The present invention relates to a surgical frame and a method for use thereof incorporating a translating lower beam. More particularly, the present invention relates to a surgical frame and a method for use thereof, where the surgical frame includes a translating lower beam that is moveable with respect to the remainder of the surgical frame. More specifically, the present invention relates to a surgical frame and a method for use thereof, where the surgical frame includes a translating lower beam that can be positioned and repositioned to afford greater access to a patient receiving area to facilitate transfer to and from the surgical frame, and to afford greater access to a patient by a surgeon and/or a surgical assistant.
Typically, surgical frames used to support patients thereon include cross members extending between opposite ends thereof. A typical cross member extends horizontally from one end to the other end of the surgical frame, and the typical cross member serves to tie both ends of the surgical frame to one another. A typical cross member is fixed in position, and is located adjacent to the ground on which the surgical frame is positioned to lower the center of gravity of the surgical table. However, the fixed position and location of a typical cross member can create interference. For example, the fixed position and location of a typical cross member can interfere with transfer of a patient from and to a surgical table/gurney. Furthermore, the fixed position and location of a typical cross member can interfere with access to a patient by a surgeon and/or a surgical assistant. As such, there is a need for a surgical frame and a method for use thereof, where the surgical frame has a translating lower beam that can be positioned and repositioned to afford greater access to a patient receiving area to facilitate transfer to and from the surgical frame, and to afford greater access to a patient by a surgeon and/or a surgical assistant.
The present invention in one preferred embodiment contemplates a method of reconfiguring a surgical frame before, during, or after surgery, the method including spacing a main beam of the surgical frame and a patient positioned on the main beam from the ground with a first support portion and a second support portion; rotating the main beam and the patient positioned thereon from a prone position to one of a first lateral position and a second lateral position; and moving a translating beam under the main beam and the patient positioned thereon, the translating beam being moveable between a first position at or adjacent a first lateral side of the surgical frame and a second position at or adjacent a second lateral side of the surgical frame, and the translating beam joining portions of the surgical frame together between the first and second support portions.
The present invention in another preferred embodiment contemplates a method of reconfiguring a surgical frame before, during, or after surgery, the method including spacing a main beam of the surgical frame from the ground with a first support portion and a second support portion; supporting a patient by the main beam of the surgical frame; rotating the main beam and the patient positioned thereon from a prone position to one of a first lateral position and a second lateral position; and moving a translating beam under the main beam and the patient positioned thereon, the translating beam being moveable between a first position at or adjacent a first lateral side of the surgical frame and a second position at or adjacent a second lateral side of the surgical frame, and the translating beam joining portions of the surgical frame together between the first and second support portions.
The present invention in yet another preferred embodiment contemplates a method of reconfiguring a surgical frame before, during, or after surgery, the method including providing the surgical frame including a support platform, a first support portion, a second support portion, and a main beam spaced from the ground by the support platform, the first support portion, and the second support portion, the support platform including a translating beam moveable between a first position at or adjacent a first lateral side of the surgical frame and a second position at or adjacent a second lateral side of the surgical frame, the main beam being configured to receive a patient thereon, the main beam and the patient received thereon being rotatable relative to the support platform, the first support portion, and the second support portion; supporting the patient by the main beam of the surgical frame; rotating the patient to a prone position, and moving the translating beam to a position underneath the patient supported in the prone position; and rotating the patient to one of a first lateral position and a second lateral position, and moving the translating beam to a position underneath the patient supported in the one of the first lateral position and the second lateral position.
These and other objects of the present invention will be apparent from review of the following specification and the accompanying drawings.
The surgical frame 10 is configured to provide a relatively minimal amount of structure adjacent the patient's spine to facilitate access thereto and to improve the quality of imaging available before and during surgery. Thus, the surgeon's workspace and imaging access are thereby increased. Furthermore, radio-lucent or low magnetic susceptibility materials can be used in constructing the structural components adjacent the patient's spine in order to further enhance imaging quality.
