Surgical forceps

Information

  • Patent Grant
  • 10646267
  • Patent Number
    10,646,267
  • Date Filed
    Wednesday, August 7, 2013
    11 years ago
  • Date Issued
    Tuesday, May 12, 2020
    5 years ago
Abstract
An end effector assembly includes first and second jaw members pivotable between spaced-apart and approximated positions. The first and second jaw members include first and second proximal flanges, respectively. A pivot pin couples the proximal flanges of the jaw members to one another. The pivot pin includes a body and a head. The body is coupled to the first proximal flange. The head defines a first ramped surface configured to slidably contact a second ramped surface of the second proximal flange. In the spaced-apart position of the jaw members, the first and second ramped surfaces are oppositely disposed such that a maximum clearance is defined between the first and second proximal flanges. In the approximated position of the jaw members, the first and second ramped surfaces are similarly disposed such that a minimum clearance is defined between the first and second proximal flanges.
Description
CROSS REFERENCE TO RELATED APPLICATION

The present application is a U.S. National Stage Application under 35 U.S.C. § 371(a) of PCT/CN2013/080948 filed Aug. 7, 2013, the entire contents of which are incorporated by reference herein.


BACKGROUND

Technical Field


The present disclosure relates to a surgical devices and, more particularly, to surgical forceps for grasping, treating, and/or cutting tissue.


Background of Related Art


A forceps is a plier-like instrument which relies on mechanical action between its jaws to grasp, clamp, and constrict tissue. Electrosurgical forceps utilize both mechanical clamping action and electrical energy to affect hemostasis by heating tissue to coagulate and/or cauterize tissue. Certain surgical procedures require more than simply cauterizing tissue and rely on the unique combination of clamping pressure, precise electrosurgical energy control, and gap distance (i.e., distance between opposing jaw members when closed about tissue) to “seal” tissue. Typically, once tissue is sealed, the surgeon has to accurately sever the tissue along the newly formed tissue seal. Accordingly, many tissue-sealing instruments have been designed which incorporate a knife or blade member which effectively severs the tissue after forming a tissue seal. Alternatively or additionally, energy-based tissue division may be effected.


SUMMARY

As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user. Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.


In accordance with aspects of the present disclosure, an end effector assembly for a surgical device is provided. The end effector assembly includes first and second jaw members pivotable relative to one another between a spaced-apart position and an approximated position for grasping tissue therebetween. The first and second jaw members include first and second proximal flanges, respectively. A pivot pin couples the proximal flanges of the jaw members to one another to permit pivoting of the jaw members between the spaced-apart and approximated positions. The pivot pin includes a body and a head. The body is coupled to the first proximal flange, while the head defines a first ramped surface configured to slidably contact a second ramped surface of the second proximal flange. In the spaced-apart position of the jaw members, the first and second ramped surfaces are oppositely disposed such that a maximum clearance is defined between the first and second proximal flanges. In the approximated position of the jaw members, the first and second ramped surfaces are similarly disposed such that a minimum clearance is defined between the first and second proximal flanges.


In aspects, the first ramped surface includes first and second ramped segments interconnected by first and second steps, and the second ramped surface includes third and fourth ramped segments interconnected by third and fourth steps. In such aspects, in the spaced-apart position of the jaw members, the first and third ramped segments are disposed adjacent one another, the second and fourth ramped surfaces are disposed adjacent one another, the first and third steps are disposed adjacent one another, and the second and fourth steps are disposed adjacent one another. On the other hand, in the approximated position of the jaw members, the first and fourth ramped segments are disposed adjacent one another, the second and third ramped surfaces are disposed adjacent one another, the first and fourth steps are disposed adjacent one another, and the second and third steps are disposed adjacent one another.


In aspects, the first and second ramped surfaces are radially sloped in similar directions.


In aspects, a portion of the body of the pivot pin is fixedly engaged within an aperture defined through the first proximal flange, e.g., via laser welding.


In aspects, each jaw member further includes a distal jaw portion defining a tissue-contacting surface. The tissue-contacting surfaces are configured to grasp tissue therebetween upon movement of the jaw members to the approximated position.


In aspects, one or both of the jaw members is adapted to connect to a source of energy for conducting energy between the tissue-contacting surfaces and through tissue grasped therebetween to treat tissue.


In aspects, when the maximum clearance is defined between the proximal flanges, some degree of lateral movement and tilting of the jaw members relative to one another is permitted. On the other hand, when the minimum clearance is defined between the proximal flanges, the jaw members are maintained in alignment with one another.


Another end effector assembly for a surgical device provided in accordance with aspects of the present disclosure includes a first jaw member, a second jaw member, and a pivot pin. The first jaw member includes a first proximal flange portion and a first distal jaw portion. The first proximal flange portion defines a first aperture extending therethrough. The second jaw member includes a second proximal flange portion and a second distal jaw portion. The second proximal flange portion defines a second aperture and has a shoulder disposed about the second aperture. The shoulder defines a first ramped surface. The pivot pin includes a body and a head. The body extends through the second aperture and is engaged within the first aperture. The head defines a second ramped surface slidably contacting the first ramped surface of the shoulder. The second proximal flange is retained about the body of the pivot pin between the first proximal flange and the head, and is pivotable about the body of the pivot pin and relative to the first proximal flange for moving the jaw members between a spaced-apart position and an approximated position. The first and second ramped surfaces are configured such that, in the spaced-apart position of the jaw members, a maximum clearance is defined between the first and second proximal flanges, and such that, in the approximated position of the jaw members, a minimum clearance is defined between the first and second proximal flanges.


In aspects, in the spaced-apart position of the jaw members, the first and second ramped surfaces are oppositely disposed to define the maximum clearance. In aspects, in the approximated position of the jaw members, the first and second ramped surfaces are similarly disposed to define the minimum clearance.


In aspects, when the maximum clearance is defined between the proximal flanges, at least some degree of lateral movement and tilting of the jaw members relative to one another is permitted. In aspects, when the minimum clearance is defined between the proximal flanges, the jaw members are maintained in alignment with one another.


In aspects, the first ramped surface includes first and second ramped segments interconnected by first and second steps, and the second ramped surface includes third and fourth ramped segments interconnected by third and fourth steps. In such aspects, in the spaced-apart position of the jaw members, the first and third ramped segments are disposed adjacent one another, the second and fourth ramped surfaces are disposed adjacent one another, the first and third steps are disposed adjacent one another, and the second and fourth steps are disposed adjacent one another. On the other hand, in the approximated position of the jaw members, the first and fourth ramped segments are disposed adjacent one another, the second and third ramped surfaces are disposed adjacent one another, the first and fourth steps are disposed adjacent one another, and the second and third steps are disposed adjacent one another.


In aspects, the first and second ramped surfaces are radially sloped in similar directions.


In aspects, the body of the pivot pin is laser welded within the aperture of the first proximal flange.


In aspects, each of the distal jaw portions defines a tissue-contacting surface. In such aspects, one or both of the tissue-contacting surfaces is adapted to connect to a source of energy for conducting energy between the tissue-contacting surfaces and through tissue to treat tissue.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects and features of the present disclosure are described herein with reference to the drawings wherein:



FIG. 1 is a front, side, perspective view of an endoscopic surgical forceps configured for use in accordance with the present disclosure;



FIG. 2A is a front, side, perspective view of an open surgical forceps configured for use in accordance with the present disclosure;



FIG. 2B is a transverse, cross-sectional view of the end effector assembly of the forceps of FIG. 2A;



FIG. 3A is a front, side, perspective view of another open surgical forceps configured for use in accordance with the present disclosure;



FIG. 3B is a transverse, cross-sectional view of the end effector assembly of the forceps of FIG. 3A;



FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 2A;



FIG. 5 is a cross-sectional view taken alone line 5-5 of FIG. 2A;



FIG. 6 is a side, perspective view of a pin portion of a pivot for pivotably connecting the jaw members of FIG. 2A; and



FIG. 7 is a side, perspective view of an aperture of the pivot having a complementary surface corresponding with the pin of FIG. 6.





DETAILED DESCRIPTION

Referring now to FIGS. 1, 2A-2B, and 3A-3B, FIG. 1 depicts an endoscopic surgical forceps 10 configured for use in connection with endoscopic surgical procedures, FIGS. 2A-2B depict a open surgical forceps 10′ configured for use in connection with traditional open surgical procedures and FIGS. 3A-3B depict another open surgical forceps 10″ configured for use in connection with traditional open surgical procedures. For the purposes herein, either an endoscopic device, e.g., forceps 10, an open device, e.g., forceps 10′ or forceps 10″, or any other suitable surgical device may be utilized in accordance with the present disclosure. Obviously, different electrical and mechanical connections and considerations apply to each particular type of device, however, the aspects and features of the present disclosure remain generally consistent regardless of the particular device used.


