Surgical instrument for dispensing tacks and solution

Information

  • Patent Grant
  • 10806455
  • Patent Number
    10,806,455
  • Date Filed
    Monday, May 1, 2017
    7 years ago
  • Date Issued
    Tuesday, October 20, 2020
    3 years ago
Abstract
A surgical tack applier comprising a handle assembly, an inner tube, a plurality of fasteners and a solution is disclosed. The handle assembly includes an actuator associated therewith. The inner tube extends distally from the handle assembly and defines a longitudinal axis. The inner tube is rotatable about the longitudinal axis. The plurality of fasteners are disposed at least partially within the inner tube and are selectively ejectable therefrom. The solution is disposed within the inner tube and is dispensable through a distal opening of the inner tube.
Description
BACKGROUND
1. Technical Field

The present disclosure relates to a surgical instrument for dispensing tacks and a solution. More particularly, the present disclosure relates to a tacker instrument for use in applying surgical fasteners through a prosthetic mesh and into tissue and for dispensing a solution adjacent at least some of the tacks.


2. Background of Related Art

Various surgical procedures require instruments capable of applying fasteners to tissue to form tissue connections or to secure objects to tissue. For example, during hernia repair procedures it is often desirable to fasten a mesh to body tissue. In certain hernias, such as direct or indirect inguinal hernias, a part of the intestine protrudes through a defect in the abdominal wall to form a hernial sac. The defect may be repaired using an open surgery procedure in which a relatively large incision is made and the hernia is closed off outside the abdominal wall by suturing. The mesh is attached with sutures over the opening to provide reinforcement.


Less invasive surgical procedures are currently available to repair a hernia. For example, in laparoscopic procedures, the hernia repair surgery is performed through a small incision in the abdomen while in endoscopic procedures, the hernia repair surgery is performed through narrow endoscopic tubes or cannulas inserted through small incisions in the body. Laparoscopic and endoscopic procedures generally require the use of long and narrow surgical instruments capable of reaching deep within the body and configured to seal with the incision or tube they are inserted through. Additionally, the instruments must be capable of being actuated remotely, that is, from outside the body.


Currently, endoscopic techniques for hernia repair utilize fasteners, such as, surgical staples or clips, to secure the mesh to the tissue to provide reinforcement in the repair and structure for encouraging tissue regrowth. The staples or clips are compressed against the tissue and mesh to secure the two together.


One other type of fastener suited for use in affixing mesh to tissue, during procedures such as hernia repair, is a coil fastener having a helically coiled body portion terminating in a tissue penetrating tip or a hollow screw type fastener having an external thread. Unique instruments have been developed to rotate these fasteners into tissue. Examples of some of these types of surgical fasteners and surgical instruments are disclosed in U.S. Pat. Nos. 5,258,000 and 5,830,221, the contents of which are incorporated by reference herein.


In hernia repair surgery, e.g., inguinal or ventral hernia repair, adhesion may occur between the tissue and the fastener. Accordingly, the present disclosure relates to a solution, e.g., a collagen-based paste, that can be applied from the same tube where the fasteners are ejected from, to or adjacent at least some of the ejected fasteners to help minimize adhesion between the fastener and the tissue.


SUMMARY

The present disclosure relates to a surgical tack applier comprising a handle assembly, an inner tube, a plurality of fasteners and a solution. The handle assembly includes an actuator associated therewith. The inner tube extends distally from the handle assembly and defines a longitudinal axis. The inner tube is rotatable about the longitudinal axis. The plurality of fasteners are disposed at least partially within the inner tube and are selectively ejectable therefrom. The solution is disposed within the inner tube and is dispensable through a distal opening of the inner tube.


In disclosed embodiments, the solution is configured to minimize adhesion between a patient's tissue and the plurality of fasteners.


In disclosed embodiments, the solution is selected from the group consisting of a paste, a collagen-based paste, and porcine dermal collagen. Here, it is disclosed that the solution is stored completely within the inner tube. It is further disclosed that the solution is disposed proximally of each of the plurality of fasteners. It is further disclosed that the solution is disposed in contact with each of the plurality of fasteners. It is further disclosed that the entirety of the solution is disposed within the inner tube and proximally of a proximal-most fastener. Here, it is disclosed that the solution is disposed within an ampoule, and wherein the ampoule is disposed completely within the inner tube.


In disclosed that the solution is stored within a plurality of pouches. It is further disclosed that each of the plurality of pouches may be disposed on a portion of an individual anchor.


The present disclosure also relates to a method of applying fasteners to tissue. The method comprises the step of providing a surgical tack applier. The surgical tack applier comprises a handle assembly including an actuator associated therewith, an inner tube extending distally from the handle assembly, defining a longitudinal axis, and being rotatable about the longitudinal axis, a plurality of fasteners disposed at least partially within the inner tube, and a solution disposed within the inner tube. The method also comprises the steps of selectively ejecting at least one of the plurality of fasteners from a distal opening of the inner tube, and dispensing the solution from within the inner tube through the distal opening of the inner tube.


In disclosed embodiments of the method, the solution is selected from the group consisting of a paste, a collagen-based paste and a porcine dermal collagen. Here, it is disclosed that the solution is disposed in a plurality of pouches, and the method further comprises the step of rupturing at least one pouch. It is further disclosed that the entirety of the solution is disposed in an ampoule disposed proximally of a proximal-most anchor, and the method further comprises the step of rupturing the ampoule. It is further disclosed that the step of dispensing the solution from within the inner tube is performed after all of the anchors have been ejected from the inner tube. It is further disclosed that the step of dispensing the solution from within the inner tube is performed while at least one anchor is within the inner tube.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view of a surgical tacker instrument in accordance with embodiments of the present disclosure;



FIG. 2 is a perspective, assembly view of the surgical tacker instrument shown in FIG. 1;



FIG. 2a is an enlarged view of the area of detail indicated in FIG. 2;



FIG. 3 is a perspective, assembly view of an anchor retaining/advancing assembly of the surgical tacker instrument of FIG. 1;