The surgical frame 10 has a longitudinal axis and a length therealong. As depicted in
The offset main beam 12 is used to facilitate rotation of the patient P. The offset main beam 12 can be rotated a full 360° before and during surgery to facilitate various positions of the patient P to afford various surgical pathways to the patient's spine depending on the surgery to be performed. For example, the offset main beam 12 can be positioned to place the patient P in a prone position (e.g.,
As depicted in
The vertical support posts 48 can be adjustable to facilitate expansion and contraction of the heights thereof. Expansion and contraction of the vertical support posts 48 facilitates raising and lowering, respectively, of the offset main beam 12. As such, the vertical support posts 48 can be adjusted to have equal or different heights. For example, the vertical support posts 48 can be adjusted such that the vertical support post 48 of the second support portion 42 is raised 12 inches higher than the vertical support post 48 of the first support portion 40 to place the patient P in a reverse Trendelenburg position.
Furthermore, cross member 44 can be adjustable to facilitate expansion and contraction of the length thereof. Expansion and contraction of the cross member 44 facilitates lengthening and shortening, respectively, of the distance between the first and second support portions 40 and 42.
The vertical support post 48 of the first and second support portions 40 and 42 have heights at least affording rotation of the offset main beam 12 and the patient P positioned thereon. Each of the vertical support posts 48 include a clevis 60, a support block 62 positioned in the clevis 60, and a pin 64 pinning the clevis 60 to the support block 62. The support blocks 62 are capable of pivotal movement relative to the clevises 60 to accommodate different heights of the vertical support posts 48. Furthermore, axles 66 extending outwardly from the offset main beam 12 are received in apertures 68 formed the support blocks 62. The axles 66 define an axis of rotation of the offset main beam 12, and the interaction of the axles 66 with the support blocks 62 facilitate rotation of the offset main beam 12.
Furthermore, a servomotor 70 can be interconnected with the axle 66 received in the support block 62 of the first support portion 40. The servomotor 70 can be computer controlled and/or operated by the operator of the surgical frame 10 to facilitate controlled rotation of the offset main beam 12. Thus, by controlling actuation of the servomotor 70, the offset main beam 12 and the patient P supported thereon can be rotated to afford the various surgical pathways to the patient's spine.
As depicted in
The axles 66 are attached to the first portion 80 of the forward portion 72 and to the third portion 94 of the rear portion 74. The lengths of the first portion 80 of the forward portion 72 and the second portion 92 of the rear portion 74 serve in offsetting portions of the forward and rear portions 72 and 74 from the axis of rotation of the offset main beam 12. This offset affords positioning of the cranial-caudal axis of patient P approximately aligned with the axis of rotation of the offset main beam 12.
Programmable settings controlled by a computer controller (not shown) can be used to maintain an ideal patient height for a working position of the surgical frame 10 at a near-constant position through rotation cycles, for example, between the patient positions depicted in
As depicted in
As depicted in
As depicted in
As depicted in
As depicted in
As depicted in
As depicted in
As depicted in
As depicted in
An alternative preferred embodiment of a torso-lift support is generally indicated by the numeral 160 in
As discussed below, the torso-lift support 160 depicted in
As discussed above, the chest support lift mechanism 166 includes the actuators 170A, 170B, and 170C to position and reposition the support plate 164 (and hence, the chest support plate 100). As depicted in
The second actuator 170B is interconnected with the support plate 164 via first links 182, and the third actuator 170C is interconnected with the support plate 164 via second links 184. First ends 190 of the first links 182 are pinned to the second actuator 170B and elongated slots 192 formed in the offset main beam 162 using a pin 194, and first ends 200 of the second links 184 are pinned to the third actuator 170C and elongated slots 202 formed in the offset main beam 162 using a pin 204. The pins 194 and 204 are moveable within the elongated slots 192 and 202. Furthermore, second ends 210 of the first links 182 are pinned to the support plate 164 using the pin 176, and second ends 212 of the second links 184 are pinned to the support plate 164 using a pin 214. To limit interference therebetween, as depicted in
Actuation of the actuators 170A, 170B, and 170C facilitates movement of the support plate 164. Furthermore, the amount of actuation of the actuators 170A, 170B, and 170C can be varied to affect different positions of the support plate 164. As such, by varying the amount of actuation of the actuators 170A, 1706, and 170C, the COR 172 thereof can be controlled. As discussed above, the COR 172 can be predetermined, and can be either fixed or varied. Furthermore, the actuation of the actuators 170A, 170B, and 170C can be computer controlled and/or operated by the operator of the surgical frame 10, such that the COR 172 can be programmed by the operator. As such, an algorithm can be used to determine the rates of extension of the actuators 170A, 1706, and 170C to control the COR 172, and the computer controls can handle implementation of the algorithm to provide the predetermined COR. A safety feature can be provided, enabling the operator to read and limit a lifting force applied by the actuators 170A, 170B, and 170C in order to prevent injury to the patient P. Moreover, the torso-lift support 160 can also include safety stops (not shown) to prevent over-extension or compression of the patient P, and sensors (not shown) programmed to send patient position feedback to the safety stops.
