i. Field of the Invention
The present invention generally relates to surgical devices and methods.
ii. Description of the Related Art
Traditional, or open, surgical techniques may require a surgeon to make large incisions in a patient's body in order to access a tissue treatment region, or surgical site. In some instances, these large incisions may prolong the recovery time of and/or increase the scarring to the patient. As a result, minimally invasive surgical techniques are becoming more preferred among surgeons and patients owing to the reduced size of the incisions required for various procedures. In some circumstances, minimally invasive surgical techniques may reduce the possibility that the patient will suffer undesirable post-surgical conditions, such as scarring and/or infections, for example. Further, such minimally invasive techniques can allow the patient to recover more rapidly as compared to traditional surgical procedures.
Endoscopy is one minimally invasive surgical technique which allows a surgeon to view and evaluate a surgical site by inserting at least one cannula, or trocar, into the patient's body through a natural opening in the body and/or through a relatively small incision. In use, an endoscope can be inserted into, or through, the trocar so that the surgeon can observe the surgical site. In various embodiments, the endoscope may include a flexible or rigid shaft, a camera and/or other suitable optical device, and a handle portion. In at least one embodiment, the optical device can be located on a first, or distal, end of the shaft and the handle portion can be located on a second, or proximal, end of the shaft. In various embodiments, the endoscope may also be configured to assist a surgeon in taking biopsies, retrieving foreign objects, and introducing surgical instruments into the surgical site.
Laparoscopic surgery is another minimally invasive surgical technique where procedures in the abdominal or pelvic cavities can be performed through small incisions in the patient's body. A key element of laparoscopic surgery is the use of a laparoscope which typically includes a telescopic lens system that can be connected to a video camera. In various embodiments, a laparoscope can further include a fiber optic system connected to a halogen or xenon light source, for example, in order to illuminate the surgical site. In various laparoscopic, and/or endoscopic, surgical procedures, a body cavity of a patient, such as the abdominal cavity, for example, can be insufflated with carbon dioxide gas, for example, in order to create a temporary working space for the surgeon. In such procedures, a cavity wall can be elevated above the organs within the cavity by the carbon dioxide gas. Carbon dioxide gas is usually used for insufflation because it can be easily absorbed and removed by the body.
In at least one minimally invasive surgical procedure, an endoscope and/or laparoscope can be inserted through a natural opening of a patient to allow a surgeon to access a surgical site. Such procedures are generally referred to as Nature Orifice Transluminal Endoscopic Surgery or (NOTES)™ and can be utilized to treat tissue while reducing the number of incisions, and external scars, to a patient's body. In various NOTES procedures, for example, an endoscope can include at least one working channel defined therein which can be used to allow the surgeon to insert a surgical instrument therethrough in order to access the surgical site.
The foregoing discussion is intended only to illustrate various aspects of the related art in the field of the invention at the time, and should not be taken as a disavowal of claim scope.
Various features of the embodiments described herein are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows.
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Various embodiments are directed to apparatuses, systems, and methods for the electrical ablation treatment of undesirable tissue such as diseased tissue, cancer, malignant and benign tumors, masses, lesions, and other abnormal tissue growths. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments, the scope of which is defined solely by the appended claims.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.
It will be appreciated that the terms “proximal” and “distal” may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.
Electrical ablation devices in accordance with the described embodiments may comprise one or more electrodes configured to be positioned into or proximal to undesirable tissue in a tissue treatment region (e.g., target site, worksite) where there is evidence of abnormal tissue growth, for example. In general, the electrodes comprise an electrically conductive portion (e.g., medical grade stainless steel) and are configured to electrically couple to an energy source. Once the electrodes are positioned into or proximal to the undesirable tissue, an energizing potential is applied to the electrodes to create an electric field to which the undesirable tissue is exposed. The energizing potential (and the resulting electric field) may be characterized by multiple parameters such as frequency, amplitude, pulse width (duration of a pulse or pulse length), and/or polarity. Depending on the diagnostic or therapeutic treatment to be rendered, a particular electrode may be configured either as an anode (+) or a cathode (−) or may comprise a plurality of electrodes with at least one configured as an anode and at least one other configured as a cathode. Regardless of the initial polar configuration, the polarity of the electrodes may be reversed by reversing the polarity of the output of the energy source.
In various embodiments, a suitable energy source may comprise an electrical waveform generator, which may be configured to create an electric field that is suitable to create irreversible electroporation in undesirable tissue at various electric filed amplitudes and durations. The energy source may be configured to deliver irreversible electroporation pulses in the form of direct-current (DC) and/or alternating-current (AC) voltage potentials (e.g., time-varying voltage potentials) to the electrodes. The irreversible electroporation pulses may be characterized by various parameters such as frequency, amplitude, pulse length, and/or polarity. The undesirable tissue may be ablated by exposure to the electric potential difference across the electrodes.
In one embodiment, the energy source may comprise a wireless transmitter to deliver energy to the electrodes using wireless energy transfer techniques via one or more remotely positioned antennas. Those skilled in the art will appreciate that wireless energy transfer or wireless power transmission is the process of transmitting electrical energy from an energy source to an electrical load without interconnecting wires. An electrical transformer is the simplest instance of wireless energy transfer. The primary and secondary circuits of a transformer are not directly connected and the transfer of energy takes place by electromagnetic coupling through a process known as mutual induction. Power also may be transferred wirelessly using RF energy. Wireless power transfer technology using RF energy is produced by Powercast, Inc. and can achieve an output of 6 volts for a little over one meter. Other low-power wireless power technology has been proposed such as described in U.S. Pat. No. 6,967,462, the entire disclosure of which is incorporated by reference herein.
The apparatuses, systems, and methods in accordance with certain described embodiments may be configured for minimally invasive ablation treatment of undesirable tissue through the use of irreversible electroporation to be able to ablate undesirable tissue in a controlled and focused manner without inducing thermally damaging effects to the surrounding healthy tissue. The apparatuses, systems, and methods in accordance with the described embodiments may be configured to ablate undesirable tissue through the use of electroporation or electropermeabilization. More specifically, in various embodiments, the apparatuses, systems, and methods in accordance with the described embodiments may be configured to ablate undesirable tissue through the use of irreversible electroporation. Electroporation increases the permeabilization of a cell membrane by exposing the cell to electric pulses. The external electric field (electric potential/per unit length) to which the cell membrane is exposed to significantly increases the electrical conductivity and permeability of the plasma in the cell membrane. The primary parameter affecting the transmembrane potential is the potential difference across the cell membrane. Irreversible electroporation is the application of an electric field of a specific magnitude and duration to a cell membrane such that the permeabilization of the cell membrane cannot be reversed, leading to cell death without inducing a significant amount of heat in the surrounding tissue. The destabilizing potential forms pores in the cell membrane when the potential across the cell membrane exceeds its critical membrane voltage causing the cell to die under a process known as apoptosis and/or necrosis. The application of irreversible electroporation pulses to cells is an effective way for ablating large volumes of undesirable tissue without deleterious thermal effects to the surrounding healthy tissue associated with thermal-inducing ablation treatments. This is because irreversible electroporation destroys cells without heat and thus does not destroy the cellular support structure or regional vasculature. A destabilizing irreversible electroporation pulse, suitable to cause cell death without inducing a significant amount of thermal damage to the surrounding healthy tissue, may have amplitude in the range of about several hundred to about several thousand volts and is generally applied across biological membranes over a distance of about several millimeters, for example, for a relatively long duration. Thus, the undesirable tissue may be ablated in-vivo through the delivery of destabilizing electric fields by quickly creating cell necrosis.
The apparatuses, systems, and methods for electrical ablation therapy in accordance with the described embodiments may be adapted for use in minimally invasive surgical procedures to access the tissue treatment region in various anatomic locations such as the brain, lungs, breast, liver, gall bladder, pancreas, prostate gland, and various internal body lumen defined by the esophagus, stomach, intestine, colon, arteries, veins, anus, vagina, cervix, fallopian tubes, and the peritoneal cavity, for example, without limitation. Minimally invasive electrical ablation devices may be introduced to the tissue treatment region using a trocar inserted though a small opening formed in the patient's body or through a natural body orifice such as the mouth, anus, or vagina using translumenal access techniques known as Natural Orifice Translumenal Endoscopic Surgery (NOTES)™. Once the electrical ablation devices (e.g., electrodes) are located into or proximal to the undesirable tissue in the treatment region, electric field potentials can be applied to the undesirable tissue by the energy source. The electrical ablation devices can comprise portions that may be inserted into the tissue treatment region percutaneously (e.g., where access to inner organs or other tissue is done via needle-puncture of the skin). Other portions of the electrical ablation devices may be introduced into the tissue treatment region endoscopically (e.g., laparoscopically and/or thoracoscopically) through trocars or working channels of the endoscope, through small incisions, or transcutaneously (e.g., where electric pulses are delivered to the tissue treatment region through the skin).
In one embodiment, the electrical ablation system 10 may be employed in conjunction with a flexible endoscope 12, as well as a rigid endoscope, laparoscope, or thoracoscope, such as the GIF-100 model available from Olympus Corporation. In one embodiment, the endoscope 12 may be introduced to the tissue treatment region trans-anally through the colon, trans-orally through the esophagus and stomach, trans-vaginally through the cervix, transcutaneously, or via an external incision or keyhole formed in the abdomen in conjunction with a trocar. The electrical ablation system 10 may be inserted and guided into or proximate the tissue treatment region using the endoscope 12.
In the embodiment illustrated in
In one embodiment, the electrical ablation system 10 may comprise an electrical ablation device 20, a plurality of electrical conductors 18, a handpiece 16 comprising an activation switch 62, and an energy source 14, such as an electrical waveform generator, electrically coupled to the activation switch 62 and the electrical ablation device 20. The electrical ablation device 20 comprises a relatively flexible member or shaft 22 that may be introduced to the tissue treatment region using a variety of known techniques such as an open incision and a trocar, through one of more of the working channels of the endoscope 12, percutaneously, or transcutaneously, for example.
In one embodiment, one or more electrodes (e.g., needle electrodes, balloon electrodes), such as first and second electrodes 24a,b, extend out from the distal end of the electrical ablation device 20. In one embodiment, the first electrode 24a may be configured as the positive electrode and the second electrode 24b may be configured as the negative electrode. The first electrode 24a is electrically connected to a first electrical conductor 18a, or similar electrically conductive lead or wire, which is coupled to the positive terminal of the energy source 14 through the activation switch 62. The second electrode 24b is electrically connected to a second electrical conductor 18b, or similar electrically conductive lead or wire, which is coupled to the negative terminal of the energy source 14 through the activation switch 62. The electrical conductors 18a,b are electrically insulated from each other and surrounding structures, except for the electrical connections to the respective electrodes 24a,b. In various embodiments, the electrical ablation device 20 may be configured to be introduced into or proximate the tissue treatment region using the endoscope 12 (laparoscope or thoracoscope), open surgical procedures, or external and non-invasive medical procedures. The electrodes 24a,b may be referred to herein as endoscopic or laparoscopic electrodes, although variations thereof may be inserted transcutaneously or percutaneously. As previously discussed, either one or both electrodes 24a,b may be adapted and configured to slideably move in and out of a cannula, lumen, or channel defined within the flexible shaft 22.
Once the electrodes 24a,b are positioned at the desired location into or proximate the tissue treatment region, the electrodes 24a,b may be connected to or disconnected from the energy source 14 by actuating or de-actuating the switch 62 on the handpiece 16. The switch 62 may be operated manually or may be mounted on a foot switch (not shown), for example. The electrodes 24a,b deliver electric field pulses to the undesirable tissue. The electric field pulses may be characterized based on various parameters such as pulse shape, amplitude, frequency, and duration. The electric field pulses may be sufficient to induce irreversible electroporation in the undesirable tissue. The induced potential depends on a variety of conditions such as tissue type, cell size, and electrical pulse parameters. The primary electrical pulse parameter affecting the transmembrane potential for a specific tissue type is the amplitude of the electric field and pulse length that the tissue is exposed to.
In one embodiment, a protective sleeve or sheath 26 may be slideably disposed over the flexible shaft 22 and within a handle 28. In another embodiment, the sheath 26 may be slideably disposed within the flexible shaft 22 and the handle 28, without limitation. The sheath 26 is slideable and may be located over the electrodes 24a,b to protect the trocar and prevent accidental piercing when the electrical ablation device 20 is advanced therethrough. Either one or both of the electrodes 24a,b of the electrical ablation device 20 may be adapted and configured to slideably move in and out of a cannula, lumen, or channel formed within the flexible shaft 22. The second electrode 24b may be fixed in place. The second electrode 24b may provide a pivot about which the first electrode 24a can be moved in an arc to other points in the tissue treatment region to treat larger portions of the diseased tissue that cannot be treated by fixing the electrodes 24a,b in one location. In one embodiment, either one or both of the electrodes 24a,b may be adapted and configured to slideably move in and out of a working channel formed within a flexible shaft 32 of the flexible endoscope 12 or may be located independently of the flexible endoscope 12. Various features of the first and second electrodes 24a,b are described in more detail in
In one embodiment, the first and second electrical conductors 18a,b may be provided through the handle 28. In the illustrated embodiment, the first electrode 24a can be slideably moved in and out of the distal end of the flexible shaft 22 using a slide member 30 to retract and/or advance the first electrode 24a. In various embodiments either or both electrodes 24a,b may be coupled to the slide member 30, or additional slide members, to advance and retract the electrodes 24a,b, e.g., position the electrodes 24a,b. In the illustrated embodiment, the first electrical conductor 18a coupled to the first electrode 24a is coupled to the slide member 30. In this manner, the first electrode 24a, which is slideably movable within the cannula, lumen, or channel defined by the flexible shaft 22, can advanced and retracted with the slide member 30.
In various other embodiments, transducers or sensors may be located in the handle 28 of the electrical ablation device 20 to sense the force with which the electrodes 24a,b penetrate the tissue in the tissue treatment zone. This feedback information may be useful to determine whether either one or both of the electrodes 24a,b have been properly inserted in the tissue treatment region. As is particularly well known, cancerous tumor tissue tends to be denser than healthy tissue and thus greater force is required to insert the electrodes 24a,b therein. The transducers or sensors 29 can provide feedback to the operator, surgeon, or clinician to physically sense when the electrodes 24a,b are placed within the cancerous tumor. The feedback information provided by the transducers or sensors 29 may be processed and displayed by circuits located either internally or externally to the energy source 14. The sensor 29 readings may be employed to determine whether the electrodes 24a,b have been properly located within the cancerous tumor thereby assuring that a suitable margin of error has been achieved in locating the electrodes 24a,b.
In one embodiment, the input to the energy source 14 may be connected to a commercial power supply by way of a plug (not shown). The output of the energy source 14 is coupled to the electrodes 24a,b, which may be energized using the activation switch 62 on the handpiece 16, or in one embodiment, an activation switch mounted on a foot activated pedal (not shown). The energy source 14 may be configured to produce electrical energy suitable for electrical ablation, as described in more detail below.
In one embodiment, the electrodes 24a,b are adapted and configured to electrically couple to the energy source 14 (e.g., generator, waveform generator). Once electrical energy is coupled to the electrodes 24a,b, an electric field is formed in the tissue from the voltage applied at the electrodes 24a,b. The energy source 14 may be configured to generate electric pulses at a predetermined frequency, amplitude, pulse length, and/or polarity that are suitable to induce irreversible electroporation to ablate substantial volumes of undesirable tissue in the treatment region. For example, the energy source 14 may be configured to deliver DC electric pulses having a predetermined frequency, amplitude, pulse length, and/or polarity suitable to induce irreversible electroporation to ablate substantial volumes of undesirable tissue in the treatment region. The DC pulses may be positive or negative relative to a particular reference polarity. The polarity of the DC pulses may be reversed or inverted from positive-to-negative or negative-to-positive a predetermined number of times to induce irreversible electroporation to ablate substantial volumes of undesirable tissue in the treatment region.
In one embodiment, a timing circuit may be coupled to the output of the energy source 14 to generate electric pulses. The timing circuit may comprise one or more suitable switching elements to produce the electric pulses. For example, the energy source 14 may produce a series of n electric pulses (where n is any positive integer) of sufficient amplitude and duration to induce irreversible electroporation suitable for tissue ablation when the n electric pulses are applied to the electrodes 24a,b. In one embodiment, the electric pulses may have a fixed or variable pulse length, amplitude, and/or frequency.
The electrical ablation device 20 may be operated either in bipolar or monopolar mode. In bipolar mode, the first electrode 24a is electrically connected to a first polarity and the second electrode 24b is electrically connected to the opposite polarity. For example, in monopolar mode, the first electrode 24a is coupled to a prescribed voltage and the second electrode 24b is set to ground. In the illustrated embodiment, the energy source 14 may be configured to operate in either the bipolar or monopolar modes with the electrical ablation system 10. In bipolar mode, the first electrode 24a is electrically connected to a prescribed voltage of one polarity and the second electrode 24b is electrically connected to a prescribed voltage of the opposite polarity. When more than two electrodes are used, the polarity of the electrodes may be alternated so that any two adjacent electrodes may have either the same or opposite polarities, for example.
In monopolar mode, it is not necessary that the patient be grounded with a grounding pad. Since a monopolar energy source 14 is typically constructed to operate upon sensing a ground pad connection to the patient, the negative electrode of the energy source 14 may be coupled to an impedance simulation circuit. In this manner, the impedance circuit simulates a connection to the ground pad and thus is able to activate the energy source 14. It will be appreciated that in monopolar mode, the impedance circuit can be electrically connected in series with either one of the electrodes 24a,b that would otherwise be attached to a grounding pad.