FIG. 4 is an enlarged view of the area of detail indicated in FIG. 3;



FIG. 5 is a cross-sectional view of a portion of the anchor retaining/advancing assembly taken along line 5-5 in FIG. 1;



FIG. 6 is a cross-sectional view of a portion of the anchor retaining/advancing assembly taken along line 6-6 in FIG. 1;



FIG. 7 is an in-situ view of the surgical tacker instrument of the present disclosure applying anchors to mesh and tissue;



FIG. 8 is an enlarged view of the area of detail indicated in FIG. 7 and further includes a partial cut-away view of a distal portion of the anchor retaining/advancing assembly;



FIG. 9 is a perspective, assembly view of another surgical tacker instrument in accordance with the present disclosure;



FIGS. 10-14 illustrate various features of the surgical tacker instrument of FIG. 9;



FIGS. 15-18 illustrate various views of an anchor for use in the surgical tacker instrument of FIGS. 1 and 9;



FIG. 18A illustrates an anchor including a solution disposed adjacent a distal surface of a head section; and



FIGS. 19-21 illustrate various embodiments of the surgical tacker instrument of FIGS. 1 and 9 including a solution therein.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed surgical systems, apparatuses and/or devices are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to portions of the system, apparatus and/or device, or component thereof, that are farther from the user, while the term “proximal” refers to portions of the system, apparatus and/or device, or component thereof, that are closer to the user.


Referring to FIG. 1, a tacking instrument or tacker 200, for use in installing surgical fasteners in tissue is disclosed. Tacker 200 generally includes a handle assembly 210 and an anchor retaining/advancing assembly 230 extending from handle assembly 210 and configured to store and selectively release or fire a plurality of fasteners or anchors 100 therefrom.


As shown in FIGS. 1, 2 and 7, handle assembly 210 includes a handle housing 212 pivotably supporting a trigger 214. With specific reference to FIG. 2, trigger 214 defines a gear rack 214a formed thereon for operative engagement with a pinion gear 216 rotatably supported in handle housing 212. In disclosed embodiments, gear rack 214a and pinion gear 216 are dimensioned such that one complete squeeze of trigger 214 results in one complete revolution of pinion gear 216. As shown in FIG. 2a, pinion gear 216 includes an arm 216a extending radially therefrom and a cam or ramp 216b extending from arm 216a. Cam 216b includes a front end 216c having a height and tail end 216d tapering into arm 216a.


Handle assembly 210 further includes a bevel gear 218 operatively engaged with pinion gear 216. Bevel gear 218 defines an arcuate slot 218a formed therein for selectively receiving and engaging cam 216b of pinion gear 216. Slot 218a includes a front end wall 218b configured to engage front end 216c of cam 216b of pinion gear 216.


In use, as pinion gear 216 is rotated, upon the squeezing or actuation of trigger 214, front end 216c of cam 216b of pinion gear 216 engages front end wall 218a of slot 218b of bevel gear 218 resulting in concomitant rotation of bevel gear 218. Upon the completion of the actuation of trigger 214 and release thereof, pinion gear 216 rotates in an opposite direction and rear end 216d of cam 216b thereof cams out of slot 218b of bevel gear 218 and along a surface thereof. In disclosed embodiments, pinion gear 216 makes a complete revolution until front end 216c of cam 216b of pinion gear 216 re-engages or clears front end wall 218a of slot 218b of bevel gear 218. As such, cam 216b of pinion gear 216 re-enters slot 218b of bevel gear 218. Bevel gear 218 is maintained from rotating in an opposite direction, upon the opposite direction rotation of pinion gear 216, due to a coefficient of static friction between bevel gear 218 and a surface of handle housing 212 or an axis upon which bevel gear 218 is supported which will tend to maintain bevel gear 218 stationary.


With reference to FIGS. 2 and 3, handle assembly 210 further includes a pinion-bevel gear 220 having gear teeth 220a operatively engaged with gear teeth 218c formed on front end wall 218a of bevel gear 218. Pinion-bevel gear 220 is pinned to a proximal end of an inner tube 238 of anchor retaining/advancing assembly 230.


In use, as described above, upon squeezing of trigger 214, rotation of gear rack 214a causes pinion gear 216 to rotate. Rotation of pinion gear 216 results in rotation of bevel gear 218 and, in turn, rotation of pinion-bevel gear 220 and rotation of anchor retaining/advancing assembly 230.


Referring now to FIGS. 3-6, anchor retaining/advancing assembly 230 includes an outer tube 232 secured to and extending from handle housing 212, a stiffener tube 234 concentrically disposed within outer tube 232, a spiral or coil 236 fixedly disposed within stiffener tube 234 at a location proximate a distal end thereof, and an inner tube 238 rotatably disposed within coil 236.


Inner tube 238 includes a proximal end portion 240 and a distal end portion 242. Proximal end portion 240 of inner tube 238 extends into handle housing 212 and is secured to pinion-bevel gear 220 by a pin 222. Distal end portion 242 of inner tube 238 is slotted, defining a pair of tines 242a and a pair of channels 242b. Distal end portion 242 of inner tube 238 is capable of accepting a plurality of anchors 100 within inner tube 238. In particular, and with additional reference to FIG. 4, anchors 100 are loaded into anchor retaining/advancing assembly 230 such that the pair of opposing threaded sections 112a, 112b of anchors 100 extend through channels 242b of distal end portion 242 of inner tube 238 and are slidably disposed within the groove of coil 236, and the pair of tines 242a of distal end portion 242 of inner tube 238 are disposed within the pair of slotted sections 116 of anchors 100. It is envisioned that each anchor 100 is loaded into anchor retaining/advancing assembly 230 such that adjacent anchors 100 are not in contact with one another so as to not damage distal tips 136 thereof.


In operation, as inner tube 238 is rotated about its longitudinal axis, with respect to coil 236, the pair of tines 242a of inner tube 238 transmits the rotation to anchors 100 and advances anchors 100 distally due to head threads 114a, 114b of anchors 100 engaging with coil 236.