Turning now to FIG. 1, an endoscopic forceps 10 is provided defining a longitudinal axis “X-X” and including a housing 20, a handle assembly 30, a rotating assembly 70, a trigger assembly 80, and an end effector assembly 100. Forceps 10 further includes a shaft 12 having a distal end 14 configured to mechanically engage end effector assembly 100 and a proximal end 16 that mechanically engages housing 20. Forceps 10 also includes cable 8 that connects forceps 10 to an energy source (not shown), e.g., a generator or other suitable power source, although forceps 10 may alternatively be configured as a battery-powered device. Cable 8 includes a wire (or wires) (not shown) extending therethrough that has sufficient length to extend through shaft 12 in order to provide energy to at least one of tissue-contacting surfaces 112, 122 of jaw members 110, 120, respectively. An activation switch 90 is provided on housing 20 for selectively supplying energy to jaw members 110, 120. Rotating assembly 70 is rotatable in either direction about a longitudinal axis “X-X” to rotate end effector assembly 100 about longitudinal axis “X-X.” Housing 20 houses the internal working components of forceps 10.


Handle assembly 30 includes a fixed handle 50 and a movable handle 40. Fixed handle 50 is integrally associated with housing 20 and handle 40 is movable relative to fixed handle 50. Movable handle 40 of handle assembly 30 is ultimately connected to a drive assembly (not shown) that, together, mechanically cooperate to impart movement of jaw members 110 and 120 between a spaced-apart position and an approximated position to grasp tissue between jaw members 110, 120. As shown in FIG. 1, movable handle 40 is initially spaced-apart from fixed handle 50 and, correspondingly, jaw members 110, 120 are in the spaced-apart position. Movable handle 40 is depressible from this initial position to a depressed position corresponding to an approximated position of jaw members 110, 120. A ratchet assembly 31 may also be included for selectively locking jaw members 110, 120 relative to one another in one or more approximated positions.


In some embodiments, a knife assembly (not shown) is provided. Trigger 82 of trigger assembly 80 is operably coupled to the knife assembly (not shown) for selectively translating a knife blade (not shown) through a knife channel (not shown) defined within one or both of jaw members 110, 120 to cut tissue grasped between jaw members 110, 120. The knife blade (not shown) may be configured for mechanical cutting, or may be energizable, e.g., via electrical coupling to the source of energy (not shown) via the one or more wires (not shown) of cable 8, for dynamically electromechanically cutting tissue. Alternatively, end effector assembly 100 may include an electrical cutting assembly configured for statically electrically cutting tissue, similarly as will be described below with respect to end effector assembly 300 of forceps 10″ (see FIGS. 3A-3B).


With continued reference to FIG. 1, each of jaw members 110, 120 of end effector assembly 100 includes an outer insulative jaw housing 114, 124 and an electrically-conductive tissue-contacting surface 112, 122, respectively. As mentioned above, tissue-contacting surfaces 112, 122 are electrically coupled to activation switch 90 (FIG. 1) and the source of energy (not shown) such that energy may be selectively supplied to tissue-contacting surface 112 and/or tissue-contacting surface 122 and conducted therebetween and through tissue grasped between jaw members 110, 120 to treat, e.g., seal, tissue. End effector assembly 100 is designed as a unilateral assembly, i.e., where jaw member 120 is fixed relative to shaft 12 and jaw member 110 is movable about pivot 150 relative to shaft 12 and fixed jaw member 120. However, end effector assembly 100 may alternatively be configured as a bilateral assembly, i.e., where both jaw member 110 and jaw member 120 are movable about pivot 150 relative to one another and to shaft 12.


Referring now to FIGS. 2A-2B, an open forceps 10′ is shown including two elongated shafts 12a, 12b, each having a proximal end 16a, 16b and a distal end 14a, 14b, respectively. An effector assembly 200, similar to end effector assembly 100 (FIG. 1), is attached to distal ends 14a, 14b of shafts 12a, 12b, respectively. More specifically, end effector assembly 200 includes a pair of opposing jaw members 210 and 220 disposed at distal ends 14b, 14a of shafts 12b, 12a, respectively. Jaw members 210, 220 are pivotably connected about a pivot 250.


Each shaft 12a, 12b of forceps 10′ includes a handle 17a, 17b disposed at the proximal end 16a, 16b thereof. Each handle 17a, 17b defines a finger hole 18a, 18b therethrough for receiving a finger of the surgeon. As can be appreciated, finger holes 18a, 18b facilitate movement of shafts 12a, 12b relative to one another that, in turn, pivots jaw members 210 and 220 about pivot 250 from an open position, wherein the jaw members 210 and 220 are disposed in spaced-apart relation relative to one another, to a closed position, wherein the jaw members 210 and 220 cooperate to grasp tissue therebetween. A ratchet assembly 30′ may be provided for selectively locking jaw members 210 and 220 relative to one another at various positions during pivoting, e.g., at one or more approximated positions. Ratchet assembly 30′ may include graduations or other visual markings that enable the surgeon to easily and quickly ascertain and control the amount of closure force desired between jaw members 210 and 220.


With continued reference to FIGS. 2A-2B, one of the shafts, e.g., shaft 12b, includes a proximal shaft connector 19 which is designed to connect the forceps 10′ to a source of energy (not shown), e.g., a generator. Proximal shaft connector 19 secures an electrosurgical cable 8′ to forceps 10′ such that the user may selectively apply energy to jaw members 210 and 220, as needed. One of the shafts, e.g., shaft 12a, includes a trigger assembly 80′ having a trigger 82′ for selectively advancing a knife blade 84 (FIG. 2B) between jaw members 210, 220 to mechanically cut tissue grasped therebetween, although knife blade 84 (FIG. 2B) may also be configured to be energizable for electromechanically cutting tissue.


End effector assembly 200 of forceps 10′ includes first and second jaw members 210, 220, each of which include a proximal flange 211, 221, an outer insulative jaw housing 214, 224 and an electrically-conductive tissue-contacting surface 212, 222, respectively. Tissue-contacting surfaces 212, 222 are electrically coupled to the source of energy (not shown), e.g., via wires (not shown) extending from cable 8′, for selectively conducting energy through tissue grasped therebetween to treat, e.g., seal, tissue. Each jaw member 210, 220 further includes a longitudinal slot 215, 225 extending therethrough that, in the approximated position of jaw members 210, 220, cooperate to form a blade channel to facilitate translation of knife blade 84 between jaw members 210, 220 to cut tissue grasped therebetween.


Turning now to FIGS. 3A-3B, forceps 10″ is similar to forceps 10′ (FIGS. 2A-2B) except that, rather than providing a trigger assembly 80′ for selectively advancing a knife blade 84 (FIG. 2B) between jaw members 210, 220 (see FIGS. 2A-2B), end effector assembly 300 of forceps 10″ includes an electrical cutting assembly 325 (FIG. 3B) and an activation switch 80″ for electrically cutting tissue grasped between jaw members 310, 320.


End effector assembly 300 of forceps 10″ includes first and second jaw members 310, 320 pivotable about a pivot 350 between a spaced-apart position and an approximated position for grasping tissue therebetween. Each jaw member 310, 320 includes a proximal flange 311, 321, an insulative jaw housing 314, 324 and an electrically-conductive tissue-contacting surface 312, 322, respectively. Tissue-contacting surfaces 312, 322 are electrically coupled to the source of energy (not shown), e.g., via wires (not shown) extending from cable 8′, for selectively conducting energy through tissue grasped therebetween to treat, e.g., seal, tissue in a first mode of operation. Electrical cutting assembly 325 is disposed within one of the jaw members, e.g., jaw member 320, and includes an insulating member 326 and a cutting electrode 328. Insulating member 326 is interdisposed between cutting electrode 328 and tissue-contacting surface 322 to electrically-insulate cutting electrode 328 and tissue-contacting surface 322 from one another. Cutting electrode 328 is electrically coupled to activation switch 80″ and the source of energy (not shown), e.g., via one or more wires (not shown), for selectively supplying energy to cutting electrode 328 for conduction through tissue and to either or both of tissue-contacting surfaces 312, 322 to electrically or electromechanically cut tissue in a second mode of operation. An insulating member 316 disposed within a longitudinal slot extending along tissue-contacting surface 312 of jaw member 310 is provided to oppose cutting electrode 328.