In one embodiment, the energy source 14 may be configured to produce RF waveforms at predetermined frequencies, amplitudes, pulse widths or durations, and/or polarities suitable for electrical ablation of cells in the tissue treatment region. One example of a suitable RF energy source is a commercially available conventional, bipolar/monopolar electrosurgical RF generator such as Model Number ICC 350, available from Erbe, GmbH.
In one embodiment, the energy source 14 may be configured to produce destabilizing electrical potentials (e.g., fields) suitable to induce irreversible electroporation. The destabilizing electrical potentials may be in the form of bipolar/monopolar DC electric pulses suitable for inducing irreversible electroporation to ablate tissue undesirable tissue with the electrical ablation device 20. A commercially available energy source suitable for generating irreversible electroporation electric field pulses in bipolar or monopolar mode is a pulsed DC generator such as Model Number ECM 830, available from BTX Molecular Delivery Systems Boston, Mass. In bipolar mode, the first electrode 24a may be electrically coupled to a first polarity and the second electrode 24b may be electrically coupled to a second (e.g., opposite) polarity of the energy source 14. Bipolar/monopolar DC electric pulses may be produced at a variety of frequencies, amplitudes, pulse lengths, and/or polarities. Unlike RF ablation systems, however, which require high power and energy levels delivered into the tissue to heat and thermally destroy the tissue, irreversible electroporation requires very little energy input into the tissue to kill the undesirable tissue without the detrimental thermal effects because with irreversible electroporation the cells are destroyed by electric field potentials rather than heat.
In one embodiment, the energy source 14 may be coupled to the first and second electrodes 24a,b by either a wired or a wireless connection. In a wired connection, the energy source 14 is coupled to the electrodes 24a,b by way of the electrical conductors 18a,b, as shown. In a wireless connection, the electrical conductors 18a,b may be replaced with a first antenna (not shown) coupled the energy source 14 and a second antenna (not shown) coupled to the electrodes 24a,b, wherein the second antenna is remotely located from the first antenna.
In one embodiment, the energy source may comprise a wireless transmitter to deliver energy to the electrodes using wireless energy transfer techniques via one or more remotely positioned antennas. As previously discussed, wireless energy transfer or wireless power transmission is the process of transmitting electrical energy from the energy source 14 to an electrical load, e.g., the abnormal cells in the tissue treatment region, without using the interconnecting electrical conductors 18a,b. An electrical transformer is the simplest instance of wireless energy transfer. The primary and secondary circuits of a transformer are not directly connected. The transfer of energy takes place by electromagnetic coupling through a process known as mutual induction. Wireless power transfer technology using RF energy is produced by Powercast, Inc. The Powercast system can achieve a maximum output of 6 volts for a little over one meter. Other low-power wireless power technology has been proposed such as described in U.S. Pat. No. 6,967,462.
In one embodiment, the energy source 14 may be configured to produce DC electric pulses at frequencies in the range of about 1 Hz to about 10000 Hz, amplitudes in the range of about ±100 to about ±3000 VDC, and pulse lengths (e.g., pulse width, pulse duration) in the range of about 1 μs to about 100 ms. The polarity of the electric potentials coupled to the electrodes 24a,b may be reversed during the electrical ablation therapy. For example, initially, the DC electric pulses may have a positive polarity and an amplitude in the range of about +100 to about +3000 VDC. Subsequently, the polarity of the DC electric pulses may be reversed such that the amplitude is in the range of about −100 to about −3000 VDC. In one embodiment, the undesirable cells in the tissue treatment region may be electrically ablated with DC pulses suitable to induce irreversible electroporation at frequencies of about 10 Hz to about 100 Hz, amplitudes in the range of about +700 to about +1500 VDC, and pulse lengths of about 10 μs to about 50 μs. In another embodiment, the abnormal cells in the tissue treatment region may be electrically ablated with an electrical waveform having an amplitude of about +500 VDC and pulse duration of about 20 ms delivered at a pulse period T or repetition rate, frequency f=1/T, of about 10 Hz. It has been determined that an electric field strength of 1,000 V/cm is suitable for destroying living tissue by inducing irreversible electroporation.
Although the electrical ablation electrodes according to the described embodiments have been described in terms of the particular needle type electrodes 24a,b as shown and described in FIGS. 1 and 2A-D, those skilled in the art will appreciate that other configurations of electrical ablation electrodes may be employed for the ablation of undesirable tissue, without limitation. In one embodiment, the electrical ablation device 20 may comprise two or more fixed electrodes that are non-retractable. In another embodiment, the electrical ablation device 20 may comprise two or more retractable electrodes, one embodiment of which is described below with reference to
The electrical ablation device 100 comprises essentially the same components as the electrical ablation device 20 described with reference to
As previously discussed with reference to
The various embodiments of electrodes described in the present specification, e.g., the electrodes 24a,b, or 124a-m, may be configured for use with an electrical ablation device (not shown) comprising an elongated flexible shaft to house the needle electrodes 24a,b, or 124a-m, for example. The needle electrodes 24a,b, or 124a-m, are free to extend past a distal end of the electrical ablation device. The flexible shaft comprises multiple lumen formed therein to slideably receive the needle electrodes 24a,b, or 124a-m. A flexible sheath extends longitudinally from a handle portion to the distal end. The handle portion comprises multiple slide members received in respective slots defining respective walls. The slide members are coupled to the respective needle electrodes 24a,b, or 124a-m. The slide members are movable to advance and retract the electrode 24a,b, or 124a-m. The needle electrodes 24a,b, or 124a-m, may be independently movable by way of the respective slide members. The needle electrodes 24a,b, or 124a-m, may be deployed independently or simultaneously. An electrical ablation device (not shown) comprising an elongated flexible shaft to house multiple needle electrodes and a suitable handle is described with reference to
It will be appreciated that the electrical ablation devices 20, 100 described with referenced to
Once the electrical ablation device 20 has been suitably introduced into or proximate the undesirable tissue 48, the sheath 26 is retracted to expose the electrodes 24a,b (as shown in
This procedure may be repeated to destroy relatively larger portions of the undesirable tissue 48. The position 60 may be taken as a pivot point about which the first electrode 24a may be rotated in an arc of radius “r,” the distance between the first and second electrodes 24a,b. Prior to rotating about the second electrode 24b, the first electrode 24a is retracted by pulling on the slide member 30 (FIGS. 1 and 2A-D) in a direction toward the proximal end and rotating the electrical ablation device 20 about the pivot point formed at position 60 by the second electrode 24b. Once the first electrode 24a is rotated to a second position 58b, it is advanced to engage the undesirable tissue 48 at point 58b by pushing on the slide member 30 in a direction towards the distal end. A second necrotic zone 65b is formed upon energizing the first and second electrodes 24a,b. A third necrotic zone 65c is formed by retracting the first electrode 24a, pivoting about pivot point 60 and rotating the first electrode 24a to a new location, advancing the first electrode 24a into the undesirable tissue 48 and energizing the first and second electrodes 24a,b. This process may be repeated as often as necessary to create any number of necrotic zones 65p, where p is any positive integer, within multiple circular areas of radius “r,” for example, that is suitable to ablate the entire undesirable tissue 48 region. At anytime, the surgeon or clinician can reposition the first and second electrodes 24a,b and begin the process anew. In other embodiments, the electrical ablation device 100 comprising multiple needle electrodes 124a-m described with reference to
In various embodiments, as outlined above, a surgical instrument can comprise a first electrode and a second electrode, wherein at least one the first and second electrodes can be operably coupled to a power source. In certain embodiments, as also outlined above, a first electrode can be operably coupled with a positive terminal of a voltage source and the second electrode can be operably coupled with a negative terminal of the voltage source, for example. In at least one embodiment, the first and second electrodes can comprise columnar, or point, electrodes which can be inserted into the tissue of a patient. In various circumstances, a voltage potential can be applied to the two electrodes such that a magnetic field can be created therebetween in order to treat the tissue positioned intermediate the electrodes. In some circumstances, the voltage potential may be sufficient to permit current to flow between the electrodes. Various devices are disclosed in commonly-owned co-pending U.S. patent application Ser. No. 12/352,375, entitled ELECTRICAL ABLATION DEVICES, which was filed on Jan. 12, 2009, the entire disclosure of which is incorporated by reference herein. While such devices may be suitable for their intended purposes, other devices disclosed herein can provide various advantages.
In various embodiments, referring now to
In various embodiments, further to the above, sheath 226 can be moved between a distal position in which the distal ends 235a, 235b of electrodes 224a, 224b are positioned within the sheath 226 and a proximal position in which the distal ends 235a, 235b can extend distally from the distal end 223 of sheath 226. In at least one embodiment, the distal ends 235a, 235b of electrodes 224a, 224b can be recessed with respect to the distal end 223 of sheath 226 when sheath 226 is in its distal position. In use, the distal end 223 of sheath 226 can be positioned against tissue within a surgical site, for example, such that the electrodes 224a, 224b do not contact the tissue. Such embodiments may also allow the surgical instrument 200, or at least the distal end thereof, to be inserted through a trocar without the electrodes 224a, 224b coming into contact with, snagging on, and/or becoming damaged by the trocar. Once the distal end of the surgical instrument 200 has been suitably positioned relative to the targeted tissue, the sheath 226 can be retracted in order to expose the distal ends 235a, 235b of the electrodes 224a, 224b such that the electrodes can be inserted into the tissue. In various alternative embodiments, the distal ends 235a, 235b of electrodes 224a, 224b can be positioned in the same plane as the distal end of sheath 226 when the sheath 226 is in its distal-most position.
In various embodiments, as outlined above, the second portion 233 of handle 228 can be moved relative to the first portion 231 of handle 228 in order to move the sheath 226 relative to the electrodes 224a, 224b. In various circumstances, referring again to
In various embodiments, referring now to
In various embodiments, further to the above, insulative jacket 341a can comprise a tube having an aperture, wherein electrode 324a can extend through the aperture. In at least one embodiment, insulative jacket 341a can be mounted, or rigidly secured, to a handle portion of surgical instrument 300 and can extend along a substantial length of electrode 324a. The insulative jacket 341a can be configured such that the distal end 335a of electrode 324a is not surrounded by insulative jacket 341a and such that the distal end 335a of electrode 324a extends distally from the distal end 343a of insulative jacket 341a. Similar to the above, insulative jacket 341b can comprise a tube having an aperture, wherein electrode 324b can extend through the aperture. In at least one embodiment, insulative jacket 341b can be mounted, or rigidly secured, to a handle portion of surgical instrument 300 and can extend along the length of electrode 324b. The insulative jacket 341b can be configured such that the distal end 335b of electrode 324b is not surrounded by insulative jacket 341b and such that the distal end 335b of electrode 324b extends distally from the distal end 343b of insulative jacket 341b. In at least one such embodiment, the air gap between the electrodes 324a and 324b can be interrupted by the insulative jackets 341a, 341b except for the distance extending between the distal ends of the electrodes 324a, 324b and the distal ends of insulative jackets 341a, 341b.
Referring to
In various embodiments, referring now to
As outlined above, the insulative guard 441 of surgical instrument 400 can be biased into its distal position by compression spring 445. In at least one embodiment, referring to
When insulative guard 441 is displaced proximally, as outlined above, the guard 441 can compress spring 445. When spring 445 is compressed, the spring 445 can store energy therein and apply a biasing force to insulative guard 441 such that, as the electrodes 424a and 424b are extracted from the tissue, the spring 445 can displace the guard 441 distally toward the distal ends 443a and 443b of electrodes 424a and 424b. In at least one such embodiment, the distal end 451 of guard 441 can remain in contact with the tissue as the electrodes 424a and 424b are inserted into and extracted from the tissue. In various embodiments, as a result, the guard 441 can prevent, or at least reduce the possibility of, current arcing between the electrodes without passing through the tissue. Stated another way, the guard 441 can be sufficiently retracted when the electrodes 424a, 424b are inserted into tissue in order to permit current to flow between the portions of electrodes 424a, 424b within the tissue but, at the same time, sufficiently positioned against the tissue to prevent, or at least reduce the possibility of, current from flowing between the electrodes 424a, 424b at a location outside of the tissue. In various embodiments, as a result of the above, the insulative guard 441 and spring 445 arrangement can provide for a self-regulating, or self-retracting, system. In other embodiments, although not illustrated, the surgical instrument 400 can comprise an actuator configured to displace the insulative guard 441. In certain embodiments, other biasing means can be used in addition to or in lieu of a spring. In at least one embodiment, for example, a surgical instrument can comprise a motor mounted within a shaft of the surgical instrument, wherein the motor can apply a biasing force to an insulative guard in order to keep the guard biased against the tissue and yet the permit the guard to move relative to the electrodes.
In various embodiments, further to the above, surgical instrument 400 can further comprise means for controlling or defining the movement of insulative guard 441 as it is moved between its proximal and distal positions. In at least one embodiment, referring to
In various embodiments, a surgical instrument can include an electrode comprising a flexible portion which can be configured to conform to the surface of an organ, such as a patient's liver, for example, and/or any other suitable tissue to be treated. In certain embodiments, referring now to
In various embodiments, further to the above, the flexible mesh 525 can be comprised of a conductive material, such as copper and/or stainless steel, for example, wherein the flexible mesh can be operably connected with at least one conductor, such as conductor 518, for example, of the surgical instrument 500. In use, the flexible mesh 525 can be positioned relative to the tissue to be treated wherein, in at least one embodiment, a second electrode, such as electrode 524b, for example, can also be positioned relative to the tissue. Referring now to
In various circumstances, further to the above, it may be desirable to control or limit the size of necrotic tissue region 563a and/or the density of the necrotic tissue within region 563a. In certain embodiments, the amount and/or density of the necrotic tissue created around the electrode 524 can depend on the intensity, or density, of the current flowing from and/or to the electrode 524. In various circumstances, the field density of the current can depend on the size of the electrode 524. More particularly, a larger electrode 524 can produce a lower current field density surrounding the electrode 524 and, as a result, generate a smaller amount of necrotic tissue, whereas a smaller electrode 524 can produce a larger current field density and, as a result, generate a larger amount of necrotic tissue. In various embodiments, referring again to
As outlined above, referring again to
In various embodiments, referring now to
In various embodiments, referring now to
When electrodes 724a-724d are polarized by a power source, referring again to
In various embodiments, referring again to the graph 797a in
Viewing graphs 797a and 797b together, further to the above, the voltage field produced by surgical instrument 700 between about 6 cm and about 10 cm away from axis 799 in all directions could be represented by a single isoline, or isoplane, which surrounds the electrodes 724a-724d. When electrodes 724a-724d are positioned in tissue, such an isoplane can represent very little, if any, voltage gradient through the tissue which, as a result, can result in little, if any contraction of the tissue within the 6 cm to 10 cm region, for example. As outlined above, referring against to graphs 797a and 797b in
In various embodiments, referring now to
In various embodiments, further to the above, the first array of electrodes comprising electrodes 924a, 924b, and 924c can be set to a first polarity while the second array of electrodes comprising electrodes 924d, 924e, and 924f can be set to a second polarity. In certain embodiments, the polarity of the first array of electrodes can be adjusted simultaneously while the polarity of the second array of electrodes can be adjusted simultaneously, and independently, of the first array of electrodes. In various embodiments, the electrode 924a can be operably coupled to a first conductor, the electrode 924b can be operably coupled to a second conductor, the electrode 924c can be operably coupled to a third conductor, the electrode 924d can be operably coupled with a fourth conductor, the electrode 924e can be operably coupled with a fifth conductor, and the electrode 924f can be operably coupled with a sixth conductor. In at least one such embodiment, each of the conductors can be operably coupled with an output of a voltage source, wherein the voltage source can be configured to supply different voltage potentials to one, some, and/or all of the conductors and their corresponding electrodes. In the exemplary embodiment of surgical instrument 900, such a voltage source could supply six different voltage potentials, wherein, in at least one embodiment, each of the voltage potentials could be adjusted before, and/or during, the operation of the surgical instrument.
In certain embodiments, referring again to
The embodiments of the devices described herein may be introduced inside a patient using minimally invasive or open surgical techniques. In some instances it may be advantageous to introduce the devices inside the patient using a combination of minimally invasive and open surgical techniques. Minimally invasive techniques may provide more accurate and effective access to the treatment region for diagnostic and treatment procedures. To reach internal treatment regions within the patient, the devices described herein may be inserted through natural openings of the body such as the mouth, anus, and/or vagina, for example. Minimally invasive procedures performed by the introduction of various medical devices into the patient through a natural opening of the patient are known in the art as NOTES™ procedures. Some portions of the devices may be introduced to the tissue treatment region percutaneously or through small—keyhole—incisions.
Endoscopic minimally invasive surgical and diagnostic medical procedures are used to evaluate and treat internal organs by inserting a small tube into the body. The endoscope may have a rigid or a flexible tube. A flexible endoscope may be introduced either through a natural body opening (e.g., mouth, anus, and/or vagina) or via a trocar through a relatively small—keyhole—incision incisions (usually 0.5-1.5 cm). The endoscope can be used to observe surface conditions of internal organs, including abnormal or diseased tissue such as lesions and other surface conditions and capture images for visual inspection and photography. The endoscope may be adapted and configured with working channels for introducing medical instruments to the treatment region for taking biopsies, retrieving foreign objects, and/or performing surgical procedures.
Preferably, the various embodiments of the devices described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. Other sterilization techniques can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, and/or steam.
Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Number | Name | Date | Kind |
---|---|---|---|
645576 | Tesla | Mar 1900 | A |
649621 | Tesla | May 1900 | A |
787412 | Tesla | Apr 1905 | A |
1039354 | Bonadio | Sep 1912 | A |
1127948 | Wappler | Feb 1915 | A |
1482653 | Lilly | Feb 1924 | A |
1625602 | Gould et al. | Apr 1927 | A |
1916722 | Ende | Jul 1933 | A |
2028635 | Wappler | Jan 1936 | A |
2031682 | Wappler et al. | Feb 1936 | A |
2113246 | Wappler | Apr 1938 | A |
2155365 | Rankin | Apr 1939 | A |
2191858 | Moore | Feb 1940 | A |
2196620 | Attarian | Apr 1940 | A |
2388137 | Graumlich | Oct 1945 | A |
2493108 | Casey, Jr. | Jan 1950 | A |
2504152 | Riker et al. | Apr 1950 | A |
2938382 | De Graaf | May 1960 | A |
2952206 | Becksted | Sep 1960 | A |
3069195 | Buck | Dec 1962 | A |
3070088 | Brahos | Dec 1962 | A |
3170471 | Schnitzer | Feb 1965 | A |
3435824 | Gamponia | Apr 1969 | A |
3470876 | Barchilon | Oct 1969 | A |
3595239 | Petersen | Jul 1971 | A |
3669487 | Roberts et al. | Jun 1972 | A |
3746881 | Fitch et al. | Jul 1973 | A |
3799672 | Vurek | Mar 1974 | A |
3854473 | Matsuo | Dec 1974 | A |
3946740 | Bassett | Mar 1976 | A |
3948251 | Hosono | Apr 1976 | A |
3961632 | Moossun | Jun 1976 | A |
3965890 | Gauthier | Jun 1976 | A |
3994301 | Agris | Nov 1976 | A |
4011872 | Komiya | Mar 1977 | A |
4012812 | Black | Mar 1977 | A |
4085743 | Yoon | Apr 1978 | A |
4164225 | Johnson et al. | Aug 1979 | A |
4174715 | Hasson | Nov 1979 | A |
4178920 | Cawood, Jr. et al. | Dec 1979 | A |
4207873 | Kruy | Jun 1980 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4258716 | Sutherland | Mar 1981 | A |
4269174 | Adair | May 1981 | A |
4278077 | Mizumoto | Jul 1981 | A |
4285344 | Marshall | Aug 1981 | A |
4311143 | Komiya | Jan 1982 | A |
4329980 | Terada | May 1982 | A |
4396021 | Baumgartner | Aug 1983 | A |
4406656 | Hattler et al. | Sep 1983 | A |
4452246 | Bader et al. | Jun 1984 | A |
4461281 | Carson | Jul 1984 | A |
4491132 | Aikins | Jan 1985 | A |
4527331 | Lasner et al. | Jul 1985 | A |
4527564 | Eguchi et al. | Jul 1985 | A |
4538594 | Boebel et al. | Sep 1985 | A |
D281104 | Davison | Oct 1985 | S |
4569347 | Frisbie | Feb 1986 | A |
4580551 | Siegmund et al. | Apr 1986 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4653476 | Bonnet | Mar 1987 | A |
4655219 | Petruzzi | Apr 1987 | A |
4669470 | Brandfield | Jun 1987 | A |
4671477 | Cullen | Jun 1987 | A |
4677982 | Llinas et al. | Jul 1987 | A |
4685447 | Iversen et al. | Aug 1987 | A |
4711240 | Goldwasser et al. | Dec 1987 | A |
4712545 | Honkanen | Dec 1987 | A |
4721116 | Schintgen et al. | Jan 1988 | A |
4727600 | Avakian | Feb 1988 | A |
4733662 | DeSatnick et al. | Mar 1988 | A |
D295894 | Sharkany et al. | May 1988 | S |
4763669 | Jaeger | Aug 1988 | A |
4770188 | Chikama | Sep 1988 | A |
4815450 | Patel | Mar 1989 | A |
4823794 | Pierce | Apr 1989 | A |
4829999 | Auth | May 1989 | A |
4867140 | Hovis et al. | Sep 1989 | A |
4869238 | Opie et al. | Sep 1989 | A |
4869459 | Bourne | Sep 1989 | A |
4873979 | Hanna | Oct 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4911148 | Sosnowski et al. | Mar 1990 | A |
4926860 | Stice et al. | May 1990 | A |
4938214 | Specht et al. | Jul 1990 | A |
4950273 | Briggs | Aug 1990 | A |
4950285 | Wilk | Aug 1990 | A |
4953539 | Nakamura et al. | Sep 1990 | A |
4960133 | Hewson | Oct 1990 | A |
4977887 | Gouda | Dec 1990 | A |
4979950 | Transue et al. | Dec 1990 | A |
4984581 | Stice | Jan 1991 | A |
4994079 | Genese et al. | Feb 1991 | A |
5007917 | Evans | Apr 1991 | A |
5010876 | Henley et al. | Apr 1991 | A |
5020514 | Heckele | Jun 1991 | A |
5020535 | Parker et al. | Jun 1991 | A |
5025778 | Silverstein et al. | Jun 1991 | A |
5033169 | Bindon | Jul 1991 | A |
5037433 | Wilk et al. | Aug 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5046513 | Gatturna et al. | Sep 1991 | A |
5050585 | Takahashi | Sep 1991 | A |
5052372 | Shapiro | Oct 1991 | A |
5065516 | Dulebohn | Nov 1991 | A |
5066295 | Kozak et al. | Nov 1991 | A |
5108421 | Fowler | Apr 1992 | A |
5123913 | Wilk et al. | Jun 1992 | A |
5123914 | Cope | Jun 1992 | A |
5133727 | Bales et al. | Jul 1992 | A |
5147374 | Fernandez | Sep 1992 | A |
5174300 | Bales et al. | Dec 1992 | A |
5176126 | Chikama | Jan 1993 | A |
5190050 | Nitzsche | Mar 1993 | A |
5190555 | Wetter et al. | Mar 1993 | A |
5192284 | Pleatman | Mar 1993 | A |
5192300 | Fowler | Mar 1993 | A |
5197963 | Parins | Mar 1993 | A |
5201752 | Brown et al. | Apr 1993 | A |
5201908 | Jones | Apr 1993 | A |
5203785 | Slater | Apr 1993 | A |
5203787 | Noblitt et al. | Apr 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5217453 | Wilk | Jun 1993 | A |
5219357 | Honkanen et al. | Jun 1993 | A |
5219358 | Bendel et al. | Jun 1993 | A |
5222362 | Maus et al. | Jun 1993 | A |
5222965 | Haughton | Jun 1993 | A |
5234437 | Sepetka | Aug 1993 | A |
5234453 | Smith et al. | Aug 1993 | A |
5235964 | Abenaim | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5245460 | Allen et al. | Sep 1993 | A |
5246424 | Wilk | Sep 1993 | A |
5257999 | Slanetz, Jr. | Nov 1993 | A |
5259366 | Reydel et al. | Nov 1993 | A |
5263958 | deGuillebon et al. | Nov 1993 | A |
5273524 | Fox et al. | Dec 1993 | A |
5275607 | Lo et al. | Jan 1994 | A |
5275614 | Haber et al. | Jan 1994 | A |
5275616 | Fowler | Jan 1994 | A |
5284128 | Hart | Feb 1994 | A |
5284162 | Wilk | Feb 1994 | A |
5287845 | Faul et al. | Feb 1994 | A |
5287852 | Arkinstall | Feb 1994 | A |
5290299 | Fain et al. | Mar 1994 | A |
5290302 | Pericic | Mar 1994 | A |
5295977 | Cohen et al. | Mar 1994 | A |
5297536 | Wilk | Mar 1994 | A |
5297687 | Freed | Mar 1994 | A |
5301061 | Nakada et al. | Apr 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312333 | Churinetz et al. | May 1994 | A |
5312351 | Gerrone | May 1994 | A |
5312416 | Spaeth et al. | May 1994 | A |
5312423 | Rosenbluth et al. | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5320636 | Slater | Jun 1994 | A |
5324261 | Amundson et al. | Jun 1994 | A |
5325845 | Adair | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5330488 | Goldrath | Jul 1994 | A |
5330496 | Alferness | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5331971 | Bales et al. | Jul 1994 | A |
5334168 | Hemmer | Aug 1994 | A |
5334198 | Hart et al. | Aug 1994 | A |
5341815 | Cofone et al. | Aug 1994 | A |
5342396 | Cook | Aug 1994 | A |
5344428 | Griffiths | Sep 1994 | A |
5345927 | Bonutti | Sep 1994 | A |
5350391 | Iacovelli | Sep 1994 | A |
5352184 | Goldberg et al. | Oct 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5354302 | Ko | Oct 1994 | A |
5354311 | Kambin et al. | Oct 1994 | A |
5356381 | Ensminger et al. | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5360428 | Hutchinson, Jr. | Nov 1994 | A |
5364408 | Gordon | Nov 1994 | A |
5364410 | Failla et al. | Nov 1994 | A |
5366466 | Christian et al. | Nov 1994 | A |
5366467 | Lynch et al. | Nov 1994 | A |
5368605 | Miller, Jr. | Nov 1994 | A |
5370647 | Graber et al. | Dec 1994 | A |
5370679 | Atlee, III | Dec 1994 | A |
5374273 | Nakao et al. | Dec 1994 | A |
5374275 | Bradley et al. | Dec 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5377695 | An Haack | Jan 1995 | A |
5383877 | Clarke | Jan 1995 | A |
5383888 | Zvenyatsky et al. | Jan 1995 | A |
5386817 | Jones | Feb 1995 | A |
5387259 | Davidson | Feb 1995 | A |
5391174 | Weston | Feb 1995 | A |
5392789 | Slater et al. | Feb 1995 | A |
5395386 | Slater | Mar 1995 | A |
5401248 | Bencini | Mar 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5403328 | Shallman | Apr 1995 | A |
5403342 | Tovey et al. | Apr 1995 | A |
5403348 | Bonutti | Apr 1995 | A |
5405073 | Porter | Apr 1995 | A |
5405359 | Pierce | Apr 1995 | A |
5409478 | Gerry et al. | Apr 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5423821 | Pasque | Jun 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5439471 | Kerr | Aug 1995 | A |
5439478 | Palmer | Aug 1995 | A |
5441059 | Dannan | Aug 1995 | A |
5441494 | Ortiz | Aug 1995 | A |
5441498 | Perkins | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5445648 | Cook | Aug 1995 | A |
5449021 | Chikama | Sep 1995 | A |
5454827 | Aust et al. | Oct 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458131 | Wilk | Oct 1995 | A |
5458583 | McNeely et al. | Oct 1995 | A |
5460168 | Masubuchi et al. | Oct 1995 | A |
5460629 | Shlain et al. | Oct 1995 | A |
5462561 | Voda | Oct 1995 | A |
5465731 | Bell et al. | Nov 1995 | A |
5467763 | McMahon et al. | Nov 1995 | A |
5468250 | Paraschac et al. | Nov 1995 | A |
5470308 | Edwards et al. | Nov 1995 | A |
5470320 | Tiefenbrun et al. | Nov 1995 | A |
5478347 | Aranyi | Dec 1995 | A |
5478352 | Fowler | Dec 1995 | A |
5480404 | Kammerer et al. | Jan 1996 | A |
5482054 | Slater et al. | Jan 1996 | A |
5484451 | Akopov et al. | Jan 1996 | A |
5489256 | Adair | Feb 1996 | A |
5496347 | Hashiguchi et al. | Mar 1996 | A |
5499990 | Schülken et al. | Mar 1996 | A |
5499992 | Meade et al. | Mar 1996 | A |
5501692 | Riza | Mar 1996 | A |
5503616 | Jones | Apr 1996 | A |
5505686 | Willis et al. | Apr 1996 | A |
5507755 | Gresl et al. | Apr 1996 | A |
5511564 | Wilk | Apr 1996 | A |
5514157 | Nicholas et al. | May 1996 | A |
5518501 | Oneda et al. | May 1996 | A |
5522829 | Michalos | Jun 1996 | A |
5522830 | Aranyi | Jun 1996 | A |
5527321 | Hinchliffe | Jun 1996 | A |
5533418 | Wu et al. | Jul 1996 | A |
5536248 | Weaver et al. | Jul 1996 | A |
5538509 | Dunlap et al. | Jul 1996 | A |
5540648 | Yoon | Jul 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5554151 | Hinchliffe | Sep 1996 | A |
5555883 | Avitall | Sep 1996 | A |
5558133 | Bortoli et al. | Sep 1996 | A |
5562693 | Devlin et al. | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5569298 | Schnell | Oct 1996 | A |
5571090 | Sherts | Nov 1996 | A |
5573540 | Yoon | Nov 1996 | A |
5578030 | Levin | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5584845 | Hart | Dec 1996 | A |
5591179 | Edelstein | Jan 1997 | A |
5591205 | Fowler | Jan 1997 | A |
5593420 | Eubanks, Jr. et al. | Jan 1997 | A |
5595562 | Grier | Jan 1997 | A |
5597378 | Jervis | Jan 1997 | A |
5601573 | Fogelberg et al. | Feb 1997 | A |
5601588 | Tonomura et al. | Feb 1997 | A |
5601602 | Fowler | Feb 1997 | A |
5604531 | Iddan et al. | Feb 1997 | A |
5607389 | Edwards et al. | Mar 1997 | A |
5607406 | Hernandez et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5609601 | Kolesa et al. | Mar 1997 | A |
5613975 | Christy | Mar 1997 | A |
5616117 | Dinkler et al. | Apr 1997 | A |
5618303 | Marlow et al. | Apr 1997 | A |
5620415 | Lucey et al. | Apr 1997 | A |
5624399 | Ackerman | Apr 1997 | A |
5624431 | Gerry et al. | Apr 1997 | A |
5626578 | Tihon | May 1997 | A |
5628732 | Antoon, Jr. et al. | May 1997 | A |
5630782 | Adair | May 1997 | A |
5643283 | Younker | Jul 1997 | A |
5643292 | Hart | Jul 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
5644798 | Shah | Jul 1997 | A |
5645083 | Essig et al. | Jul 1997 | A |
5645565 | Rudd et al. | Jul 1997 | A |
5649372 | Souza | Jul 1997 | A |
5653677 | Okada et al. | Aug 1997 | A |
5653690 | Booth et al. | Aug 1997 | A |
5653722 | Kieturakis | Aug 1997 | A |
5657755 | Desai | Aug 1997 | A |
5662621 | Lafontaine | Sep 1997 | A |
5662663 | Shallman | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5669875 | van Eerdenburg | Sep 1997 | A |
5681324 | Kammerer et al. | Oct 1997 | A |
5681330 | Hughett et al. | Oct 1997 | A |
5685820 | Riek et al. | Nov 1997 | A |
5690606 | Slotman | Nov 1997 | A |
5690656 | Cope et al. | Nov 1997 | A |
5690660 | Kauker et al. | Nov 1997 | A |
5695448 | Kimura et al. | Dec 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5695511 | Cano et al. | Dec 1997 | A |
5700275 | Bell et al. | Dec 1997 | A |
5702438 | Avitall | Dec 1997 | A |
5704892 | Adair | Jan 1998 | A |
5709708 | Thal | Jan 1998 | A |
5711921 | Langford | Jan 1998 | A |
5716326 | Dannan | Feb 1998 | A |
5716375 | Fowler | Feb 1998 | A |
5728094 | Edwards | Mar 1998 | A |
5730740 | Wales et al. | Mar 1998 | A |
5735849 | Baden et al. | Apr 1998 | A |
5741234 | Aboul-Hosn | Apr 1998 | A |
5741278 | Stevens | Apr 1998 | A |
5741285 | McBrayer et al. | Apr 1998 | A |
5741429 | Donadio, III et al. | Apr 1998 | A |
5743456 | Jones et al. | Apr 1998 | A |
5746759 | Meade et al. | May 1998 | A |
5749826 | Faulkner | May 1998 | A |
5749881 | Sackier et al. | May 1998 | A |
5749889 | Bacich et al. | May 1998 | A |
5752951 | Yanik | May 1998 | A |
5755731 | Grinberg | May 1998 | A |
5762604 | Kieturakis | Jun 1998 | A |
5766167 | Eggers et al. | Jun 1998 | A |
5766170 | Eggers | Jun 1998 | A |
5766205 | Zvenyatsky et al. | Jun 1998 | A |
5769849 | Eggers | Jun 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
5779716 | Cano et al. | Jul 1998 | A |
5779727 | Orejola | Jul 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5782861 | Cragg et al. | Jul 1998 | A |
5782866 | Wenstrom, Jr. | Jul 1998 | A |
5791022 | Bohman | Aug 1998 | A |
5792113 | Kramer et al. | Aug 1998 | A |