It is envisioned that coil 236 includes twenty-four threads per inch, and the overall length of each anchor 100 is between about 0.1 inches and about 0.3 inches (e.g., approximately equal to 0.203 inches). In such an embodiment, five full turns of inner tube 238 results in anchor 100 being advanced the approximate length of anchor (e.g., 0.203 inches).


Reference may be made to U.S. Provisional Patent Application No. 61/776,811, filed on Mar. 12, 2013, the entire contents of which are incorporated herein by reference, for a further detailed discussion of the construction and operation of tacker 200.


Reference may also be made to U.S. Provisional Patent Application No. 61/783,559, filed on Mar. 14, 2013, the entire contents of which are incorporated herein by reference, for a further detailed discussion of the construction and operation of a tacker which is configured and adapted for articulation and which may incorporate some of the principles of the present disclosure.


Turning now to FIGS. 9-14, a second embodiment of a tacker 1200 is shown. Tacker 1200 is substantially identical to tacker 200 and thus will only be described further herein to the extent necessary to identify differences in construction and/or operation.


As seen in FIGS. 9-14, tacker 1200 is provided with a ratchet mechanism 1260 which is configured to inhibit or prevent inner tube 1238 from backing-out after an anchor 100 has been at least partially driven into tissue. Ratchet mechanism 1260 includes a series of ratchet teeth 1218e formed on a rear end wall 1218d of a bevel gear 1218 (see FIG. 10). Further details of a ratchet mechanism are disclosed in commonly-owned U.S. patent application Ser. No. 10/123,490, the entire contents of which being hereby incorporated by reference herein.


With specific reference to FIG. 13, ratchet mechanism 1260 further includes a spring clip 1262 secured within handle assembly 1210. Spring clip 1262 includes a resilient finger 1262a configured for engagement with ratchet teeth 1218e formed on rear end wall 1218d of bevel gear 1218.


As shown in FIG. 11, each ratchet tooth 1218e includes a shallow angled side 1218e1 and a steep angled side 1218e2. In this manner, resilient finger 1262a of spring clip 1262 engages with ratchet teeth 1218e in such a manner that as bevel gear 1218 is rotated in a first direction resilient finger 1262a cams over shallow angled side 1218e1 of ratchet teeth 1218e. Also, if bevel gear 1218 is rotated in a second direction (opposite to the first direction), resilient finger 1262a stops against steep angled side 1218e2 of ratchet teeth 1218e thereby preventing or inhibiting bevel gear 1218 from rotating in the second direction. As such, any reverse rotation or “backing-out” of anchor 100 or inner tube 1238 (tending to cause bevel gear 1218 to rotate in the second direction), during a driving or firing stroke, is inhibited or prevented.


Referring now to FIGS. 9 and 14, tacker 1200 includes a plug 1264 disposed within inner tube 1238. In disclosed embodiments, plug 1264 is fabricated from a polymeric thermoplastic material (Monsanto Santoprene 271-87, available from Monsanto, Inc.) and dimensioned to create a fluid-tight seal within inner tube 1238. In this manner, escape or leakage of insufflations gas (and/or solution 2000, as discussed below) through inner tube 1238 is inhibited or prevented.


With reference to FIGS. 15-18, anchor 100 of the present disclosure, which is usable with tacker 200 and 1200, is shown. Anchor 100 includes a head section 110, a mesh retention section 120, and a threaded tissue-snaring section 130. Head section 110 includes a pair of opposing threaded sections 112a, 112b having respective head threads 114a, 114b, and a pair of opposing open or slotted sections 116a, 116b. A distal surface of head section 110 is formed onto or integral with a proximal end of mesh retention section 120.


Mesh retention section 120 of anchor 100 extends from and between a distal end of head section 110 and a proximal end of tissue-snaring section 130. Mesh retention section 120 functions to lock, anchor or otherwise retain a surgical mesh “M” on to anchor 100 when anchor 100 is screwed into the mesh to a depth past a proximal-most segment 138 of tissue-snaring thread 132. This is achieved because there is no thread located in mesh retention section 120 that would allow the mesh “M” to be unscrewed from anchor 100.


In the illustrated embodiments, mesh retention section 120 is generally cylindrical or conical in shape with a dimension transverse to its longitudinal axis that is smaller than the transverse dimension of head 110 and the transverse dimension of proximal-most segment 138 of tissue-snaring thread 138.


Threaded tissue-snaring section 130 of anchor 100 includes helical threads 132 formed onto a tapered truncated body section 134. A distal point or tip 136 defines the terminus of the distal most tissue-snaring thread 132.


As shown in FIG. 18, body section 134 of tissue-snaring section 130 is tapered, i.e., becoming smaller toward the distal end of threaded tissue-snaring section 130, and terminates, or truncates, distally prior to reaching an apex. Body section 134 includes a concave taper such that, for a given length, a minimum diameter body section 134 is defined upon truncation thereof which is approximately less than 0.01 inches, for example.


Anchor 100 includes a transverse dimension “D” (FIG. 18), of a distal-most thread in the threaded tissue-snaring section 130 which, in disclosed embodiments, is as large as design constraints will allow or approximately greater than 0.040 inches. It is envisioned that a small truncated body diameter and a large value of “D” minimizes tissue indentation. The tissue-snaring threads 132 terminate at distal tip 136, which is distal of the truncation point of body section 134. This geometry allows for ease of mesh penetration and minimizes indentation of the mesh into soft tissue as compared to a non-truncated body with tapered threads.


For a given force applied to a surgical mesh “M” by the surgeon, exerting a distal force on an applier 200, the larger the dimension “D,” the less the pressure to cause indentation of an underlying tissue and surgical mesh “M.”


Additionally, and with reference to FIGS. 18A-21, tackers 200 and 1200 of the present disclosure are usable with a solution 2000. While solution 2000 is at least usable with tackers 200 and 1200, only its use with tacker 200 is described herein. Solution 2000 may be a paste-like solution, a collagen-based solution, or a collagen paste solution, for example. For instance, solution 2000 may include porcine dermal collagen, which is sold by under the trade name Permacol™. Here, solution 2000 may be an injectable Permacol™ or a Permacol™ paste with a viscosity tailored to the desired application. It is envisioned that Permacol™ sheets or other collagen sheets are cryomilled and prepared into suspensions by mixing the cryomilled power with water and/or saline. Here, the mixing concentration will determine the viscosity of the solution.


