This invention relates to surgical apparatus in general, and more particularly to surgical apparatus for fracture fixation.
The fifth metatarsal bone (“the fifth metatarsal”) is a long bone located on the outside of the foot. As seen in
Treatment of Jones fractures traditionally involves placing an intramedullary screw down the intramedullary canal of the fifth metatarsal, from the heel toward the toes. See
Confirmation of fracture healing is generally accomplished using X-rays and/or CT scans. CT scans are generally most desirable since they typically provide a high resolution image which allows for more direct assessment of bridging callus across the fracture site with higher resolution than other imaging modalities. Once the Jones fracture has healed, athletes can return to play.
Unfortunately, despite confirmation of successful healing on a CT scan, some athletes may “re-fracture” the fifth metatarsal through the old fracture site. This may occur even with optimal intramedullary screw placement technique and position. This can occur several months after the athlete returns to full play.
Revision surgery is typically performed in these re-fracture cases. Such revision surgery can be effected either by (i) placing a new, larger screw down the intramedullary canal of the fifth metatarsal, or by (ii) using a plate and screws to plate across the Jones fracture. Using a new, larger screw is not possible in all cases and, even where it is, does not guarantee against further re-fracture. Using a plate and screws to plate across the Jones fracture requires a much larger incision, with the attendant trauma to the patient.
Bone grafting is also used and is frequently harvested from the calcaneus bone (“the heel bone”), but this requires a second incision and further bony trauma.
The consequences to the patient (particularly elite-level athletes) who must undergo a second, revision surgery can be quite severe. Many elite-level players, such as those competing at Division I schools or at the professional level, must produce on the playing field in order to maintain their position and/or salary. Thus, a prolonged medical absence can be career-threatening. Therefore, re-fracture after surgical treatment of a Jones fracture, even after CT confirmation of excellent healing, is both frustrating and perplexing for the patient and for the surgeon.
In considering why these re-fracture patients might be experiencing this complication, one must consider the anatomy of the fifth metatarsal itself. More particularly, and looking now at
Furthermore, bones tend to bend very small amounts when placed under stress. This means that when athletes run and jump, thereby putting tension on the fifth metatarsal, the fifth metatarsal naturally bends a very small amount and then springs back to its normal (i.e., unstressed) configuration. In other words, the fifth metatarsal is somewhat elastic. With the intramedullary screw in place within the fifth metatarsal, the intramedullary screw remains well fixed within the more distal, reduced-diameter portion of the intramedullary canal, but as the bone bends, the proximal end of the intramedullary screw can “windshield wiper” within the wider, weaker more proximal cancellous bone (i.e., the portion of the bone closer to the heel). With time, this relative motion between the proximal end of the fifth metatarsal and the intramedullary screw can result in a loss of fixation at the proximal end of the intramedullary screw and exaggerated bending at the fracture site, which may then re-fracture.
In addition, conventional intramedullary screws utilized in the setting of proximal fifth metatarsal fractures function by achieving compression across the fracture site to allow healing. The partially threaded nature of the intramedullary screw provides distal fixation as the screw advances across the fracture site. Since the proximal portion of the intramedullary screw lacks threads, it simply slides along the tract created by the distal aspect of the intramedullary screw. Fixation distally ultimately occurs by engagement of the screw threads with the bone. Proximally, a single screw has modest compression of the metaphyseal bone from the screw head; however, the thin cortical bone and the relative size and shape mismatch between the proximal portion of the 5th metatarsal and the screw head limits the quality of fixation. It is possible, for example, to intrude the intramedullary screw (i.e., to advance the intramedullary screw too far along the intramedullary canal, so that the head of the screw actually intrudes the intramedullary canal), thereby losing proximal fixation. A simple washer more evenly distributes the force of the screw head and improves the quality of proximal compression; however, as the 5th metatarsal bends under natural stress, a simple washer fails to control rotation and bending. The result is that the intramedullary screw does not conform to the bending moments experienced by the bone and the proximal portion of the screw demonstrates the “windshield wiper” effect.
Thus there is a need for a new and improved system for providing intramedullary screw fixation of a Jones fracture of the fifth metatarsal, wherein the system provides for adequate fixation of both the distal and proximal ends of the intramedullary screw.
The present invention comprises the provision and use of a new and improved system for providing intramedullary screw fixation of a Jones fracture of the fifth metatarsal, wherein the system provides for adequate fixation of both the distal and proximal ends of the intramedullary screw.
