The present invention refers to a protection device apt to be worn on by a health operator, typically a surgeon, during surgery, and in particular to a device substantially in the form of a helmet.
Over the last two decades, protection systems for protecting a health operator's head and face based on a helmet to be worn on during surgery have become of widespread use. Traditionally, such systems are mainly formed just by a helmet, a cap or a protection gown covering the helmet, by a lens—i.e., a transparent splash guard visor—constrained to the cap or gown, by a drive unit and a related power-supplying battery. As mentioned, the system is worn on by the health operator during surgery.
These systems are especially used in orthopedic surgery, with specific reference to surgery for implanting knee and hip prostheses, in which drills provided with reamers and saws are used. In that sense, helmets prove superior to masks and common face protection shields, as the former cover the entire head of the health operator, creating a sterile barrier between the health operator and the patient; said barrier protects the operator from the considerable amount of possibly contaminated blood spurts emitted in the course of surgery.
Moreover, the helmet generally comprises a fan for air circulation inside the environment accommodating the surgeon's head. Such air circulation opposes perspiration and contributes to keep refrigerated the air inside the facial chamber, thereby increasing the operator's comfort level.
In addition, air circulation also offers a valid protection against the so-called “aerosol effect” of virus-contaminated particles. Potential infection risks for the surgeon associated to the aerosol effect and benefits from the use of surgical helmets are amply demonstrated in the literature (see, e.g.: Jonathan A. Eandi et at “Use of a surgical helmet system to minimize splash injury during percutaneous renal surgery in high-risk patients” Journal of Endourology, Vol. 22, No. 12, December 2008).
Moreover, the above-mentioned systems offers a valid protection for the patient as well, with respect to contaminations coming from the surgeon and other health operators, as preventing the fall of hair, dandruff and saliva droplets and therefore the possibility of wound infection. Infection rates described in the literature are of between 0.38% and 2% for THA (Total Hip Arthroplasty) and between 0.77% and 4% for TKA (Total Knee Arthroplasty), data increasing in the course of revision surgery.
Therefore, for all purposes the above-mentioned protection system based on a surgical helmet may be deemed to be both a medical device, owing to the protection offered to the patient, and an individual protection device for the health operator.
The above-described known protection systems suffer from some relevant drawbacks.
First of all, a mere ventilation of the head-accommodating environment is useless to prevent carbon dioxide accumulation inside the same environment and does not effectively oppose the lens fogging phenomenon, related above all to the health operator's breathing. In connection to this latter aspect, the Inventors observed that only in the first stages of the surgery such a fogging is reduced by means of fan-produced air circulation.
However, as time passes—a hip or knee prosthesis surgery can last up to several hours—besides fogging the above-mentioned CO2 accumulation occurs, which may be a source of queasiness. In fact, the cap or robe associated to the helmet “seal” the environment at the neck level, allowing no adequate CO2 evacuation below the gown. To this end, it should be noted that for the manufacturing of the robe or cap the evolution of the field leads to the use of repellent materials, in particular polypropylene ones, preventing perspiration.
Moreover, the known systems have remarkable weights and encumbrances even at the level of the sole helmet (which is then to be associated to lens, motor and battery), penalizing the health operator's comfort at the head level and accordingly limiting his/her body motions.
Furthermore, in the known systems the cap-lens unit is kept in position on the helmet by the Velcro® arranged on the lens and on the stationary structure of the helmet. This complicates the undressing modes of the health operator, who should separate the coupled strips by tearing them off, and may be cause of scarce accuracy in the position of the entire protection system, and specifically of the lens in the dressing stage, since the strips may adhere accidentally according to a coupling configuration different from the desired one.
Therefore, the technical problem set and solved by the present invention is that of providing a protection system wearable by a health operator during surgery allowing to overcome the drawbacks mentioned above with reference to the known art.
Such a problem is solved by a protection device according to claim 1 and by a protection system according to claim 27.
The present invention provides some relevant advantages. The main advantage lies in the fact that the presence of air suction means operating within the environment accommodating the health operator's head allows an evacuation of exhausted air from said environment, preventing CO2 accumulation therein.
Said suction means also allows a drastic reduction of the lens fogging phenomenon for the entire duration of the surgery.