Solution 2000 is positioned within inner tube 238 and is dispensible from distal end 242 of inner tube 238, as discussed below. It is envisioned that solution 2000 is formulated to help reduce or prevent adhesion between the surgical mesh “M” and/or anchor 100 and a patient's tissue.


With specific reference to the embodiment illustrated in FIG. 19, the entirety of solution 2000 is disposed within an ampoule 2100. Ampoule 2100 is disposed within inner tube 238 and proximally of the proximal-most anchor 100. It is envisioned that ampoule 2100 includes at least one threaded portion 2110 on at least a portion of its perimeter. In the illustrated embodiment, ampoule 2100 includes two threaded portions 2110: one adjacent its proximal and one adjacent its distal end, but it is envisioned that ampoule 2100 includes more or fewer threaded portions 2110 disposed at any suitable location on or near ampoule 2100. Further, threaded portions 2110 may include any suitable number of threads and may be of any suitable length. As shown, threaded portion 2110 of ampoule 2100 engages coil 236, such that the rotation of bevel gear 220 (and, thus inner tube 238) to cause ejection of anchors 100 also causes ampoule 2100 to advance distally.


In this embodiment, a user initially ejects all anchors 100 from inner tube 238 (e.g., through mesh “M” and into tissue). Continued actuation of tacker 200 advances ampoule 2100 such that solution 2000 therein is able to be dispensed from distal end 242 of inner tube 238 onto/adjacent head section 110 of each anchor 100, for instance. It is envisioned that a distal tip 2120 of ampoule 2100 is frangible. Here, once distal tip 2120 is accessible (e.g., extends distally from inner tube 238), a user may rupture ampoule 2100 by causing distal tip 2120 to contact/depress against anchor 100, mesh “M,” or tissue, for example, to cause solution 2000 from within ampoule 2100 to ooze/flow from ampoule 2100. The user can then position distal end 242 of inner tube 238 adjacent each anchor 100, individually, such that solution 2000 oozes/flows onto at least a portion of each anchor 100, for instance.


With specific reference to the embodiment illustrated in FIG. 20, solution 2000 is disposed proximally-adjacent, and in contact with, a proximal-facing surface 111 of head section 110 of anchor 100. Here, solution 2000 is mechanically engaged with, adhered to, or otherwise disposed on head section 110 of anchor 100 and is distally advanced along with anchor 100. In this embodiment, solution 2000 is either in direct contact with head section 110, or solution 2000 is enclosed in a puncturable impermeable or semi-permeable pouch, sac or membrane 250. It is envisioned that the viscosity of the solution 2000 that is used helps determine whether solution 2000 is in direct contact with head section 110 (solution 2000 has a relatively low viscosity) or whether solution 2000 is enclosed in a pouch 250 (solution 2000 has a relatively high viscosity).


When used in this embodiment, each anchor 100 is ejected from tacker 200 having its own pouch 250 of solution 2000 associated therewith, such that mesh retention section 120, and threaded tissue-snaring section 130 extend at least partially through mesh “M” and into tissue. In the embodiment where solution 2000 is in direct contact with head section 110, it is envisioned that solution 2000 flows/oozes at least partially around head section 110 substantially immediately after firing of anchor 100.


In the embodiment where solution 2000 is enclosed in a pouch 250, pouch 250 (including solution 2000 therein) remains on head section 110 of anchor 100 after anchor 100 is positioned in relation to mesh “M” and the patient. Subsequently, the user of tacker 200 may then use the distal end of anchor retaining/advancing assembly 230 to puncture pouch 250 to cause solution 2000 to be released adjacent anchor 100. Here, it is envisioned that the distal end of anchor retaining/advancing assembly 230 includes a suitable shape (e.g., a point-like) tip 243 (FIG. 20), or knurling, to facilitate puncturing of pouch 250. In this embodiment, it is envisioned that the user punctures each pouch 250 directly after its associated anchor 100 is emplaced through mesh “M” and into tissue. Alternatively, all anchors 100 can be ejected from inner tube 238 prior to pouches 250 being punctured. Any combination of these methods is also envisioned by the present disclosure.


Additionally, and with reference to FIG. 18A, it is envisioned for solution 2000 to be disposed on the distal surface of head section 110 of anchor 100. In such an embodiment, when solution 2000 is within a pouch 252 disposed on the distal surface of head section 110, it is envisioned that pouch automatically ruptures when anchor 100 is applied through mesh “M.”That is, the distal surface of head section 110 compresses pouch 252 against the mesh “M,” which results in pouch 252 rupturing, and the solution 2000 flowing/oozing from pouch 252 and around the periphery of head section 110 of anchor 100.


Referring to FIG. 21, another embodiment of tacker 200 is shown. Here, tacker 200 includes a plurality of anchors 100 within inner tuber 238, and also includes solution 2000 filling at least part of the remainder of the volume of inner tube 238. That is, in this embodiment, solution 2000 fills the voids between each anchor 100, proximally of the proximal-most anchor 100, distally of the distal-most anchor 100 and/or between each adjacent anchor 100. Here, when a user actuates handle assembly 120 to eject anchors 100, solution 2000 is automatically dispensed as well. It is envisioned that solution 2000 and anchors 100 are positioned within inner tube 238 during assembly of tacker 200. For example, inner tuber 238 may be injected with a first dosage of solution 2000, loaded with a first anchor 100, injected with a second dosage of solution 2000, followed by a second anchor 100, etc.


Additionally, methods using the disclosed tacker 200, 1200 including solution 2000, are also envisioned and part of the present disclosure.