More particularly, the present invention comprises a novel surgical implant system comprising (i) a spiked washer for impacting against the proximal end of the fifth metatarsal so as to achieve fixed positioning relative to the proximal end of the fifth metatarsal, wherein the spiked washer comprises a disk-like body having a central opening, a plurality of spikes extending distally from the disk-like body, and screw threads formed in the central opening of the disk-like body, and (ii) an intramedullary screw for advancement through the central opening of the spiked washer and down the intramedullary canal of the fifth metatarsal, wherein the intramedullary screw comprises a shaft and a head, distal threads formed on the shaft for engaging the narrowed wall of the intramedullary canal at the distal end of the intramedullary screw, proximal threads formed on the shaft for engaging the wall of the intramedullary canal at the proximal end of the intramedullary screw, and locking threads formed on the head of the intramedullary screw for engaging the screw threads formed in the central opening of the spiked washer.
As a result of this construction, the distal threads of the intramedullary screw can securely anchor the distal end of the intramedullary screw against the narrowed wall of the intramedullary canal, and the proximal threads of the intramedullary screw can securely anchor the proximal end of the intramedullary screw against the wall of the intramedullary canal, whereby to secure a distal bone fragment in position relative to a proximal bone fragment. Furthermore, when the intramedullary screw has been fully inserted into the intramedullary canal, the locking threads formed on the head of the intramedullary screw engage the screw threads formed in the central opening of the spiked washer, whereby to lock the intramedullary screw to the spiked washer. In essence, the spiked washer, which is impacted into position against the proximal end of the fifth metatarsal, serves as a capture plate for holding the proximal end of the intramedullary screw fixed in position relative to the proximal end of the fifth metatarsal, whereby to eliminate the aforementioned “windshield wiper” effect which could otherwise occur within the wider, weaker cancellous bone of the proximal end of the fifth metatarsal. And it should also be appreciated that the spiked washer of the present invention also provides rotational control (i.e., locking the implanted screw against rotation). As a result, the novel surgical implant system of the present invention can prevent the fracture site from experiencing a substantial bending moment under stress, thereby preventing re-fracture.
In one preferred form of the invention, the intramedullary screw comprises distal screw threads for engaging the distal bone fragment and proximal screw threads for engaging the proximal bone fragment. The distal screw threads and the proximal screw threads may be separated by an unthreaded region and may have different pitches, with the distal threads having a more aggressive pitch than the proximal threads, whereby to create compression between the distal bone fragment and the proximal bone fragment when the intramedullary screw is inserted into the bone. The intramedullary screw also preferably comprises locking threads disposed at the proximalmost end of the intramedullary screw for engaging corresponding threads formed on the inside surface of the central opening of the spiked washer, whereby to facilitate locking of the intramedullary screw to the spiked washer when the spiked washer is secured to the proximal end of the fifth metatarsal and the intramedullary screw is deployed through the central opening of the spiked washer and down the intramedullary canal of the fifth metatarsal. More particularly, in this form of the invention, the thread pitch on the proximal thread of the intramedullary screw is finer than the thread pitch on the distal thread of the intramedullary screw (i.e., the thread pitch on the proximal thread has more threads per inch than the thread pitch on the distal thread), whereby to provide a pitch differential which aids in reducing fractures and in creating compression between bone fragments. The spiked washer is secured to the proximal end of the fifth metatarsal and the intramedullary screw is deployed through the central opening of the spiked washer and down the intramedullary canal of the fifth metatarsal, with the locking threads of the intramedullary screw engaging the threaded central opening of the spiked washer when the intramedullary screw is fully deployed in the intramedullary canal, whereby to lock the intramedullary screw to the spiked washer.
And in one preferred form of the invention, the central opening of the spiked washer, and the screw threads formed in the central opening, are coordinated with the locking threads of the intramedullary screw so as to allow for variable-angle locking of the intramedullary screw to the spiked washer.
In use, the spiked washer is impacted into position against the proximal end of the fifth metatarsal, and then the intramedullary screw is advanced through the central opening of the spiked washer and down the intramedullary canal of the fifth metatarsal, such that the distal threads of the intramedullary screw engage with the wall of the intramedullary canal and the proximal threads of the intramedullary screw engage with the wall of the intramedullary canal, with the pitch differential between the distal and proximal threads reducing the fracture and creating compression between the bone fragments. When the intramedullary screw is fully deployed in the intramedullary canal, the locking threads at the proximalmost end of the intramedullary screw engage the screw threads in the central opening of the spiked washer, whereby to lock the intramedullary screw to the spiked washer.
In one form of the invention, there is provided a surgical implant system comprising:
a spiked washer for impacting against the proximal end of a bone so as to achieve fixed positioning relative to the proximal end of the bone, wherein the spiked washer comprises a disk-like body having a central opening, a plurality of spikes extending distally from the disk-like body, and screw threads formed in the central opening of the disk-like body; and
an intramedullary screw for advancement through the central opening of the spiked washer and down the intramedullary canal of a bone, wherein the intramedullary screw comprises a shaft and a head, distal threads formed on the shaft for engaging the wall of the intramedullary canal at the distal end of the intramedullary screw and proximal threads formed on the shaft for engaging the wall of the intramedullary canal at the proximal end of the intramedullary screw, and locking threads formed on the head for engaging the screw threads formed in the central opening of the spiked washer, whereby to lock the intramedullary screw to the spiked washer.
