Personal protection systems are used in surgical procedures to provide a sterile barrier between the surgical personnel and the patient. Specifically, the traditional system includes a helmet that supports a toga or a hood. This system is worn by medical/surgical personnel that want to establish the sterile barrier. The toga or the hood may include a transparent face shield. The helmet includes a ventilation unit that includes a fan. The ventilation unit draws air through the toga/hood so the air is circulated around the wearer. This reduces both the amount of heat that is trapped within the toga/hood and the amount of CO2 that builds up in this space. It is further known to mount a light to the helmet, which may be directed to illuminate the surgical site.
Often, surgical personnel wear helmets for long durations. Helmet fit and form play a large role in maintaining comfort for surgical personnel. To maintain a proper fit, helmets must be able to accommodate varying head sizes for different surgical personnel. A surgical helmet assembly with features designed to overcome at least the aforementioned challenges is desired. These and other configurations, features, and advantages of the present disclosure will be apparent to those skilled in the art. The present disclosure is not to be limited to or by these configurations, features, and advantages
The present disclosure relates generally to a surgical helmet assembly for mounting to a head of a user during surgical operations. An exemplary configuration provides a surgical helmet assembly including a frame assembly. The frame assembly includes a helmet shell having a first end and a second end. The frame assembly also includes a fan coupled to the helmet shell for circulating air. The frame assembly further includes a headband assembly. The headband assembly has a front support member coupled to the helmet shell near the first end of the helmet shell. The front support member is configured to abut a forehead of the user. The headband assembly also has a rear support member coupled to the helmet shell adjacent the second end of the helmet shell. The rear support member is configured to abut a rear region of the head of the user. The headband assembly further includes a strap having a first end movably coupled to the rear support member and a second end coupled to the front support member. The surgical helmet assembly also includes a first adjustment assembly including a first actuation member that is rotatably coupled to the rear support member. The first actuation member is rotatable about an actuation axis. The first adjustment assembly also includes a tension element having a first end operatively connected to the first actuation member and a second end coupled to the front support member. The tension element is movable relative to the helmet shell in response to rotation of the first actuation member to adjust a sagittal fit of the frame assembly and the headband assembly to the head of the user. The surgical helmet assembly further includes a second adjustment assembly. The second adjustment assembly has a second actuation member rotatably coupled to the rear support member. The second actuation member is rotatable about the actuation axis such that the first actuation member and the second actuation member are concentric. The second actuation member is operatively coupled to the strap adjacent the first end of the strap. The strap is movable relative to the rear support member in response to rotation of the second actuation member to adjust a circumferential fit of the headband assembly to the head of the user.
Another exemplary configuration provides a surgical helmet assembly including a frame assembly. The frame assembly includes a helmet shell having a first end and a second end. The helmet shell also has an interior surface. The frame assembly also includes a fan coupled to the helmet shell for circulating air. The frame assembly further includes a headband assembly forming a continuous loop configured to circumferentially surround the head of the user. The headband assembly has a front support member coupled to the helmet shell near the first end of the helmet shell. The front support member has a base portion configured to abut a forehead of the user. The headband assembly also has a rear support member coupled to the helmet shell adjacent the second end of the helmet shell. The rear support member is configured to abut a rear region of the head of the user. The surgical helmet assembly further includes an adjustment assembly. The adjustment assembly has an actuation member rotatably coupled to one of the helmet shell and the rear support member. The actuation member is rotatable about an actuation axis. The adjustment assembly also has a tension element having a first end operatively connected to the actuation member and a second end coupled to the front support member. The tension element is movable relative to the helmet shell in response to rotation of the actuation member. The front support member is moveable relative to the helmet shell in response to movement of the tension element from rotation of the actuation member. The front support member is movable to a first position defining a first head receiving volume bounded by the continuous loop and the interior surface of the helmet shell. The front support member is also movable relative to the helmet shell to a second position defining a second head receiving volume bounded by the continuous loop and the interior surface of the helmet shell. The first head receiving volume is larger than the second head receiving volume to accommodate a plurality of head sizes while retaining the interior surface of the helmet shell in close proximity to the head of the user when the front support member moves between the first position, the second position, and intermediate positions.
Yet another exemplary configuration provides a surgical helmet assembly including a frame assembly. The frame assembly includes a helmet shell having a first end and a second end. The frame assembly also includes a fan coupled to the helmet shell for circulating air. The frame assembly further includes a headband assembly forming a continuous loop configured to circumferentially surround the head of the user. The headband assembly has a front support member coupled to the helmet shell near the first end of the helmet shell. The front support member is configured to abut a forehead of the user. The headband assembly also has a rear support member coupled to the helmet shell adjacent the second end of the helmet shell. The rear support member is configured to abut a rear region of the head of the user. The headband assembly also has a pair of straps coupled to the rear support member and the front support member. The front support member, the pair of straps, and the rear support member collectively form the continuous loop. At least one strap of the pair of straps is configured to be engaged by an actuation member. The front support member is formed from a first material. The rear support member is formed from a second material. The pair of straps are formed from a third material. The second and third materials are different from the first material.