Proper alignment of the jaw members has been found to be an important factor in effectively treating, e.g., sealing, tissue, limiting damage to tissue, and cutting tissue (either mechanically, electrically, or electro-mechanically). With respect to treating, e.g., sealing, tissue, proper lateral alignment between the tissue-contacting surfaces maximizes the sealing width, e.g., the width of the area between the tissue-contacting surfaces, while proper tilt alignment maintains a consistent gap distance between the jaw members across the sealing width, both of which contribute to effective tissue treatment. With respect to limiting damage to tissue, offset due to lateral misalignment of the tissue-contacting surfaces may result in increased thermal spread, while tilting misalignment of the tissue-contacting surfaces may result in non-uniform conduction of energy through tissue and non-uniform heating of tissue. With respect to dynamic (mechanical or electromechanical) cutting of tissue, mis-alignment of the jaw members may result in misalignment of the blade slots, thus inhibiting translation of the knife blade therethrough. With respect to static (electrical or electromechanical) cutting, proper alignment of the jaw members helps maintain sufficient and substantially equal spacing between the cutting electrode and tissue-contacting surface of the opposed jaw member so as to reduce current concentrations and provide a more uniform distribution of current flow.


The various features and aspects of the present disclosure described below with reference to FIGS. 4-7 facilitate proper alignment of the jaw members, thus facilitating effective grasping, treating (e.g., sealing), and cutting (mechanically, electrically, or electromechanically) of tissue. For the purposes of simplicity and consistency, these features and aspects will be described hereinbelow with respect to end effector assembly 200 of forceps 10′ (FIGS. 2A-2B), although the present disclosure is equally applicable for use with any other suitable end effector assembly or surgical device.


Turning now to FIGS. 4-7, in conjunction with FIGS. 2A-2B, as mentioned above, jaw members 210, 220 of end effector assembly 200 each include a proximal flange 211, 221, respectively. Proximal flanges 211, 221 are pivotably coupled to one another about pivot 250 to permit movement of jaw members 210, 220 relative to one another between the spaced-apart and approximated positions. With reference to FIG. 6 in particular, pivot 250 includes a pin 252 having a head portion 254 and a body portion that includes a shank portion 256 and a neck portion 258. Neck portion 258 interconnects the head and shank portions 254, 256, respectively, although pin 252 may alternatively include head and shank portions 254, 256 directly connected to one another, e.g., the body portion may only include a shank portion 256 (without neck portion 258). Head portion 254 of pin 252 defines a first diameter “D1,” neck portion 258 defines a second diameter “D2” that is smaller than first diameter “D1,” and shank portion 256 defines a third diameter “D3” that is smaller than second diameter “D2.” Pin 252 may be monolithically formed, or may be manufactured in any other suitable fashion.


Referring again to FIGS. 4-7, in conjunction with FIGS. 2A-2B, pin 252 is configured for insertion through apertures 260, 270, defined transversely through proximal flanges 211, 221 of jaw members 210, 220, respectively, to pivotably couple jaw members 210, 220 to one another. The aperture defined through the proximal flange of one of the jaw members, e.g., aperture 260 of proximal flange 211 of jaw member 210, is configured to receive shank portion 256 of pin 252. As such, aperture 260 defines a diameter that approximates diameter “D3” of shank portion 256 of pin 252. The aperture defined through the proximal flange of the other jaw member, e.g., aperture 270 of proximal flange 221 of jaw member 220, is configured to receive head portion 254 and neck portion 258 of pin 252. More specifically, aperture 270 defines a stepped configuration defining a shoulder 272 that segments aperture 270 into first and second sections 274, 276. First section 274 of aperture 270 is configured to receive head portion 254 of pin 252 and, thus, defines a diameter that approximates diameter “D1” of head portion 254 of pin 252. Second section 276 of aperture 270 is configured to receive neck portion 258 of pin 252 and, thus, defines a diameter that approximates diameter “D2” of neck portion 258 of pin 252.


During assembly of end effector assembly 200, pin 252, lead by shank portion 256, is advanced through aperture 270 of proximal flange 221 of jaw member 220 and into aperture 260 of proximal flange 211 of jaw member 210 until shank portion 256 is disposed within aperture 260. Shank portion 256 is then fixedly secured within aperture 260, e.g., via laser welding or other suitable process, to fix pin 252 relative to jaw member 210, while still permitting jaw member 220 to rotate about pin 252 and relative to jaw member 210. In this configuration, jaw member 220 is retained about pin 252 due to abutment of proximal flange 211 of jaw member 210 and proximal flange 221 of jaw member 220 on one side, and due to the abutment of head portion 254 of pin 252 with shoulder 272 of proximal flange 221 of jaw member 220, on the other side.


Despite the retention of jaw members 210, 220 about pin 252 and relative to one another, lateral movement and/or tilting between jaw members 210, 220 may occur, thus leading to the potential for misalignment between jaw members 210, 220 when approximated about tissue. In fact, at least some clearance is desired between proximal flanges 211, 221 of jaw members 210, 220 so as to permit pivoting of jaw members 210, 220 relative to one another without high force requirements to overcome the frictional forces between proximal flanges 211, 221, respectively. This clearance, however, leads to the potential for lateral movement and/or tilting between the jaw members 210, 220. Thus, a trade-off has typically existed between minimizing clearance (which provides for more accurate jaw alignment) and minimizing the required forces (which allows the jaw members to be more easily pivoted between the spaced-apart and approximated positions). Pivot 250 and jaw member 210, 220, as will be described below, are configured to optimize the above-described trade-off by minimizing the required forces when pivoting jaw members 210, 220 is paramount and minimizing clearance when alignment of jaw members 210, 220 is paramount. That is, the required forces are minimized as jaw members 210, 220 are moved from the spaced-apart position towards the approximated position, thus facilitating approximation of jaw members 210, 220, while clearance is minimized as jaw members 210, 220 reach the approximated position, thus facilitating accurate alignment of jaw members 210, 220 when approximated about tissue.


With continued reference to FIGS. 4-7, in conjunction with FIGS. 2A-2B, and to FIG. 6 in particular, head portion 254 of pin 252 defines an inwardly-facing annular surface 282 including first and second semi-circumferentially ramped segments 283a, 283b. Ramped segments 283a, 283b are connected to one another at each end thereof to form the annular configuration of surface 282. More specifically, semi-circumferentially ramped segments 283a, 283b are circumferentially sloped in similar directions and are interconnected by first and second steps 284a, 284b, respectively. Surface 282 may further be radially sloped such that surface 282 defines an inclined configuration in a radially-outward direction.


Referring still to FIGS. 4-7, in conjunction with FIGS. 2A-2B, and to FIG. 7 in particular, shoulder 272 of aperture 270 of proximal flange 221 of jaw member 220 defines an outwardly-facing annular surface 286 shaped complementary to surface 282 of pin 252 (see FIG. 6). More specifically, surface 286 of shoulder 272 defines first and second semi-circumferentially ramped segments 287a, 287b that are interconnected by first and second steps 288a, 288a, respectively. Surface 286 may further be radially sloped such that surface 282 defines a declined configuration in a radially-outward direction.


Continuing with reference to FIGS. 4-7, in conjunction with FIGS. 2A-2B, when end effector assembly 200 is fully assembled, surface 286 of shoulder 272 of aperture 270 is disposed in slidably contact with surface 282 of pin 252. Thus, when jaw members 210, 220 are pivoted between the spaced-apart and approximated positions, surfaces 282, 286 are slid along one another. In the spaced-apart position of jaw members 210, 220, segment 283a of surface 282 opposes and abuts segment 287a of surface 286, while segment 283b of surface 282 opposes and abuts segment 287b of surface 286. In this position, step 284a defined on surface 282 and step 288a defined on surface 286 are disposed in close proximity to one another, while step 284b defined on surface 282 and step 288b defined on surface 286 are disposed in close proximity to one another. Thus, the most-inclined ends of segments 283a, 283b of surface 282 are positioned adjacent the most-declined ends of segments 287a, 287b of surface 286, and vice versa. As a result of this configuration, maximum clearance between proximal flanges 211, 221 of jaw members 210, 220, respectively, are provided, thus minimizing the frictional forces and thereby reducing the force required to pivot jaw members 210, 220 from the spaced-apart position towards the approximated position. Although relative lateral movement or tilting between jaw members 210, 220 may occur in this maximum-clearance state, such occurrences are not detrimental since misalignment is only a concern when grasping, treating, and/or cutting tissue, e.g., when jaw members 210, 220 are disposed in the approximated position.