In another form of the invention, there is provided a method for fracture fixation, the method comprising:
providing a surgical implant system comprising:
securing the spiked washer to the outer surface of a bone; and
advancing the intramedullary screw through the central opening of the spiked washer and through the bone so that the distal threads on the intramedullary screw engage a distal portion of the bone and the proximal threads on the intramedullary screw engage a proximal portion of the bone, whereby to generate a compressive force therebetween, and such that the locking threads on the head engage the screw threads formed in the central opening of the spiked washer so as to lock the intramedullary screw to the spiked washer.
These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts, and further wherein:
The present invention comprises the provision and use of a new and improved system for providing intramedullary screw fixation of a Jones fracture of the fifth metatarsal, wherein the system provides for adequate fixation of both the distal and proximal ends of the intramedullary screw.
More particularly, and looking now at
As a result of this construction, distal threads 45 of intramedullary screw 30 can securely anchor the distal end of intramedullary screw 30 against the narrowed wall of the intramedullary canal, proximal threads 50 can securely anchor the proximal end of intramedullary screw 30 against the wall of the intramedullary canal (with the differential in the thread pitch between distal threads 45 and proximal threads 50 generating compressive force therebetween), and locking threads 52 of intramedullary screw 30 can engage screw threads 25 formed in central opening 15 of spiked washer 10 so as to lock intramedullary screw 30 to spiked washer 10. In essence, spiked washer 10, which is impacted into position against the proximal end of the fifth metatarsal, serves as a capture plate for holding the proximal end of intramedullary screw 30 fixed in position relative to the proximal end of the fifth metatarsal, whereby to eliminate the aforementioned “windshield wiper” effect which could otherwise occur within the wider, weaker cancellous bone of the proximal end of the fifth metatarsal. In addition, by locking intramedullary screw 30 to spiked washer 10, intramedullary screw 30 is fixed against rotation. As a result, novel surgical implant system 5 can prevent the fracture site from experiencing a substantial bending moment under stress, thereby preventing re-fracture.
In one preferred form of the invention, the distal and proximal threads 45, 50 of intramedullary screw 30 have different pitches, with distal threads 45 having a more aggressive pitch than proximal threads 50, and with an unthreaded gap extending between the distal threads and the proximal threads, whereby to create compression between the distal bone fragment and the proximal bone fragment when the intramedullary screw is inserted into the bone. Spiked washer 10 is locked to the proximal end of the fifth metatarsal and intramedullary screw 30 is deployed through central opening 15 of spiked washer 10 and down the intramedullary canal of the fifth metatarsal, with locking threads 52 of intramedullary screw 30 engaging screw threads 25 of spiked washer 10, whereby to lock intramedullary screw 30 to spiked washer 10. More particularly, in this form of the invention, the thread pitch on proximal thread 50 is finer than the thread pitch on distal thread 45 (i.e., the thread pitch on proximal thread 50 has more threads per inch than the thread pitch on distal thread 45), whereby to provide a pitch differential which aids in reducing fractures and in creating compression between bone fragments when intramedullary screw 30 is deployed through central opening 15 of spiked washer 10 and down the intramedullary canal of the fifth metatarsal.
And in one preferred form of the invention, central opening 15 of spiked washer 10 and screw threads 25 formed in central opening 15, are coordinated with locking threads 52 of intramedullary screw 30 so as to allow for variable-angle locking of intramedullary screw 30 to spiked washer 10.
And in one preferred form of the invention, spiked washer 10 can be made of stainless steel, which is more rigid, or titanium, which is more flexible, having a modulus of elasticity closer to bone. Titanium offers the additional benefit of improved bony ingrowth, which is ideal at the spike-bone interface.
And in one preferred form of the invention, intramedullary screw 30 can be made of stainless steel.
In use, and looking now at
In the intramedullary screw 30 shown in
It is also possible to use the novel surgical implant system of the present invention for other applications. By way of example but not limitation,
It should be understood that many additional changes in the details, materials, steps and arrangements of parts, which have been herein described and illustrated in order to explain the nature of the present invention, may be made by those skilled in the art while still remaining within the principles and scope of the invention.
This patent application claims benefit of pending prior U.S. Provisional Patent Application Ser. No. 62/457,607, filed Feb. 10, 2017 by The Methodist Hospital and Derek T. Bernstein et al. for SURGICAL IMPLANT SYSTEM FOR TREATING FIFTH METATARSAL JONES FRACTURES (Attorney's Docket No. METHODIST-35 PROV), which patent application is hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US18/17593 | 2/9/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62457607 | Feb 2017 | US |