2015 A1
20150173756 Baxter, III et al. Jun 2015 A1
20150173760 Shelton, IV et al. Jun 2015 A1
20150173761 Shelton, IV et al. Jun 2015 A1
20150173762 Shelton, IV et al. Jun 2015 A1
Foreign Referenced Citations (84)
Number Date Country
198654765 Sep 1986 AU
2773414 Nov 2012 CA
2744824 Apr 1978 DE
2903159 Jul 1980 DE
3114135 Oct 1982 DE
4213426 Oct 1992 DE
4300307 Jul 1994 DE
0041022 Dec 1981 EP
0136950 Apr 1985 EP
0140552 May 1985 EP
0156774 Oct 1985 EP
0213817 Mar 1987 EP
0216532 Apr 1987 EP
0220029 Apr 1987 EP
0273468 Jul 1988 EP
0324166 Jul 1989 EP
0324635 Jul 1989 EP
0324637 Jul 1989 EP
0324638 Jul 1989 EP
0365153 Apr 1990 EP
0369324 May 1990 EP
0373762 Jun 1990 EP
0380025 Aug 1990 EP
0399701 Nov 1990 EP
0449394 Oct 1991 EP
0484677 May 1992 EP
0189436 Jun 1992 EP
0503662 Sep 1992 EP
0514139 Nov 1992 EP
0536903 Apr 1993 EP
0537572 Apr 1993 EP
0539762 May 1993 EP
0545029 Jun 1993 EP
0552060 Jul 1993 EP
0552423 Jul 1993 EP
0579038 Jan 1994 EP
0589306 Mar 1994 EP
0591946 Apr 1994 EP
0592243 Apr 1994 EP
0593920 Apr 1994 EP
0598202 May 1994 EP
0598579 May 1994 EP
0600182 Jun 1994 EP
0621006 Oct 1994 EP
0621009 Oct 1994 EP
0656188 Jun 1995 EP
0666057 Aug 1995 EP
0705571 Apr 1996 EP
0 760 230 Mar 1997 EP
1952769 Aug 2008 EP
2018826 Jan 2009 EP
2090253 Aug 2009 EP
2090254 Aug 2009 EP
2532313 Dec 2012 EP
2583630 Apr 2013 EP
2586382 May 2013 EP
391239 Oct 1908 FR
2542188 Sep 1984 FR
2660851 Oct 1991 FR
2681775 Apr 1993 FR
1210523 Oct 1970 GB
1352554 May 1974 GB
1452185 Oct 1976 GB
1555455 Nov 1979 GB
2048685 Dec 1980 GB
2070499 Sep 1981 GB
2141066 Dec 1984 GB
2165559 Apr 1986 GB
51-149985 Dec 1976 JP
2001-87272 Apr 2001 JP
4626718 Feb 2011 JP
659146 Apr 1979 SU
728848 Apr 1980 SU
980703 Dec 1982 SU
990220 Jan 1983 SU
08302247 Jul 1983 WO
8910094 Nov 1989 WO
9210976 Jul 1992 WO
9308754 May 1993 WO
9314706 Aug 1993 WO
2004032760 Apr 2004 WO
2009071070 Jun 2009 WO
2013022704 Feb 2013 WO
WO2013022704 Feb 2013 WO
Non-Patent Literature Citations (3)
Entry
Chinese Office Action dated Jan. 29, 2018, issued in CN Application No. 201380080700.
Japanese Office Action dated Aug. 2, 2017, issued in JP Application No. 2016-526354.
International Search Report for PCT/US2013/068263 date of completion is Jul. 1, 2014 (3 pages).
Related Publications (1)
Number Date Country
20160249920 A1 Sep 2016 US