5792153 | Swain et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5797835 | Green | Aug 1998 | A |
5797928 | Kogasaka | Aug 1998 | A |
5797939 | Yoon | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5797959 | Castro et al. | Aug 1998 | A |
5803903 | Athas et al. | Sep 1998 | A |
5808665 | Green | Sep 1998 | A |
5810806 | Ritchart et al. | Sep 1998 | A |
5810849 | Kontos | Sep 1998 | A |
5810865 | Koscher et al. | Sep 1998 | A |
5810876 | Kelleher | Sep 1998 | A |
5810877 | Roth et al. | Sep 1998 | A |
5813976 | Filipi et al. | Sep 1998 | A |
5814058 | Carlson et al. | Sep 1998 | A |
5817061 | Goodwin et al. | Oct 1998 | A |
5817107 | Schaller | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5819736 | Avny et al. | Oct 1998 | A |
5823947 | Yoon et al. | Oct 1998 | A |
5824071 | Nelson et al. | Oct 1998 | A |
5827276 | LeVeen et al. | Oct 1998 | A |
5827281 | Levin | Oct 1998 | A |
5827299 | Thomason et al. | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5830231 | Geiges, Jr. | Nov 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5833700 | Fogelberg et al. | Nov 1998 | A |
5833703 | Manushakian | Nov 1998 | A |
5836960 | Kolesa et al. | Nov 1998 | A |
5843017 | Yoon | Dec 1998 | A |
5843121 | Yoon | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5853374 | Hart et al. | Dec 1998 | A |
5855585 | Kontos | Jan 1999 | A |
5860913 | Yamaya et al. | Jan 1999 | A |
5860995 | Berkelaar | Jan 1999 | A |
5868762 | Cragg et al. | Feb 1999 | A |
5876411 | Kontos | Mar 1999 | A |
5882331 | Sasaki | Mar 1999 | A |
5882344 | Stouder, Jr. | Mar 1999 | A |
5893846 | Bales et al. | Apr 1999 | A |
5893874 | Bourque et al. | Apr 1999 | A |
5893875 | O'Connor et al. | Apr 1999 | A |
5897487 | Ouchi | Apr 1999 | A |
5899919 | Eubanks, Jr. et al. | May 1999 | A |
5902254 | Magram | May 1999 | A |
5904702 | Ek et al. | May 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5908429 | Yoon | Jun 1999 | A |
5911737 | Lee et al. | Jun 1999 | A |
5916146 | Allotta et al. | Jun 1999 | A |
5916147 | Boury | Jun 1999 | A |
5921993 | Yoon | Jul 1999 | A |
5921997 | Fogelberg et al. | Jul 1999 | A |
5922008 | Gimpelson | Jul 1999 | A |
5925052 | Simmons | Jul 1999 | A |
5928255 | Meade et al. | Jul 1999 | A |
5928266 | Kontos | Jul 1999 | A |
5936536 | Morris | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5951547 | Gough et al. | Sep 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
5954720 | Wilson et al. | Sep 1999 | A |
5954731 | Yoon | Sep 1999 | A |
5957936 | Yoon et al. | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5957953 | DiPoto et al. | Sep 1999 | A |
5964782 | Lafontaine et al. | Oct 1999 | A |
5971995 | Rousseau | Oct 1999 | A |
5972002 | Bark et al. | Oct 1999 | A |
5976074 | Moriyama | Nov 1999 | A |
5976075 | Beane et al. | Nov 1999 | A |
5976130 | McBrayer et al. | Nov 1999 | A |
5976131 | Guglielmi et al. | Nov 1999 | A |
5980539 | Kontos | Nov 1999 | A |
5980556 | Giordano et al. | Nov 1999 | A |
5984938 | Yoon | Nov 1999 | A |
5984939 | Yoon | Nov 1999 | A |
5984950 | Cragg et al. | Nov 1999 | A |
5989182 | Hori et al. | Nov 1999 | A |
5993447 | Blewett et al. | Nov 1999 | A |
5993474 | Ouchi | Nov 1999 | A |
5995875 | Blewett et al. | Nov 1999 | A |
5997555 | Kontos | Dec 1999 | A |
6001120 | Levin | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6004330 | Middleman et al. | Dec 1999 | A |
6007566 | Wenstrom, Jr. | Dec 1999 | A |
6010515 | Swain et al. | Jan 2000 | A |
6012494 | Balazs | Jan 2000 | A |
6016452 | Kasevich | Jan 2000 | A |
6017356 | Frederick et al. | Jan 2000 | A |
6019770 | Christoudias | Feb 2000 | A |
6024708 | Bales et al. | Feb 2000 | A |
6024747 | Kontos | Feb 2000 | A |
6027522 | Palmer | Feb 2000 | A |
6030365 | Laufer | Feb 2000 | A |
6030384 | Nezhat | Feb 2000 | A |
6030634 | Wu et al. | Feb 2000 | A |
6033399 | Gines | Mar 2000 | A |
6036685 | Mueller | Mar 2000 | A |
6053927 | Hamas | Apr 2000 | A |
6053937 | Edwards et al. | Apr 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6068603 | Suzuki | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6071233 | Ishikawa et al. | Jun 2000 | A |
6074408 | Freeman | Jun 2000 | A |
6086530 | Mack | Jul 2000 | A |
6090105 | Zepeda et al. | Jul 2000 | A |
6090108 | McBrayer et al. | Jul 2000 | A |
6090129 | Ouchi | Jul 2000 | A |
6096046 | Weiss | Aug 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6102926 | Tartaglia et al. | Aug 2000 | A |
6106473 | Violante et al. | Aug 2000 | A |
6106521 | Blewett et al. | Aug 2000 | A |
6109852 | Shahinpoor et al. | Aug 2000 | A |
6110154 | Shimomura et al. | Aug 2000 | A |
6110183 | Cope | Aug 2000 | A |
6113593 | Tu et al. | Sep 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6139555 | Hart et al. | Oct 2000 | A |
6141037 | Upton et al. | Oct 2000 | A |
6146391 | Cigaina | Nov 2000 | A |
6148222 | Ramsey, III | Nov 2000 | A |
6149653 | Deslauriers | Nov 2000 | A |
6149662 | Pugliesi et al. | Nov 2000 | A |
6152920 | Thompson et al. | Nov 2000 | A |
6156006 | Brosens et al. | Dec 2000 | A |
6159200 | Verdura et al. | Dec 2000 | A |
6165175 | Wampler et al. | Dec 2000 | A |
6165184 | Verdura et al. | Dec 2000 | A |
6168570 | Ferrera | Jan 2001 | B1 |
6168605 | Measamer et al. | Jan 2001 | B1 |
6169269 | Maynard | Jan 2001 | B1 |
6170130 | Hamilton et al. | Jan 2001 | B1 |
6179776 | Adams et al. | Jan 2001 | B1 |
6179832 | Jones et al. | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6183420 | Douk et al. | Feb 2001 | B1 |
6190353 | Makower et al. | Feb 2001 | B1 |
6190383 | Schmaltz et al. | Feb 2001 | B1 |
6190384 | Ouchi | Feb 2001 | B1 |
6190399 | Palmer et al. | Feb 2001 | B1 |
6203533 | Ouchi | Mar 2001 | B1 |
6206872 | Lafond et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6206904 | Ouchi | Mar 2001 | B1 |
6210409 | Ellman et al. | Apr 2001 | B1 |
6214007 | Anderson | Apr 2001 | B1 |
6214028 | Yoon et al. | Apr 2001 | B1 |
6216043 | Swanson et al. | Apr 2001 | B1 |
6228096 | Marchand | May 2001 | B1 |
6231506 | Hu et al. | May 2001 | B1 |
6234958 | Snoke et al. | May 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6246914 | de la Rama et al. | Jun 2001 | B1 |
6258064 | Smith et al. | Jul 2001 | B1 |
6261242 | Roberts et al. | Jul 2001 | B1 |
6264664 | Avellanet | Jul 2001 | B1 |
6270497 | Sekino et al. | Aug 2001 | B1 |
6270505 | Yoshida et al. | Aug 2001 | B1 |
6277136 | Bonutti | Aug 2001 | B1 |
6283963 | Regula | Sep 2001 | B1 |
6293909 | Chu et al. | Sep 2001 | B1 |
6293952 | Brosens et al. | Sep 2001 | B1 |
6296630 | Altman et al. | Oct 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6322578 | Houle et al. | Nov 2001 | B1 |
6325534 | Hawley et al. | Dec 2001 | B1 |
6326177 | Schoenbach et al. | Dec 2001 | B1 |
6328730 | Harkrider, Jr. | Dec 2001 | B1 |
6350267 | Stefanchik | Feb 2002 | B1 |
6350278 | Lenker et al. | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6352543 | Cole | Mar 2002 | B1 |
6355013 | van Muiden | Mar 2002 | B1 |
6355035 | Manushakian | Mar 2002 | B1 |
6361534 | Chen et al. | Mar 2002 | B1 |
6364879 | Chen et al. | Apr 2002 | B1 |
6368340 | Malecki et al. | Apr 2002 | B2 |
6371956 | Wilson et al. | Apr 2002 | B1 |
6379366 | Fleischman et al. | Apr 2002 | B1 |
6383195 | Richard | May 2002 | B1 |
6383197 | Conlon et al. | May 2002 | B1 |
6387671 | Rubinsky et al. | May 2002 | B1 |
6391029 | Hooven et al. | May 2002 | B1 |
6398708 | Hastings et al. | Jun 2002 | B1 |
6402735 | Langevin | Jun 2002 | B1 |
6402746 | Whayne et al. | Jun 2002 | B1 |
6406440 | Stefanchik | Jun 2002 | B1 |
6409727 | Bales et al. | Jun 2002 | B1 |
6409733 | Conlon et al. | Jun 2002 | B1 |
6419639 | Walther et al. | Jul 2002 | B2 |
6419641 | Mark et al. | Jul 2002 | B1 |
6427089 | Knowlton | Jul 2002 | B1 |
6431500 | Jacobs et al. | Aug 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6443970 | Schulze et al. | Sep 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6447511 | Slater | Sep 2002 | B1 |
6447523 | Middleman et al. | Sep 2002 | B1 |
6454783 | Piskun | Sep 2002 | B1 |
6454785 | De Hoyos Garza | Sep 2002 | B2 |
6458076 | Pruitt | Oct 2002 | B1 |
6464701 | Hooven et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6470218 | Behl | Oct 2002 | B1 |
6475104 | Lutz et al. | Nov 2002 | B1 |
6485411 | Konstorum et al. | Nov 2002 | B1 |
6489745 | Koreis | Dec 2002 | B1 |
6491626 | Stone et al. | Dec 2002 | B1 |
6491627 | Komi | Dec 2002 | B1 |
6491691 | Morley et al. | Dec 2002 | B1 |
6493590 | Wessman et al. | Dec 2002 | B1 |
6494893 | Dubrul et al. | Dec 2002 | B2 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6503192 | Ouchi | Jan 2003 | B1 |
6506190 | Walshe | Jan 2003 | B1 |
6508827 | Manhes | Jan 2003 | B1 |
6514239 | Shimmura et al. | Feb 2003 | B2 |
6520954 | Ouchi | Feb 2003 | B2 |
6526320 | Mitchell | Feb 2003 | B2 |
6527782 | Hogg et al. | Mar 2003 | B2 |
6535764 | Imran et al. | Mar 2003 | B2 |
6537200 | Leysieffer et al. | Mar 2003 | B2 |
6543456 | Freeman | Apr 2003 | B1 |
6551270 | Bimbo et al. | Apr 2003 | B1 |
6554766 | Maeda et al. | Apr 2003 | B2 |
6554823 | Palmer et al. | Apr 2003 | B2 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558384 | Mayenberger | May 2003 | B2 |
6562035 | Levin | May 2003 | B1 |
6562052 | Nobles et al. | May 2003 | B2 |
6569159 | Edwards et al. | May 2003 | B1 |
6572629 | Kalloo et al. | Jun 2003 | B2 |
6572635 | Bonutti | Jun 2003 | B1 |
6575988 | Rousseau | Jun 2003 | B2 |
6579311 | Makower | Jun 2003 | B1 |
6581889 | Carpenter et al. | Jun 2003 | B2 |
6585642 | Christopher | Jul 2003 | B2 |
6585717 | Wittenberger et al. | Jul 2003 | B1 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6592559 | Pakter et al. | Jul 2003 | B1 |
6592603 | Lasner | Jul 2003 | B2 |
6602262 | Griego et al. | Aug 2003 | B2 |
6605105 | Cuschieri et al. | Aug 2003 | B1 |
6610072 | Christy et al. | Aug 2003 | B1 |
6610074 | Santilli | Aug 2003 | B2 |
6613038 | Bonutti et al. | Sep 2003 | B2 |
6613068 | Ouchi | Sep 2003 | B2 |
6616632 | Sharp et al. | Sep 2003 | B2 |
6620193 | Lau et al. | Sep 2003 | B1 |
6623448 | Slater | Sep 2003 | B2 |
6626919 | Swanstrom | Sep 2003 | B1 |
6632229 | Yamanouchi | Oct 2003 | B1 |
6632234 | Kieturakis et al. | Oct 2003 | B2 |
6638275 | McGaffigan et al. | Oct 2003 | B1 |
6638286 | Burbank et al. | Oct 2003 | B1 |
6645225 | Atkinson | Nov 2003 | B1 |
6652518 | Wellman et al. | Nov 2003 | B2 |
6652521 | Schulze | Nov 2003 | B2 |
6652551 | Heiss | Nov 2003 | B1 |
6656194 | Gannoe et al. | Dec 2003 | B1 |
6663641 | Kovac et al. | Dec 2003 | B1 |
6663655 | Ginn et al. | Dec 2003 | B2 |
6666854 | Lange | Dec 2003 | B1 |
6672338 | Esashi et al. | Jan 2004 | B1 |
6673058 | Snow | Jan 2004 | B2 |
6673087 | Chang et al. | Jan 2004 | B1 |
6673092 | Bacher | Jan 2004 | B1 |
6679882 | Kornerup | Jan 2004 | B1 |
6685628 | Vu | Feb 2004 | B2 |
6685724 | Haluck | Feb 2004 | B1 |
6692445 | Roberts et al. | Feb 2004 | B2 |
6692462 | Mackenzie et al. | Feb 2004 | B2 |
6692493 | McGovern et al. | Feb 2004 | B2 |
6699180 | Kobayashi | Mar 2004 | B2 |
6699256 | Logan et al. | Mar 2004 | B1 |
6699263 | Cope | Mar 2004 | B2 |
6706018 | Westlund et al. | Mar 2004 | B2 |
6708066 | Herbst et al. | Mar 2004 | B2 |
6709188 | Ushimaru | Mar 2004 | B2 |
6709445 | Boebel et al. | Mar 2004 | B2 |
6716226 | Sixto, Jr. et al. | Apr 2004 | B2 |
6731875 | Kartalopoulos | May 2004 | B1 |
6736822 | McClellan et al. | May 2004 | B2 |
6740030 | Martone et al. | May 2004 | B2 |
6743166 | Berci et al. | Jun 2004 | B2 |
6743226 | Cosman et al. | Jun 2004 | B2 |
6743239 | Kuehn et al. | Jun 2004 | B1 |
6743240 | Smith et al. | Jun 2004 | B2 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6749609 | Lunsford et al. | Jun 2004 | B1 |
6752768 | Burdorff et al. | Jun 2004 | B2 |
6752811 | Chu et al. | Jun 2004 | B2 |
6752822 | Jespersen | Jun 2004 | B2 |
6758857 | Cioanta et al. | Jul 2004 | B2 |
6761685 | Adams et al. | Jul 2004 | B2 |
6761718 | Madsen | Jul 2004 | B2 |
6761722 | Cole et al. | Jul 2004 | B2 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6776787 | Phung et al. | Aug 2004 | B2 |
6780151 | Grabover et al. | Aug 2004 | B2 |
6780352 | Jacobson | Aug 2004 | B2 |
6783491 | Saadat et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786864 | Matsuura et al. | Sep 2004 | B2 |
6786905 | Swanson et al. | Sep 2004 | B2 |
6788977 | Fenn et al. | Sep 2004 | B2 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6790217 | Schulze et al. | Sep 2004 | B2 |
6795728 | Chornenky et al. | Sep 2004 | B2 |
6800056 | Tartaglia et al. | Oct 2004 | B2 |
6808491 | Kortenbach et al. | Oct 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6818007 | Dampney et al. | Nov 2004 | B1 |
6824548 | Smith et al. | Nov 2004 | B2 |
6830545 | Bendall | Dec 2004 | B2 |
6836688 | Ingle et al. | Dec 2004 | B2 |
6837847 | Ewers et al. | Jan 2005 | B2 |
6840246 | Downing | Jan 2005 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6843794 | Sixto, Jr. et al. | Jan 2005 | B2 |
6861250 | Cole et al. | Mar 2005 | B1 |
6866627 | Nozue | Mar 2005 | B2 |
6866628 | Goodman et al. | Mar 2005 | B2 |
6869394 | Ishibiki | Mar 2005 | B2 |
6878106 | Herrmann | Apr 2005 | B1 |
