This application is a U.S. National Stage of International Application No. PCT/AU2019/050650, filed Jun. 24, 2019, which claims priority from Australian Provisional Application 2018902271 filed on 25 Jun. 2018, the contents of which are hereby incorporated by reference in their entireties for all purposes.
This disclosure relates to surgical instruments for alignment of bone cuts during surgeries on joints and in particular, during total replacement of joints.
Joints between bones often deteriorate over time and need to be replaced. For example, a total knee replacement is a common surgical procedure where articulating surfaces of the knee joint affected by osteoarthritis are replaced by affixed implants. While a reasonable outcome can be achieved in many cases, the knee joint is complex and the total knee replacement has many parameters that can be changed by the surgeon. In particular, the surgeon aims for a ‘balanced’ knee that is not too tight and not too loose by changing implant positioning intraoperatively. However, it is difficult for the surgeon to find the best combination of multiple parameters including varus/valgus, slope and cut depth as they are interdependent. As a result, multiple cuts to the bones often become necessary leading to either excessive amount of bone being removed, extended duration of the procedure or sub-optimal outcome in terms of knee geometries. Similar difficulties present themselves when replacing other joints, such as shoulder and elbow joints.
In one workflow, the surgeon first cuts the tibia and then determines the position of the femoral component. However, this is often difficult and the above problems arise in many cases. Therefore, there is a need for a medical device that assists the surgeon in achieving a balanced knee without the need for multiple cuts of the same bone.
Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present disclosure as it existed before the priority date of each claim of this application.
Throughout this specification the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
A surgical instrument for surgery on a joint between a first bone and a second bone comprises:
A native articular surface of the second bone of the joint may be concave and the artificial articular surface may be convex to interface with the concave native articular surface of the second bone.
The artificial articular surface may be adjustable and locked in its distraction that defines a distance of the artificial articular surface to the surgical instrument.
A flexion angle of the joint may define a slope of a cut to the second bone.
The slope of the cut may be defined by way of a cutting block that is fixed on the second bone and adjustable in slope.
The cutting block may be adjusted in slope so that the cut is in parallel to a standard plane of the surgical instrument.
The cutting block may be adjustable in cutting depth.
The contact surface may corresponds in shape to the contact surface of a component of an implant.
The artificial articular surface may be similar in shape and location to the native surface of the first bone.
The artificial articular surface may be pivotable such that pivoting of the artificial articular surface increases a distance of the articular surface from the contact surface.
The artificial articular surface may be pivotable about a frontal pivot axis that is located within the artificial articular surface.
The surgical instrument may further comprise a cutting block that is attachable to the second bone of the joint in a first configuration where the cutting block is fixed in relation to a first axis and pivotable about a second axis to adjust a slope of a cut on the second bone based on the pivoting of the artificial articular surface.
The artificial articular surface may comprise pressure sensors to assist in balancing the joint.
The joint may be flexible between a flexed position and an extended position and the articular surface may comprise a first surface component to interface with the second bone in the flexed position and a second surface component to interface with the second bone in the extended position.
The first surface component and the second surface component may be distractable and distraction of one of the first and second surface components causes distraction of the other of the first and second surface components.
The artificial articular surface may be moveable to allow translation to define an interior-exterior rotation of the second bone.
The joint may be a knee, the first bone may be the femur of the knee, and the artificial articular surface may comprise artificial posterior condyles that imitate the posterior surface of the native condyles of the femur.
The surgical instrument may further comprise artificial distal condyles that imitate the distal surface of the native condyles.
For one of medial and lateral sides the artificial posterior condyle and the artificial distal condyles may be distractable and distraction of one of the artificial posterior condyle and the artificial distal condyle may cause distraction of the other of the artificial posterior condyle and the artificial distal condyle.
A method for total replacement of a joint between a first bone and a second bone, the method comprises:
There is provided a surgical instrument that has a contact surface shaped to fit a prepared distal end of the femur. In most cases the contact surface would be identical to the contact surface of the femoral component of a chosen implant for the particular patient. The surgical instrument comprises artificial posterior condyles that imitate the native posterior condyles of the femur that have been removed by the preparation of the femur. That is, the artificial posterior condyles are similar in shape and location to the native posterior condyles. However, in contrast to the native posterior condyles, the artificial posterior condyles are pivotable and are locked in their distraction that defines a distance of the artificial posterior condyles to the surgical instrument. As a result of the condyles being pivotable, when the surgical instrument is fitted to the femur, the surgeon can manipulate the knee joint before cutting the tibia by flexing the knee to initiate roll-back of the knee without changing the stiffness of the knee that would be caused by native, non-pivotable posterior condyles acting on the native tibia. This way, the surgeon assesses the tibiofemoral balance between the prepared femur and the native tibia. Due to the pivotable artificial posterior condyles, the amount of posterior condylar angular change relative to the prepared femur as well as the anteroposterior tightness as interpreted by the surgeon defines the slope of the tibial cut. A cutting block can be fixed on the tibia by locating the cutting block relative to the surgical instrument that is fitted to the femur. In the common case where the tibial component is designed with a standard plane, the cutting block is simply located so that the cut is in parallel to the standard plane of the femoral component and the flexion angle then defines the slope of the tibial cut. Further, the cutting depth is adjusted on the cutting block to compensate for parallax offset due to the cutting block being located away from the pivot point of the slope definition.