As jaw members 210, 220 are pivoted towards the approximated position, and, thus, as surfaces 282, 286 are rotated along and relative to one another, segments 283a, 287b are moved toward opposition and abutment with one another and, likewise, segments 283b, 287a are moved towards opposition and abutment with one another. That is, as jaw members 210, 220 approach the approximated position, step 284a defined on surface 282 and step 288b defined on surface 286 are moved into close proximity, while step 284b defined on surface 282 and step 288a defined on surface 386 are moved into close proximity. In this configuration, the most-inclined ends of segments 283a, 283b of surface 282 are positioned adjacent the most-inclined ends of segments 287a, 287b of surface 286. Thus, minimum-clearance or a relatively tight-fit engagement is established. Alignment in this minimum-clearance state is facilitated by the complementary radially sloped configurations of surfaces 282, 286 of pin 252 and shoulder 272, respectively. Lateral movement or tilting of jaw members 210, 220 relative to one another is also inhibited due to the minimum-clearance in this minimum-clearance state, thus maintaining accurate alignment of jaw members 210, 220 when disposed in the approximated position. Although the forces required to close jaw members 210, 220 beyond the approximated position are relatively high in this minimum-clearance state, such is not a concern, as the approximated position is a static state and jaw members 210, 220 need not be closed beyond the approximated position.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. An end effector assembly for a surgical device, the end effector assembly comprising: first and second jaw members pivotable relative to one another between a spaced-apart position and an approximated position for grasping tissue therebetween, the first and second jaw members including first and second proximal flanges, respectively; anda pivot pin coupling the proximal flanges of the jaw members to one another to permit pivoting of the jaw members between the spaced-apart and approximated positions, the pivot pin including a body and a head, the body coupled to the first proximal flange, the head defining a first ramped surface configured to directly contact a second ramped surface of the second proximal flange, the first ramped surface configured to slide along the second ramped surface, the first ramped surface having a size substantially the same as a size of the second ramped surface,wherein, in the spaced-apart position of the jaw members, the first and second ramped surfaces are oppositely disposed such that a maximum clearance is defined between the first and second proximal flanges, andwherein, in the approximated position of the jaw members, the first and second ramped surfaces are similarly disposed such that a minimum clearance is defined between the first and second proximal flanges,wherein the first ramped surface includes first and second ramped segments interconnected by first and second steps, and wherein the second ramped surface includes third and fourth ramped segments interconnected by third and fourth steps, the first step configured to contact the third step and the second step configured to contact the fourth step.
  • 2. The end effector assembly according to claim 1, wherein, in the spaced-apart position of the jaw members, the first and third ramped segments are disposed adjacent one another, the second and fourth ramped segments are disposed adjacent one another, the first and third steps are disposed adjacent one another, and the second and fourth steps are disposed adjacent one another.
  • 3. The end effector assembly according to claim 1, wherein, in the approximated position of the jaw members, the first and fourth ramped segments are disposed adjacent one another, the second and third ramped segments are disposed adjacent one another, the first and fourth steps are disposed adjacent one another, and the second and third steps are disposed adjacent one another.
  • 4. The end effector assembly according to claim 1, wherein the first and second ramped surfaces are radially sloped in similar directions.
  • 5. The end effector assembly according to claim 1, wherein a portion of the body of the pivot pin is fixedly engaged within an aperture defined through the first proximal flange.
  • 6. The end effector assembly according to claim 1, wherein each jaw member further includes a distal jaw portion, the distal jaw portions defining tissue-contacting surfaces configured to grasp tissue therebetween upon movement of the jaw members to the approximated position.
  • 7. The end effector assembly according to claim 6, wherein at least one of the jaw members is adapted to connect to a source of energy for conducting energy between the tissue-contacting surfaces and through tissue grasped therebetween to treat tissue.
  • 8. The end effector assembly according to claim 1, wherein, when the maximum clearance is defined between the proximal flanges, at least some degree of lateral movement and tilting of the jaw members relative to one another is permitted, and wherein, when the minimum clearance is defined between the proximal flanges, the jaw members are maintained in alignment with one another.
  • 9. The end effector assembly according to claim 1, wherein an extending distance of the first ramped segment is substantially the same as an extending distance of the third ramped segment, and wherein an extending distance of the second ramped segment is substantially the same as an extending distance of the fourth ramped segment.
  • 10. An end effector assembly for a surgical device, the end effector assembly comprising: a first jaw member including a first proximal flange portion and a first distal jaw portion, the first proximal flange portion defining a first aperture extending therethrough;a second jaw member including a second proximal flange portion and a second distal jaw portion, the second proximal flange portion defining a second aperture and having a shoulder disposed about the second aperture, the shoulder defining a first ramped surface; anda pivot pin including a body and a head, the body extending through the second aperture and engaged within the first aperture, the head defining a second ramped surface directly contacting the first ramped surface of the shoulder, the first ramped surface configured to slide along the second ramped surface, the first ramped surface having a size substantially the same as a size of the second ramped surface, the second proximal flange retained about the body between the first proximal flange and the head, and pivotable about the body and relative to the first proximal flange for moving the jaw members between a spaced-apart position and an approximated position,wherein, the first and second ramped surfaces are configured such that, in the spaced-apart position of the jaw members, a maximum clearance is defined between the first and second proximal flanges, and such that, in the approximated position of the jaw members, a minimum clearance is defined between the first and second proximal flanges,wherein the first ramped surface includes first and second ramped segments interconnected by first and second steps, and wherein the second ramped surface includes third and fourth ramped segments interconnected by third and fourth steps, the first step configured to contact the third step and the second step configured to contact the fourth step.
  • 11. The end effector assembly according to claim 10, wherein, in the spaced-apart position of the jaw members, the first and second ramped surfaces are oppositely disposed to define the maximum clearance.
  • 12. The end effector assembly according to claim 10, wherein, in the approximated position of the jaw members, the first and second ramped surfaces are similarly disposed to define the minimum clearance.
  • 13. The end effector assembly according to claim 10, wherein, when the maximum clearance is defined between the proximal flanges, at least some degree of lateral movement and tilting of the jaw members relative to one another is permitted, and wherein, when the minimum clearance is defined between the proximal flanges, the jaw members are maintained in alignment with one another.
  • 14. The end effector assembly according to claim 10, wherein, in the spaced-apart position of the jaw members, the first and third ramped segments are disposed adjacent one another, the second and fourth ramped segments are disposed adjacent one another, the first and third steps are disposed adjacent one another, and the second and fourth steps are disposed adjacent one another.
  • 15. The end effector assembly according to claim 10, wherein, in the approximated position of the jaw members, the first and fourth ramped segments are disposed adjacent one another, the second and third ramped segments are disposed adjacent one another, the first and fourth steps are disposed adjacent one another, and the second and third steps are disposed adjacent one another.