Another exemplary configuration provides a surgical helmet assembly including a frame assembly. The frame assembly includes a helmet shell having a first end and a second end. The helmet shell also has a duct. The duct defines an inlet opening, a lower face nozzle, and a pressure relief vent. The lower face nozzle disposed adjacent the first end of the helmet shell and the pressure relief vent disposed between the lower face nozzle and the second end of the helmet shell. The frame assembly also includes a ventilation sub-assembly having a fan coupled to the helmet shell. The fan is configured to draw air into the duct through the inlet opening. The fan is further configured to force air drawn into the duct toward the lower face nozzle. The fan is also configured to expel air out of the duct through the lower face nozzle and the pressure relief vent. The surgical helmet assembly further includes a headband assembly having a front support member and a rear support member for abutting the head of the user and coupling the frame assembly to the head of the user. The lower face nozzle of the duct is positioned such that the fan is configured to expel air through the lower face nozzle toward the lower face of the user. The pressure relief vent of the duct is positioned between the lower face nozzle and the fan such that the fan is configured to expel air through the pressure relief vent while air is being forced through the duct to the lower face nozzle to optimize flow characteristics of the air in the duct to increase efficiency of the ventilation sub-assembly.
Advantages of the present disclosure will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings.
With reference to the drawings, where like numerals are used to designate like structure throughout the several views, a surgical helmet assembly 30 is shown coupled to a surgical garment 32 in
Referring to
As illustrated in
The surgical garment 32 may also include one or more garment fasteners 38 positioned about the surgical garment 32. The garment fasteners 38 are configured to releasably secure the surgical garment 32 to the surgical helmet assembly 30. The garment fasteners 38 may take any suitable form, and may comprise metal tacks, rivets, buttons, magnets, hook and loop, snaps, or similar types of fasteners, alone or in combination. As illustrated in
Referring to
When the user wears the surgical helmet assembly 30 with the surgical garment 32 over the user's head, a buildup of carbon dioxide and increased temperatures can result within the surgical garment 32 from a user's breathing. An increase in temperature underneath the surgical garment 32 can also result in the buildup of water vapor on the user and/or the face shield 36, resulting in the user's view being obstructed. In order to prevent these undesirable effects, the ventilation sub-assembly 44 is employed. The ventilation sub-assembly 44 comprises a fan 62 rotatably coupled to the helmet shell 42 and a motor 64 operatively connected to the fan 62. The motor 64 may be configured to rotate the fan 62 when energized by a power source. The motor 64 may further be configured to receive various commands to control the actuation and/or adjust the rotational speed of the fan 62. In the configuration shown in
The surgical helmet assembly 30 may comprise a chin bar 66 extending downwardly from the helmet shell 42 to provide structure for the face shield 36 when the surgical garment 32 is attached. The chin bar 66 may comprise a top beam 68 coupled to the first end 46 of the helmet shell 42 and arranged to wrap partially around the face of the user when the surgical helmet assembly 30 is worn. The top beam 68 comprises a first end and a second end. The helmet shell 42 comprises first and second arms 69a, 69b extending outwardly from a body portion of the helmet shell 42 between the first and second ends 46, 48 of the helmet shell 42 toward the first and second ends of the top beam 68 to provide additional attachment points for rigidity. The chin bar 66 may further comprise a first post 70 and a second post 72. The first post 70 extends downwardly from the top beam 68 adjacent the first end. The second post 72 extends downwardly from the top beam 68 adjacent the second end. A bottom beam 74 spaced below the top beam 68 and may be arranged to extend between and be coupled to the first and second posts 70, 72. The chin bar 66 is formed so that the bottom beam 74 is located below and slightly forward of the chin of the user when the user is wearing the surgical helmet assembly 30. The bottom beam 74 may be bowed outwardly from the first and second posts 70, 72. The chin bar 66 may be constructed from a generally flexible or pliable material.
A plurality of fasteners 76, such as magnets, hook and loop, metal rivets, snaps, or similar type fasteners may be mounted to the chin bar 66 and configured to align and/or attach to the face shield 36 of surgical garment 32. Each fastener 76 may be positioned on the chin bar 66 proximate to where the first and second posts 70, 72 are coupled to the bottom beam 74. Alternatively, the fasteners 76 could be arranged or otherwise configured in any suitable way to cooperate with the complementary garment fasteners 38 of the face shield 36, as described above, to releasably secure the surgical garment 32 to the surgical helmet assembly 30.
The surgical helmet assembly 30 may include one or more electrically-powered peripheral devices (not shown), including but not limited to, a light assembly, a camera, microphone or other communication device, cooling device, or combinations thereof. These devices may be mounted to and/or attached at various locations and orientations relative to the surgical helmet assembly 30. Each of the peripheral devices may be configured to receive commands that affect the operating state of the corresponding peripheral device. For example, each of the peripheral devices may receive on/off commands. Alternatively, the peripheral devices may receive commands that change one or more settings of the peripheral devices. Such configurations allow the user of the surgical helmet assembly 30 to control the operating state of the various peripheral devices during the surgical procedure.