While the present disclosure relates to anchors 100 and solution 2000 used with a manually-actuatable tacker 200, 1200, it is envisioned that anchors 100 and/or solution 2000 are usable with a powered tacker instrument, such as that described in U.S. Pat. No. 7,931,660 to Aranyi, et al., the entire contents of which being hereby incorporated by reference herein.


It will be understood that various modifications may be made to the embodiments disclosed herein. For example, the disclosed tacker devices may be configured so that the anchor retaining/advancing assembly is removable, and or disposable, from the associated handle assembly. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A method of applying fasteners to tissue, the method comprising: selectively ejecting a first fastener of a plurality of fasteners from a distal opening of an inner tube of a surgical tack applier, wherein the distal opening of the inner tube is the only distal opening of the inner tube;storing an entirety of a solution within the inner tube; anddispensing the solution from within the inner tube of the surgical tack applier through the distal opening of the inner tube.
  • 2. The method according to claim 1, wherein the solution is selected from the group consisting of a paste and a porcine dermal collagen.
  • 3. The method according to claim 1, wherein the solution is disposed in a plurality of pouches, and wherein the method further comprises rupturing at least one pouch of the plurality of pouches.
  • 4. The method according to claim 1, wherein the solution is contained in an ampoule disposed proximally of a proximal-most fastener of the plurality of fasteners, and wherein the method further comprises rupturing the ampoule.
  • 5. The method according to claim 1, wherein dispensing the solution from within the inner tube is performed after all of the fasteners of the plurality of fasteners have been ejected from the inner tube.
  • 6. The method according to claim 1, wherein dispensing the solution from within the inner tube is performed while at least one fastener of the plurality of fasteners is within the inner tube.
  • 7. The method according to claim 1, wherein the inner tube defines a longitudinal axis extending therethrough, and wherein the method further comprises rotating the inner tube about the longitudinal axis with respect to a handle assembly of the surgical instrument.
  • 8. The method according to claim 1, further comprising engaging each fastener of the plurality of fasteners with a coil disposed within the inner tube.
  • 9. The method according to claim 8, further comprising rotating at least one fastener of the plurality of fasteners with respect to the coil.
  • 10. The method according to claim 1, further comprising contacting each fastener of the plurality of fasteners with the solution.
  • 11. The method according to claim 10, wherein contacting each fastener of the plurality of fasteners with the solution is performed before selectively ejecting at least one fastener of the plurality of fasteners from the distal opening of the inner tube of the surgical tack applier.
  • 12. The method according to claim 1, wherein dispensing the solution from within the inner tube of the surgical tack applier through the distal opening of the inner tube further comprises dispensing the solution such that the solution contacts the at least one fastener that has been ejected from the surgical tack applier.
  • 13. The method according to claim 1, further comprising selectively ejecting a second fastener of the plurality of fasteners from the distal opening of the inner tube of the surgical tack applier, wherein the second fastener is ejected after the first fastener is ejected.
  • 14. The method according to claim 1, wherein the distal opening of the inner tube is aligned with a central longitudinal axis of the inner tube.
  • 15. A method of applying fasteners to tissue, the method comprising: selectively ejecting a first fastener of a plurality of fasteners from a distal opening of an inner tube of a surgical tack applier;selectively ejecting a second fastener of the plurality of fasteners from the distal opening of the inner tube of the surgical tack applier, wherein the second fastener is ejected after the first fastener is ejected; anddispensing a solution from within the inner tube of the surgical tack applier through the distal opening of the inner tube.
  • 16. The method according to claim 15, wherein ejecting the second fastener of the plurality of fasteners from the distal opening of the inner tube of the surgical tack applier occurs before dispensing the solution from within the inner tube of the surgical tack applier through the distal opening of the inner tube.
  • 17. The method according to claim 15, wherein the distal opening of the inner tube is aligned with a central longitudinal axis of the inner tube.
  • 18. The method according to claim 15, wherein the inner tube defines a central longitudinal axis extending therethrough, wherein the distal opening of the inner tube is aligned with the central longitudinal axis, and wherein the method further comprises rotating the inner tube about the central longitudinal axis with respect to a handle assembly of the surgical instrument to move the first fastener away from the handle assembly.
  • 19. A method of applying fasteners to tissue, the method comprising: selectively ejecting a first fastener of a plurality of fasteners from a distal opening of an inner tube of a surgical tack applier, wherein the distal opening of the inner tube is the only distal opening of the inner tube;dispensing a solution from within the inner tube of the surgical tack applier through the distal opening of the inner tube, wherein the solution is disposed in a plurality of pouches; andrupturing at least one pouch of the plurality of pouches.
  • 20. A method of applying fasteners to tissue, the method comprising: selectively ejecting a first fastener of a plurality of fasteners from a distal opening of an inner tube of a surgical tack applier, wherein the distal opening of the inner tube is the only distal opening of the inner tube;dispensing a solution from within the inner tube of the surgical tack applier through the distal opening of the inner tube, wherein the solution is contained in an ampoule disposed proximally of a proximal-most fastener of the plurality of fasteners; andrupturing the ampoule.
  • 21. A method of applying fasteners to tissue, the method comprising: selectively ejecting a first fastener of a plurality of fasteners from a distal opening of an inner tube of a surgical tack applier, wherein the distal opening of the inner tube is the only distal opening of the inner tube;dispensing a solution from within the inner tube of the surgical tack applier through the distal opening of the inner tube; andcontacting each fastener of the plurality of fasteners with the solution.
  • 22. A method of applying fasteners to tissue, the method comprising: selectively ejecting a first fastener of a plurality of fasteners from a distal opening of an inner tube of a surgical tack applier, wherein the distal opening of the inner tube is the only distal opening of the inner tube;dispensing a solution from within the inner tube of the surgical tack applier through the distal opening of the inner tube; andselectively ejecting a second fastener of the plurality of fasteners from the distal opening of the inner tube of the surgical tack applier, wherein the second fastener is ejected after the first fastener is ejected.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Divisional of U.S. patent application Ser. No. 13/835,223 filed Mar. 15, 2013, the disclosure of the above-identified application is hereby incorporated by reference in its entirety.