  • 16. The end effector assembly according to claim 10, wherein the first and second ramped surfaces are radially sloped in similar directions.
  • 17. The end effector assembly according to claim 10, wherein the body of the pivot pin is laser welded within the aperture of the first proximal flange.
  • 18. The end effector assembly according to claim 10, wherein each of the distal jaw portions defines a tissue-contacting surface, at least one of the tissue-contacting surfaces adapted to connect to a source of energy for conducting energy between the tissue-contacting surfaces and through tissue to treat tissue.
  • 19. The end effector assembly according to claim 9, wherein extending distances of each of the first, second, third and fourth ramped segments are substantially the same.
  • 20. A pivot assembly, comprising: a pivot pin including a body and a head, the head defining a first ramped surface including first and second ramped segments respectively interconnected by first and second steps, the pivot pin configured to facilitate movement of the first and second jaw members relative to one another between a spaced-apart position and an approximated position for grasping tissue therebetween; anda flange including a second ramped surface directly contacting the first ramped surface, the second ramped surface including respective third and fourth ramped segments interconnected by third and fourth steps, the first step configured to contact the third step and the second step configured to contact the fourth step,wherein extending distances of each of the first, second, third and fourth ramped segments are substantially the same, wherein the first and third ramped segments are configured to slide along each other, and wherein the second and fourth ramped segments are configured to slide along each other,wherein, in the spaced-apart position of the jaw members, the first and second ramped surfaces are oppositely disposed to define a first distance between the first and second jaw members, andwherein, in the approximated position of the jaw members, the first and second ramped surfaces are similarly disposed to define a second distance between the first and second jaw members.
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2013/080948 8/7/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2015/017992 2/12/2015 WO A
US Referenced Citations (916)
Number Name Date Kind
371664 Brannan et al. Oct 1887 A
702472 Pignolet Jun 1902 A
728883 Downes May 1903 A
1586645 Bierman Jun 1926 A
1813902 Bovie Jul 1931 A
1822330 Ainslie Sep 1931 A
1852542 Sovatkin Apr 1932 A
2002594 Wappler et al. May 1935 A
2011169 Wappler Aug 1935 A
2031682 Wappler et al. Feb 1936 A
2054149 Wappler Sep 1936 A
2176479 Willis Oct 1939 A
2279753 Knopp Apr 1942 A
2305156 Grubel Dec 1942 A
2327353 Karle Aug 1943 A
2632661 Cristofv Mar 1953 A
2668538 Baker Feb 1954 A
2796065 Kapp Jun 1957 A
3073311 Tibbs et al. Jan 1963 A
3372288 Wigington Mar 1968 A
3459187 Pallotta Aug 1969 A
3643663 Sutter Feb 1972 A
3648001 Anderson et al. Mar 1972 A
3651811 Hildebrandt et al. Mar 1972 A
3678229 Osika Jul 1972 A
3720896 Beierlein Mar 1973 A
3763726 Hildebrand Oct 1973 A
3779918 Ikeda et al. Dec 1973 A
3801766 Morrison, Jr. Apr 1974 A
3862630 Balamuth Jan 1975 A
3863339 Reaney et al. Feb 1975 A
3866610 Kletschka Feb 1975 A
3911766 Fridolph et al. Oct 1975 A
3913586 Baumgarten Oct 1975 A
3920021 Hiltebrandt Nov 1975 A
3921641 Hulka Nov 1975 A
3938527 Rioux et al. Feb 1976 A
3952749 Fridolph et al. Apr 1976 A
3970088 Morrison Jul 1976 A
3987795 Morrison Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4016881 Rioux et al. Apr 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4076028 Simmons Feb 1978 A
4080820 Allen Mar 1978 A
4088134 Mazzariello May 1978 A
4112950 Pike Sep 1978 A
4127222 Adams Nov 1978 A
4128099 Bauer Dec 1978 A
4165746 Burgin Aug 1979 A
4187420 Piber Feb 1980 A
4233734 Bies Nov 1980 A
4236470 Stenson Dec 1980 A
4300564 Furihata Nov 1981 A
4311145 Esty et al. Jan 1982 A
D263020 Rau, III Feb 1982 S
4370980 Lottick Feb 1983 A
4375218 DiGeronimo Mar 1983 A
4416276 Newton et al. Nov 1983 A
4418692 Guay Dec 1983 A
4443935 Zamba et al. Apr 1984 A
4452246 Bader et al. Jun 1984 A
4470786 Sano et al. Sep 1984 A
4492231 Auth Jan 1985 A
4493320 Treat Jan 1985 A
4503855 Maslanka Mar 1985 A
4506669 Blake, III Mar 1985 A
4509518 McGarry et al. Apr 1985 A
4552143 Lottick Nov 1985 A
4574804 Kurwa Mar 1986 A
4597379 Kihn et al. Jul 1986 A
4600007 Lahodny et al. Jul 1986 A
4624254 McGarry et al. Nov 1986 A
4655215 Pike Apr 1987 A
4655216 Tischer Apr 1987 A
4657016 Garito et al. Apr 1987 A
4662372 Sharkany et al. May 1987 A
4671274 Sorochenko Jun 1987 A
4685459 Koch et al. Aug 1987 A
4715122 Linden Dec 1987 A
4733662 DeSatnick et al. Mar 1988 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
4754892 Retief Jul 1988 A
4763669 Jaeger Aug 1988 A
4827929 Hodge May 1989 A
4829313 Taggart May 1989 A
4846171 Kauphusman et al. Jul 1989 A
4887612 Esser et al. Dec 1989 A
4938761 Ensslin Jul 1990 A
4947009 Osika et al. Aug 1990 A
4985030 Melzer et al. Jan 1991 A
5007908 Rydell Apr 1991 A
5026370 Lottick Jun 1991 A
5026371 Rydell et al. Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5047046 Bodoia Sep 1991 A
5078716 Doll Jan 1992 A
5084057 Green et al. Jan 1992 A
5085659 Rydell Feb 1992 A
5099840 Goble et al. Mar 1992 A
5100430 Avellanet et al. Mar 1992 A
5108392 Spingler Apr 1992 A
5112343 Thornton May 1992 A
5116332 Lottick May 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Kamiyama et al. Sep 1992 A
5151978 Bronikowski et al. Sep 1992 A
5176695 Dulebohn Jan 1993 A
5190541 Abele et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5197964 Parins Mar 1993 A
5209747 Knoepfler May 1993 A
5211655 Hasson May 1993 A
5215101 Jacobs et al. Jun 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217458 Parins Jun 1993 A
5217460 Knoepfler Jun 1993 A
5219354 Choudhury et al. Jun 1993 A
5244462 Delahuerga et al. Sep 1993 A
5250047 Rydell Oct 1993 A
5250063 Abidin et al. Oct 1993 A
5258001 Corman Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261918 Phillips et al. Nov 1993 A
5275615 Rose Jan 1994 A
5277201 Stern Jan 1994 A
5282799 Rydell Feb 1994 A
5282800 Foshee et al. Feb 1994 A
5282826 Quadri Feb 1994 A
5290286 Parins Mar 1994 A
5300082 Shame et al. Apr 1994 A
5304203 El-Mallawany et al. Apr 1994 A
5308353 Beurrier May 1994 A
5308357 Lichtman May 1994 A
5313027 Inoue et al. May 1994 A
5314445 Heidmueller et al. May 1994 A
5318589 Lichtman Jun 1994 A
5324289 Eggers Jun 1994 A
D348930 Olson Jul 1994 S
5326806 Yokoshima et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5334183 Wuchinich Aug 1994 A
5334215 Chen Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5336221 Anderson Aug 1994 A
5342359 Rydell Aug 1994 A
5342381 Tidemand Aug 1994 A
5342393 Stack Aug 1994 A
5344424 Roberts et al. Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352222 Rydell Oct 1994 A
5354271 Voda Oct 1994 A
5356408 Rydell Oct 1994 A
5366477 LeMarie, III et al. Nov 1994 A
5368600 Faille et al. Nov 1994 A
5374277 Hassler Dec 1994 A
5376089 Smith Dec 1994 A
5383875 Bays et al. Jan 1995 A
5383897 Wholey Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389103 Melzer et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5391183 Janzen et al. Feb 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5409763 Serizawa et al. Apr 1995 A
5411519 Tovey et al. May 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5415656 Tihon et al. May 1995 A
5415657 Taymor-Luria May 1995 A
5422567 Matsunaga Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425690 Chang Jun 1995 A
5425739 Jessen Jun 1995 A
5429616 Schaffer Jul 1995 A
5431672 Cote et al. Jul 1995 A
5431674 Basile et al. Jul 1995 A
5437292 Kipshidze et al. Aug 1995 A
5438302 Goble Aug 1995 A
5439478 Palmer Aug 1995 A
5441517 Kensey et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443464 Russell et al. Aug 1995 A
5443480 Jacobs et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445658 Durrfeld et al. Aug 1995 A
5449480 Kuriya et al. Sep 1995 A
5451224 Goble et al. Sep 1995 A
5454823 Richardson et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456140 Linden et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5461765 Linden et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5472442 Klicek Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5480406 Nolan et al. Jan 1996 A
5480409 Riza Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499997 Sharpe et al. Mar 1996 A
5509922 Aranyi et al. Apr 1996 A
5514134 Rydell et al. May 1996 A
5527313 Scott et al. Jun 1996 A
5528833 Sakuma Jun 1996 A