Referring to
The front support member 80 comprises a base portion 84 configured to abut the forehead of the user. The front support member 80 further comprises a leg portion 86 extending from the base portion 84. The leg portion 86 is movably coupled to the helmet shell 42 adjacent the first end 46 of the helmet shell 42. The front support member 80 is movable relative to the helmet shell 42 to adjust a sagittal fit of the headband assembly 78 and the helmet shell 42 to the user. In the configuration shown in
In other configurations, the fastener may comprise a sliding block (not shown) that may be movably coupled to the helmet shell 42. The sliding block may be constrained to move within the slot 90 between the first and second ends 90a, 90b of the slot 90. The projection 92 may be coupled to the sliding block. In this configuration, movement of the front support member 80 relative to the helmet shell 42 is constrained by movement of the sliding block within the slot 90. The sliding block may mitigate the amount of friction produced when the leg portion 86 of the front support member 80 slides relative the helmet shell 42 when the fastener moves within the slot 90.
Movement of the front support member 80 relative to the helmet shell 42 is described in greater detail further below. The base portion 84 of the front support member 80 is formed to wrap at least partially around the forehead of the user. The front support member 80 may comprise a flexible or pliable material for permitting the front support member 80 to accommodate heads of differing shapes.
The rear support member 82 may comprise one or more fingers 94 extending from a first portion of the rear support member 82 and coupled to the helmet shell 42. The fingers 94 of the rear support member 82 permit hinging movement of the rear support member 82 relative to the helmet shell 42. The fingers 94 may comprise a flexible or pliable material to provide for the hinging relationship between the helmet shell 42 and the rear support member 82. Alternatively, the fingers 94 may be rotatably coupled to the helmet shell 42 to provide for the hinging relationship between the helmet shell 42 and the rear support member 82.
The headband assembly 78 may further comprise a pair of straps 96a, 96b coupled to the base portion 84 of the front support member 80 and movably coupled to the rear support member 82. In certain configurations, the base portion 84 of the front support member 80, the pair of straps 96a, 96b, and the rear support member 82 collectively form a continuous loop to circumferentially surround the head of the user. The pair of straps 96a, 96b are movable relative to the rear support member 82 to adjust a size of the continuous loop to accommodate circumferences of different head sizes. Movement of the pair of straps 96a, 96b relative to the rear support member 82 is discussed in greater detail further below. It is contemplated that alternative strap configurations are possible, such as those systems utilizing a single strap.
Referring to
The helmet shell 42 may comprise a tension element guide 106 disposed between the first and second ends 46, 48 of the helmet shell 42. The tension element guide 106 may comprise a hook or an annular structure defining at least one of a groove, a channel, and a cavity to at least partially receive the tension element 104. In this manner, the tension element guide 106 serves to navigate the tension element 104 between the sagittal actuation member 102 and the front support member 80 without compromising functionality of the ventilation sub-assembly 44 or the peripheral devices and without contacting the head of the user. The tension element 104 is movable relative to the helmet shell 42 and the tension element guide 106 in response to rotation of the sagittal actuation member 102. In this manner, rotation of the sagittal actuation member 102 moves the tension element 104 to effect changes in position of the front support member 80 relative to the helmet shell 42.
As shown in
A biasing mechanism 114 may be coupled to the helmet shell 42 and the front support member 80 to bias the front support member 80 toward the first position 108. The biasing mechanism 114 may also serve to keep the tension element 104 taut when the sagittal actuation member 102 would otherwise permit slack in the tension element 104. In the illustrated configurations, the biasing mechanism 114 comprises an elastic member, such as a strap, having a first end 114a coupled adjacent the first end 46 of the helmet shell 42 and a second end 114b coupled to the projection 92 of the leg portion 86 of the front support member 80. The biasing mechanism 114 is configured to bias the projection 92 toward the first end 90a of the slot 90. In alternative configurations, the biasing mechanism 114 may be coupled to the base portion 84 or another part of the leg portion 86 to bias the projection 92 toward the first end 90a of the slot 90.
Referring to
As noted above, the frame assembly 40 has a center of a mass generally indicated at 116 and shown in
As shown in
As shown in
Referring to
As shown in
The engagement between the circumferential actuation member 120 and the pair of straps 96a, 96b may be a rack and pinion engagement. The circumferential actuation member 120 may comprise an actuation portion 150 that is graspable by the user to rotate the circumferential actuation member 120 and that extends away from the first portion 122 of the rear support member 82. The circumferential actuation member 120 may also comprise an engagement portion 152 extending within the aperture 144 of the intermediate portion 126 toward the second portion 124 to engage the straps 96a, 96b in the channel 148 defined by the second portion 124 of the rear support member 82 and the intermediate portion 126 of the rear support member 82. The top surface 132a of the slot 130a of one of the straps 96a and the bottom surface 134b of the slot 130b of the other strap 96b each comprise a plurality of teeth 154a, 154b arranged linearly along their respective top and bottom surfaces 132a, 134b. The engagement portion 152 of the circumferential actuation member 120 comprises a plurality of teeth 156 arranged circumferentially to engage the plurality of teeth 154a, 154b on the straps 96a, 96b. When the circumferential actuation member 120 is rotated, the teeth 156 of the engagement portion 152 engage the teeth 154a, 154b of the straps 96a, 96b to move the straps 96a, 96b within the channel 148 relative to each other and the circumferential actuation member 120. Movement of the straps 96a, 96b in the channel 148 results in a change to the perimeter of the continuous loop of the headband assembly 78. Changes to the perimeter of the continuous loop adjust the circumferential fit of the headband assembly 78 to the head of the user.