US Referenced Citations (268)
Number Name Date Kind
3866510 Eibes et al. Feb 1975 A
4392493 Niemeijer Jul 1983 A
4840626 Linsky Jun 1989 A
4884572 Bays et al. Dec 1989 A
5085661 Moss Feb 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5176306 Helmerl et al. Jan 1993 A
5207697 Carusillo et al. May 1993 A
5228256 Dreveny Jul 1993 A
5236563 Loh Aug 1993 A
5246441 Ross et al. Sep 1993 A
5246450 Thornton et al. Sep 1993 A
5258000 Gianturco Nov 1993 A
5312023 Green et al. May 1994 A
5330487 Thornton et al. Jul 1994 A
5344061 Crainich Sep 1994 A
5356064 Green et al. Oct 1994 A
5381943 Allen et al. Jan 1995 A
5382254 McGarry et al. Jan 1995 A
5398861 Green Mar 1995 A
5403327 Thornton et al. Apr 1995 A
5433721 Hooven et al. Jul 1995 A
5439468 Schulze et al. Aug 1995 A
5466243 Schmieding et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5474566 Alesi et al. Dec 1995 A
5474567 Stefanchik et al. Dec 1995 A
5522844 Johnson Jun 1996 A
5527319 Green et al. Jun 1996 A
5553765 Knodel et al. Sep 1996 A
5562685 Mollenauer et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5582615 Foshee et al. Dec 1996 A
5582616 Bolduc Dec 1996 A
5584425 Savage et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5601571 Moss Feb 1997 A
5601573 Fogelberg et al. Feb 1997 A
5626613 Schmieding May 1997 A
5628752 Asnis et al. May 1997 A
5649931 Bryant et al. Jul 1997 A
5662662 Bishop et al. Sep 1997 A
5681330 Hughett et al. Oct 1997 A
5683401 Schmieding et al. Nov 1997 A
5685474 Seeber Nov 1997 A
5697935 Moran et al. Dec 1997 A
5709692 Mollenauer et al. Jan 1998 A
5730744 Justin et al. Mar 1998 A
5732806 Foshee et al. Mar 1998 A
5735854 Caron et al. Apr 1998 A
5741268 Schutz Apr 1998 A
5762255 Chrisman et al. Jun 1998 A
5782844 Yoon et al. Jul 1998 A
5810882 Bolduc et al. Sep 1998 A
5824008 Bolduc et al. Oct 1998 A
5830221 Stein et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5843087 Jensen et al. Dec 1998 A
5897564 Schulze et al. Apr 1999 A
5904693 Dicesare et al. May 1999 A
5910105 Swain et al. Jun 1999 A
5911722 Adler et al. Jun 1999 A
5928244 Tovey et al. Jul 1999 A
5928252 Steadman et al. Jul 1999 A
5931844 Thompson et al. Aug 1999 A
5941439 Kammerer et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5961524 Crombie Oct 1999 A
5964772 Bolduc et al. Oct 1999 A
5976160 Crainich Nov 1999 A
5997552 Person et al. Dec 1999 A
6010513 Tormala et al. Jan 2000 A
6013991 Philipp Jan 2000 A
6039753 Meislin Mar 2000 A
6074395 Trott et al. Jun 2000 A
6099537 Sugai Aug 2000 A
6126670 Walker et al. Oct 2000 A
6132435 Young Oct 2000 A
6146387 Trott et al. Nov 2000 A
6183479 Tormala et al. Feb 2001 B1
6228098 Kayan et al. May 2001 B1
6235058 Huene May 2001 B1
6241736 Sater et al. Jun 2001 B1
6261302 Voegele et al. Jul 2001 B1
6296656 Bolduc et al. Oct 2001 B1
6330964 Kayan et al. Dec 2001 B1
6387113 Hawkins et al. May 2002 B1
6402757 Moore, III et al. Jun 2002 B1
6425900 Knodel et al. Jul 2002 B1
6439446 Perry et al. Aug 2002 B1
6440136 Gambale et al. Aug 2002 B1
6450391 Kayan et al. Sep 2002 B1
6457625 Tormala et al. Oct 2002 B1
6491201 Whitman Dec 2002 B1
6551333 Kuhns et al. Apr 2003 B2
6562051 Bolduc et al. May 2003 B1
6572626 Knodel et al. Jun 2003 B1
6589249 Sater et al. Jul 2003 B2
6592593 Parodi et al. Jul 2003 B1
6626916 Yeung et al. Sep 2003 B1
6632228 Fortier et al. Oct 2003 B2
6652538 Kayan et al. Nov 2003 B2
6663656 Schmieding et al. Dec 2003 B2
6666854 Lange Dec 2003 B1
6695867 Ginn et al. Feb 2004 B2
6733506 McDevitt et al. May 2004 B1
6743240 Smith et al. Jun 2004 B2
6749621 Pantages et al. Jun 2004 B2
6755836 Lewis Jun 2004 B1
6773438 Knodel et al. Aug 2004 B1
6800081 Parodi Oct 2004 B2
6824548 Smith et al. Nov 2004 B2
6837893 Miller Jan 2005 B2
6840943 Kennefick et al. Jan 2005 B2
6843794 Sixto, Jr. et al. Jan 2005 B2
6869435 Blake, III Mar 2005 B2
6884248 Bolduc et al. Apr 2005 B2
6887244 Walker et al. May 2005 B1
6893446 Sater et al. May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6929661 Bolduc et al. Aug 2005 B2
6942674 Belef et al. Sep 2005 B2
6945979 Kortenbach et al. Sep 2005 B2
6960217 Bolduc Nov 2005 B2
6966919 Sixto, Jr. et al. Nov 2005 B2
6988650 Schwemberger et al. Jan 2006 B2
7000819 Swayze et al. Feb 2006 B2
7128754 Bolduc Oct 2006 B2
7143924 Scirica et al. Dec 2006 B2
7204847 Gambale Apr 2007 B1
7229452 Kayan Jun 2007 B2
7261716 Strobel et al. Aug 2007 B2
7491232 Bolduc et al. Feb 2009 B2
7670362 Zergiebel Mar 2010 B2
7758612 Shipp Jul 2010 B2
7862573 Darois et al. Jan 2011 B2
7866525 Scirica Jan 2011 B2
7867252 Criscuolo et al. Jan 2011 B2
7927327 Lu et al. Apr 2011 B2
7931660 Aranyi et al. Apr 2011 B2