As depicted in
As depicted in
To accommodate patients with different torso lengths, the position of the thigh cradle 220 can be adjustable by moving the support plate 230 along the offset main beam 12. Furthermore, to accommodate patients with different thigh and lower leg lengths, the lengths of the second and third support struts 226 and 228 can be adjusted.
To control the pivotal angle between the second and third support struts 226 and 228 (and hence, the pivotal angle between the thigh cradle 220 and lower leg cradle 222), a link 240 is pivotally connected to a captured rack 242 via a pin 244. The captured rack 242 includes an elongated slot 246, through which is inserted a worm gear shaft 248 of a worm gear assembly 250. The worm gear shaft 248 is attached to a gear 252 provided on the interior of the captured rack 242. The gear 252 contacts teeth 254 provided inside the captured rack 242, and rotation of the gear 252 (via contact with the teeth 254) causes motion of the captured rack 242 upwardly and downwardly. The worm gear assembly 250, as depicted in
The worm gear assembly 250 also is configured to function as a brake, which prevents unintentional movement of the sagittal adjustment assembly 28. Rotation of the drive shaft 258 causes rotation of the worm gears 256, thereby causing reciprocal vertical motion of the captured rack 242. The vertical reciprocal motion of the captured rack 242 causes corresponding motion of the link 240, which in turn pivots the second and third support struts 226 and 228 to correspondingly pivot the thigh cradle 220 and lower leg cradle 222. A servomotor (not shown) interconnected with the drive shaft 258 can be computer controlled and/or operated by the operator of the surgical frame 10 to facilitate controlled reciprocal motion of the captured rack 242.
The sagittal adjustment assembly 28 also includes the leg adjustment mechanism 32 facilitating articulation of the thigh cradle 220 and the lower leg cradle 222 with respect to one another. In doing so, the leg adjustment mechanism 32 accommodates the lengthening and shortening of the patient's legs during bending thereof. As depicted in
The pelvic-tilt mechanism 30 is movable between a flexed position and a fully extended position. As depicted in
The sagittal adjustment assembly 28, having the configuration described above, further includes an ability to compress and distract the spine dynamically while in the lordosed or flexed positions. The sagittal adjustment assembly 28 also includes safety stops (not shown) to prevent over-extension or compression of the patient, and sensors (not shown) programmed to send patient position feedback to the safety stops.
As depicted in
As depicted in
A preferred embodiment of a surgical frame incorporating a translating beam is generally indicated by the numeral 300 in
The surgical frame 300 includes translating beam 302 that is generally indicated by the numeral 302 in
As discussed below, by affording greater access to the patient receiving area A, the surgical frame 300 affords transfer of the patient P from and to a surgical table/gurney. Using the surgical frame 300, the surgical table/gurney can be conventional, and there is no need to lift the surgical table/gurney over portions of the surgical frame 300 to afford transfer of the patient P thereto.
The surgical frame 300 is configured to provide a relatively minimal amount of structure adjacent the patient's spine to facilitate access thereto and to improve the quality of imaging available before, during, and even after surgery. Thus, the workspace of a surgeon and/or a surgical assistant and imaging access are thereby increased. The workspace, as discussed below, can be further increased by positioning and repositioning the translating beam 302. Furthermore, radio-lucent or low magnetic susceptibility materials can be used in constructing the structural components adjacent the patient's spine in order to further enhance imaging quality.
The surgical frame 300, as depicted in
Rather than including the cross member 44, and the horizontal portions 46 and the vertical portions 48 of the first and second support portions 40 and 42, the support structure 304 includes the support platform 306, a first vertical support post 308A, and a second vertical support post 308B. As depicted in
As depicted in
The translating beam 302 is interconnected with the first and second end members 310 and 312 of the support platform 306, and as depicted in
The translating beam 302, as discussed above, is capable of being positioned and repositioned with respect to portions of the remainder of the surgical frame 300. To that end, the support platform 306 includes a first translation mechanism 340 and a second translation mechanism 342. The first translation mechanism 340 facilitates attachment between the first end members 310 and 330, and the second translation mechanism 342 facilitates attachment between the second end members 312 and 332. The first and second translation mechanism 340 and 342 also facilitate movement of the translating beam 302 relative to the first end member 310 and the second end member 312.