As shown in
As shown in
As shown in
In an exemplary configuration referenced in
In order to retain orientations of the sagittal actuation member 102 and the circumferential actuation member 120, biasing mechanisms 184, 186 may be coupled to the sagittal actuation member 102 and the circumferential actuation member 120. Referring to
Referring to
Referring to
Another advantage to the vent 500 is a reduction of noise and/or vibrations resulting from operation of the fan 362 at lower speeds. Heightened levels of noise and vibration may introduce distractions to users during use e.g., during surgeries. An increase in fan speed often results in an increase in noise and/or vibrations. By providing the vent 500, the fan 362 may operate at a reduced speed while maintaining the desired volumetric flow of air out of the first outlet opening 360a. The reduction in fan speed may produce relatively less noise and/or vibration, which mitigates distractions resulting from operation of the fan 362 to the user during use and improves comfort to the user by providing a quieter environment.
Referring to
The helmet shell 342 may comprise a flow directing member 502 that separates the first output opening 360a into one or more face shield openings 504 and one or more lower face openings 506. The one or more face shield openings 504 may be disposed farther from the front support member 380 than the one or more lower face openings 506. Further, the flow directing member 502 may be oriented such that a portion of the air expelled through the one or more lower face openings 506 is directed toward the lower face of the user.
In some configurations, the front support member 380 consists essentially of, or consists of foam. In other words, the entire front support member 380 may consist of foam. The foam may consist essentially of ethylene-vinyl acetate (EVA) foam. In configurations where the front support member 380 is formed of foam, the front support member 380 may conform more comfortably to the head of the user. With better conformity to the user's head, the front support member 380 may apply pressure more evenly to the head of the user to reduce pressure points on the user's head during sagittal and circumferential adjustment of the helmet shell 342 and the headband assembly 378. In some configurations where the front support member 380 is formed entirely of foam, the pair of straps 396a, 396b, and the rear support member 382 may be formed of another material e.g., rigid plastic. In this manner, the headband assembly 378 may be formed of different material to benefit certain attributes of the headband assembly 378. For instance, a rigid plastic material may be a beneficial material selection for the pair of straps 396a, 396b and the rear support member 382 for its rigidity to best support durability and functionality during operation of the circumferential adjustment assembly 418. As mentioned above, a foam material may be a beneficial material selection for the front support member 380 to conform to the head of the user to reduce pressure points during sagittal and circumferential adjustment of the helmet shell 342 and the headband assembly 378 to the head of the user. It is contemplated that a front support member 380 consisting of foam as described above may be used in conjunction with adjustment assemblies different than those described above.
Referring to
It should be noted that in many of the figures described herein, certain components of the surgical helmet assembly 30, 330 have been removed for convenience of description and ease of illustration.
It should also be noted that while the surgical helmet assembly 30, 330 is directed to surgical applications, the surgical helmet assembly 30, 330 could be employed for non-surgical applications such as those applications where ventilation sub-assemblies are not required or where surgical garments are not required.
It will be further appreciated that the terms “include,” “includes,” and “including” have the same meaning as the terms “comprise,” “comprises,” and “comprising.” Moreover, it will be appreciated that terms such as “first,” “second,” “third,” and the like are used herein to differentiate certain structural features and components for the non-limiting, illustrative purposes of clarity and consistency.
Several configurations have been discussed in the foregoing description. However, the configurations discussed herein are not intended to be exhaustive or limit the invention to any particular form. The terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations are possible in light of the above teachings and the invention may be practiced otherwise than as specifically described.
The invention is intended to be defined in the independent claims, with specific features laid out in the dependent claims, wherein the subject matter of a claim dependent from one independent claim can also be implemented in connection with another independent claim.
The present disclosure also comprises the following clauses, with specific features laid out in dependent clauses, that may specifically be implemented as described in greater detail with reference to the configurations and drawings above.
I. A surgical helmet assembly for mounting to a head of a user during surgical operations, the surgical helmet assembly comprising:
II. The surgical helmet assembly of clause I, wherein the strap is further defined as a first strap and the headband assembly comprises a second strap coupled to the front support member and the rear support member, and wherein the first and second straps collectively form a pair of straps, with the pair of straps, the front support member, and the rear support member collectively forming a continuous loop to circumferentially surround the head of the user.
III. The surgical helmet assembly of clause II, wherein the second actuation member is arranged to engage at least one strap of the pair of straps, and the at least one strap of the pair of straps being movable relative to the rear support member to adjust a size of a perimeter defined by the continuous loop in response to rotation of the second actuation member.
IV. The surgical helmet assembly of any of clauses I-III, wherein the front support member comprises a base portion configured to abut the forehead of the user and the front support member comprises a leg portion extending from the base portion, with the leg portion coupled to the helmet shell adjacent the first end of the helmet shell and the leg portion coupled to the second end of the tension element.