6878110 | Yang et al. | Apr 2005 | B2 |
6881213 | Ryan et al. | Apr 2005 | B2 |
6881216 | Di Caprio et al. | Apr 2005 | B2 |
6884213 | Raz et al. | Apr 2005 | B2 |
6887255 | Shimm | May 2005 | B2 |
6889089 | Behl et al. | May 2005 | B2 |
6896683 | Gadberry et al. | May 2005 | B1 |
6896692 | Ginn et al. | May 2005 | B2 |
6899710 | Hooven | May 2005 | B2 |
6908427 | Fleener et al. | Jun 2005 | B2 |
6908476 | Jud et al. | Jun 2005 | B2 |
6913613 | Schwarz et al. | Jul 2005 | B2 |
6916284 | Moriyama | Jul 2005 | B2 |
6918871 | Schulze | Jul 2005 | B2 |
6918908 | Bonner et al. | Jul 2005 | B2 |
6926725 | Cooke et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6932824 | Roop et al. | Aug 2005 | B1 |
6932827 | Cole | Aug 2005 | B2 |
6932834 | Lizardi et al. | Aug 2005 | B2 |
6936003 | Iddan | Aug 2005 | B2 |
6939327 | Hall et al. | Sep 2005 | B2 |
6942613 | Ewers et al. | Sep 2005 | B2 |
6944490 | Chow | Sep 2005 | B1 |
6945472 | Wuttke et al. | Sep 2005 | B2 |
6945979 | Kortenbach et al. | Sep 2005 | B2 |
6955683 | Bonutti | Oct 2005 | B2 |
6958035 | Friedman et al. | Oct 2005 | B2 |
6960162 | Saadat et al. | Nov 2005 | B2 |
6960163 | Ewers et al. | Nov 2005 | B2 |
6962587 | Johnson et al. | Nov 2005 | B2 |
6964662 | Kidooka | Nov 2005 | B2 |
6966909 | Marshall et al. | Nov 2005 | B2 |
6966919 | Sixto, Jr. et al. | Nov 2005 | B2 |
6967462 | Landis | Nov 2005 | B1 |
6971988 | Orban, III | Dec 2005 | B2 |
6972017 | Smith et al. | Dec 2005 | B2 |
6974411 | Belson | Dec 2005 | B2 |
6976992 | Sachatello et al. | Dec 2005 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6984205 | Gazdzinski | Jan 2006 | B2 |
6986774 | Middleman et al. | Jan 2006 | B2 |
6988987 | Ishikawa et al. | Jan 2006 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6991631 | Woloszko et al. | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7001341 | Gellman et al. | Feb 2006 | B2 |
7008375 | Weisel | Mar 2006 | B2 |
7008419 | Shadduck | Mar 2006 | B2 |
7009634 | Iddan et al. | Mar 2006 | B2 |
7010340 | Scarantino et al. | Mar 2006 | B2 |
7020531 | Colliou et al. | Mar 2006 | B1 |
7025580 | Heagy et al. | Apr 2006 | B2 |
7029435 | Nakao | Apr 2006 | B2 |
7029438 | Morin et al. | Apr 2006 | B2 |
7029450 | Gellman | Apr 2006 | B2 |
7032600 | Fukuda et al. | Apr 2006 | B2 |
7035680 | Partridge et al. | Apr 2006 | B2 |
7037290 | Gardeski et al. | May 2006 | B2 |
7041052 | Saadat et al. | May 2006 | B2 |
7052489 | Griego et al. | May 2006 | B2 |
7060024 | Long et al. | Jun 2006 | B2 |
7060025 | Long et al. | Jun 2006 | B2 |
7063697 | Slater | Jun 2006 | B2 |
7063715 | Onuki et al. | Jun 2006 | B2 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070602 | Smith et al. | Jul 2006 | B2 |
7076305 | Imran et al. | Jul 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7083629 | Weller et al. | Aug 2006 | B2 |
7083635 | Ginn | Aug 2006 | B2 |
7087071 | Nicholas et al. | Aug 2006 | B2 |
7088923 | Haruyama | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7090685 | Kortenbach et al. | Aug 2006 | B2 |
7093518 | Gmeilbauer | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7105000 | McBrayer | Sep 2006 | B2 |
7105005 | Blake | Sep 2006 | B2 |
7108696 | Daniel et al. | Sep 2006 | B2 |
7108703 | Danitz et al. | Sep 2006 | B2 |
7112208 | Morris et al. | Sep 2006 | B2 |
7115092 | Park et al. | Oct 2006 | B2 |
7115124 | Xiao | Oct 2006 | B1 |
7117703 | Kato et al. | Oct 2006 | B2 |
7118531 | Krill | Oct 2006 | B2 |
7118578 | West, Jr. et al. | Oct 2006 | B2 |
7118587 | Dycus et al. | Oct 2006 | B2 |
7128708 | Saadat et al. | Oct 2006 | B2 |
7130697 | Chornenky et al. | Oct 2006 | B2 |
RE39415 | Bales et al. | Nov 2006 | E |
7131978 | Sancoff et al. | Nov 2006 | B2 |
7131979 | DiCarlo et al. | Nov 2006 | B2 |
7131980 | Field et al. | Nov 2006 | B1 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7137981 | Long | Nov 2006 | B2 |
7146984 | Stack et al. | Dec 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7150097 | Sremcich et al. | Dec 2006 | B2 |
7150655 | Mastrototaro et al. | Dec 2006 | B2 |
7150750 | Damarati | Dec 2006 | B2 |
7152488 | Hedrich et al. | Dec 2006 | B2 |
7153321 | Andrews | Dec 2006 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7163525 | Franer | Jan 2007 | B2 |
7172714 | Jacobson | Feb 2007 | B2 |
7179254 | Pendekanti et al. | Feb 2007 | B2 |
7188627 | Nelson et al. | Mar 2007 | B2 |
7195612 | Van Sloten et al. | Mar 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
7204820 | Akahoshi | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7211092 | Hughett | May 2007 | B2 |
7220227 | Sasaki et al. | May 2007 | B2 |
7223272 | Francere et al. | May 2007 | B2 |
7229438 | Young | Jun 2007 | B2 |
7232414 | Gonzalez | Jun 2007 | B2 |
7232445 | Kortenbach et al. | Jun 2007 | B2 |
7235089 | McGuckin, Jr. | Jun 2007 | B1 |
7241290 | Doyle et al. | Jul 2007 | B2 |
7244228 | Lubowski | Jul 2007 | B2 |
7250027 | Barry | Jul 2007 | B2 |
7252660 | Kunz | Aug 2007 | B2 |
7255675 | Gertner et al. | Aug 2007 | B2 |
7261725 | Binmoeller | Aug 2007 | B2 |
7270663 | Nakao | Sep 2007 | B2 |
7291127 | Eidenschink | Nov 2007 | B2 |
7294139 | Gengler | Nov 2007 | B1 |
7301250 | Cassel | Nov 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7308828 | Hashimoto | Dec 2007 | B2 |
7318802 | Suzuki et al. | Jan 2008 | B2 |
7320695 | Carroll | Jan 2008 | B2 |
7322934 | Miyake et al. | Jan 2008 | B2 |
7323006 | Andreas et al. | Jan 2008 | B2 |
7329256 | Johnson et al. | Feb 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7329383 | Stinson | Feb 2008 | B2 |
7335220 | Khosravi et al. | Feb 2008 | B2 |
7344536 | Lunsford et al. | Mar 2008 | B1 |
7352387 | Yamamoto | Apr 2008 | B2 |
7364582 | Lee | Apr 2008 | B2 |
7371215 | Colliou et al. | May 2008 | B2 |
7381216 | Buzzard et al. | Jun 2008 | B2 |
7390324 | Whalen et al. | Jun 2008 | B2 |
7393322 | Wenchell | Jul 2008 | B2 |
7402162 | Ouchi | Jul 2008 | B2 |
7404791 | Linares et al. | Jul 2008 | B2 |
7410483 | Danitz et al. | Aug 2008 | B2 |
7413563 | Corcoran et al. | Aug 2008 | B2 |
7416554 | Lam et al. | Aug 2008 | B2 |
7422590 | Kupferschmid et al. | Sep 2008 | B2 |
7435229 | Wolf | Oct 2008 | B2 |
7435257 | Lashinski et al. | Oct 2008 | B2 |
7452327 | Durgin et al. | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7468066 | Vargas et al. | Dec 2008 | B2 |
7476237 | Taniguchi et al. | Jan 2009 | B2 |
7485093 | Glukhovsky | Feb 2009 | B2 |
7488295 | Burbank et al. | Feb 2009 | B2 |
7494499 | Nagase et al. | Feb 2009 | B2 |
7497867 | Lasner et al. | Mar 2009 | B2 |
7498950 | Ertas et al. | Mar 2009 | B1 |
7507200 | Okada | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7511733 | Takizawa et al. | Mar 2009 | B2 |
7515953 | Madar et al. | Apr 2009 | B2 |
7520876 | Ressemann et al. | Apr 2009 | B2 |
7524281 | Chu et al. | Apr 2009 | B2 |
7524302 | Tower | Apr 2009 | B2 |
7534228 | Williams | May 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7542807 | Bertolero et al. | Jun 2009 | B2 |
7544203 | Chin et al. | Jun 2009 | B2 |
7548040 | Lee et al. | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7549998 | Braun | Jun 2009 | B2 |
7553278 | Kucklick | Jun 2009 | B2 |
7553298 | Hunt et al. | Jun 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7559887 | Dannan | Jul 2009 | B2 |
7559916 | Smith et al. | Jul 2009 | B2 |
7560006 | Rakos et al. | Jul 2009 | B2 |
7561907 | Fuimaono et al. | Jul 2009 | B2 |
7561916 | Hunt et al. | Jul 2009 | B2 |
7566334 | Christian et al. | Jul 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7575548 | Takemoto et al. | Aug 2009 | B2 |
7579550 | Dayton et al. | Aug 2009 | B2 |
7582096 | Gellman et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7588557 | Nakao | Sep 2009 | B2 |
7597229 | Boudreaux et al. | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7608083 | Lee et al. | Oct 2009 | B2 |
7611479 | Cragg et al. | Nov 2009 | B2 |
7618398 | Holman et al. | Nov 2009 | B2 |
7621936 | Cragg et al. | Nov 2009 | B2 |
7632250 | Smith et al. | Dec 2009 | B2 |
7635373 | Ortiz | Dec 2009 | B2 |
7637903 | Lentz et al. | Dec 2009 | B2 |
7648519 | Lee et al. | Jan 2010 | B2 |
7650742 | Ushijima | Jan 2010 | B2 |
7651483 | Byrum et al. | Jan 2010 | B2 |
7651509 | Bojarski et al. | Jan 2010 | B2 |
7653438 | Deem et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7655004 | Long | Feb 2010 | B2 |
7662089 | Okada et al. | Feb 2010 | B2 |
7666180 | Holsten et al. | Feb 2010 | B2 |
7666203 | Chanduszko et al. | Feb 2010 | B2 |
7670336 | Young et al. | Mar 2010 | B2 |
7674259 | Shadduck | Mar 2010 | B2 |
7678043 | Gilad | Mar 2010 | B2 |
7680543 | Azure | Mar 2010 | B2 |
7684599 | Horn et al. | Mar 2010 | B2 |
7686826 | Lee et al. | Mar 2010 | B2 |
7697970 | Uchiyama et al. | Apr 2010 | B2 |
7699835 | Lee et al. | Apr 2010 | B2 |
7699864 | Kick et al. | Apr 2010 | B2 |
7713189 | Hanke | May 2010 | B2 |
7713270 | Suzuki | May 2010 | B2 |
7736374 | Vaughan et al. | Jun 2010 | B2 |
7744615 | Couture | Jun 2010 | B2 |
7749161 | Beckman et al. | Jul 2010 | B2 |
7753933 | Ginn et al. | Jul 2010 | B2 |
7758577 | Nobis et al. | Jul 2010 | B2 |
7762949 | Nakao | Jul 2010 | B2 |
7762998 | Birk et al. | Jul 2010 | B2 |
7763012 | Petrick et al. | Jul 2010 | B2 |
7765010 | Chornenky et al. | Jul 2010 | B2 |
7771416 | Spivey et al. | Aug 2010 | B2 |
7771437 | Hogg et al. | Aug 2010 | B2 |
7780683 | Roue et al. | Aug 2010 | B2 |
7780691 | Stefanchik | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7794409 | Damarati | Sep 2010 | B2 |
7794475 | Hess et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7815662 | Spivey et al. | Oct 2010 | B2 |
7828186 | Wales | Nov 2010 | B2 |
7833156 | Williams et al. | Nov 2010 | B2 |
7837615 | Le et al. | Nov 2010 | B2 |
7842028 | Lee | Nov 2010 | B2 |
7842068 | Ginn | Nov 2010 | B2 |
7846171 | Kullas et al. | Dec 2010 | B2 |
7850660 | Uth et al. | Dec 2010 | B2 |
7857183 | Shelton, IV | Dec 2010 | B2 |
7862546 | Conlon et al. | Jan 2011 | B2 |
7867216 | Wahr et al. | Jan 2011 | B2 |
7879004 | Seibel et al. | Feb 2011 | B2 |
7892220 | Faller et al. | Feb 2011 | B2 |
7896804 | Uchimura et al. | Mar 2011 | B2 |
7896887 | Rimbaugh et al. | Mar 2011 | B2 |
7905828 | Brock et al. | Mar 2011 | B2 |
7909809 | Scopton et al. | Mar 2011 | B2 |
7914513 | Voorhees, Jr. | Mar 2011 | B2 |
7918869 | Saadat et al. | Apr 2011 | B2 |
7927271 | Dimitriou et al. | Apr 2011 | B2 |
7931624 | Smith et al. | Apr 2011 | B2 |
7945332 | Schechter | May 2011 | B2 |
7947000 | Vargas et al. | May 2011 | B2 |
7953326 | Farr et al. | May 2011 | B2 |
7955298 | Carroll et al. | Jun 2011 | B2 |
7963975 | Criscuolo | Jun 2011 | B2 |
7965180 | Koyama | Jun 2011 | B2 |
7967808 | Fitzgerald et al. | Jun 2011 | B2 |
7969473 | Kotoda | Jun 2011 | B2 |
7972330 | Alejandro et al. | Jul 2011 | B2 |
7976552 | Suzuki | Jul 2011 | B2 |
7985239 | Suzuki | Jul 2011 | B2 |
7988685 | Ziaie et al. | Aug 2011 | B2 |
8034046 | Eidenschink | Oct 2011 | B2 |
8048067 | Davalos et al. | Nov 2011 | B2 |
8057510 | Ginn et al. | Nov 2011 | B2 |
8062311 | Litscher et al. | Nov 2011 | B2 |
8066632 | Dario et al. | Nov 2011 | B2 |
8075587 | Ginn | Dec 2011 | B2 |
8088062 | Zwolinski | Jan 2012 | B2 |
8096459 | Ortiz et al. | Jan 2012 | B2 |
8118821 | Mouw | Feb 2012 | B2 |
8147424 | Kassab et al. | Apr 2012 | B2 |
8157813 | Ko et al. | Apr 2012 | B2 |
8182414 | Handa et al. | May 2012 | B2 |
8221310 | Saadat et al. | Jul 2012 | B2 |
8303581 | Arts et al. | Nov 2012 | B2 |
8430811 | Hess et al. | Apr 2013 | B2 |
20010023333 | Wise et al. | Sep 2001 | A1 |
20010049497 | Kalloo et al. | Dec 2001 | A1 |
20020022771 | Diokno et al. | Feb 2002 | A1 |
20020022857 | Goldsteen et al. | Feb 2002 | A1 |
20020023353 | Ting-Kung | Feb 2002 | A1 |
20020029055 | Bonutti | Mar 2002 | A1 |
20020042562 | Meron et al. | Apr 2002 | A1 |
20020049439 | Mulier et al. | Apr 2002 | A1 |
20020068945 | Sixto, Jr. et al. | Jun 2002 | A1 |
20020078967 | Sixto, Jr. et al. | Jun 2002 | A1 |
20020082516 | Stefanchik | Jun 2002 | A1 |
20020095164 | Andreas et al. | Jul 2002 | A1 |
20020107515 | Edwards et al. | Aug 2002 | A1 |
20020107530 | Sauer et al. | Aug 2002 | A1 |
20020111615 | Cosman et al. | Aug 2002 | A1 |
20020133115 | Gordon et al. | Sep 2002 | A1 |
20020138086 | Sixto, Jr. et al. | Sep 2002 | A1 |
20020147456 | Diduch et al. | Oct 2002 | A1 |
20020165592 | Glukhovsky et al. | Nov 2002 | A1 |
20020173805 | Matsuno et al. | Nov 2002 | A1 |
20020183591 | Matsuura et al. | Dec 2002 | A1 |
20030014090 | Abrahamson | Jan 2003 | A1 |
20030023255 | Miles et al. | Jan 2003 | A1 |
20030036679 | Kortenbach et al. | Feb 2003 | A1 |
20030069602 | Jacobs et al. | Apr 2003 | A1 |
20030083681 | Moutafis et al. | May 2003 | A1 |
20030114731 | Cadeddu et al. | Jun 2003 | A1 |
20030114732 | Webler et al. | Jun 2003 | A1 |
20030120257 | Houston et al. | Jun 2003 | A1 |
20030124009 | Ravi et al. | Jul 2003 | A1 |
20030130564 | Martone et al. | Jul 2003 | A1 |
20030130656 | Levin | Jul 2003 | A1 |
20030158521 | Ameri | Aug 2003 | A1 |
20030167062 | Gambale et al. | Sep 2003 | A1 |
20030171651 | Page et al. | Sep 2003 | A1 |