The first and second translation mechanisms 340 and 342 can each include a transmission 350 and a track 352 for facilitating movement of the translating beam 302. The tracks 352 are provided on the upper surface 320 of the first and second end members 310 and 312, and the transmissions 350 are interoperable with the tracks 352. The first and second transmission mechanisms 340 and 342 can each include an electrical motor 354 or a hand crank (not shown) for driving the transmissions 350. Furthermore, the transmissions 350 can include, for example, gears or wheels driven thereby for contacting the tracks 352. The interoperability of the transmissions 350, the tracks 352, and the motors 354 or hand cranks form a drive train for moving the translating beam 302. The movement afforded by the first and second translation mechanism 340 and 342 allows the translating beam 302 to be positioned and repositioned relative to the remainder of the surgical frame 300.
The surgical frame 300 can be configured such that operation of the first and second translation mechanism 340 and 342 can be controlled by an operator such as a surgeon and/or a surgical assistant. As such, movement of the translating beam 302 can be effectuated by controlled automation. Furthermore, the surgical frame 300 can be configured such that movement of the translating beam 302 automatically coincides with the rotation of the offset main beam 12. By tying the position of the translating beam 302 to the rotational position of the offset main beam 12, the center of gravity of the surgical frame 300 can be maintained in positions advantageous to the stability thereof.
During use of the surgical frame 300, access to the patient receiving area A and the patient P can be increased or decreased by moving the translating beam 302 between the lateral sides L1 and L2 of the surgical frame 300. Affording greater access to the patient receiving area A facilitates transfer of the patient P between the surgical table/gurney and the surgical frame 300. Furthermore, affording greater access to the patient P facilitates ease of access by a surgeon and/or a surgical assistant to the surgical site on the patient P.
The translating beam 302 is moveable using the first and second translation mechanisms 340 and 342 between a first terminal position (
With the translating beam 302 and its cross member 338 moved to be positioned at the lateral side L1, the surgical table/gurney and the patient P positioned thereon can be positioned under the offset main beam 12 in the patient receiving area A to facilitate transfer of the patient P to or from the offset main beam 12. As such, the position of the translating beam 302 at the lateral side L1 enlarges the patient receiving area A so that the surgical table/gurney can be received therein to allow such transfer to or from the offset main beam 12.
Furthermore, with the translating beam 302 and its cross member 338 moved to be in the middle of the surgical frame 300 (
The position of the translating beam 302 and its cross member 338 can also be changed according to the rotational position of the offset main beam 12. To illustrate, the offset main beam 12 can be rotated a full 360° before, during, and even after surgery to facilitate various positions of the patient to afford various surgical pathways to the patient's spine depending on the surgery to be performed. For example, the offset main beam 12 can be positioned by the surgical frame 300 to place the patient P in a prone position (e.g.,