V. The surgical helmet assembly of clause IV, wherein one of the helmet shell and the leg portion of the front support member comprises a surface defining a slot, with the slot having a first end proximal the first end of the helmet shell and a second end distal to the first end of the helmet shell, and wherein the other of the helmet shell and the leg portion of the front support member comprises a projection, with the slot configured to receive at least a portion of the projection to constrain the relative motion of the front support member to the helmet shell.
VI. The surgical helmet assembly of clause V, wherein the second end of the tension element is coupled to the leg portion of the front support member and the projection is movable within the slot in response to movement of the tension element from rotation of the actuation member.
VII. The surgical helmet assembly of clause VI, wherein the leg portion of the front support member comprises the projection and the frame assembly further comprises a biasing mechanism coupled to the helmet shell and the projection to bias the projection toward the first end of the slot.
VIII. The surgical helmet assembly of clause VII, wherein one of the rear support member and the helmet shell comprises an adjustment surface disposed annularly about the actuation axis and adjacent the first actuation member, with the adjustment surface defining a plurality of detents radially spaced from the actuation axis and circumferentially spaced from each other, and wherein the first adjustment assembly further comprises one or more biasing mechanisms coupled to the first actuation member, with the one or more biasing mechanisms configured to cooperate with the first actuation member to engage the plurality of detents and restrict free rotation of the first actuation member about the actuation axis.
IX. The surgical helmet assembly of any of clauses I-VIII, wherein the helmet shell comprises a tension element guide disposed between the first and second ends of the helmet shell, at least a portion of the tension element being received by the tension element guide of the helmet shell.
X. The surgical helmet assembly of any of clauses I-IX, wherein the first actuation member comprises a surface configured to abut the tension element, with at least a portion of the tension element configured to wind and unwind on the surface of the first actuation member responsive to rotation of the first actuation member.
XI. The surgical helmet assembly of any of clause I-X, wherein the helmet shell comprises one or more coupling features to couple a surgical garment to the helmet shell.
XII. The surgical helmet assembly of clause XI, wherein the one or more coupling features comprises a complementary fastening feature of one of a hook and loop fastener, a magnetic fastener, and a button and snap fastener for coupling to a corresponding complementary fastening feature of a garment.
XIII. The surgical helmet assembly of any of clauses I-XII, wherein the first actuation member extends outwardly from the actuation axis farther than the second actuation member.
XIV. The surgical helmet assembly of clause XIII, wherein the helmet shell comprises a duct, the duct defining an inlet opening and an outlet opening, with the fan configured to draw air into the duct through the inlet opening and expel air out of the duct through the outlet opening.
XV. A surgical helmet assembly for mounting to a head of a user during surgical operations, the surgical helmet assembly comprising:
XVI. The surgical helmet assembly of clause XV, wherein the adjustment assembly is further defined as a first adjustment assembly and the actuation member is further defined as a first actuation member, and the surgical helmet assembly further comprises a second adjustment assembly coupled to the rear support member and configured to adjust a circumferential fit of the headband assembly to the head of the user.
XVII. The surgical helmet assembly of clause XVI, wherein the headband assembly further comprises a pair of straps coupled to the rear support member and the base portion of the front support member, with the base portion of the front support member, the pair of straps, and the rear support member collectively forming a continuous loop to circumferentially surround the head of the user.
XVIII. The surgical helmet assembly of clause XVII, wherein the second adjustment assembly comprises a second actuation member rotatably coupled to the rear support member, with the second actuation member arranged to engage at least one strap of the pair of straps, and the at least one strap of the pair of straps being movable relative to the rear support member to adjust a size of a perimeter defined by the continuous loop in response to rotation of the second actuation member.
XIX. The surgical helmet assembly of clause XVIII, wherein the first actuation member is coupled to the rear support member, and the second actuation member is configured to rotate about the actuation axis of the first actuation member such that the first actuation member is concentric with the second actuation member.
XX. The surgical helmet assembly of clause XIX, wherein the actuation member of the first adjustment assembly extends outwardly from the actuation axis farther than the actuation member of the second adjustment assembly.
XXI. The surgical helmet assembly of any of clauses XV-XX, wherein the front support member comprises a leg portion extending from the base portion, with the leg portion coupled to the helmet shell adjacent the first end of the helmet shell.
XXII. The surgical helmet assembly of clause XXI, wherein one of the helmet shell and the leg portion of the front support member comprises a surface defining a slot, with the slot having a first end proximal the first end of the helmet shell and a second end distal to the first end of the helmet shell, and wherein the other of the helmet shell and the leg portion of the front support member comprises a projection, with the slot configured to receive at least a portion of the projection to constrain the relative motion of the front support member to the helmet shell.
XXIII. The surgical helmet assembly of clause XXII, wherein the projection is movable within the slot to be adjacent the first end of the slot when the front support member is in the first position and the projection is movable within the slot to be adjacent the second end of the slot when the front support member is in the second position.
XXIV. The surgical helmet assembly of clause XXIII, wherein the second end of the tension element is coupled to the leg portion of the front support member and the projection is movable within the slot in response to movement of the tension element from rotation of the actuation member.
XXV. The surgical helmet assembly of clause XXIV, wherein the frame assembly further comprises a biasing mechanism coupled to the helmet shell and the front support member to bias the front support member toward the first position.