20030176880 | Long et al. | Sep 2003 | A1 |
20030216611 | Vu | Nov 2003 | A1 |
20030216615 | Ouchi | Nov 2003 | A1 |
20030220545 | Ouchi | Nov 2003 | A1 |
20030225312 | Suzuki et al. | Dec 2003 | A1 |
20030225332 | Okada et al. | Dec 2003 | A1 |
20030229269 | Humphrey | Dec 2003 | A1 |
20030229371 | Whitworth | Dec 2003 | A1 |
20030236549 | Bonadio et al. | Dec 2003 | A1 |
20040002683 | Nicholson et al. | Jan 2004 | A1 |
20040024414 | Downing | Feb 2004 | A1 |
20040034369 | Sauer et al. | Feb 2004 | A1 |
20040054322 | Vargas | Mar 2004 | A1 |
20040098007 | Heiss | May 2004 | A1 |
20040101456 | Kuroshima et al. | May 2004 | A1 |
20040104999 | Okada | Jun 2004 | A1 |
20040116948 | Sixto, Jr. et al. | Jun 2004 | A1 |
20040127940 | Ginn et al. | Jul 2004 | A1 |
20040133077 | Obenchain et al. | Jul 2004 | A1 |
20040133089 | Kilcoyne et al. | Jul 2004 | A1 |
20040136779 | Bhaskar | Jul 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138529 | Wiltshire et al. | Jul 2004 | A1 |
20040138587 | Lyons, IV | Jul 2004 | A1 |
20040161451 | Pierce et al. | Aug 2004 | A1 |
20040167545 | Sadler et al. | Aug 2004 | A1 |
20040176699 | Walker et al. | Sep 2004 | A1 |
20040186350 | Brenneman et al. | Sep 2004 | A1 |
20040193009 | Jaffe et al. | Sep 2004 | A1 |
20040193146 | Lee et al. | Sep 2004 | A1 |
20040193186 | Kortenbach et al. | Sep 2004 | A1 |
20040193188 | Francese | Sep 2004 | A1 |
20040193189 | Kortenbach et al. | Sep 2004 | A1 |
20040193200 | Dworschak et al. | Sep 2004 | A1 |
20040199052 | Banik et al. | Oct 2004 | A1 |
20040199159 | Lee et al. | Oct 2004 | A1 |
20040206859 | Chong et al. | Oct 2004 | A1 |
20040210245 | Erickson et al. | Oct 2004 | A1 |
20040215058 | Zirps et al. | Oct 2004 | A1 |
20040225183 | Michlitsch et al. | Nov 2004 | A1 |
20040225186 | Horne, Jr. et al. | Nov 2004 | A1 |
20040225323 | Nagase et al. | Nov 2004 | A1 |
20040230095 | Stefanchik et al. | Nov 2004 | A1 |
20040230096 | Stefanchik et al. | Nov 2004 | A1 |
20040230097 | Stefanchik et al. | Nov 2004 | A1 |
20040230161 | Zeiner | Nov 2004 | A1 |
20040243108 | Suzuki | Dec 2004 | A1 |
20040249246 | Campos | Dec 2004 | A1 |
20040249367 | Saadat et al. | Dec 2004 | A1 |
20040249394 | Morris et al. | Dec 2004 | A1 |
20040249443 | Shanley et al. | Dec 2004 | A1 |
20040254572 | McIntyre et al. | Dec 2004 | A1 |
20040260198 | Rothberg et al. | Dec 2004 | A1 |
20040260337 | Freed | Dec 2004 | A1 |
20050004515 | Hart et al. | Jan 2005 | A1 |
20050033265 | Engel et al. | Feb 2005 | A1 |
20050033277 | Clague et al. | Feb 2005 | A1 |
20050033319 | Gambale et al. | Feb 2005 | A1 |
20050033333 | Smith et al. | Feb 2005 | A1 |
20050043690 | Todd | Feb 2005 | A1 |
20050049616 | Rivera et al. | Mar 2005 | A1 |
20050059963 | Phan et al. | Mar 2005 | A1 |
20050059964 | Fitz | Mar 2005 | A1 |
20050065397 | Saadat et al. | Mar 2005 | A1 |
20050065509 | Coldwell et al. | Mar 2005 | A1 |
20050065517 | Chin | Mar 2005 | A1 |
20050070754 | Nobis et al. | Mar 2005 | A1 |
20050070763 | Nobis et al. | Mar 2005 | A1 |
20050070764 | Nobis et al. | Mar 2005 | A1 |
20050080413 | Canady | Apr 2005 | A1 |
20050085693 | Belson et al. | Apr 2005 | A1 |
20050085832 | Sancoff et al. | Apr 2005 | A1 |
20050090837 | Sixto, Jr. et al. | Apr 2005 | A1 |
20050090838 | Sixto, Jr. et al. | Apr 2005 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050101837 | Kalloo et al. | May 2005 | A1 |
20050101838 | Camillocci et al. | May 2005 | A1 |
20050101984 | Chanduszko et al. | May 2005 | A1 |
20050107663 | Saadat et al. | May 2005 | A1 |
20050107664 | Kalloo et al. | May 2005 | A1 |
20050110881 | Glukhovsky et al. | May 2005 | A1 |
20050113847 | Gadberry et al. | May 2005 | A1 |
20050119613 | Moenning et al. | Jun 2005 | A1 |
20050124855 | Jaffe et al. | Jun 2005 | A1 |
20050125010 | Smith et al. | Jun 2005 | A1 |
20050131279 | Boulais et al. | Jun 2005 | A1 |
20050131457 | Douglas et al. | Jun 2005 | A1 |
20050137454 | Saadat et al. | Jun 2005 | A1 |
20050143647 | Minai et al. | Jun 2005 | A1 |
20050143690 | High | Jun 2005 | A1 |
20050143774 | Polo | Jun 2005 | A1 |
20050143803 | Watson et al. | Jun 2005 | A1 |
20050149087 | Ahlberg et al. | Jul 2005 | A1 |
20050149096 | Hilal et al. | Jul 2005 | A1 |
20050159648 | Freed | Jul 2005 | A1 |
20050165272 | Okada et al. | Jul 2005 | A1 |
20050165378 | Heinrich et al. | Jul 2005 | A1 |
20050165411 | Orban, III | Jul 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050182429 | Yamanouchi | Aug 2005 | A1 |
20050192478 | Williams et al. | Sep 2005 | A1 |
20050192598 | Johnson et al. | Sep 2005 | A1 |
20050192602 | Manzo | Sep 2005 | A1 |
20050192654 | Chanduszko et al. | Sep 2005 | A1 |
20050209624 | Vijay | Sep 2005 | A1 |
20050215858 | Vail, III | Sep 2005 | A1 |
20050216050 | Sepetka et al. | Sep 2005 | A1 |
20050228224 | Okada et al. | Oct 2005 | A1 |
20050228406 | Bose | Oct 2005 | A1 |
20050234297 | Devierre et al. | Oct 2005 | A1 |
20050240249 | Tu et al. | Oct 2005 | A1 |
20050250983 | Tremaglio et al. | Nov 2005 | A1 |
20050250990 | Le et al. | Nov 2005 | A1 |
20050250993 | Jaeger | Nov 2005 | A1 |
20050251166 | Vaughan et al. | Nov 2005 | A1 |
20050251176 | Swanstrom et al. | Nov 2005 | A1 |
20050261674 | Nobis et al. | Nov 2005 | A1 |
20050267492 | Poncet et al. | Dec 2005 | A1 |
20050272975 | McWeeney et al. | Dec 2005 | A1 |
20050272977 | Saadat et al. | Dec 2005 | A1 |
20050273084 | Hinman et al. | Dec 2005 | A1 |
20050274935 | Nelson | Dec 2005 | A1 |
20050277945 | Saadat et al. | Dec 2005 | A1 |
20050277951 | Smith et al. | Dec 2005 | A1 |
20050277952 | Arp et al. | Dec 2005 | A1 |
20050277954 | Smith et al. | Dec 2005 | A1 |
20050277955 | Palmer et al. | Dec 2005 | A1 |
20050277956 | Francese et al. | Dec 2005 | A1 |
20050277957 | Kuhns et al. | Dec 2005 | A1 |
20050283118 | Uth et al. | Dec 2005 | A1 |
20050283119 | Uth et al. | Dec 2005 | A1 |
20050288555 | Binmoeller | Dec 2005 | A1 |
20060004406 | Wehrstein et al. | Jan 2006 | A1 |
20060004409 | Nobis et al. | Jan 2006 | A1 |
20060004410 | Nobis et al. | Jan 2006 | A1 |
20060015009 | Jaffe et al. | Jan 2006 | A1 |
20060015131 | Kierce et al. | Jan 2006 | A1 |
20060020167 | Sitzmann | Jan 2006 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060025654 | Suzuki et al. | Feb 2006 | A1 |
20060025781 | Young et al. | Feb 2006 | A1 |
20060025812 | Shelton, IV | Feb 2006 | A1 |
20060025819 | Nobis et al. | Feb 2006 | A1 |
20060036267 | Saadat et al. | Feb 2006 | A1 |
20060041188 | Dirusso et al. | Feb 2006 | A1 |
20060058582 | Maahs et al. | Mar 2006 | A1 |
20060058776 | Bilsbury | Mar 2006 | A1 |
20060064083 | Khalaj et al. | Mar 2006 | A1 |
20060069396 | Meade et al. | Mar 2006 | A1 |
20060069424 | Acosta et al. | Mar 2006 | A1 |
20060069425 | Hillis et al. | Mar 2006 | A1 |
20060069429 | Spence et al. | Mar 2006 | A1 |
20060074413 | Behzadian | Apr 2006 | A1 |
20060079890 | Guerra | Apr 2006 | A1 |
20060089528 | Tartaglia et al. | Apr 2006 | A1 |
20060095031 | Ormsby | May 2006 | A1 |
20060095060 | Mayenberger et al. | May 2006 | A1 |
20060100687 | Fahey et al. | May 2006 | A1 |
20060106423 | Weisel et al. | May 2006 | A1 |
20060111209 | Hinman et al. | May 2006 | A1 |
20060111210 | Hinman et al. | May 2006 | A1 |
20060111704 | Brenneman et al. | May 2006 | A1 |
20060129166 | Lavelle | Jun 2006 | A1 |
20060135962 | Kick et al. | Jun 2006 | A1 |
20060135971 | Swanstrom et al. | Jun 2006 | A1 |
20060135984 | Kramer et al. | Jun 2006 | A1 |
20060142644 | Mulac et al. | Jun 2006 | A1 |
20060142652 | Keenan | Jun 2006 | A1 |
20060142790 | Gertner | Jun 2006 | A1 |
20060142798 | Holman et al. | Jun 2006 | A1 |
20060149131 | Or | Jul 2006 | A1 |
20060149132 | Iddan | Jul 2006 | A1 |
20060149135 | Paz | Jul 2006 | A1 |
20060161190 | Gadberry et al. | Jul 2006 | A1 |
20060167416 | Mathis et al. | Jul 2006 | A1 |
20060167482 | Swain et al. | Jul 2006 | A1 |
20060178560 | Saadat et al. | Aug 2006 | A1 |
20060183975 | Saadat et al. | Aug 2006 | A1 |
20060184161 | Maahs et al. | Aug 2006 | A1 |
20060189844 | Tien | Aug 2006 | A1 |
20060189845 | Maahs et al. | Aug 2006 | A1 |
20060190027 | Downey | Aug 2006 | A1 |
20060195084 | Slater | Aug 2006 | A1 |
20060200005 | Bjork et al. | Sep 2006 | A1 |
20060200121 | Mowery | Sep 2006 | A1 |
20060200169 | Sniffin | Sep 2006 | A1 |
20060200170 | Aranyi | Sep 2006 | A1 |
20060200199 | Bonutti et al. | Sep 2006 | A1 |
20060217665 | Prosek | Sep 2006 | A1 |
20060217697 | Lau et al. | Sep 2006 | A1 |
20060217742 | Messerly et al. | Sep 2006 | A1 |
20060217743 | Messerly et al. | Sep 2006 | A1 |
20060229639 | Whitfield | Oct 2006 | A1 |
20060229640 | Whitfield | Oct 2006 | A1 |
20060237022 | Chen et al. | Oct 2006 | A1 |
20060237023 | Cox et al. | Oct 2006 | A1 |
20060241570 | Wilk | Oct 2006 | A1 |
20060247500 | Voegele et al. | Nov 2006 | A1 |
20060247576 | Poncet | Nov 2006 | A1 |
20060247663 | Schwartz et al. | Nov 2006 | A1 |
20060247673 | Voegele et al. | Nov 2006 | A1 |
20060253004 | Frisch et al. | Nov 2006 | A1 |
20060253039 | McKenna et al. | Nov 2006 | A1 |
20060258907 | Stefanchik et al. | Nov 2006 | A1 |
20060258908 | Stefanchik et al. | Nov 2006 | A1 |
20060258910 | Stefanchik et al. | Nov 2006 | A1 |
20060258954 | Timberlake et al. | Nov 2006 | A1 |
20060258955 | Hoffman et al. | Nov 2006 | A1 |
20060259010 | Stefanchik et al. | Nov 2006 | A1 |
20060259073 | Miyamoto et al. | Nov 2006 | A1 |
20060264752 | Rubinsky et al. | Nov 2006 | A1 |
20060264904 | Kerby et al. | Nov 2006 | A1 |
20060264930 | Nishimura | Nov 2006 | A1 |
20060270902 | Igarashi et al. | Nov 2006 | A1 |
20060271042 | Latterell et al. | Nov 2006 | A1 |
20060271102 | Bosshard et al. | Nov 2006 | A1 |
20060276835 | Uchida | Dec 2006 | A1 |
20060281970 | Stokes et al. | Dec 2006 | A1 |
20060282106 | Cole et al. | Dec 2006 | A1 |
20060285732 | Horn et al. | Dec 2006 | A1 |
20060287644 | Inganas et al. | Dec 2006 | A1 |
20060287666 | Saadat et al. | Dec 2006 | A1 |
20060293626 | Byrum et al. | Dec 2006 | A1 |
20070002135 | Glukhovsky | Jan 2007 | A1 |
20070005019 | Okishige | Jan 2007 | A1 |
20070010801 | Chen et al. | Jan 2007 | A1 |
20070015965 | Cox et al. | Jan 2007 | A1 |
20070016225 | Nakao | Jan 2007 | A1 |
20070032700 | Fowler et al. | Feb 2007 | A1 |
20070032701 | Fowler et al. | Feb 2007 | A1 |
20070043261 | Watanabe et al. | Feb 2007 | A1 |
20070043345 | Davalos et al. | Feb 2007 | A1 |
20070049800 | Boulais | Mar 2007 | A1 |
20070049902 | Griffin et al. | Mar 2007 | A1 |
20070051375 | Milliman | Mar 2007 | A1 |
20070060880 | Gregorich et al. | Mar 2007 | A1 |
20070066869 | Hoffman | Mar 2007 | A1 |
20070067017 | Trapp | Mar 2007 | A1 |
20070073102 | Matsuno et al. | Mar 2007 | A1 |
20070073269 | Becker | Mar 2007 | A1 |
20070079924 | Saadat et al. | Apr 2007 | A1 |
20070083195 | Werneth et al. | Apr 2007 | A1 |
20070088370 | Kahle et al. | Apr 2007 | A1 |
20070100375 | Mikkaichi et al. | May 2007 | A1 |
20070100376 | Mikkaichi et al. | May 2007 | A1 |
20070106118 | Moriyama | May 2007 | A1 |
20070106317 | Shelton, IV et al. | May 2007 | A1 |
20070112251 | Nakhuda | May 2007 | A1 |
20070112331 | Weber et al. | May 2007 | A1 |
20070112342 | Pearson et al. | May 2007 | A1 |
20070112383 | Conlon et al. | May 2007 | A1 |
20070112384 | Conlon et al. | May 2007 | A1 |
20070112385 | Conlon | May 2007 | A1 |
20070112417 | Shanley et al. | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070123840 | Cox | May 2007 | A1 |
20070129605 | Schaaf | Jun 2007 | A1 |
20070129719 | Kendale et al. | Jun 2007 | A1 |
20070129760 | Demarais et al. | Jun 2007 | A1 |
20070135709 | Rioux et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070142706 | Matsui et al. | Jun 2007 | A1 |
20070142710 | Yokoi et al. | Jun 2007 | A1 |
20070142780 | Van Lue | Jun 2007 | A1 |
20070154460 | Kraft et al. | Jul 2007 | A1 |
20070156028 | Van Lue et al. | Jul 2007 | A1 |
20070156127 | Rioux et al. | Jul 2007 | A1 |
20070161855 | Mikkaichi et al. | Jul 2007 | A1 |
20070162101 | Burgermeister et al. | Jul 2007 | A1 |
20070167901 | Herrig et al. | Jul 2007 | A1 |
20070173691 | Yokoi et al. | Jul 2007 | A1 |
20070173869 | Gannoe et al. | Jul 2007 | A1 |
20070173870 | Zacharias | Jul 2007 | A2 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070179525 | Frecker et al. | Aug 2007 | A1 |
20070179530 | Tieu et al. | Aug 2007 | A1 |
20070197865 | Miyake et al. | Aug 2007 | A1 |
20070198057 | Gelbart et al. | Aug 2007 | A1 |
20070203398 | Bonadio et al. | Aug 2007 | A1 |
20070203487 | Sugita | Aug 2007 | A1 |
20070208336 | Kim et al. | Sep 2007 | A1 |
20070208364 | Smith et al. | Sep 2007 | A1 |
20070213754 | Mikkaichi et al. | Sep 2007 | A1 |
20070225554 | Maseda et al. | Sep 2007 | A1 |
20070233040 | Macnamara et al. | Oct 2007 | A1 |
20070244358 | Lee | Oct 2007 | A1 |
20070250038 | Boulais | Oct 2007 | A1 |
20070250057 | Nobis et al. | Oct 2007 | A1 |
20070255096 | Stefanchik et al. | Nov 2007 | A1 |
20070255100 | Barlow et al. | Nov 2007 | A1 |
20070255273 | Fernandez et al. | Nov 2007 | A1 |
20070255303 | Bakos et al. | Nov 2007 | A1 |
20070255306 | Conlon et al. | Nov 2007 | A1 |
20070260112 | Rahmani | Nov 2007 | A1 |