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
The present application is a continuation of U.S. application Ser. No. 16/800,262, filed Feb. 25, 2020; which is a continuation of U.S. application Ser. No. 15/639,080, filed Jun. 30, 2017; all of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2691979 | Watson | Oct 1954 | A |
3060925 | Honsaker et al. | Oct 1962 | A |
3227440 | Scott | Jan 1966 | A |
3293667 | Ohrberg | Dec 1966 | A |
3306287 | Arp | Feb 1967 | A |
3745996 | Rush | Jul 1973 | A |
3828377 | Fary, Sr. | Aug 1974 | A |
4029089 | Mulhlland | Jun 1977 | A |
4655200 | Knight | Apr 1987 | A |
4705026 | Chaussy | Nov 1987 | A |
4866796 | Robinson | Sep 1989 | A |
4872656 | Brendgord | Oct 1989 | A |
4901384 | Eary | Feb 1990 | A |
4915101 | Cuccia | Apr 1990 | A |
5009407 | Watanabe | Apr 1991 | A |
5088706 | Jackson | Feb 1992 | A |
5103511 | Sequin | Apr 1992 | A |
5131106 | Jackson | Jul 1992 | A |
5390383 | Carn | Feb 1995 | A |
5410769 | Waterman | May 1995 | A |
5444882 | Andrews | Aug 1995 | A |
5613254 | Clayman | Mar 1997 | A |
5642302 | Dumont | Jun 1997 | A |
5860899 | Rassman | Jan 1999 | A |
5991651 | LaBarbera | Nov 1999 | A |
6003176 | Wasley | Dec 1999 | A |
6076525 | Hoffman | Jun 2000 | A |
6112349 | Connolly | Sep 2000 | A |
6154901 | Carr | Dec 2000 | A |
6260220 | Lamb | Jul 2001 | B1 |
6295671 | Reesby et al. | Oct 2001 | B1 |
6311349 | Kazakia | Nov 2001 | B1 |
6367104 | Fallbo, Sr. et al. | Apr 2002 | B1 |
6378149 | Sanders et al. | Apr 2002 | B1 |
6516483 | VanSteenburg | Feb 2003 | B1 |
6566833 | Barlett | May 2003 | B2 |
6615430 | Heimbrock | Sep 2003 | B2 |
6671905 | Bartlett et al. | Jan 2004 | B2 |
6681423 | Zachrisson | Jan 2004 | B2 |
6701553 | Hand et al. | Mar 2004 | B1 |
6701554 | Heimbrock | Mar 2004 | B2 |
6701558 | VanSteenburg | Mar 2004 | B2 |
6715169 | Niederkrom | Apr 2004 | B2 |
6728983 | Bartlett et al. | May 2004 | B2 |
6732390 | Krywiczanin | May 2004 | B2 |
6739006 | Borders et al. | May 2004 | B2 |
6874181 | Connolly et al. | Apr 2005 | B1 |
6934986 | Krywiczanin et al. | Aug 2005 | B2 |
6941951 | Hubert et al. | Sep 2005 | B2 |
6966081 | Sharps | Nov 2005 | B1 |
7100225 | Bailey | Sep 2006 | B1 |
7189214 | Saunders | Mar 2007 | B1 |
7219379 | Krywiczanin et al. | May 2007 | B2 |
7234180 | Horton et al. | Jun 2007 | B2 |
7290302 | Sharps | Nov 2007 | B2 |
7426930 | Bailey | Sep 2008 | B1 |
7472440 | Bartlett et al. | Jan 2009 | B2 |
7484253 | Coppens | Feb 2009 | B1 |
7496980 | Sharps | Mar 2009 | B2 |
7600281 | Skripps | Oct 2009 | B2 |
7603790 | Jordan et al. | Oct 2009 | B2 |
7669262 | Skripps | Mar 2010 | B2 |
7739762 | Lamb et al. | Jun 2010 | B2 |
7882583 | Skripps | Feb 2011 | B2 |
8118029 | Gneiting et al. | Feb 2012 | B2 |
8234730 | Copeland et al. | Oct 2012 | B2 |
8286283 | Copeland et al. | Oct 2012 | B2 |
8286637 | Kaska | Oct 2012 | B2 |
8381331 | Sharps | Feb 2013 | B2 |
8413660 | Weinstein et al. | Apr 2013 | B2 |
8439948 | King | May 2013 | B1 |
8443473 | Maxwell | May 2013 | B2 |
8584281 | Diel et al. | Nov 2013 | B2 |
8635725 | Tannoury et al. | Jan 2014 | B2 |
9072646 | Skripps et al. | Jul 2015 | B2 |
9265680 | Sharps | Feb 2016 | B2 |
9339430 | Jackson et al. | May 2016 | B2 |
9358170 | Jackson | Jun 2016 | B2 |
9414982 | Jackson | Aug 2016 | B2 |