XXVI. The surgical helmet assembly of clause XXV, wherein the leg portion of the front support member comprises the projection and the biasing mechanism is coupled to the projection to bias the projection toward the first end of the slot.
XXVII. The surgical helmet assembly of any of clauses XXIV-XXVI, wherein one of the rear support member and the helmet shell comprises an adjustment surface disposed annularly about the actuation axis and adjacent the actuation member, with the adjustment surface defining a plurality of detents radially spaced from the actuation axis and circumferentially spaced from each other, and wherein the adjustment assembly further comprises one or more biasing mechanisms coupled to the actuation member, with the one or more biasing mechanisms configured to cooperate with the actuation member to engage the plurality of detents and restrict free rotation of the actuation member about the actuation axis.
XXVIII. The surgical helmet assembly of clause XXVII, wherein the adjustment assembly comprises one or more pins coupled to the actuation member and configured to revolve about the actuation axis in response to rotation of the actuation member, and wherein the biasing mechanism is configured to bias the one or pins into engagement with the plurality of detents.
XXIX. The surgical helmet assembly of clause XXVIII, wherein the biasing mechanism coupled to the front support member is configured to exert a first force on the tension element to bias the front support member toward the first position, and a second force is required to disengage the one or more pins from engaging at least one of the plurality of detents, wherein the second force is greater than the first force.
XXX. The surgical helmet assembly of any of clauses XV-XXIX, wherein the helmet shell comprises a tension element guide disposed between the first and second ends of the helmet shell, at least a portion of the tension element being received by the tension element guide of the helmet shell.
XXXI. The surgical helmet assembly of any of clauses XV-XXX, wherein the actuation member comprises a surface configured to abut the tension element, with at least a portion of the tension element configured to wind and unwind on the surface of the actuation member responsive to rotation of the actuation member.
XXXII. The surgical helmet assembly of any of clauses XV-XXXI, wherein the helmet shell comprises one or more coupling features to couple a surgical garment to the helmet shell.
XXXIII. The surgical helmet assembly of clause XXXII, wherein the one or more coupling features comprises a complementary fastening feature of one of a hook and loop fastener, a magnetic fastener, and a button and snap fastener for coupling to a corresponding complementary fastening feature of a garment.
XXXIV. The surgical helmet assembly of any of clauses XV-XXXIII, wherein the helmet shell comprises a duct, the duct defining an inlet opening and an outlet opening, with the fan configured to draw air into the duct through the inlet opening and expel air out of the duct through the outlet opening.
XXXV. A surgical helmet assembly for mounting to a head of a user during surgical operations, the surgical helmet assembly comprising:
XXXVI. The surgical helmet assembly of clause XXXV, wherein the adjustment assembly is further defined as a first adjustment assembly and the actuation member is further defined as a first actuation member, and the surgical helmet assembly further comprises a second adjustment assembly coupled to the rear support member and configured to adjust a circumferential fit of the headband assembly to the head of the user.
XXXVII. The surgical helmet assembly of clause XXXVI, wherein the headband assembly further comprises a pair of straps coupled to the rear support member and the base portion of the front support member, with the base portion of the front support member, the pair of straps, and the rear support member collectively forming the continuous loop to circumferentially surround the head of the user.
XXXVIII. The surgical helmet assembly of clause XXXVII, wherein the second adjustment assembly comprises a second actuation member rotatably coupled to the rear support member, with the second actuation member arranged to engage at least one strap of the pair of straps, and the at least one strap of the pair of straps being moveable relative to the rear support member to adjust a size of a perimeter defined by the continuous loop in response to rotation of the second actuation member.
XXXIX. The surgical helmet assembly of clause XXXVIII, wherein the first actuation member is coupled to the rear support member, and the second actuation member is rotatable about the actuation axis of the first actuation member such that the first actuation member is concentric with the second actuation member.
XL. The surgical helmet assembly of clause XXXIX, wherein the actuation member of the first adjustment assembly extends outwardly from the actuation axis farther than the actuation member of the second adjustment assembly.
XLI. The surgical helmet assembly of any of clauses XXXV-XL, wherein the front support member comprises a leg portion extending from the base portion, with the leg portion coupled to the helmet shell adjacent the first end of the helmet shell.
XLII. The surgical helmet assembly of clause XLI, wherein one of the helmet shell and the leg portion of the front support member comprises a surface defining a slot, with the slot having a first end proximal the first end of the helmet shell and a second end distal to the first end of the helmet shell, and wherein the other of the helmet shell and the leg portion of the front support member comprises a projection, with the slot configured to receive at least a portion of the projection to constrain the relative motion of the front support member to the helmet shell.
XLIII. The surgical helmet assembly of clause XLII, wherein the projection is movable within the slot to be adjacent the first end of the slot when the front support member is in the first position and the projection is movable within the slot to be adjacent the second end of the slot when the front support member is in the second position.
XLIV. The surgical helmet assembly of clause XLIII, wherein the second end of the tension element is coupled to the leg portion of the front support member and the projection is movable within the slot in response to movement of the tension element from rotation of the actuation member.
XLV. The surgical helmet assembly of clause XLIV, wherein the frame assembly further comprises a biasing mechanism coupled to the helmet shell and the front support member to bias the front support member toward the first position.
