The present disclosure relates to surgical instruments and methods of their use, and more particularly to minimally invasive surgical instruments with electrodes and sealing means, and methods of use in surgery.
Examples of minimally invasive surgical assemblies and related equipment are described in U.S. Pat. No. 7,766,937 to Ravikumar, U.S. Pat. No. 8,230,863 to Ravikumar et al., U.S. Pat. No. 8,313,507 to Ravikumar, U.S. Pat. No. 8,133,255 to Ravikumar et al., U.S. patent application Ser. No. 11/685,522 to Ravikumar et al. (published as U.S. Patent Pub. No. 2007/0250112), U.S. patent application Ser. No. 12/503,035 to Ravikumar (published as U.S. Patent Pub. No. 2010/0016884), U.S. patent application Ser. No. 11/610,746 to Ravikumar et al. (published as U.S. Patent Pub. No. 2007/0282170), and U.S. patent application Ser. No. 12/689,352 to Ravikumar et al. (published as U.S. Patent Pub. No. 2010/0292724), all of which patents, applications, and publications are incorporated by reference herein in their entireties.
Over the last two decades, minimally invasive surgery has become the standard for many types of surgeries which were previously accomplished through open surgery. Minimally invasive surgery generally involves introducing an optical element (e.g., laparoscopic or endoscope) through a surgical or natural port in the body, advancing one or more surgical instruments through additional ports or through the endoscope, conducting the surgery with the surgical instruments, and withdrawing the instruments and scope from the body. In laparoscopic surgery (broadly defined herein to be any surgery where a port is made via, a surgical incision, including but not limited to abdominal laparoscopy, arthroscopy, spinal laparoscopy, etc.), a port for a scope is typically made using a surgical trocar assembly.
The trocar assembly often includes a port, a sharp pointed element (trocar) extending through and beyond the distal end of the port, and at least in the case of abdominal laparoscopy, a sealing valve on the proximal portion of the port. The term trocar typically includes a combination of cooperating elements such as a cannula, a seal housing, and an obturator. First the obturator cuts or pierces the body wall so that the cannula may be inserted. The cannula defines a pathway through a body wall through which the surgical instruments are placed. Finally the seal housing provides an isolation of the cannula so that if insufflation is employed the body region remains distended and sealed. All three components are usually fitted together and used as a single unit for passage by one or more surgical instruments through the body wall and into a body cavity.
Laparoscopic surgery typically begins as the surgeon inserts a large bore needle through a body wall and into the internal region associated with the body wall. Next, an inflation or insufflation gas is pumped into the internal region until it is properly distended. The body wall and internal region are now ready for insertion of trocars.
If not already distended, an insufflation element may be attached to the trocar port in order to insufflate the surgical site. An optical element may then be introduced through the trocar port. Additional ports are then typically made so that additional laparoscopic instruments may be introduced into the body. Trocar assemblies are manufactured in different sizes. Typical trocar port sizes include diameters of about 5 mm, 10 mm, and 12 mm, which are sized to permit variously sized laparoscopic instruments to be introduced therethrough including, e.g., graspers, dissectors, staplers, scissors, suction/irrigators, clamps, forceps, biopsy forceps, etc. While 5 mm diameter trocar ports are relatively small, in some circumstances where internal working space is limited (e.g., children), it is difficult to place multiple 5 mm diameter ports in the limited area. In addition, 5 mm diameter trocar ports tend to limit movement of instruments inside the abdominal cavity to a great extent. Such a conventional 5 mm diameter trocar has a sealing valve and sealing mechanism and therefore the opening for the surgical instrument is limited. Thus, smaller diameter surgical access ports, such as those described in PCT/US2015/040371 entitled “Exchanger Surgical Access Port and Methods of Use” and PCT/US2014/056456 entitled “Minimally Invasive Surgical Re-Entry Exchanger Assembly and Methods” (both of which are incorporated by reference herein in their entireties) are useful in pediatric patients and in body locations where a smaller surgical access port is advantageous for surgery.
Further, while laparoscopic surgery has reduced the trauma associated with various surgical procedures and has concomitantly reduced recovery time from these surgeries, there always remains a desire in the art to further reduce the trauma to the patient.