9498397 | Hight et al. | Nov 2016 | B2 |
9522078 | Pizzini | Dec 2016 | B2 |
9554959 | Carn | Jan 2017 | B2 |
9655793 | Hertz | May 2017 | B2 |
9700476 | Hoel et al. | Jul 2017 | B2 |
9713562 | Perlman et al. | Jul 2017 | B2 |
9744089 | Jackson | Aug 2017 | B2 |
9937006 | Skripps et al. | Apr 2018 | B2 |
9993380 | Jackson | Jun 2018 | B2 |
10314758 | Dolliver et al. | Jun 2019 | B2 |
10342722 | Garrido | Jul 2019 | B2 |
10406054 | Scholl et al. | Sep 2019 | B1 |
10874570 | Lim et al. | Dec 2020 | B2 |
20020138905 | Barltett et al. | Oct 2002 | A1 |
20020138906 | Barltett et al. | Oct 2002 | A1 |
20030140419 | Barltett et al. | Jul 2003 | A1 |
20030140420 | Niederkrom | Jul 2003 | A1 |
20030145382 | Krywiczanin | Aug 2003 | A1 |
20040010849 | Krywiczanin et al. | Jan 2004 | A1 |
20040133983 | Newkirk | Jul 2004 | A1 |
20050181917 | Dayal | Aug 2005 | A1 |
20060037141 | Krywiczanin et al. | Feb 2006 | A1 |
20060123546 | Horton | Jun 2006 | A1 |
20060162076 | Bartlett et al. | Jul 2006 | A1 |
20060162084 | Mezue | Jul 2006 | A1 |
20080134434 | Celauro | Jun 2008 | A1 |
20090070936 | Henderson | Mar 2009 | A1 |
20090139030 | Yang | Jun 2009 | A1 |
20090248041 | Williams | Oct 2009 | A1 |
20100037397 | Wood | Feb 2010 | A1 |
20100192300 | Tannoury | Aug 2010 | A1 |
20100293713 | Sharps | Nov 2010 | A1 |
20110030702 | Czajka, Jr. | Feb 2011 | A1 |
20110099716 | Jackson | May 2011 | A1 |
20120144589 | Skripps | Jun 2012 | A1 |
20130111666 | Jackson | May 2013 | A1 |
20130247921 | Dye | Sep 2013 | A1 |
20130283526 | Gagliardi | Oct 2013 | A1 |
20130307298 | Meiki | Nov 2013 | A1 |
20140068861 | Jackson | Mar 2014 | A1 |
20140109316 | Jackson et al. | Apr 2014 | A1 |
20140130258 | Kobuss | May 2014 | A1 |
20140137327 | Tannoury et al. | May 2014 | A1 |
20150044956 | Hacker | Feb 2015 | A1 |
20150272681 | Skripps et al. | Oct 2015 | A1 |
20160047394 | Lee et al. | Feb 2016 | A1 |
20160081582 | Rapoport | Mar 2016 | A1 |
20160089287 | Buerstner | Mar 2016 | A1 |
20160193099 | Drake | Jul 2016 | A1 |
20170027797 | Dolliver et al. | Feb 2017 | A1 |
20170049651 | Lim | Feb 2017 | A1 |
20170049653 | Lim | Feb 2017 | A1 |
20170079864 | Riley | Mar 2017 | A1 |
20170135891 | Kettner | May 2017 | A1 |
20170151115 | Jackson | Jun 2017 | A1 |
20170341232 | Perplies | Nov 2017 | A1 |
20180116891 | Beale et al. | May 2018 | A1 |
20180185106 | Itkowitz | Jul 2018 | A1 |
20180185228 | Catacchio et al. | Jul 2018 | A1 |
20180193104 | Beale et al. | Jul 2018 | A1 |
20180207044 | Sabet | Jul 2018 | A1 |
20180363596 | Lim et al. | Dec 2018 | A1 |
20190000702 | Lim et al. | Jan 2019 | A1 |
20190000707 | Lim et al. | Jan 2019 | A1 |
20190046381 | Lim et al. | Feb 2019 | A1 |
20190046383 | Lim et al. | Feb 2019 | A1 |
20190209409 | Jackson et al. | Jul 2019 | A1 |
20190374420 | Lehman | Dec 2019 | A1 |
20200000668 | Lim et al. | Jan 2020 | A1 |
20200060914 | Lim et al. | Feb 2020 | A1 |
20200060915 | Lim et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
2018069048 | May 2018 | JP |
WO0062731 | Oct 2000 | WO |
WO2007058673 | May 2007 | WO |
WO2017031225 | Feb 2017 | WO |
Entry |
---|
International Search Report dated Nov. 21, 2016 from International Application No. PCT/US2016/047394. |
Number | Date | Country | |
---|---|---|---|
20220347033 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16800262 | Feb 2020 | US |
Child | 17867248 | US | |
Parent | 15639080 | Jun 2017 | US |
Child | 16800262 | US |