XLVI. The surgical helmet assembly of clause XLV, wherein the leg portion of the front support member comprises the projection and the biasing mechanism is coupled to the projection to bias the projection toward the first end of the slot.
XLVII. The surgical helmet assembly of any of clauses XLIV-XLVI, wherein one of the rear support member and the helmet shell comprises an adjustment surface disposed annularly about the actuation axis and adjacent the actuation member, with the adjustment surface defining a plurality of detents radially spaced from the actuation axis and circumferentially spaced from each other, and wherein the adjustment assembly further comprises one or more biasing mechanisms coupled to the actuation member, with the one or more biasing mechanisms configured to cooperate with the actuation member to engage the plurality of detents and restrict free rotation of the actuation member about the actuation axis.
XLVIII. The surgical helmet assembly of clause XLVII, wherein the adjustment assembly comprises one or more pins coupled to the actuation member and configured to revolve about the actuation axis in response to rotation of the actuation member, and wherein the biasing mechanism is configured to bias the one or pins into engagement with the plurality of detents.
XLIX. The surgical helmet assembly of clause XLVIII, wherein the biasing mechanism coupled to the front support member is configured to exert a first force on the tension element to bias the front support member toward the first position, and a second force is required to disengage the one or more pins from engaging at least one of the plurality of detents, wherein the second force is greater than the first force.
L. The surgical helmet assembly of any of clauses XXXV-XLIX, wherein the helmet shell comprises a tension element guide disposed between the first and second ends of the helmet shell, at least a portion of the tension element being received by the tension element guide of the helmet shell.
LI. The surgical helmet assembly of any of clauses XXXV-L, wherein the actuation member comprises a surface configured to abut the tension element, with at least a portion of the tension element configured to wind and unwind on the surface of the actuation member responsive to rotation of the actuation member.
LII. The surgical helmet assembly of any of clauses XXXV-LI, wherein the helmet shell comprises one or more coupling features to couple a surgical garment to the helmet shell.
LIII. The surgical helmet assembly of clause LII, wherein the one or more coupling features comprises a complementary fastening feature of one of a hook and loop fastener, a magnetic fastener, and a button and snap fastener for coupling to a corresponding complementary fastening feature of a garment.
LIV. The surgical helmet assembly of any of clauses XXXV-LIII, wherein the helmet shell comprises a duct, the duct defining an inlet opening and an outlet opening, with the fan configured to draw air into the duct through the inlet opening and expel air out of the duct through the outlet opening.
LV. A surgical helmet assembly for mounting to a head of a user during surgical operations, the surgical helmet assembly comprising:
LVI. The surgical helmet assembly of clause LV, wherein the adjustment assembly is further defined as a first adjustment assembly and the actuation member is further defined as a first actuation member, and the surgical helmet assembly further comprises a second adjustment assembly coupled to the rear support member and configured to adjust a circumferential fit of the headband assembly to the head of the user.
LVII. The surgical helmet assembly of clause LVI, wherein the front support member comprises a base portion configured to abut the forehead of the user and wherein the headband assembly further comprises a pair of straps coupled to the rear support member and the base portion of the front support member, with the base portion of the front support member, the pair of straps, and the rear support member collectively forming a continuous loop to circumferentially surround the head of the user.
LVIII. The surgical helmet assembly of clause LVII, wherein the second adjustment assembly comprises a second actuation member rotatably coupled to the rear support member, with the second actuation member configured to engage at least one strap of the pair of straps, and the at least one strap of the pair of straps being movable relative to the rear support member to adjust a size of a perimeter defined by the continuous loop in response to rotation of the second actuation member.
LIX. The surgical helmet assembly of clause LVIII, wherein the first actuation member is coupled to the rear support member, and the second actuation member is rotatable about the actuation axis of the first actuation member such that the first actuation member is concentric with the second actuation member.
LX. The surgical helmet assembly of clause LIX, wherein the actuation member of the first adjustment assembly extends outwardly from the actuation axis farther than the actuation member of the second adjustment assembly.
LXI. The surgical helmet assembly of any of clauses LV-LX, wherein the front support member comprises a base portion configured to abut the forehead of the user and the front support member comprises a leg portion extending from the base portion, with the leg portion coupled to the helmet shell adjacent the first end of the helmet shell and the leg portion coupled to the second end of the tension element.
LXII. The surgical helmet assembly of clause LXI, wherein one of the helmet shell and the leg portion of the front support member comprises a surface defining a slot, with the slot having a first end proximal the first end of the helmet shell and a second end distal to the first end of the helmet shell, and wherein the other of the helmet shell and the leg portion of the front support member comprises a projection, with the slot configured to receive at least a portion of the projection to constrain the relative motion of the front support member to the helmet shell.
LXIII. The surgical helmet assembly of clause LXII, wherein the second end of the tension element is coupled to the leg portion of the front support member and the projection is movable within the slot in response to movement of the tension element from rotation of the actuation member.
LXIV. The surgical helmet assembly of clause LXIII, wherein the leg portion of the front support member comprises the projection and the frame assembly further comprises a biasing mechanism coupled to the helmet shell and the projection to bias the projection toward the first end of the slot.