20070260117 | Zwolinski et al. | Nov 2007 | A1 |
20070260121 | Bakos et al. | Nov 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070260273 | Cropper et al. | Nov 2007 | A1 |
20070260302 | Igaki | Nov 2007 | A1 |
20070270629 | Charles | Nov 2007 | A1 |
20070270889 | Conlon et al. | Nov 2007 | A1 |
20070270895 | Nobis et al. | Nov 2007 | A1 |
20070270907 | Stokes et al. | Nov 2007 | A1 |
20070282165 | Hopkins et al. | Dec 2007 | A1 |
20070282371 | Lee et al. | Dec 2007 | A1 |
20070293727 | Goldfarb et al. | Dec 2007 | A1 |
20070299387 | Williams et al. | Dec 2007 | A1 |
20080004650 | George | Jan 2008 | A1 |
20080015409 | Barlow et al. | Jan 2008 | A1 |
20080015413 | Barlow et al. | Jan 2008 | A1 |
20080015552 | Doyle et al. | Jan 2008 | A1 |
20080021416 | Arai et al. | Jan 2008 | A1 |
20080022927 | Zhang et al. | Jan 2008 | A1 |
20080027387 | Grabinsky | Jan 2008 | A1 |
20080033451 | Rieber et al. | Feb 2008 | A1 |
20080051629 | Sugiyama et al. | Feb 2008 | A1 |
20080051735 | Measamer et al. | Feb 2008 | A1 |
20080058586 | Karpiel | Mar 2008 | A1 |
20080058854 | Kieturakis et al. | Mar 2008 | A1 |
20080065169 | Colliou et al. | Mar 2008 | A1 |
20080071264 | Azure | Mar 2008 | A1 |
20080086172 | Martin et al. | Apr 2008 | A1 |
20080097159 | Ishiguro | Apr 2008 | A1 |
20080097472 | Agmon et al. | Apr 2008 | A1 |
20080097483 | Ortiz et al. | Apr 2008 | A1 |
20080103527 | Martin et al. | May 2008 | A1 |
20080114384 | Chang et al. | May 2008 | A1 |
20080119870 | Williams | May 2008 | A1 |
20080119891 | Miles et al. | May 2008 | A1 |
20080125796 | Graham | May 2008 | A1 |
20080132892 | Lunsford et al. | Jun 2008 | A1 |
20080139882 | Fujimori | Jun 2008 | A1 |
20080140069 | Filloux et al. | Jun 2008 | A1 |
20080140071 | Vegesna | Jun 2008 | A1 |
20080147113 | Nobis et al. | Jun 2008 | A1 |
20080171907 | Long et al. | Jul 2008 | A1 |
20080177135 | Muyari et al. | Jul 2008 | A1 |
20080188710 | Segawa et al. | Aug 2008 | A1 |
20080188868 | Weitzner et al. | Aug 2008 | A1 |
20080200755 | Bakos | Aug 2008 | A1 |
20080200762 | Stokes et al. | Aug 2008 | A1 |
20080200911 | Long | Aug 2008 | A1 |
20080200933 | Bakos et al. | Aug 2008 | A1 |
20080200934 | Fox | Aug 2008 | A1 |
20080208213 | Benjamin et al. | Aug 2008 | A1 |
20080221587 | Schwartz | Sep 2008 | A1 |
20080228213 | Blakeney et al. | Sep 2008 | A1 |
20080230972 | Ganley | Sep 2008 | A1 |
20080234696 | Taylor et al. | Sep 2008 | A1 |
20080243106 | Coe et al. | Oct 2008 | A1 |
20080243148 | Mikkaichi et al. | Oct 2008 | A1 |
20080243176 | Weitzner et al. | Oct 2008 | A1 |
20080249567 | Kaplan | Oct 2008 | A1 |
20080262513 | Stahler et al. | Oct 2008 | A1 |
20080262524 | Bangera et al. | Oct 2008 | A1 |
20080262540 | Bangera et al. | Oct 2008 | A1 |
20080269782 | Stefanchik et al. | Oct 2008 | A1 |
20080269783 | Griffith | Oct 2008 | A1 |
20080275474 | Martin et al. | Nov 2008 | A1 |
20080275475 | Schwemberger et al. | Nov 2008 | A1 |
20080287737 | Dejima | Nov 2008 | A1 |
20080287983 | Smith et al. | Nov 2008 | A1 |
20080300461 | Shaw et al. | Dec 2008 | A1 |
20080300547 | Bakos | Dec 2008 | A1 |
20080309758 | Karasawa et al. | Dec 2008 | A1 |
20080312496 | Zwolinski | Dec 2008 | A1 |
20080312499 | Handa et al. | Dec 2008 | A1 |
20080312500 | Asada et al. | Dec 2008 | A1 |
20080312506 | Spivey et al. | Dec 2008 | A1 |
20080319436 | Daniel et al. | Dec 2008 | A1 |
20080319439 | Ootsubu | Dec 2008 | A1 |
20090005636 | Pang et al. | Jan 2009 | A1 |
20090054728 | Trusty | Feb 2009 | A1 |
20090062788 | Long et al. | Mar 2009 | A1 |
20090062792 | Vakharia et al. | Mar 2009 | A1 |
20090062795 | Vakharia et al. | Mar 2009 | A1 |
20090069634 | Larkin | Mar 2009 | A1 |
20090076499 | Azure | Mar 2009 | A1 |
20090078736 | Van Lue | Mar 2009 | A1 |
20090082776 | Cresina | Mar 2009 | A1 |
20090082779 | Nakao | Mar 2009 | A1 |
20090112059 | Nobis | Apr 2009 | A1 |
20090112062 | Bakos | Apr 2009 | A1 |
20090112063 | Bakos et al. | Apr 2009 | A1 |
20090125042 | Mouw | May 2009 | A1 |
20090131751 | Spivey et al. | May 2009 | A1 |
20090131932 | Vakharia et al. | May 2009 | A1 |
20090131933 | Ghabrial et al. | May 2009 | A1 |
20090143639 | Stark | Jun 2009 | A1 |
20090143649 | Rossi | Jun 2009 | A1 |
20090143794 | Conlon et al. | Jun 2009 | A1 |
20090143818 | Faller et al. | Jun 2009 | A1 |
20090149710 | Stefanchik et al. | Jun 2009 | A1 |
20090177031 | Surti et al. | Jul 2009 | A1 |
20090177219 | Conlon | Jul 2009 | A1 |
20090182332 | Long et al. | Jul 2009 | A1 |
20090192344 | Bakos et al. | Jul 2009 | A1 |
20090192534 | Ortiz et al. | Jul 2009 | A1 |
20090198231 | Esser et al. | Aug 2009 | A1 |
20090198253 | Omori | Aug 2009 | A1 |
20090210000 | Sullivan et al. | Aug 2009 | A1 |
20090216248 | Uenohara et al. | Aug 2009 | A1 |
20090221873 | McGrath | Sep 2009 | A1 |
20090227828 | Swain et al. | Sep 2009 | A1 |
20090228001 | Pacey | Sep 2009 | A1 |
20090248055 | Spivey et al. | Oct 2009 | A1 |
20090259105 | Miyano et al. | Oct 2009 | A1 |
20090269317 | Davalos | Oct 2009 | A1 |
20090281559 | Swain et al. | Nov 2009 | A1 |
20090287206 | Jun | Nov 2009 | A1 |
20090287236 | Bakos et al. | Nov 2009 | A1 |
20090292164 | Yamatani | Nov 2009 | A1 |
20090299135 | Spivey | Dec 2009 | A1 |
20090299143 | Conlon et al. | Dec 2009 | A1 |
20090299362 | Long et al. | Dec 2009 | A1 |
20090299385 | Stefanchik et al. | Dec 2009 | A1 |
20090299406 | Swain et al. | Dec 2009 | A1 |
20090299409 | Coe et al. | Dec 2009 | A1 |
20090306658 | Nobis et al. | Dec 2009 | A1 |
20090306683 | Zwolinski et al. | Dec 2009 | A1 |
20090322864 | Karasawa et al. | Dec 2009 | A1 |
20090326332 | Carter | Dec 2009 | A1 |
20090326561 | Carroll, II et al. | Dec 2009 | A1 |
20100010294 | Conlon et al. | Jan 2010 | A1 |
20100010298 | Bakos et al. | Jan 2010 | A1 |
20100010299 | Bakos et al. | Jan 2010 | A1 |
20100010303 | Bakos | Jan 2010 | A1 |
20100010510 | Stefanchik | Jan 2010 | A1 |
20100010511 | Harris et al. | Jan 2010 | A1 |
20100023032 | Granja Filho | Jan 2010 | A1 |
20100030211 | Davalos et al. | Feb 2010 | A1 |
20100036198 | Tacchino et al. | Feb 2010 | A1 |
20100042045 | Spivey | Feb 2010 | A1 |
20100048990 | Bakos | Feb 2010 | A1 |
20100049190 | Long et al. | Feb 2010 | A1 |
20100049223 | Granja Filho | Feb 2010 | A1 |
20100056861 | Spivey | Mar 2010 | A1 |
20100056862 | Bakos | Mar 2010 | A1 |
20100056864 | Lee | Mar 2010 | A1 |
20100057085 | Holcomb et al. | Mar 2010 | A1 |
20100057108 | Spivey et al. | Mar 2010 | A1 |
20100063538 | Spivey et al. | Mar 2010 | A1 |
20100076451 | Zwolinski et al. | Mar 2010 | A1 |
20100076460 | Taylor et al. | Mar 2010 | A1 |
20100081877 | Vakharia | Apr 2010 | A1 |
20100087813 | Long | Apr 2010 | A1 |
20100091128 | Ogasawara et al. | Apr 2010 | A1 |
20100113872 | Asada et al. | May 2010 | A1 |
20100121362 | Clague et al. | May 2010 | A1 |
20100130817 | Conlon | May 2010 | A1 |
20100130975 | Long | May 2010 | A1 |
20100131005 | Conlon | May 2010 | A1 |
20100152539 | Ghabrial et al. | Jun 2010 | A1 |
20100152609 | Zwolinski et al. | Jun 2010 | A1 |
20100152746 | Ceniccola et al. | Jun 2010 | A1 |
20100179510 | Fox et al. | Jul 2010 | A1 |
20100179530 | Long et al. | Jul 2010 | A1 |
20100191050 | Zwolinski | Jul 2010 | A1 |
20100191267 | Fox | Jul 2010 | A1 |
20100198005 | Fox | Aug 2010 | A1 |
20100198149 | Fox | Aug 2010 | A1 |
20100198244 | Spivey et al. | Aug 2010 | A1 |
20100198248 | Vakharia | Aug 2010 | A1 |
20100217367 | Belson | Aug 2010 | A1 |
20100249700 | Spivey | Sep 2010 | A1 |
20100261994 | Davalos et al. | Oct 2010 | A1 |
20100286791 | Goldsmith | Nov 2010 | A1 |
20100298642 | Trusty et al. | Nov 2010 | A1 |
20100312056 | Galperin et al. | Dec 2010 | A1 |
20100331622 | Conlon | Dec 2010 | A2 |
20100331758 | Davalos et al. | Dec 2010 | A1 |
20100331774 | Spivey | Dec 2010 | A2 |
20110077476 | Rofougaran | Mar 2011 | A1 |
20110093009 | Fox | Apr 2011 | A1 |
20110098694 | Long | Apr 2011 | A1 |
20110098704 | Long et al. | Apr 2011 | A1 |
20110105850 | Voegele et al. | May 2011 | A1 |
20110106221 | Neal, II et al. | May 2011 | A1 |
20110112434 | Ghabrial et al. | May 2011 | A1 |
20110115891 | Trusty | May 2011 | A1 |
20110124964 | Nobis | May 2011 | A1 |
20110152609 | Trusty et al. | Jun 2011 | A1 |
20110152610 | Trusty et al. | Jun 2011 | A1 |
20110152612 | Trusty et al. | Jun 2011 | A1 |
20110152858 | Long et al. | Jun 2011 | A1 |
20110152878 | Trusty et al. | Jun 2011 | A1 |
20110152923 | Fox | Jun 2011 | A1 |
20110160514 | Long et al. | Jun 2011 | A1 |
20110190659 | Long et al. | Aug 2011 | A1 |
20110190764 | Long et al. | Aug 2011 | A1 |
20110193948 | Amling et al. | Aug 2011 | A1 |
20110245619 | Holcomb | Oct 2011 | A1 |
20110285488 | Scott et al. | Nov 2011 | A1 |
20110306971 | Long | Dec 2011 | A1 |
20120004502 | Weitzner et al. | Jan 2012 | A1 |
20120029335 | Sudam et al. | Feb 2012 | A1 |
20120088965 | Stokes et al. | Apr 2012 | A1 |
20120089089 | Swain et al. | Apr 2012 | A1 |
20120089093 | Trusty | Apr 2012 | A1 |
20120116155 | Trusty | May 2012 | A1 |
20120179148 | Conlon | Jul 2012 | A1 |
20120191075 | Trusty | Jul 2012 | A1 |
20120191076 | Voegele et al. | Jul 2012 | A1 |
20120220998 | Long et al. | Aug 2012 | A1 |
20120220999 | Long | Aug 2012 | A1 |
20120221002 | Long et al. | Aug 2012 | A1 |
20120238796 | Conlon | Sep 2012 | A1 |
20120330306 | Long et al. | Dec 2012 | A1 |
20130090666 | Hess et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
666310 | Feb 1996 | AU |
3008120 | Sep 1980 | DE |
4323585 | Jan 1995 | DE |
19713797 | Oct 1997 | DE |
19757056 | Aug 2008 | DE |
102006027873 | Oct 2009 | DE |
0086338 | Aug 1983 | EP |
0286415 | Oct 1988 | EP |
0589454 | Mar 1994 | EP |
0464479 | Mar 1995 | EP |
0529675 | Feb 1996 | EP |
0621009 | Jul 1997 | EP |
0724863 | Jul 1999 | EP |
0760629 | Nov 1999 | EP |
0818974 | Jul 2001 | EP |
1281356 | Feb 2003 | EP |
0947166 | May 2003 | EP |
0836832 | Dec 2003 | EP |
1402837 | Mar 2004 | EP |
0744918 | Apr 2004 | EP |
0931515 | Aug 2004 | EP |
0941128 | Oct 2004 | EP |
1411843 | Oct 2004 | EP |
1150614 | Nov 2004 | EP |
1477104 | Nov 2004 | EP |
1481642 | Dec 2004 | EP |
1493391 | Jan 2005 | EP |
0848598 | Feb 2005 | EP |
1281360 | Mar 2005 | EP |
1568330 | Aug 2005 | EP |
1452143 | Sep 2005 | EP |
1616527 | Jan 2006 | EP |
1006888 | Mar 2006 | EP |
1629764 | Mar 2006 | EP |
1013229 | Jun 2006 | EP |
1721561 | Nov 2006 | EP |
1153578 | Mar 2007 | EP |
1334696 | Mar 2007 | EP |
1769766 | Apr 2007 | EP |
1836971 | Sep 2007 | EP |
1836980 | Sep 2007 | EP |
1854421 | Nov 2007 | EP |
1857061 | Nov 2007 | EP |
1875876 | Jan 2008 | EP |
1891881 | Feb 2008 | EP |
1902663 | Mar 2008 | EP |
1477106 | Jun 2008 | EP |
1949844 | Jul 2008 | EP |
1518499 | Aug 2008 | EP |
1582138 | Sep 2008 | EP |
1709918 | Oct 2008 | EP |
1985226 | Oct 2008 | EP |
1994904 | Nov 2008 | EP |
1707130 | Dec 2008 | EP |
0723462 | Mar 2009 | EP |
1769749 | Nov 2009 | EP |
2135545 | Dec 2009 | EP |
1493397 | Sep 2011 | EP |
2731610 | Sep 1996 | FR |
330629 | Jun 1930 | GB |
2335860 | Oct 1999 | GB |
2403909 | Jan 2005 | GB |
2421190 | Jun 2006 | GB |
2443261 | Apr 2008 | GB |
56-46674 | Apr 1981 | JP |
63309252 | Dec 1988 | JP |
4038960 | Feb 1992 | JP |
8-29699 | Feb 1996 | JP |
2000245683 | Sep 2000 | JP |
2002-369791 | Dec 2002 | JP |
2003-088494 | Mar 2003 | JP |
2003-235852 | Aug 2003 | JP |
2004-33525 | Feb 2004 | JP |
2004-065745 | Mar 2004 | JP |
2005-121947 | May 2005 | JP |
2005-261514 | Sep 2005 | JP |
2006297005 | Nov 2006 | JP |
2006-343510 | Dec 2006 | JP |
1021295 | Feb 2004 | NL |
194230 | May 1967 | SU |
980703 | Dec 1982 | SU |
WO 8401707 | May 1984 | WO |
WO 9213494 | Aug 1992 | WO |
WO 9310850 | Jun 1993 | WO |
WO 9320760 | Oct 1993 | WO |
WO 9320765 | Oct 1993 | WO |
WO 9509666 | Apr 1995 | WO |
WO 9622056 | Jul 1996 | WO |
WO 9627331 | Sep 1996 | WO |
WO 9639946 | Dec 1996 | WO |
WO 9712557 | Apr 1997 | WO |
WO 9801080 | Jan 1998 | WO |
WO 9900060 | Jan 1999 | WO |
WO 9909919 | Mar 1999 | WO |
WO 9917661 | Apr 1999 | WO |
WO 9930622 | Jun 1999 | WO |
WO 0035358 | Jun 2000 | WO |
WO 0068665 | Nov 2000 | WO |
WO 0110319 | Feb 2001 | WO |
WO 0126708 | Apr 2001 | WO |
WO 0141627 | Jun 2001 | WO |
WO 0158360 | Aug 2001 | WO |
WO 0211621 | Feb 2002 | WO |
WO 0234122 | May 2002 | WO |
WO 02094082 | Nov 2002 | WO |
WO 03045260 | Jun 2003 | WO |
WO 03047684 | Jun 2003 | WO |
WO 03059412 | Jul 2003 | WO |
WO 03078721 | Sep 2003 | WO |
WO 03081761 | Oct 2003 | WO |
WO 03082129 | Oct 2003 | WO |
WO 2004006789 | Jan 2004 | WO |
WO 2004028613 | Apr 2004 | WO |
WO 2004037123 | May 2004 | WO |
WO 2004037149 | May 2004 | WO |
WO 2004052221 | Jun 2004 | WO |
WO 2004086984 | Oct 2004 | WO |
WO 2005009211 | Feb 2005 | WO |
WO 2005018467 | Mar 2005 | WO |
WO 2005037088 | Apr 2005 | WO |
WO 2005048827 | Jun 2005 | WO |
WO 2005065284 | Jul 2005 | WO |
WO 2005097019 | Oct 2005 | WO |
WO 2005097234 | Oct 2005 | WO |
WO 2005112810 | Dec 2005 | WO |
WO 2005120363 | Dec 2005 | WO |
WO 2005122866 | Dec 2005 | WO |
WO 2006007399 | Jan 2006 | WO |
WO 2006012630 | Feb 2006 | WO |
WO 2006040109 | Apr 2006 | WO |
WO 2006041881 | Apr 2006 | WO |