One area of trauma associated with laparoscopic surgery identified by the inventors hereof as being susceptible of reduction are the scars which result from the trocar ports used. In many laparoscopic surgeries, three or more trocar incisions are made. For example, in laparoscopic hernia repair surgery, four trocar incisions are typically made, with one incision for insufflating the abdomen via a placed trocar and using such trocar for inserting the optical device, two incisions for placing trocar ports for inserting graspers therethrough, and a fourth port for passing a stapler therethrough. Those skilled in the art and those who have undergone surgical procedures understand that even the 5 mm diameter trocar ports leave holes which must be stitched and which result in scars. Scar tissue may affect the internal portion of the fascia as well as the cosmetic appearance of the skin, which may be detrimental for the patient or even a surgeon if that area of the skin is subject to a later incision or medical procedure. Thus a need exists for surgical methods which include fewer and smaller diameter trocars or surgical access ports.
Further, a need exists for a surgical instrument probe which has a smaller diameter to reduce trauma within the patient, even if used in connection with a trocar or surgical access port having a diameter of 5 mm or larger, thereby enabling use of smaller diameter instruments within the body cavity.
A further need exits for a surgical instrument probe which as a small diameter so as to reduce scarring at the surgical access location within the patient's body. A further need exists for a surgical instrument probe which has a small diameter to be used with a small diameter surgical access port.
A further need exits for a surgical instrument probe which as a small diameter and a longer length for use by a surgeon during surgery. Yet another need exists for a surgical instrument probe which has a smaller diameter, longer length, and end effectors such as a hook or spatula. A further need exists for a surgical instrument probe which has a smaller diameter, longer length with end effectors, such as a hook or spatula crimped to a rod within the surgical instrument probe.
Yet another need exists for a surgical instrument probe which has a smaller diameter, longer length, and a sealing means when used in connection with a large diameter trocar or surgical access port. A further need exists for a surgical instrument probe which has a smaller diameter and a sealing means to reduce or eliminate desufflation or gas leak when used in connection with a trocar or surgical access port having a larger diameter than that of the surgical instrument probe.
Other advantages of the present disclosure will become apparent from the following description and appended claims.
According to one aspect, the disclosure describes a surgical instrument probe. The surgical instrument probe includes an elongated shaft with a conductive rod, the elongated shaft defining an outer diameter of less than 3 mm and extending along an axial direction from a proximal end of the elongated shaft to a distal end of the elongated shaft. The surgical instrument probe includes a pencil handle hub attached to the elongated shaft on the proximal end of the elongated shaft, and includes an end effector connected to the distal end of the elongated shaft. The surgical instrument probe further includes a sealing means attached to the outer diameter of the elongated shaft.
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject invention. For purposes of explanation and illustration, and not limitation, exemplary embodiments of a minimally invasive surgical assembly in accordance with the present disclosure, or aspects thereof, are shown in
The elongated shaft 110 of the surgical instrument probe 100 may have a diameter of less than about 3 mm (±20%) and may be used in laparoscopic surgery so as to reduce scarring and complications for the patient. The surgical instrument probe 100 of the present disclosure may be manufactured with the end effector 120, 125 crimped to the conductive rod 112 within the shaft 110 for additional strength, continuity of conductivity if energized, and ease of manipulation of the surgical instrument probe 100 during use by the surgeon. The surgical instrument probe 100 of the present disclosure may be used in conjunction with a surgical access port having a diameter at the insertion point of less than about 3 mm.
Referring now to
The elongated shaft 110 includes a conductive rod 112 and may be electrically insulated on the outside with a plastic or other compatible material for insertion into a human cavity. If the surgical instrument probe 100 is used for electrocautery, the insulation may include certain dielectric properties.
In one aspect, as shown in
Referring to
In one aspect, the outer diameter of the distal end 141 may be less than or equal to an outer diameter of the elongated shaft 110. During installation and/or use, the elastic properties of the sealing means 140 may enable the inner cannula of the sealing means 140, at at least the distal end 141, to expand around the outer diameter of the elongated shaft 110, thereby providing a snug, sealing interface between the elongated shaft 110 and the sealing means 140.