There is also provided a method for total knee replacement. The method comprises preparing the distal end of the femur to create a bone surface that interfaces with a corresponding surface of a surgical instrument. The surgical instrument comprises distal condyles that are distractable and posterior condyles that are distractable and pivotable. The method then comprises fitting the surgical instrument onto the prepared femur and performing coronal balancing by changing the valgus/varus angle by adjusting the distraction of the anterior and/or posterior condyles until the knee is balanced. The method further comprises fixing a tibial instrument to the tibia that has a fixed valgus/varus angle according to the adjusted distractions of the artificial condyles but adjustable cutting depth and adjustable slope. The method also comprises balancing the knee in flexion by finding an optimal flexion angle under roll-back of the knee defined by the pivotable artificial posterior condyles acting on the native tibia. Then, the method comprises maintaining the optimal flexion angle while adjusting the slope and the cutting depth of the tibial instrument such that the tibial instrument aligns with the surgical instrument fitted to the femur at the optimal flexion angle. Finally, the tibial instrument is used as a guide for a bone preparation instrument to cut the tibia at the resulting cutting depth, slope and varus/valgus angle.
An example will now be described with reference to the following drawings:
The following description provides a surgical instrument and method for joint replacement. While the details are described with reference to a knee joint, they are equally applicable to other joints. In particular, the described solution may be applied to other hinge joints where is a bone joint in which the articular surfaces are moulded to each other in such a manner as to permit motion only in one plane. More particularly, the described solution may be applied to saddle joints comprising opposing surfaces that are reciprocally concave-convex, such as the carpometacarpal joint of the thumb and other condyloid joints, where an ovoid articular surface, or condyle that is received into an elliptical cavity. This permits movement in two planes, allowing flexion, extension, adduction, abduction, and circumduction. Examples include the wrist-joint, metacarpophalangeal joints and metatarsophalangeal joints. The below disclosure relating to knee replacement can be applied to these joints by simply substituting the “distal end of the femur” below with the convex end of the joint to be replaced and substituting the “tibia surface” with the concave surface of the joint.
Surgical instrument 100 comprises artificial posterior condyles 102 that imitate the posterior surface of the native condyles of the femur that have been removed by the preparation of the femur. Imitating in this context means that the artificial posterior condyles 102 have a similar shape to the native surface to the extent that the artificial posterior condyles can provide a similar function to the native surface. In particular, the artificial posterior condyles provide a similar function when bearing against the native tibia surface. Importantly, the artificial posterior condyles 102 are pivotable.
It is noted that in
Further, post 802 may be designed so that it allows distraction (i.e. lateral displacement) of the head 801 relative to the surgical instrument 100. In other words, post 802 may allow the head 801 to move closer or further away from the base of the post 802. This is visible in
Interestingly, the surgeon can now flex the knee and move the femur relative to the tibia until a desired tightness/looseness is achieved. At that moment, the flexion angle of the knee defines a slope of a tibial cut by way of a cutting block that is fixed on the tibia and adjustable in slope.
Rotation of the cylinder 903 defines the rotation about the frontal axis 904, which also defines the slope of the cut through slot 901. This means, the cutting block can be adjusted in slope through rotation of cylinder 903 so that the cut (slot 901) is in parallel to the standard plane of the femoral component as will be described in more detail below.
As shown in
In particular, distraction of one of the artificial posterior condyle and the artificial distal condyle causes distraction of the other of the artificial posterior condyle and the artificial distal condyle. In other words, the posterior and distal condyles on each side are coupled such that they are distracted by about the same distance. That is, the artificial medial distal condyle is coupled to the artificial medial posterior condyle and vice versa for the lateral side. For example, there may be a mechanical coupling comprising screws and the like, pneumatic coupling or electric coupling through the user of electric or magnetic actuators controlled by wires.
The next step is fixing 1104 a further instrument (such as a tibial instrument) to the second bone (e.g. tibia) that has a fixed valgus/varus angle according to the adjusted distractions of the artificial condyles but adjustable cutting depth and adjustable slope.
Once the coronal balancing is complete and the cutting block 900 is in place, the surgeon balances 1105 the joint in flexion by finding an optimal flexion angle under roll-back of the joint defined by the pivotable artificial posterior condyles acting on the native tibia. In other words, the surgeon uses a slope outrigger and sets the cutting block 900 parallel to the 0 degrees posterior condyle tilt setting. Then, the surgeon places the joint in flexion, assesses the anterior/posterior (AP) stiffness of the joint and adjusts the posterior condylar tilt (rotation, pivot as shown in
The surgical instrument described above provides an advantage to the surgeon as it allows the balancing of the knee and the successive locking of degrees of freedom to thereby reduce the degrees of freedom in the remaining steps. While this leverages the experience of the surgeon in feeling the patient's knee, there is also an opportunity to further assist the surgeon in ways that are not offered by existing devices. That is, surgical device 100 may comprise sensors that provide feedback to the surgeon about the current mechanical properties of the knee and in particular the current tightness/looseness of the knee. In particular, the artificial posterior condyles 102 may comprise pressure sensors to assist in balancing the knee. For example, post 802 shown in
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the above-described embodiments, without departing from the broad general scope of the present disclosure. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Number | Date | Country | Kind |
---|---|---|---|
2018902271 | Jun 2018 | AU | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AU2019/050650 | 6/24/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/000030 | 1/2/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20050113846 | Carson | May 2005 | A1 |
20100305575 | Wilkinson et al. | Dec 2010 | A1 |
20110066248 | Ries et al. | Mar 2011 | A1 |
20130013076 | Fisher | Jan 2013 | A1 |
20150142000 | Seedhom et al. | May 2015 | A1 |
20180103961 | Oh | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
2013044174 | May 2005 | WO |
2017004669 | Jan 2017 | WO |
Entry |
---|
International Search Report issued in PCT/AU2019/050650 dated Aug. 15, 2019, 18 pages. |
Written Opinion issued in PCT/AU2019/050650 dated Aug. 15, 2019, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20210267607 A1 | Sep 2021 | US |