Preferred features of the present invention are set forth in the dependent claims thereof.
In particular, according to a particularly preferred feature the device of the invention comprises a helmet formed by structural members having a tubular configuration, i.e. an internally hollow profile.
This allows to attain a maximization of the weight/use ratio of the support structure, increasing the surgeon's comfort and therefore the safety of the surgery. Moreover, such structural members are apt to perform a function of guiding or piping the air flow generated by the suction means.
Moreover, according to another particularly preferred feature coupling flanges are provided, obtained on the helmet, to the ends of a direct connection between the latter and the garment (cap, gown, robe, etc.) associated to the vision lens.
Other advantages, features, and the operation steps of the present invention will be made apparent in the following detailed description of some embodiments thereof, given by way of example and not for limitative purposes.
Reference will be made to the figures of the annexed drawings, wherein:
Referring initially to
The device 1 has a main body 2 substantially shaped as a helmet and apt to surround the health operator's head. Therefore, for simplicity's sake hereinafter the device 1 could also be referred to as surgical helmet.
The main body 2 has a load-bearing structure made with longitudinal and transversal members integral to each other and lightening compartments interposed thereamong. In particular, the main body 2 has a longitudinal upright 21 of curved shape which substantially follows the profile of the operator's head along the sagittal plane of the latter. The longitudinal upright 21 is joined, at a bottom end thereof arranged, in use, substantially in the occipital rear region of the skull, with a pair of crosspieces 22 and 23. The crosspieces extend just laterally to the head, following its contour in an anteroposterior direction, therefore them also developing along a curved profile and defining a bottom part of the main body 2.
The crosspieces 22 and 23 are frontally joined to a further front structural member 24 shaped substantially like a polygonal mask, and in particular substantially rectangular. Such structural mask-like member 24 is joined topwise to the other longitudinal (front) end of the upright 21. The front mask 24 defines a central opening apt to be closed by a transparent vision element, or lens, 200, which is worn on jointly to the helmet 1 and will be described hereinafter.
The surgical helmet 1 further comprises means for forced circulation of air, generally denoted by 3, in an environment, denoted by 20, housing the surgeon's head and defined and externally closed by the main body 2, by the above-mentioned lens 200 and a garment like a cap, robe, gown or the like, to which the lens itself is integral and that will it also be described hereinafter.
In the present example, the means 3 for forced circulation of air comprises a first and a second ventilation means, respectively 31 and 32, typically implemented by axial or radial blowers of a type known per se and housed at an internal portion of the longitudinal upright 21. Such first and second ventilation means 31 and 32 are associated to power supply means, e.g. batteries, not shown in the figures and optionally arranged in a remote position with respect to the main body 2.
The first ventilation means 31 is a means for inletting “fresh” air into the environment 20. According to the invention, the second ventilation means 32 is instead a means for the suction of exhausted air from the environment 20, hence allowing an evacuation of exhausted air from said environment and, therefore, a reduction in CO2 content.
On the external part of the upright 21, the forced circulation means 3 provide a pair of projections in the form of coupling flanges, each located at a respective inletting 31 or suction 32 means and in turn respectively denoted by 301 and 302.
As best seen in
As will also be illustrated hereinafter, the flanges 301 and 302 are suitable to allow a direct connection between the surgical helmet 1 and the garment (cap, gown, robe, etc.) associated to the vision lens 200.
In the present example, the coupling flanges 301 and 302 are in the form of hollow cylindrical members.
A variant embodiment may envisage one or both of the active ventilation means 31 and 32 to be at least partially placed in a remote position with respect to the main body 2 and in fluid communication with the environment 20 internal to the latter. Such communication may be established at vents or sleeves associated to or obtained on the main body 2 and identifiable also with the same flanges 301 and 302 introduced hereto. Such a fluid communication may be implemented by pipes, connectors or equivalent members known per se and preferably of snap coupling type on the vents themselves.
Moreover, always according to variant embodiments, one or both of the is above-mentioned ventilation means 31e 32 and their components may also be optionally at least partially carried by the health operator, e.g. at his/her waist, as will be illustrated hereinafter in connection to the embodiment shown in
According to another variant embodiment, a single ventilation means may be provided, apt to alternatively act as air inletting means and as air suction means during a same surgery, by periodically inverting its operation modes.