In one aspect, the outer diameter of the proximal end 142 of the sealing means 140 may be greater than or equal to an inner diameter of the trocar or surgical access port. During use, the outer diameter of the proximal end 142 of the sealing means 140 may be compressed inwardly, for example in a radial direction, enabling the sealing means 140 to be at least partially inserted into the trocar or surgical access port. By at least partially compressing the proximal end 142 of the sealing means 140, a sealing interface may be provided between the sealing means 140 and the trocar or surgical access port. In one aspect, the inner diameter of the inner cannula of the sealing means 140 may be constant along an axial length of the sealing means 140 in order to provide a secure fit between the sealing means 140 and the elongated shaft 110, which may also include the insulation 114. In one aspect, the secure fit may be provided via friction between the contacting surfaces of the sealing means 140 and the elongated shaft 110. The one or more sealing interfaces of the sealing means 140 may eliminate or reduce desufflation or gas leak when the surgical instrument probe 100 is inserted into and used with the trocar or surgical access port.
In one aspect, the tapered conical outer surface 143 may include a bellows or ridges portion 145, and the ridges portion 145 may provide the surgical instrument probe 100 a greater range of reach and motion when inserted into the trocar or surgical access port with the sealing means 140 disposed therebetween. In one aspect, the ridges portion 145 may include a conical profile corresponding generally to a profile of the tapered conical outer surface 143 in the longitudinal axis direction of the sealing means 140. In one aspect, the ridges portion 145 may help promote sealing and retention with an inner diameter of the trocar or surgical access port during use. The retention function may be employed through the use of friction, and other grips and shapes may be employed on the sealing means 140 to provide sealing properties.
Referring to
Although a tapered conical shape and a cylindrical shape has been described above for the sealing means 140, 140′, respectively, other shapes are of course contemplated. For example, the sealing means may be in the shape of a cone, elliptical, circular, spherical, square, or any other known shape. The sealing means should have an opening through which the surgical instrument probe 100 may be inserted into,
The elongated shaft 110 may be connected on its distal end to an end effector 120. In
The pencil handle hub 130 may be attached on the proximal end of the elongated shaft 110. The pencil handle hub 130 may include a flange 170, a hub surface 160, and an anti-rotational feature 150. In one aspect, the anti-rotation feature 150 may be configured to prevent relative rotation between the pencil handle hub 130 and the conductive rod 112. The anti-rotation feature 150 may include one or more of a friction material, a compression fitting, radially extending protrusions, and radially extending slots. The anti-rotation feature 150 may contact and/or interface with an outer surface of the conductive rod 112 to prevent the conductive rod 112 from rotating or shifting relative to the pencil handle hub 130.
The proximal end of the conductive rod 112 may extend out of the pencil handle hub 130, and the surgical instrument probe 100 may be configured for connection with an energy source for cauterization of the tissue adjacent to the end effector 120, 125. In use, the surgeon may insert the surgical instrument probe 100 into a conventional electrosurgical pencil (not shown) via the proximal end of the conductive rod 112, which extends out of the pencil handle hub 130. The surgeon has the ability to rotate the electrosurgical pencil without having the inserted surgical instrument probe 100 rotate during use due to an anti-rotational feature 150 of the pencil handle hub 130, thereby keeping the manipulation of the end effector 120, 125 in a constant and predictable location.
In one aspect,
The elongated shaft 110 may include or may be covered with insulation 114, as shown in
In one aspect,
In one aspect, where the outer diameter of the elongated shaft 110 is about 2.4 nun, the proximal insulation end 115 extends along the inner diameter of the handle hub 130 and may extend up to a location the flange 170.
In one aspect,
In one aspect,
In one aspect, the surgical instrument probe 100 may be an electrocautery and may be operable to cauterize target tissue positioned adjacent to the end effector 120, 125. In one aspect, the surgical instrument probe 100 may be connected to a monopolar or bipolar electrical means which may be used to cauterize the target tissue using the end effector 120, 125. In one aspect, the surgeon may use the end effector 120, 125 to hook and/or cut certain target tissue and then apply electrosurgical energy through the surgical instrument probe 100 to cauterize the target tissue. An electrosurgical treatment instrument may be provided with the surgical instrument probe 100 and may be capable of treating tissue via the use of heat, which may be produced using the electrosurgical energy, and the heat may be applied while contacting, cutting, and/or shearing the target tissue. The electrosurgical treatment instrument may be used to carryout operations or procedures, such as but not limited to, incisions, coagulations, and the like. During such a procedure, the electrosurgical treatment instrument may be equipped with an active electrode and an inactive, so-called neutral electrode. If the electrosurgical treatment instrument is monopolar, then during the whole duration of the surgery, the neutral electrode may be electrically connected to a large area of the patient's skin, which may include for example, the thigh or the upper arm of the patient.