8002811 Corradi et al. Aug 2011 B2
8034076 Criscuolo et al. Oct 2011 B2
8061577 Racenet et al. Nov 2011 B2
8070033 Milliman et al. Dec 2011 B2
8075570 Bolduc et al. Dec 2011 B2
8087142 Levin et al. Jan 2012 B2
8092492 Hadba Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8114099 Shipp Feb 2012 B2
8114101 Criscuolo et al. Feb 2012 B2
8157830 Wenchell Apr 2012 B2
8216272 Shipp Jul 2012 B2
8221433 Lozier Jul 2012 B2
8231639 Bolduc et al. Jul 2012 B2
8282670 Shipp Oct 2012 B2
8292933 Zergiebel Oct 2012 B2
8323314 Blier Dec 2012 B2
8328823 Aranyi et al. Dec 2012 B2
8343176 Criscuolo et al. Jan 2013 B2
8343184 Blier Jan 2013 B2
8361164 Hoganson Jan 2013 B2
8382778 Criscuolo et al. Feb 2013 B2
8414627 Corradi et al. Apr 2013 B2
8465520 Blier Jun 2013 B2
8474679 Felix Jul 2013 B2
8579919 Bolduc et al. Nov 2013 B2
8579920 Nering et al. Nov 2013 B2
8597311 Criscuolo et al. Dec 2013 B2
8617184 Oepen Dec 2013 B2
8668718 Euteneuer Mar 2014 B2
8728120 Blier May 2014 B2
8758400 Ginn Jun 2014 B2
8777969 Kayan Jul 2014 B2
8821522 Criscuolo et al. Sep 2014 B2
8821557 Corradi et al. Sep 2014 B2
8852215 Criscuolo et al. Oct 2014 B2
8968311 Allen, IV et al. Mar 2015 B2
9186138 Corradi et al. Nov 2015 B2
9259221 Zergiebel Feb 2016 B2
9655621 Abuzaina et al. May 2017 B2
9662106 Corradi et al. May 2017 B2
9668730 Sniffin et al. Jun 2017 B2
9801633 Sholev et al. Oct 2017 B2
9867620 Fischvogt et al. Jan 2018 B2
9987010 Zergiebel Jun 2018 B2
10070860 Zergiebel Sep 2018 B2
20030009441 Holsten et al. Jan 2003 A1
20030114839 Looper et al. Jun 2003 A1
20040043016 Redl Mar 2004 A1
20040092937 Criscuolo et al. May 2004 A1
20040111089 Stevens et al. Jun 2004 A1
20040127916 Bolduc et al. Jul 2004 A1
20040181222 Culbert et al. Sep 2004 A1
20040243139 Lewis et al. Dec 2004 A1
20040267193 Bagaoisan Dec 2004 A1
20060100629 Lee May 2006 A1
20060129152 Shipp Jun 2006 A1
20060129154 Shipp Jun 2006 A1
20070038220 Shipp Feb 2007 A1
20070066981 Meagher Mar 2007 A1
20070162030 Aranyi et al. Jul 2007 A1
20070175948 Scirica et al. Aug 2007 A1
20080083808 Scirica Apr 2008 A1
20080086154 Taylor et al. Apr 2008 A1
20080097523 Bolduc et al. Apr 2008 A1
20080147113 Nobis et al. Jun 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080281336 Zergiebel Nov 2008 A1
20080281353 Aranyi Nov 2008 A1
20080312687 Blier Dec 2008 A1
20090118776 Kelsch et al. May 2009 A1
20090188965 Levin et al. Jul 2009 A1
20100030262 McLean et al. Feb 2010 A1
20100137999 Shohat Jun 2010 A1
20100270354 Rimer et al. Oct 2010 A1
20100292710 Daniel et al. Nov 2010 A1
20100292713 Cohn et al. Nov 2010 A1
20100292715 Nering et al. Nov 2010 A1
20110021864 Criscione Jan 2011 A1
20110022065 Shipp Jan 2011 A1
20110060349 Cheng et al. Mar 2011 A1
20110071578 Colesanti et al. Mar 2011 A1
20110079627 Cardinale Apr 2011 A1
20110087240 Shipp Apr 2011 A1
20110101066 Farascioni et al. May 2011 A1
20110132964 Weisenburgh, II et al. Jun 2011 A1
20110204120 Crainich Aug 2011 A1
20110295282 Glick et al. Dec 2011 A1
20120059397 Criscuolo et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120109157 Criscuolo et al. May 2012 A1
20120160892 Scirica Jun 2012 A1
20130018392 Zergiebel Jan 2013 A1
20130110088 Wenchell May 2013 A1
20130131700 Criscuolo et al. May 2013 A1
20130197591 Corradi et al. Aug 2013 A1
20140114329 Zergiebel Apr 2014 A1
20140121684 Criscuolo et al. May 2014 A1
20140276967 Fischvogt et al. Sep 2014 A1
20140276969 Wenchell et al. Sep 2014 A1
20140276972 Abuzaina et al. Sep 2014 A1
20140316446 Kayan Oct 2014 A1
20140371765 Corradi et al. Dec 2014 A1
20150001272 Sniffin et al. Jan 2015 A1
20150005748 Sniffin et al. Jan 2015 A1
20150005788 Sniffin et al. Jan 2015 A1
20150005789 Sniffin et al. Jan 2015 A1
20150018847 Criscuolo et al. Jan 2015 A1
20150032130 Russo Jan 2015 A1
20150080911 Reed Mar 2015 A1
20150133970 Ranucci et al. May 2015 A1
20150133971 Ranucci et al. May 2015 A1
20150133972 Ranucci et al. May 2015 A1
20150150558 Zergiebel Jun 2015 A1
20150327859 Bolduc Nov 2015 A1
20160007991 Bolduc Jan 2016 A1
20160007996 Bolduc Jan 2016 A1
20160066971 Corradi et al. Mar 2016 A1
20160074034 Shipp Mar 2016 A1
20170042657 Criscuolo et al. Feb 2017 A1
20170128068 Zhang et al. May 2017 A1
20170151048 Russo Jun 2017 A1
20170231631 Abuzaina et al. Aug 2017 A1
20170265859 Sniffin et al. Sep 2017 A1
20180042591 Russo et al. Feb 2018 A1
20180116670 Fischvogt et al. May 2018 A1
Foreign Referenced Citations (21)
Number Date Country
10300787 Sep 2004 DE
10 2010 015009 Oct 2011 DE
0374088 Jun 1990 EP
0834280 Apr 1998 EP
1273272 Jan 2003 EP
1990013 Nov 2008 EP
2055241 May 2009 EP