Referring again to the embodiment of
Advantageously, and as best seen in
As best seen in
As already highlighted, the above-mentioned hollow configuration causes also a remarkable lightening of the helmet 1.
Always in order to make the removal of exhausted air from the environment 20 more effective, and as best seen in
As mentioned hereto, the bulkhead 4 allows to carry out a partitioning of the compartment internal to the main body 2 into two chambers, and accordingly a partitioning of the environment 20 into two distinct regions, respectively a delivery region in direct communication with the inletting means 31 and a suction region in direct communication with the suction means 32.
Therefore, the overall configuration obtained with the arrangement of the ventilation means 31 and 32, the bulkhead 4 and the openings 51-53 is such that air is inlet inside the environment 20 by the means 31 and through the longitudinal upright 21 and the front opening 53 of the latter, and then conveyed toward the front zone defined by the mask 24. Suction through the means 32 occurs by the rear part of the longitudinal upright 21, the crosspieces 22 and 23 and the openings 51 and 52 thereof. Thus, the compartment internal to the main body 2, and accordingly the environment 20, is substantially subdivided into a top chamber (delivery air) and a bottom chamber (suction air).
It will be appreciated that the placement of the opening or slit 53 of the longitudinal upright 21 directly at the lens 200 allows a controlled inletting of air directly on the latter, opposing in a maximally effective way its fogging.
Referring now also to
In particular, the structure 6 comprises a top member 603 which preferably provides a double curvature (spherical and elliptical) for improved fitting to the subject's head.
The structure 6 further provides a longitudinal member 61 for azimuthal adjustment, equipped with a longitudinal toothing 610 or an equivalent engagement means, allowing adjustment of the longitudinal (azimuthal) position of the main body 2 with respect to the health operator's head.
The structure 6 further comprises a pair of circumferential adjustment members, and in particular a left-side member 62 and a right-side member 63, each equipped with a transversal toothing 620, 630 substantially orthogonal, in use, to the longitudinal toothing 610, or with equivalent engagement means. The elements 62 and 63 allow an adjustment of the extension of the base circumference, just to allow the fitting of the helmet 1 to the specific anthropometry of the subject wearing it on.
This twin adjustment option for positioning the surgical helmet 1 on the head increases the stability, in use, of the helmet itself and greatly improves the operator's comfort.
Advantageously, both the circumferential and the azimuthal adjustments are obtainable by a single knob 65, or an equivalent adjustment means, arranged, in use, at the occipital portion of the skull, and equipped with a toothed spindle 650 engaging, in use, the toothings 610 and 620, 630. The spindle 650 may be made with a single module and pitch or with a double module and pitch.
The knob 65 is coupled to the toothings 610 and 620, 630 just by the toothing of the spindle 650. Moreover, it is provided the interposition of a partitioning member 64, operating a partition and allowing a sliding between the azimuthal and circumferential adjustment members 61 and 62, 63. The partitioning member 64 is equipped with a through hole that is crossed by the toothed spindle 650. Moreover, always between toothings 610 and 620, 630 and knob 65, an elastic arresting member 66 is provided that carries out just the arresting and the keeping of the desired position, locking a further sliding of the toothings 610 and 620, 630 on the spindle 650. Such elastic member 66 may provide an axial bending or a circumferential bending and be made, e.g., of plastics.
To the ends of adjustment, the knob 65 is merely rotated to the desired level of azimuthal and circumferential adherence of the structure 6 to the head.
The structure 6 is made integral to the main body 2 at selected points, in particular in the present example in correspondence of two front connection members 601 and 602 and two rear connection members 604 and 605. Furthermore, the structure 6 is completed by a front member 67 inside which the front portion of the azimuthal adjustment member 61 and the two circumferential adjustment members 62 and 63 engage.
It will be appreciated that the hereto-described surgical helmet 1 is particularly susceptible of a modular construction.
For this purpose, in
As illustrated hereto for a variant embodiment of the first embodiment, such ventilation means 33 may serve as sole forced air circulation member, or alternatively as inletting and suction member.