WO 2006060405 | Jun 2006 | WO |
WO 2006110733 | Oct 2006 | WO |
WO 2006113216 | Oct 2006 | WO |
WO 2007013059 | Feb 2007 | WO |
WO 2007014063 | Feb 2007 | WO |
WO 2007048085 | Apr 2007 | WO |
WO 2007063550 | Jun 2007 | WO |
WO 2007100067 | Sep 2007 | WO |
WO 2007109171 | Sep 2007 | WO |
WO 2007143200 | Dec 2007 | WO |
WO 2007144004 | Dec 2007 | WO |
WO 2008005433 | Jan 2008 | WO |
WO 2008033356 | Mar 2008 | WO |
WO 2008041225 | Apr 2008 | WO |
WO 2008076337 | Jun 2008 | WO |
WO 2008076800 | Jun 2008 | WO |
WO 2008079440 | Jul 2008 | WO |
WO 2008101075 | Aug 2008 | WO |
WO 2008102154 | Aug 2008 | WO |
WO 2008108863 | Sep 2008 | WO |
WO 2008151237 | Dec 2008 | WO |
WO 2009021030 | Feb 2009 | WO |
WO 2009027065 | Mar 2009 | WO |
WO 2009029065 | Mar 2009 | WO |
WO 2009032623 | Mar 2009 | WO |
WO 2009036457 | Mar 2009 | WO |
WO 2009121017 | Oct 2009 | WO |
WO 2010027688 | Mar 2010 | WO |
WO 2010056716 | May 2010 | WO |
WO 2010080974 | Jul 2010 | WO |
WO 2010088481 | Aug 2010 | WO |
Entry |
---|
International Search Report for PCT/US2010/060325, Aug. 30, 2011 (6 pages). |
Zadno et al., “Linear Superelasticity in Cold-Worked NI-TI,” Engineering Aspects of Shape Memory Alloys, pp. 414-419 (1990). |
U.S. Appl. No. 13/013,131, filed Jan. 25, 2011. |
U.S. Appl. No. 13/013,147, filed Jan. 25, 2011. |
U.S. Appl. No. 12/900,132, filed Oct. 7, 2010. |
U.S. Appl. No. 12/939,441, filed Nov. 4, 2010. |
U.S. Appl. No. 12/902,531, filed Oct. 12, 2010. |
U.S. Appl. No. 12/902,550, filed Oct. 12, 2010. |
U.S. Appl. No. 13/036,895, filed Feb. 28, 2011. |
U.S. Appl. No. 13/036,908, filed Feb. 28, 2011. |
U.S. Appl. No. 13/218,221, filed Aug. 25, 2011. |
U.S. Appl. No. 13/267,251, filed Oct. 6, 2011. |
Michael S. Kavic, M.D., “Natural Orifice Translumenal Endoscopic Surgery: “NOTES””, JSLS, vol. 10, pp. 133-134 (2006). |
Ethicon, Inc., “Wound Closure Manual: Chapter 3 (The Surgical Needle),” 15 pages, (1994). |
Guido M. Sclabas, M.D., et al., “Endoluminal Methods for Gastrotomy Closure in Natural Orifice TransEnteric Surgery (NOTES),” Surgical Innovation, vol. 13, No. 1, pp. 23-30, Mar. 2006. |
Fritscher-Ravens, et al., “Transgastric Gastropexy and Hiatal Hernia Repair for GERD Under EUS Control: a Porcine Model,” Gastrointestinal Endoscopy, vol. 59, No. 1, pp. 89-95, 2004. |
Ogando, “Prototype Tools That Go With the Flow,” Design News, 2 pages, Jul. 17, 2006. |
Edd, et al., “In Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation,” IEEE Trans Biomed Eng, vol. 53, pp. 1409-1415, 2006. |
Kennedy, et al., “High-Burst-Strength, Feedback-Controlled Bipolar Vessel Sealing,” Surgical Endoscopy, vol. 12, pp. 876-878 (1998). |
Collins et al., “Local Gene Therapy of Solid Tumors with GM-CSF and B7-1 Eradicates Both Treated and Distal Tumors,” Cancer Gene Therapy, vol. 13, pp. 1061-1071 (2006). |
K. Sumiyama et al., “Transesophageal Mediastinoscopy by Submucosal Endoscopy With Mucosal Flap Safety Value Technique,” Gastrointest Endosc., Apr. 2007, vol. 65(4), pp. 679-683 (Abstract). |
K. Sumiyama et al., “Submucosal Endoscopy with Mucosal Flap Safety Valve,” Gastrointest Endosc. Apr. 2007, vol. 65(4) pp. 694-695 (Abstract). |
K. Sumiyama et al., “Transgastric Cholecystectomy: Transgastric Accessibility to the Gallbladder Improved with the SEMF Method and a Novel Multibending Therapeutic Endoscope,” Gastrointest Endosc., Jun. 2007, vol. 65(7), pp. 1028-1034 (Abstract). |
K. Sumiyama et al., “Endoscopic Caps,” Tech. Gastrointest. Endosc., vol. 8, pp. 28-32, 2006. |
“Z-Offset Technique Used in the Introduction of Trocar During Laparoscopic Surgery,” M.S. Hershey NOTES Presentation to EES NOTES Development Team, Sep. 27, 2007. |
F.N. Denans, Nouveau Procede Pour La Guerison Des Plaies Des Intestines. Extrait Des Seances De La Societe Royale De Medecine De Marseille, Pendant Le Mois De Decembre 1825, et le Premier Tremestre De 1826, Séance Du 24 Fevrier 1826. Recueil De La Societe Royale De Medecin De Marseille. Marseille: Impr. D'Achard, 1826; 1:127-31. (with English translation). |
I. Fraser, “An Historical Perspective on Mechanical Aids in Intestinal Anastamosis,” Surg. Gynecol. Obstet. (Oct. 1982), vol. 155, pp. 566-574. |
M.E. Ryan et al., “Endoscopic Intervention for Biliary Leaks After Laparoscopic Cholecystectomy: A Multicenter Review,” Gastrointest. Endosc., vol. 47(3), 1998, pp. 261-266. |
C. Cope, “Creation of Compression Gastroenterostomy by Means of the Oral, Percutaneous, or Surgical Introduction of Magnets: Feasibility Study in Swine,” J. Vasc Interv Radiol, (1995), vol. 6(4), pp. 539-545. |
J.W. Hazey et al., “Natural Orifice Transgastric Endoscopic Peritoneoscopy in Humans: Initial Clinical Trial,” Surg Endosc, (Jan. 2008), vol. 22(1), pp. 16-20. |
N. Chopita et al., “Endoscopic Gastroenteric Anastamosis Using Magnets,” Endoscopy, (2005), vol. 37(4), pp. 313-317. |
C. Cope et al., “Long Term Patency of Experimental Magnetic Compression Gastroenteric Anastomoses Achieved with Covered Stents,” Gastrointest Endosc, (2001), vol. 53, pp. 780-784. |
H. Okajima et al., “Magnet Compression Anastamosis for Bile Duct Stenosis After Duct to Duct Biliary Reconstruction in Living Donor Liver Transplantation,” Liver Transplantation (2005), pp. 473-475. |
A. Fritscher-Ravens et al., “Transluminal Endosurgery: Single Lumen Access Anastamotic Device for Flexible Endoscopy,” Gastrointestinal Endosc, (2003), vol. 58(4), pp. 585-591. |
G.A. Hallenbeck, M.D. et al., “An Instrument for Colorectal Anastomosis Without Sutrues,” Dis Col Rectum, (1963), vol. 5, pp. 98-101. |
T. Hardy, Jr., M.D. et al., “A Biofragmentable Ring for Sutureless Bowel Anastomosis. An Experimental Study,” Dis Col Rectum, (1985), vol. 28, pp. 484-490. |
P. O'Neill, M.D. et al., “Nonsuture Intestinal Anastomosis,” Am J. Surg, (1962), vol. 104, pp. 761-767. |
C.P. Swain, M.D. et al., “Anastomosis at Flexible Endoscopy: An Experimental Study of Compression Button Gastrojejunostomy,” Gastrointest Endosc, (1991), vol. 37, pp. 628-632. |
J.B. Murphy, M.D., “Cholecysto-Intestinal, Gastro-Intestinal, Entero-Intestinal Anastomosis, and Approximation Without Sutures (original research),” Med Rec, (Dec. 10, 1892), vol. 42(24), pp. 665-676. |
USGI® EndoSurgical Operating System—g-Prox® Tissue Grasper/Approximation Device; [online] URL: http://www.usgimedical.com/eos/components-gprox.htm—accessed May 30, 2008 (2 pages). |
Printout of web page—http://www.vacumed.com/zcom/product/Product.do?compid=27&prodid=852, #51XX Low-Cost Permanent Tubes 2MM ID, Smooth Interior Walls, VacuMed, Ventura, California, Accessed Jul. 24, 2007. |
Endoscopic Retrograde Cholangiopancreatogram (ERCP); [online] URL: http://www.webmd.com/digestive-disorders/endoscopic-retrograde-cholangiopancreatogram-ercp.htm; last updated: Apr. 30, 2007; accessed: Feb. 21, 2008 (6 pages). |
ERCP; Jackson Siegelbaum Gastroenterology; [online] URL: http://www.gicare.com/pated/epdgs20.htm; accessed Feb. 21, 2008 (3 pages). |
D.G. Fong et al., “Transcolonic Ventral Wall Hernia Mesh Fixation in a Porcine Model,” Endoscopy 2007; 39: 865-869. |
B. Rubinsky, Ph.D., “Irreversible Electroporation in Medicine,” Technology in Cancer Research and Treatment, vol. 6, No. 4, Aug. 2007, pp. 255-259. |
D.B. Nelson, MD et al., “Endoscopic Hemostatic Devices,” Gastrointestinal Endoscopy, vol. 54, No. 6, 2001, pp. 833-840. |
CRE™ Pulmonary Balloon Dilator; [online] URL: http://www.bostonscientific.com/Device.bsci?page=HCP—Overview&navRe1Id=1000.1003&method=D . . . , accessed Jul. 18, 2008 (4 pages). |
J.D. Paulson, M.D., et al., “Development of Flexible Culdoscopy,” The Journal of the American Association of Gynecologic Laparoscopists, Nov. 1999, vol. 6, No. 4, pp. 487-490. |
H. Seifert, et al., “Retroperitoneal Endoscopic Debridement for Infected Peripancreatic Necrosis,” The Lancet, Research Letters, vol. 356, Aug. 19, 2000, pp. 653-655. |
K.E. Mönkemüller, M.D., et al., “Transmural Drainage of Pancreatic Fluid Collections Without Electrocautery Using the Seldinger Technique,” Gastrointestinal Endoscopy, vol. 48, No. 2, 1998, pp. 195-200, (Received Oct. 3, 1997; Accepted Mar. 31, 1998). |
D. Wilhelm et al., “An Innovative, Safe and Sterile Sigmoid Access (ISSA) for NOTES,” Endoscopy 2007, vol. 39, pp. 401-406. |
Link et al., “Regional Chemotherapy of Nonresectable Colorectal Liver Metastases with Mitoxanthrone, 5-Fluorouracil, Folinic Acid, and Mitomycin C May Prolong Survival,” Cancer, 92, pp. 2746-2753 (2001). |
Guyton et al., “Membrane Potentials and Action Potentials,” W.B. Sanders, ed. Textbook of Medical Physiology, p. 56 (2000). |
“Ethicon Endo-Surgery Novel Investigational Notes and SSL Devices Featured in 15 Presentations at Sages,” Apr. 22, 2009 Press Release; URL http://www.jnj.com/connect/news/all/20090422—152000; accessed Aug. 28, 2009 (3 pages). |
“Ethicon Endo-Surgery Studies Presented at DDW Demonstrate Potential of Pure NOTES Surgery With Company's Toolbox,” Jun. 3, 2009 Press Release; URL http://www.jnj.com/connect/news/product/20090603—120000; accessed Aug. 28, 2009 (3 pages). |
Castellvi et al., “Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using a Magnetically Anchored Camera and Novel Instrumentation,” Abstract submitted along with Poster at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page). |
Castellvi et al., “Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using a Magnetically Anchored Camera and Novel Instrumentation,” Poster submitted along with Abstract at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page). |
OCTO Port Modular Laparoscopy System for Single Incision Access, Jan. 4, 2010; URL http://www.medgadget.com/archives/2010/01/octo—port—modular—laparo . . . ; accessed Jan. 5, 2010 (4 pages). |
Hakko Retractors, obtained Aug. 25, 2009 (5 pages). |
U.S. Appl. No. 12/607,252, filed Oct. 28, 2009. |
U.S. Appl. No. 12/580,400, filed Oct. 16, 2009. |
U.S. Appl. No. 12/607,388, filed Oct. 28, 2009. |
U.S. Appl. No. 12/612,911, filed Nov. 5, 2009. |
U.S. Appl. No. 12/614,143, filed Nov. 6, 2009. |
U.S. Appl. No. 12/617,998, filed Nov. 13, 2009. |
U.S. Appl. No. 12/640,440, filed Dec. 17, 2009. |
U.S. Appl. No. 12/640,469, filed Dec. 17, 2009. |
U.S. Appl. No. 12/640,476, filed Dec. 17, 2009. |
U.S. Appl. No. 12/640,492, filed Dec. 17, 2009. |
U.S. Appl. No. 12/641,823, filed Dec. 18, 2009. |
U.S. Appl. No. 12/641,853, filed Dec. 18, 2009. |
U.S. Appl. No. 12/651,181, filed Dec. 31, 2009. |
U.S. Appl. No. 12/696,598, filed Jan. 29, 2010. |
U.S. Appl. No. 12/696,626, filed Jan. 29, 2010. |
U.S. Appl. No. 12/752,701, filed Apr. 1, 2010. |
Nakazawa et al., “Radiofrequency Ablation of Hepatocellular Carcinoma: Correlation Between Local Tumor Progression After Ablation and Ablative Margin,” AJR, 188, pp. 480-488 (Feb. 2007). |
Miklav{hacek over (c)}i{hacek over (c)} et al., “A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy,” Biochimica et Biophysica Acta, 1523, pp. 73-83 (2000). |
Evans, “Ablative and cathether-delivered therapies for colorectal liver metastases (CRLM),” EJSO, 33, pp. S64-S75 (2007). |
Wong et al., “Combined Percutaneous Radiofrequency Ablation and Ethanol Injection for Hepatocellular Carcinoma in High-Risk Locations,” AJR, 190, pp. W187-W195 (2008). |
Heller et al., “Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo,” Gene Therapy, 7, pp. 826-829 (2000). |
Widera et al., “Increased DNA Vaccine Delivery and Immunogenicity by Electroporation In Vivo,” The Journal of Immunology, 164, pp. 4635-4640 (2000). |
Weaver et al., “Theory of electroporation: A review,” Bioelectrochemistry and Bioenergetics, 41, pp. 135-160 (1996). |
Mulier et al., “Radiofrequency Ablation Versus Resection for Resectable Colorectal Liver Metastases: Time for a Randomized Trial?” Annals of Surgical Oncology, 15(1), pp. 144-157 (2008). |
Guyton et al., “Contraction of Skeletal Muscle,” Textbook of Medical Physiology, pp. 82-84 (2000). |
How Stuff Works “How Smart Structures Will Work,” http://science.howstuffworks.com/engineering/structural/smart-structure1.htm; accessed online Nov. 1, 2011 (3 pages). |
Instant Armor: Science Videos—Science News—ScienCentral; http://www.sciencentral.com/articles./view.php3?article—id=218392121; accessed online Nov. 1, 2011 (2 pages). |
Stanway, Smart Fluids: Current and Future Developments. Material Science and Technology, 20, pp. 931-939, 2004; accessed online Nov. 1, 2011 at http://www.dynamics.group.shef.ac.uk/smart/smart.html (7 pages). |
Jolly et al., Properties and Applications of Commercial Magnetorheological Fluids. SPIE 5th Annual Int. Symposium on Smart Structures and Materials, 1998 (18 pages). |
Rutala et al. “Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008” (available at http://www.cdc.gov/hicpac/Disinfection—Sterilization/13—11sterilizingPractices.html). |
U.S. Appl. No. 13/325,791, filed Dec. 14, 2011. |
U.S. Appl. No. 13/399,358, filed Feb. 17, 2012. |
U.S. Appl. No. 13/420,818, filed Mar. 15, 2012. |
Bewlay et al., “Spinning” in ASM Handbook, vol. 14B, Metalworking: Sheet Forming (2006). |
Number | Date | Country | |
---|---|---|---|
20110152859 A1 | Jun 2011 | US |