In one aspect, the surgical instrument probe 100 may be inserted into an aperture of an electrosurgical pencil, and the surgical instrument probe 100 may be energized via a bipolar or monopolar means. The proximal end of the conductive rod 112 may extend beyond the proximal end of the pencil handle hub 130, which may be inserted into an aperture of the electrosurgical pencil, thereby allowing energy to run through the electrosurgical pencil, through the conductive rod 112 and crimp 127, and to the end effectors 120, 125. With the end effectors 120, 125 energized, target tissue in contact with, or in near contact with, the end effectors 120, 125 may be cauterized.
In one aspect, the electrosurgical treatment instrument or electrosurgical pencil may further comprise an electrical connector for connecting a conductor at the proximal end of the conductive rod 112 to an external electrosurgical generator. Electrical energy may be supplied to the surgical instrument by a conventional electrosurgical controls, which the user e.g., surgeon) may activate via a button or switch, such as a foot switch, electrically connected to the electrosurgical generator. When the button or switch is triggered, the generator may supply electrical energy through a power cord to the electrical connector and onward to the surgical instrument probe 100. Typically a high frequency AC or RF current may be employed, and the voltage may be dependent on the type and degree of electrosurgical treatment desired. Voltages may range up to at least 12,000V in some cases, with about 3000V being a typical value used for coagulation, for example.
The surgical instrument probe 100 may be manufactured or produced by a process where the rod 200 is connected to the end effector 120, 125 via a connecting mean, such as the crimp 127, shown in
The surgical instrument probe may be used in surgery by inserting it into the patient's body cavity through various means, including direct insertion into the fascia which has already been cut, or through a trocar or other surgical access port such as that disclosed in PCT/US2015/040371 entitled “Exchanger Surgical Access Port and Methods of Use” and PCT/US2014/056456 entitled “Minimally Invasive Surgical Re-Entry Exchanger Assembly and Methods.” The surgical instrument probe may be sold as a kit with the surgical access port and thus a less than about 3 mm diameter laparoscopic surgical kit may be packaged together.
The surgical instrument probe has the advantage of being small with a diameter or approximately 3 mm or less, preferably between about 2.2 mm to about 2.95 mm. The smaller diameter thus reduces the trauma to the patient with smaller surgical access port diameter and possibly less incisions in aggregate during the surgery,
The following benefits, structure, and advantages are also contemplated by the present invention: improved surgical precision, reduced surgical time resulting in reduced trauma to the patient and possibly less scarring, reduced recovery time, less pain, easier handling of the surgical instrument probe via the elongated shaft, and other benefits.
The surgical instrument probe is produced by starting with a rod, boring a hole within the distal end of the rod, inserting the proximal end of an end effector into the hole and joining the end effector with the rod via a connecting means, such as via crimping. In one aspect, the connecting means may be a crimping means and may include a compression means that forms a crimp 127, as shown in
The surgical instrument probe 100 may be used in a variety of laparoscopic procedures. The methods and systems of the present invention, as described above and shown in the drawings, provide minimally invasive surgical assemblies with superior properties including ease of assembly, use and operation. While the apparatus and methods of the subject invention have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the spirit and scope of the subject invention.
The surgical instrument probe 100 may be used in a variety of laparoscopic procedures. The methods and systems of the present disclosure, as described above and shown in the drawings, provide electrosurgical assemblies with small diameters to reduce scarring and improve maneuverability. While the surgical instrument electrodes and methods of the present disclosure have been shown and described, it will be appreciated that the foregoing description provides examples of surgical instrument probes which may be used with a surgical instrument for minimally invasive surgery.
However, it is contemplated that other implementations of the disclosure may differ in detail from the foregoing examples. All references to the disclosure or examples thereof are intended to reference the particular example being discussed at that point and are not intended to imply any limitation as to the scope of the disclosure more generally. All language of distinction and disparagement with respect to certain features is intended to indicate a lack of preference for those features, but not to exclude such from the scope of the disclosure entirely unless otherwise indicated.
Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.
This patent application claims the priority benefit of U.S. Provisional Patent Application No. 62/037,073, filed Aug. 13, 2014, which is incorporated herein in its entirety by this reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/044760 | 8/12/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62037073 | Aug 2014 | US |