5529067 Larsen et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5536251 Evard et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540685 Parins et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5540715 Katsaros et al. Jul 1996 A
5542945 Fritzsch Aug 1996 A
5558671 Yates Sep 1996 A
5558672 Edwards et al. Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5562699 Heimberger et al. Oct 1996 A
5562720 Stern et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569241 Edwards Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5573535 Viklund Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575805 Li Nov 1996 A
5578052 Koros et al. Nov 1996 A
5579781 Cooke Dec 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5590570 LeMaire, III et al. Jan 1997 A
5591181 Stone et al. Jan 1997 A
5591202 Slater et al. Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5599350 Schulze et al. Feb 1997 A
5601224 Bishop et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5601641 Stephens Feb 1997 A
5603711 Parins et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5611798 Eggers Mar 1997 A
5611808 Hossein et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5620415 Lucey et al. Apr 1997 A
5620453 Nallakrishnan Apr 1997 A
5620459 Lichtman Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5626609 Zvenyatsky et al. May 1997 A
5630833 Katsaros et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5638003 Hall Jun 1997 A
5643294 Tovey et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5655650 Naitou Aug 1997 A
5658281 Heard Aug 1997 A
D384413 Zlock et al. Sep 1997 S
5662667 Knodel Sep 1997 A
5665100 Yoon Sep 1997 A
5667526 Levin Sep 1997 A
5674220 Fox et al. Oct 1997 A
5674229 Tovey et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690652 Wurster et al. Nov 1997 A
5690653 Richardson et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5693920 Maeda Dec 1997 A
5695522 LeMaire, III et al. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5702390 Austin et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5716366 Yates Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5727428 LeMaire, III et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743906 Parins Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5759188 Yoon Jun 1998 A
5766130 Selmonosky Jun 1998 A
5766166 Hooven Jun 1998 A
5766170 Eggers Jun 1998 A
5766196 Griffiths Jun 1998 A
5769849 Eggers Jun 1998 A
5772655 Bauer et al. Jun 1998 A
5772670 Brosa Jun 1998 A
5776128 Eggers Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5779646 Koblish et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
H1745 Paraschac Aug 1998 H
5792137 Carr et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5792177 Kaseda Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797938 Paraschac et al. Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5800449 Wales Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810805 Sutcu et al. Sep 1998 A
5810808 Eggers Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810877 Roth et al. Sep 1998 A
5814043 Shapeton Sep 1998 A
5814054 Kortenbach et al. Sep 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820630 Lind Oct 1998 A
5824978 Karasik et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827279 Hughett et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5827548 Lavallee et al. Oct 1998 A
5833690 Yates et al. Nov 1998 A
5843080 Fleenor et al. Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5859527 Cook Jan 1999 A
5860976 Billings et al. Jan 1999 A
5876401 Schulze et al. Mar 1999 A
5876412 Piraka Mar 1999 A
5882567 Cavallaro et al. Mar 1999 A
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893863 Yoon Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5893877 Gampp, Jr. et al. Apr 1999 A
5897563 Yoon et al. Apr 1999 A
5902301 Olig May 1999 A
5906630 Anderhub et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908432 Pan Jun 1999 A
5911719 Eggers Jun 1999 A
5913874 Berns et al. Jun 1999 A
5921916 Aeikens et al. Jul 1999 A
5921984 Sutcu et al. Jul 1999 A
5925043 Kumar et al. Jul 1999 A
5928136 Barry Jul 1999 A
5935126 Riza Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5944718 Austin et al. Aug 1999 A
5951546 Lorentzen Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5954733 Yoon Sep 1999 A
5957923 Hahnen et al. Sep 1999 A
5957937 Yoon Sep 1999 A
5960544 Beyers Oct 1999 A
5961514 Long et al. Oct 1999 A
5964758 Dresden Oct 1999 A
5976132 Morris Nov 1999 A
5984932 Yoon Nov 1999 A
5984938 Yoon Nov 1999 A
5984939 Yoon Nov 1999 A
5989277 LeMaire, III et al. Nov 1999 A
5993466 Yoon Nov 1999 A
5993467 Yoon Nov 1999 A
5997565 Inoue Dec 1999 A
6004332 Yoon et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010516 Hulka Jan 2000 A
6017358 Yoon et al. Jan 2000 A
6021693 Feng-Sing Feb 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024743 Edwards Feb 2000 A
6024744 Kese et al. Feb 2000 A
6027522 Palmer Feb 2000 A
6030384 Nezhat Feb 2000 A
6033399 Gines Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6041679 Slater et al. Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053914 Eggers et al. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6059782 Novak et al. May 2000 A
6060695 Harle et al. May 2000 A
6066139 Ryan et al. May 2000 A
6074386 Goble et al. Jun 2000 A
6077287 Taylor et al. Jun 2000 A
6080180 Yoon et al. Jun 2000 A
RE36795 Rydell Jul 2000 E
6083223 Baker Jul 2000 A
6086586 Hooven Jul 2000 A
6086601 Yoon Jul 2000 A
6090107 Borgmeier et al. Jul 2000 A
6096031 Mitchell et al. Aug 2000 A
6096037 Mulier et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6102909 Chen et al. Aug 2000 A
6106542 Toybin et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113596 Hooven et al. Sep 2000 A
6113598 Baker Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6122549 Sharkey et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126658 Baker Oct 2000 A
6126665 Yoon Oct 2000 A
6139563 Cosgrove, III et al. Oct 2000 A
6143005 Yoon et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6162220 Nezhat Dec 2000 A
6171316 Kovac et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6178628 Clemens et al. Jan 2001 B1
6179834 Buysse et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183467 Shapeton et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6190400 Van De Moer et al. Feb 2001 B1
6193718 Kortenbach et al. Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6214028 Yoon et al. Apr 2001 B1
6217602 Redmon Apr 2001 B1
6217615 Sioshansi et al. Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6224593 Ryan et al. May 2001 B1
6224614 Yoon May 2001 B1
6228080 Gines May 2001 B1
6228083 Lands et al. May 2001 B1
6248124 Pedros et al. Jun 2001 B1
6248944 Ito Jun 2001 B1
6261307 Yoon et al. Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6280458 Boche et al. Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6298550 Kirwan, Jr. Oct 2001 B1
6302424 Gisinger et al. Oct 2001 B1
6312430 Wilson et al. Nov 2001 B1
6319262 Bates et al. Nov 2001 B1
6319451 Brune Nov 2001 B1
6322561 Eggers et al. Nov 2001 B1
6322580 Kanner Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6345532 Coudray et al. Feb 2002 B1
6350264 Hooven Feb 2002 B1
6352536 Buysse et al. Mar 2002 B1
6358249 Chen et al. Mar 2002 B1
6358259 Swain et al. Mar 2002 B1
6358268 Hunt et al. Mar 2002 B1
6364879 Chen et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6387094 Eitenmuller May 2002 B1
6391035 Appleby et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6409728 Ehr et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6419675 Gallo, Sr. Jul 2002 B1
6425896 Baltschun et al. Jul 2002 B1
6432112 Brook et al. Aug 2002 B2
6440144 Bacher Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6443970 Schulze et al. Sep 2002 B1
6451018 Lands et al. Sep 2002 B1
6458125 Cosmescu Oct 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6461352 Morgan et al. Oct 2002 B2
6461368 Fogarty et al. Oct 2002 B2
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464704 Schmaltz et al. Oct 2002 B2
6485489 Teirstein et al. Nov 2002 B2
6494888 Laufer et al. Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6503248 Levine Jan 2003 B1
6506189 Rittman, III et al. Jan 2003 B1
6506196 Laufer Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6514215 Ouchi Feb 2003 B1
6514251 Ni et al. Feb 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517539 Smith et al. Feb 2003 B1
6527771 Weadock et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6544264 Levine et al. Apr 2003 B2
6545239 Spedale et al. Apr 2003 B2
6558385 McClurken et al. May 2003 B1
6562037 Paton et al. May 2003 B2
6569105 Kortenbach et al. May 2003 B1
6569162 He May 2003 B2
6582450 Ouchi Jun 2003 B2
6585735 Frazier et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6605790 Yoshida Aug 2003 B2
6616658 Ineson Sep 2003 B2
6616661 Wellman et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6620184 de Laforcade et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6638287 Danitz et al. Oct 2003 B2