LXV. The surgical helmet assembly of any of clauses LV-LXIV, wherein the helmet shell comprises a tension element guide disposed between the first and second ends of the helmet shell, at least a portion of the tension element being received by the tension element guide of the helmet shell.
LXVI. The surgical helmet assembly of any of clauses LV-LXV, wherein the actuation member comprises a surface configured to abut the tension element, with at least a portion of the tension element configured to wind and unwind on the surface of the actuation member responsive to rotation of the actuation member.
LXVII. The surgical helmet assembly of any of clauses LV-LXVI, wherein the helmet shell comprises one or more coupling features to couple a surgical garment to the helmet shell.
LXVIII. The surgical helmet assembly of clause LXVII, wherein the one or more coupling features comprises a complementary fastening feature of one of a hook and loop fastener, a magnetic fastener, and a button and snap fastener for coupling to a corresponding complementary fastening feature of a garment.
LXIX. A surgical helmet assembly for mounting to a head of a user during surgical operations, the surgical helmet assembly comprising:
LXX. The surgical helmet assembly of clause LXIX, wherein the outlet opening is further defined as a first outlet opening and the duct of the helmet shell defines a second outlet opening disposed adjacent the second end of the helmet shell, with the vent disposed between the first and second outlet openings, and wherein the fan is configured to expel air out of the second outlet opening toward the back of the head and neck of the user.
LXXI. The surgical helmet assembly of any of clauses LXIX-LXX, wherein the helmet shell defines a ton portion and a bottom portion, with the top and bottom portions defining the duct, and with the bottom portion having an interior surface facing away from the duct and toward the headband assembly, and wherein the bottom portion defines the vent to permit the expulsion of air toward the top of the user's head.
LXXII. A surgical helmet assembly for mounting to a head of a user during surgical operations, the surgical helmet assembly comprising:
LXXIII. The surgical helmet assembly of clause LXXII, wherein the front support member consists essentially of ethylene-vinyl acetate foam.
LXXIV. The surgical helmet assembly of any of clauses LXXII-LXXIII, wherein the front support member comprises a base portion extending between and coupled to the pair of straps, and wherein the front support member comprises a leg portion extending from the base portion to couple the front support member to the helmet shell.
LXXV. The surgical helmet assembly of any of clauses LXXII-LXXIV, further comprising padding coupled to the front support member and configured to abut the forehead of the user.
LXXVI. The surgical helmet assembly of clause LXXV, wherein the padding comprises reticulated foam.
LXXVII. The surgical helmet assembly of any of clauses LXXV-LXXVI, wherein the padding comprises a wicking material configured to abut the forehead of the user.
LXXVIII. A surgical helmet assembly for mounting to a head of a user during surgical operations, the surgical helmet assembly comprising:
LXXIX. The surgical helmet assembly of clause LXXVIII, further comprising an adjustment assembly coupled to the rear support member, the adjustment assembly configured to adjust a circumferential fit of the headband assembly to the head of the user.
LXXX. The surgical helmet assembly of clause LXXIX, wherein the adjustment assembly comprises an actuation member rotatably coupled to the rear support member, with the actuation member arranged to engage at least one strap of the pair of straps, and the at least one strap of the pair of straps being movable relative to the rear support member to adjust a size of a perimeter defined by the continuous loop in response to rotation of the actuation member.
LXXXI. The surgical helmet assembly of clause LXXX, wherein the engagement between the actuation member and the at least one strap of the pair of straps is a rack and pinion engagement, with the actuation member comprising a pinion having pinion teeth and the at least one strap of the pair of straps comprises a rack having rack teeth to engage the pinion teeth of the actuation member.
LXXXII. The surgical helmet assembly of any of clauses LXXVIII-LXXXI, wherein the first material consists essentially of foam.
LXXXIII. The surgical helmet assembly of clause LXXXII, wherein the first material consists essentially of ethylene-vinyl acetate foam.
LXXXIV. The surgical helmet assembly of any of clauses LXXVIII-LXXXIII, further comprising padding coupled to the front support member and configured to abut the forehead of the user.
LXXXV. The surgical helmet assembly of clause LXXXIV, wherein the padding comprises reticulated foam.
LXXXVI. The surgical helmet assembly of any of clauses LXXXIV-LXXXV, wherein the padding comprises a wicking material configured to abut the forehead of the user.
LXXXVII. A surgical helmet assembly for mounting to a head of a user during surgical operations, the surgical helmet assembly comprising:
LXXXVIII. The surgical helmet assembly of clause LXXXVII, wherein the first actuation member extends outwardly from the actuation axis farther than the second actuation member.
LXXXIX. The surgical helmet assembly of any of clauses LXXXVII-LXXXVIII, wherein the helmet shell comprises a duct, the duct defining an inlet opening and an outlet opening, with the fan configured to draw air into the duct through the inlet opening and expel air out of the duct through the outlet opening.
XC. A surgical helmet assembly configured to mount to a head of a user during surgical operations, the surgical helmet assembly comprising:
The subject patent application claims priority to and all the benefits of U.S. Provisional Patent Application No. 62/749,837, filed on Oct. 24, 2018, which is hereby incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/050222 | 9/9/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62749837 | Oct 2018 | US |