Moreover, at the rear base of the main body 2 a bulkhead or an equivalent substitute member may be provided for separating the inlet air volume from the outlet one.
In this case as well, a variant embodiment may be provided in which the ventilation means 33 is entirely or partially placed in a remote position with respect to the main body 2 and in fluid communication with the environment 20 by a vent or sleeve, denoted herein by 303, obtained on or associated to the main body 2.
While, as mentioned,
Preferably, the lens 200 is removably constrainable to the main body 2 of the helmet 1, 11 by Velcro® strips, magnetic members or equivalent means arranged in selected positions on the same helmet and lens. In use, the lens 200 is arranged abutted onto the front mask 24 of the main body 2. Preferably, the overall arrangement is such that, in said operating configuration, the lens is tilted toward the subject with respect to the virtual vertical passing by the base of the main body 2 (or chin guard) according to an angle α, the latter preferably comprised in a range of about 3-8 degrees.
Moreover, preferably additional removable connection means are provided to constrain the main body 2 to the garment 201. Advantageously—and as already anticipated above—in the present example such additional means are based on a shape coupling between the connection flanges 301, 302 or 303 of the main body 2 and corresponding complementary members associated to the garment 201. In the present example, these latter members are in the form of a circular crown.
The difference is associated to the different configurations of the housings receiving the first and second ventilation means, here as well designated by 31 and 32. In particular, at the level of the inletting means 31 it is provided the presence of a recess 311 in the profile of the top upright, denoted herein by 210, with the aim of making a sort of air tank or reservoir between the cap or the like covering the helmet and the blower or equivalent means implementing the means 31, and this to the end of an improvement of the efficiency of the latter.
Instead, at the level of the suction means 32 a substantially flat profile 320 is provided, to guarantee adherence between filter and blower discharge.
Moreover, a coupling member 402 in the form of a connector or the like is provided between pipe 401 and main body 2. Preferably, the member 402 is of removable and interchangeable type, also in order to allow operation with the sole delivery (inlet) air for the surgical helmet, in that sense guaranteeing the full modularity and versatility of use of the system.
In the present example, the insertion of a filtering member 403 for virus and bacteria is also provided, interposed between connecting element 402 and tube 401. Variant embodiments may provide that one or more of said filtering members be (also) applied at the level of the above-introduced bushings or flanges of the main body. Integration of such filtering members on the helmet may occur also with the insertion of filtering pockets and/or pleated filters. Moreover, the remote placement of part of the forced circulation means may also be carried out, e.g., at the level of the shoulders—with a schoolbag-type configuration—or in a different position.
By now, it will be better appreciated that each of the above-described embodiments, variants and configurations allows an optimal conveying and evacuation toward the outside of the exhausted air in the environment accommodating the operator's head, with significant benefits associated to the operator's comfort and to his/her improved vision of the operating field.
Moreover, it will be appreciated that the proposed system is susceptible of a modular construction, thereby enabling the health operator to choose a solution customized and subjectively best for him/herself, guaranteeing head comfort and freedom of body motions.
Said modularity also allows, at the production stage, to employ the same structural members described above with reference to the main body of the helmet for making devices equipped with single or double inlet delivery and/or single or double suction means, employing in that sense the same stationary frame to incorporate different ventilation means.
It will also be better appreciated that the lightness of the helmet is guaranteed by the presence of a load-bearing structure with the abovementioned piping function, wherein each structural volume is hollow and utilized for conveying air under delivery and under suction.
Finally, it has to be noted that for the additional feature related to the presence of removable connection means between main body and lens-bearing garment as defined in the dependent claims and as described above, a protection independent of the presence of the means for forced circulation of air of which at the independent claim might be sought.
Likewise, a separate protection, independent of the presence of the air suction means, might be sought for the piping-type embodiment of the load-bearing structural members forming the main body, as defined in the dependent claims and as described above.
The present invention has been hereto described with reference to preferred embodiments thereof. It is understood that other embodiments might exist, all falling within the concept of the same invention, and all comprised within the protective scope of the claims hereinafter.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IT2011/000036 | 2/14/2011 | WO | 00 | 9/3/2014 |