6641595 Moran et al. Nov 2003 B1
6652514 Ellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6656175 Francischelli et al. Dec 2003 B2
6656177 Truckai et al. Dec 2003 B2
6660072 Chatterjee Dec 2003 B2
6663639 Laufer et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6669696 Bacher et al. Dec 2003 B2
6673092 Bacher Jan 2004 B1
6676660 Wampler et al. Jan 2004 B2
6676676 Danitz et al. Jan 2004 B2
6679882 Komerup Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685724 Haluck Feb 2004 B1
6689131 McClurken Feb 2004 B2
6692445 Roberts et al. Feb 2004 B2
6693246 Rudolph et al. Feb 2004 B1
6695840 Schulze Feb 2004 B2
6702810 McClurken et al. Mar 2004 B2
6723092 Brown et al. Apr 2004 B2
6726068 Miller Apr 2004 B2
6726686 Buysse Apr 2004 B2
6726694 Blatter et al. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6743230 Lutze et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6743240 Smith et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6756553 Yamaguchi et al. Jun 2004 B1
6757977 Dambal et al. Jul 2004 B2
D493888 Reschke Aug 2004 S
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773432 Clayman et al. Aug 2004 B1
6773434 Ciarrocca Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6790217 Schulze et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800825 Sasaki et al. Oct 2004 B1
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
D499181 Dycus et al. Nov 2004 S
6818000 Muller et al. Nov 2004 B2
6821285 Laufer et al. Nov 2004 B2
6835200 Laufer et al. Dec 2004 B2
6857357 Fujii Feb 2005 B2
6860880 Treat et al. Mar 2005 B2
6887240 Lands et al. May 2005 B1
6889116 Jinno May 2005 B2
6914201 Van Vooren et al. Jul 2005 B2
6926716 Baker et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932816 Phan Aug 2005 B2
6934134 Mori et al. Aug 2005 B2
6936061 Sasaki Aug 2005 B2
D509297 Wells Sep 2005 S
6942662 Goble et al. Sep 2005 B2
6943311 Miyako Sep 2005 B2
6953430 Kidooka Oct 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
6960210 Lands et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966907 Goble Nov 2005 B2
6972017 Smith et al. Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979786 Aukland et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6987244 Bauer Jan 2006 B2
6994707 Ellman et al. Feb 2006 B2
6994709 Iida Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7001381 Harano et al. Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7033354 Keppel Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041102 Truckai et al. May 2006 B2
7044948 Keppel May 2006 B2
7052489 Griego et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7063715 Onuki et al. Jun 2006 B2
D525361 Hushka Jul 2006 S
7070597 Truckai et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090689 Nagase et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7103947 Sartor et al. Sep 2006 B2
7107124 Green Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7115123 Knowlton et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135020 Lawes et al. Nov 2006 B2
D533942 Kerr et al. Dec 2006 S
7145757 Shea et al. Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
7156842 Sartor et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7179255 Lettice et al. Feb 2007 B2
7179258 Buysse et al. Feb 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7207990 Lands et al. Apr 2007 B2
D541938 Kerr et al. May 2007 S
7223264 Daniel et al. May 2007 B2
7223265 Keppel May 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7241288 Braun Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7244257 Podhajsky et al. Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7248944 Green Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7270660 Ryan Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7276068 Johnson et al. Oct 2007 B2
7300435 Wham et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7314471 Holman Jan 2008 B2
7318823 Sharps et al. Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
D564662 Moses et al. Mar 2008 S
7338526 Steinberg Mar 2008 B2
7342754 Fitzgerald et al. Mar 2008 B2
7344268 Jigamian Mar 2008 B2
D567943 Moses et al. Apr 2008 S
7367976 Lawes et al. May 2008 B2
7377920 Buysse et al. May 2008 B2
7384420 Dycus et al. Jun 2008 B2
7384421 Hushka Jun 2008 B2
7396336 Orszulak et al. Jul 2008 B2
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
7435249 Buysse et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7442194 Dumbauld et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7458972 Keppel Dec 2008 B2
7473253 Dycus et al. Jan 2009 B2
7481810 Dumbauld et al. Jan 2009 B2
7487780 Hooven Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7500975 Cunningham et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513898 Johnson et al. Apr 2009 B2
7536749 Lu May 2009 B2
7540872 Schechter et al. Jun 2009 B2
7549995 Schultz Jun 2009 B2
7553312 Tetzlaff et al. Jun 2009 B2
8333765 Johnson et al. Dec 2012 B2
20020013583 Camran et al. Jan 2002 A1
20020049442 Roberts et al. Apr 2002 A1
20020099372 Schulze et al. Jul 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020188294 Couture et al. Dec 2002 A1
20030014052 Buysse et al. Jan 2003 A1
20030014053 Nguyen et al. Jan 2003 A1
20030018331 Dycus et al. Jan 2003 A1
20030018332 Schmaltz et al. Jan 2003 A1
20030032956 Lands et al. Feb 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030069571 Treat et al. Apr 2003 A1
20030078577 Truckai et al. Apr 2003 A1
20030078578 Truckai et al. Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030139742 Wampler et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030158549 Swanson Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030199869 Johnson et al. Oct 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030220637 Truckai et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20030236325 Bonora Dec 2003 A1
20030236518 Marchitto et al. Dec 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040049185 Latterell et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040073238 Makower Apr 2004 A1
20040073256 Marchitto et al. Apr 2004 A1
20040078035 Kanehira et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040115296 Duffin Jun 2004 A1
20040116924 Dycus et al. Jun 2004 A1
20040116979 Truckai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040147925 Buysse et al. Jul 2004 A1
20040148035 Barrett et al. Jul 2004 A1
20040162557 Tetzlaff et al. Aug 2004 A1
20040193153 Sartor et al. Sep 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040210282 Flock et al. Oct 2004 A1
20040224590 Rawa et al. Nov 2004 A1
20040225288 Buysse et al. Nov 2004 A1
20040230189 Keppel Nov 2004 A1
20040236325 Tetzlaff et al. Nov 2004 A1
20040236326 Schulze et al. Nov 2004 A1
20040243125 Dycus et al. Dec 2004 A1
20040249371 Dycus et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040250419 Sremcich et al. Dec 2004 A1
20040254573 Dycus et al. Dec 2004 A1
20040260281 Baxter et al. Dec 2004 A1
20050004564 Wham et al. Jan 2005 A1
20050004568 Lawes et al. Jan 2005 A1
20050004569 Witt et al. Jan 2005 A1
20050004570 Chapman et al. Jan 2005 A1
20050021025 Buysse et al. Jan 2005 A1
20050021026 Baily Jan 2005 A1
20050021027 Shields et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050059934 Wenchell et al. Mar 2005 A1
20050096645 Wellman et al. May 2005 A1
20050101951 Wham et al. May 2005 A1
20050101952 Lands et al. May 2005 A1
20050113818 Sartor et al. May 2005 A1
20050113819 Wham et al. May 2005 A1
20050113826 Johnson et al. May 2005 A1
20050113828 Shields et al. May 2005 A1
20050149017 Dycus Jul 2005 A1
20050149151 Orszulak et al. Jul 2005 A1
20050154387 Moses et al. Jul 2005 A1
20050187547 Sugi Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050240179 Buysse et al. Oct 2005 A1
20060052778 Chapman et al. Mar 2006 A1
20060052779 Hammill Mar 2006 A1
20060064085 Schechter et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060074417 Cunningham et al. Apr 2006 A1
20060079888 Mulier et al. Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060079891 Arts et al. Apr 2006 A1
20060079933 Hushka et al. Apr 2006 A1
20060084973 Hushka Apr 2006 A1
20060089670 Hushka Apr 2006 A1
20060116675 McClurken et al. Jun 2006 A1
20060129146 Dycus et al. Jun 2006 A1
20060167450 Johnson et al. Jul 2006 A1
20060167452 Moses et al. Jul 2006 A1
20060173452 Buysse et al. Aug 2006 A1
20060189980 Johnson et al. Aug 2006 A1
20060189981 Dycus et al. Aug 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060217709 Couture et al. Sep 2006 A1
20060224158 Odom et al. Oct 2006 A1
20060229666 Suzuki et al. Oct 2006 A1
20060253126 Bjerken et al. Nov 2006 A1
20060259036 Tetzlaff et al. Nov 2006 A1
20060264922 Sartor et al. Nov 2006 A1
20060264931 Chapman et al. Nov 2006 A1
20060283093 Petrovic et al. Dec 2006 A1
20060287641 Perlin Dec 2006 A1
20070016182 Lipson et al. Jan 2007 A1
20070016187 Weinberg et al. Jan 2007 A1
20070043352 Garrison et al. Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070060919 Isaacson et al. Mar 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070074807 Guerra Apr 2007 A1