1908409 Dec 2010 EP
2399538 Dec 2011 EP
2484294 Aug 2012 EP
2853202 Apr 2015 EP
09149906 Jun 1997 JP
0016701 Mar 2000 WO
200234140 May 2002 WO
2003034925 May 2003 WO
2003103507 Dec 2003 WO
2005004727 Jan 2005 WO
2004112841 Jul 2005 WO
2009039506 Mar 2009 WO
2012064692 May 2012 WO
2013046115 Apr 2013 WO
Non-Patent Literature Citations (40)
Entry
Chinese First Office Action corresponding to Chinese Patent Appln. No. 201480037169.2 dated Jun. 29, 2017.
Chinese First Office Action corresponding to Chinese Patent Appln. No. 201410418879.1 dated Jun. 29, 2017.
European Office Action corresponding to European Patent Appln. No. 14 17 8107.0 dated Oct. 12, 2017.
Australian Examination Report No. 1 corresponding to Australian Patent Appln. No. 2014200870 dated Oct. 26, 2017.
Chinese Second Office Action corresponding to Chinese Patent Appln. No. 201410090675 dated Nov. 6, 2017.
Japanese Office Action corresponding to Japanese Patent Appln. No. 2014-048652 dated Nov. 14, 2017.
Japanese Office Action corresponding to Japanese Patent Appln. No. 2014-047708 dated Nov. 14, 2017.
Chinese Second Office Action corresponding to Chinese Patent Appln. No. 2014103063407 dated Feb. 1, 2018.
Australian Examination Report No. 1 corresponding to Australian Patent Appln. No. 2014202970 dated Mar. 9, 2018.
Japanese Office Action corresponding to Japanese Patent Appln. No. 2014-048652 dated Mar. 15, 2018.
Chinese Second Office Action corresponding to Chinese Patent Appln. No. 201480077682.4 dated Mar. 21, 2018.
Australian Examination Report No. 1 corresponding to Australian Patent Appln. No. 2014202972 dated Mar. 27, 2018.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 14 81 7036.8 dated Feb. 2, 2017.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 19 7885.8 dated Feb. 7, 2017.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410090675 dated Feb. 28, 2017.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 19 8333.3 dated Mar. 15, 2017.
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 1663.3 dated May 10, 2017.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 17 15 7259.7 dated May 10, 2017.
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2014103559671 dated Jun. 13, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2014200071 dated Jun. 20, 2017.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2014201338 dated Jul. 10, 2017.
Extended European Search Report corresponding to EP 14 15 9742, completed Jun. 6, 2014 and dated Jun. 20, 2014; (7 pp).
U.S. Appl. No. 61/776,811, filed Mar. 12, 2013, Wenchell et al.
U.S. Appl. No. 61/783,559, filed Mar. 14, 2013, Fischvogt et al.
Extended European Search Report corresponding to EP No. 10 01 2659.8, completed Dec. 21, 2010 and dated Jan. 3, 2011; 3 pages.
Extended European Search Report corresponding to EP No. 10 01 26465, completed Feb. 11, 2011 and dated Feb. 22, 2011; 10 pages.
Extended European Search Report corresponding to EP No. 11 25 0549.0, completed Sep. 9, 2013 and dated Sep. 17, 2013; 9 pages.
Extended European Search Report corresponding to EP 14 15 9394.7, completed Apr. 16, 2014 and dated Apr. 29, 2014; 8 pages.
Extended European Search Report corresponding to EP 14 15 8946.5, completed Jun. 20, 2014 and dated Jul. 8, 2014; (9 pp).
Extended European Search Report corresponding to EP 14 17 8107.0, completed Nov. 24, 2014 and dated Dec. 3, 2014; (5 pp).
Extended European Search Report corresponding to EP 14 17 4656.0, completed Jan. 16, 2015 and dated Jan. 26, 2015; (7 pp).
Extended European Search Report corresponding to EP 14 18 4907.5, completed Jan. 12, 2015 and dated Jan. 27, 2015; (9 pp).
Extended European Search Report corresponding to counterpart application EP 14 19 7885.8 dated Apr. 30, 2015; 9pp.
Extended European Search Report corresponding to counterpart application EP 14 18 1900.3 dated Apr. 9, 2015; 7pp.
European Office Action corresponding to Patent Application EP 14 15 89465 dated Apr. 26, 2018.
Japanese Office Action corresponding to Patent Application JP 2014-132105 dated May 1, 2018.
Japanese Office Action corresponding to Patent Application JP 2014-047708 dated May 14, 2018.
Chinese Second Office Action corresponding to Patent Application CN 2014103559671 dated May 25, 2018.
Australian Examination Report No. 1 corresponding to Patent Application AU 2014302551 dated Jul. 16, 2018.
Japanese Office Action corresponding to Patent Application JP 2014-047708 dated Aug. 15, 2018.
Related Publications (1)
Number Date Country
20170231631 A1 Aug 2017 US
Divisions (1)
Number Date Country
Parent 13835223 Mar 2013 US
Child 15582806 US