20070078456 Dumbauld et al. Apr 2007 A1
20070078458 Dumbauld et al. Apr 2007 A1
20070078459 Johnson et al. Apr 2007 A1
20070088356 Moses et al. Apr 2007 A1
20070106295 Garrison et al. May 2007 A1
20070106297 Dumbauld et al. May 2007 A1
20070118111 Weinberg May 2007 A1
20070118115 Artale et al. May 2007 A1
20070142833 Dycus et al. Jun 2007 A1
20070142834 Dumbauld Jun 2007 A1
20070156139 Schechter et al. Jul 2007 A1
20070156140 Baily Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173814 Hixson et al. Jul 2007 A1
20070179499 Garrison Aug 2007 A1
20070198011 Sugita Aug 2007 A1
20070203485 Keppel Aug 2007 A1
20070213706 Dumbauld et al. Sep 2007 A1
20070213707 Dumbauld et al. Sep 2007 A1
20070213708 Dumbauld et al. Sep 2007 A1
20070213712 Buysse et al. Sep 2007 A1
20070255279 Buysse et al. Nov 2007 A1
20070260235 Podhajsky Nov 2007 A1
20070260238 Guerra Nov 2007 A1
20070260241 Dalla Betta et al. Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20080004616 Patrick Jan 2008 A1
20080009860 Odom Jan 2008 A1
20080015567 Kimura Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080021450 Couture Jan 2008 A1
20080033428 Artale et al. Feb 2008 A1
20080039835 Johnson et al. Feb 2008 A1
20080039836 Odom et al. Feb 2008 A1
20080045947 Johnson et al. Feb 2008 A1
20080058802 Couture et al. Mar 2008 A1
20080082100 Orton et al. Apr 2008 A1
20080091189 Carlton Apr 2008 A1
20080114356 Johnson et al. May 2008 A1
20080167651 Tetzlaff et al. Jul 2008 A1
20080195093 Couture et al. Aug 2008 A1
20080215051 Buysse et al. Sep 2008 A1
20080243120 Lawes et al. Oct 2008 A1
20080249527 Couture Oct 2008 A1
20080312653 Arts et al. Dec 2008 A1
20080319442 Unger et al. Dec 2008 A1
20090012520 Hixson et al. Jan 2009 A1
20090018535 Schechter et al. Jan 2009 A1
20090024126 Artale et al. Jan 2009 A1
20090043304 Tetzlaff et al. Feb 2009 A1
20090048596 Shields et al. Feb 2009 A1
20090062794 Buysse et al. Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090082767 Unger et al. Mar 2009 A1
20090082769 Unger et al. Mar 2009 A1
20090088738 Guerra et al. Apr 2009 A1
20090088739 Hushka et al. Apr 2009 A1
20090088740 Guerra et al. Apr 2009 A1
20090088741 Hushka et al. Apr 2009 A1
20090088744 Townsend Apr 2009 A1
20090088745 Hushka et al. Apr 2009 A1
20090088746 Hushka et al. Apr 2009 A1
20090088747 Hushka et al. Apr 2009 A1
20090088748 Guerra et al. Apr 2009 A1
20090088749 Hushka et al. Apr 2009 A1
20090088750 Hushka et al. Apr 2009 A1
20090112206 Dumbauld et al. Apr 2009 A1
20090131934 Odom et al. May 2009 A1
20090149853 Shields et al. Jun 2009 A1
20090149854 Cunningham et al. Jun 2009 A1
20090171350 Dycus et al. Jul 2009 A1
20090171353 Johnson et al. Jul 2009 A1
20090182327 Unger Jul 2009 A1
20090187188 Guerra et al. Jul 2009 A1
20100000049 Lin Jan 2010 A1
20110071523 Dickhans Mar 2011 A1
20120029554 Kreidler Feb 2012 A1
Foreign Referenced Citations (164)
Number Date Country
2104423 Feb 1994 CA
2415263 Oct 1975 DE
02514501 Oct 1976 DE
2627679 Jan 1977 DE
03612646 Apr 1987 DE
8712328 Feb 1988 DE
04303882 Feb 1995 DE
04403252 Aug 1995 DE
19515914 Jul 1996 DE
29616210 Nov 1996 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
19828976 Feb 2000 DE
20001204 Mar 2000 DE
19738457 Jan 2009 DE
0467501 Jan 1992 EP
0541930 May 1993 EP
0572131 Dec 1993 EP
0584787 Mar 1994 EP
0589555 Mar 1994 EP
0589453 Apr 1994 EP
0624348 Jun 1995 EP
0364216 Jan 1996 EP
0518230 May 1996 EP
0517243 Sep 1997 EP
0878169 Nov 1998 EP
0623316 Mar 1999 EP
0650701 Mar 1999 EP
0923907 Jun 1999 EP
0986990 Mar 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0694290 Nov 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1082944 Mar 2001 EP
1177771 Feb 2002 EP
1159926 Mar 2003 EP
0717966 Apr 2003 EP
1301135 Apr 2003 EP
0887046 Jul 2003 EP
1330991 Jul 2003 EP
1486177 Jun 2004 EP
1472984 Nov 2004 EP
0754437 Dec 2004 EP
1025807 Dec 2004 EP
0774232 Jan 2005 EP
0853922 Feb 2005 EP
1527747 May 2005 EP
1530952 May 2005 EP
1532932 May 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1034746 Mar 2006 EP
1632192 Mar 2006 EP
1642543 Apr 2006 EP
1645238 Apr 2006 EP
1645240 Apr 2006 EP
1649821 Apr 2006 EP
0875209 May 2006 EP
1707143 Oct 2006 EP
1769765 Apr 2007 EP
1769766 Apr 2007 EP
1929970 Jun 2008 EP
1683496 Dec 2008 EP
2591744 May 2013 EP
221341 Sep 1924 GB
221443 Sep 1924 GB
623316 May 1949 GB
1490585 Nov 1977 GB
2213416 Aug 1989 GB
2214430 Sep 1989 GB
61-501068 Sep 1984 JP
6-502328 Mar 1992 JP
5-5106 Jan 1993 JP
05-40112 Feb 1993 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
08056955 Mar 1996 JP
08252263 Oct 1996 JP
09010223 Jan 1997 JP
11244298 Sep 1999 JP
2000252831 Sep 2000 JP
2000289472 Oct 2000 JP
2000342599 Dec 2000 JP
2000350732 Dec 2000 JP
2001008944 Jan 2001 JP
2001029356 Feb 2001 JP
2001128990 May 2001 JP
401367 Oct 1973 SU
8900757 Jan 1989 WO
9204873 Apr 1992 WO
9206642 Apr 1992 WO
9321845 Nov 1993 WO
9408524 Apr 1994 WO
9420025 Sep 1994 WO
9502369 Jan 1995 WO
9507662 Mar 1995 WO
9515124 Jun 1995 WO
965776 Feb 1996 WO
96-22056 Jul 1996 WO
9613218 Sep 1996 WO
9700646 Jan 1997 WO
9700647 Jan 1997 WO
9710764 Mar 1997 WO
9724073 Jul 1997 WO
9724993 Jul 1997 WO
9827880 Jul 1998 WO
9903407 Jan 1999 WO
9903408 Jan 1999 WO
9903409 Jan 1999 WO
9912488 Mar 1999 WO
96-23933 May 1999 WO
9940857 Aug 1999 WO
9940861 Aug 1999 WO
9951158 Oct 1999 WO
9966850 Dec 1999 WO
0024330 May 2000 WO
0024331 May 2000 WO
0036986 Jun 2000 WO
0041638 Jul 2000 WO
0047124 Aug 2000 WO
0053112 Sep 2000 WO
0117448 Mar 2001 WO
0154604 Aug 2001 WO
0166026 Sep 2001 WO
0207627 Jan 2002 WO
02067798 Sep 2002 WO
02080783 Oct 2002 WO
02080784 Oct 2002 WO
02080785 Oct 2002 WO
02080786 Oct 2002 WO
02080793 Oct 2002 WO
02080794 Oct 2002 WO
02080795 Oct 2002 WO
02080797 Oct 2002 WO
02080798 Oct 2002 WO
02080799 Oct 2002 WO
02081170 Oct 2002 WO
02080796 Oct 2002 WO
02098313 Dec 2002 WO
03061500 Jul 2003 WO
03101311 Dec 2003 WO
03090630 Apr 2004 WO
2004032776 Apr 2004 WO
2004032777 Apr 2004 WO
2004052221 Jun 2004 WO
04073490 Sep 2004 WO
2004073488 Sep 2004 WO
2004073753 Sep 2004 WO
2004082495 Sep 2004 WO
2004098383 Nov 2004 WO
04103156 Dec 2004 WO
2005004734 Jan 2005 WO
2005004735 Jan 2005 WO
2005110264 Nov 2005 WO
2008045348 Apr 2008 WO
2008045350 Apr 2008 WO
2013009756 Jan 2013 WO
Non-Patent Literature Citations (45)
Entry
Sigel et al., The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation, Surgery Gynecology & Dbstetrics, Oct. 1965 pp. 823-831.
Bergdahl et al., Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator, J. Neurosurg. vol. 75, Jul. 1991 pp. 148-151.
US 6,090,109, Jul. 2000, Lands et al. (withdrawn).
US 6,663,629, Dec. 2003, Buysse et al. (withdrawn).
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12:376-878.
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
Linehan et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001 pp. 21-24.
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801.
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C.
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress.
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surger” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000.
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 39, 154-157.
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte,NC.
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. Jan. 1, 2003.
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery” Sales/Product Literature.
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” Innovations That Work, Jun. 2003.
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999.
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report” Innovations That Work, Feb. 2002.
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002.
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003.
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales Product Literature.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3.
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales Product Literature.
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales Product Literature.
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales Product Literature.
Dulemba et al., “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales Product Literature.
Johnson et al., “Evaluation of a Bipolar electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales Product Literature.
“Innovations in Electrosurgery” Sales/Product Literature: Dec. 31, 2000.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery Sales/Product Literature: Jan. 2004.
Craig Johnson. “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” That Work, Mar. 2000.
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632 Dated: 2005.
The International Search Report and Written Opinion dated Apr. 30, 2014 issued in corresponding PCT Appln. No. PCT/CN2013/080948.
Related Publications (1)
Number Date Country
20160157921 A1 Jun 2016 US