The present disclosure relates generally to the field of surgical instruments. In particular, the disclosure relates to a surgical instrument for grasping, treating, and/or dividing tissue.
Various different surgical instruments are utilized for grasping, treating, and/or dividing tissue. A surgical forceps, for example, is a pliers-like surgical instrument that relies on mechanical action between its jaw members to grasp, clamp, and constrict tissue. Energy-based surgical forceps utilize both mechanical clamping action and energy, e.g., radiofrequency (RF) energy, microwave energy, ultrasonic energy, light energy, thermal energy, etc., to heat tissue to treat, e.g., coagulate, cauterize, and/or seal, tissue.
Typically, once tissue is treated, the surgeon has to accurately divide the treated tissue. Accordingly, many surgical forceps are designed to incorporate a knife or cutting member utilized to effectively divide the treated tissue.
As used herein, the term “distal” refers to the portion of the instrument or component thereof that is being described that is further from a user, while the term “proximal” refers to the portion of the instrument or component thereof that is being described that is closer to a user. Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any of the other aspects described herein.
Provided in accordance with aspects of the present disclosure is a surgical instrument including a housing, a shaft extending distally from the housing, an end effector assembly disposed at a distal end of the shaft and adapted to connect to a source of energy to supply energy to tissue to treat tissue, a knife slidably disposed within the shaft and movable relative to the end effector assembly between a retracted position and an extended position, and a trigger operably coupled to the housing. The trigger is selectively activatable from a neutral position to a laterally pivoted position to supply energy to the end effector assembly, and selectively actuatable from a distal position to a proximally pivoted position to deploy the knife from the retracted position to the extended position. In the laterally pivoted position, actuation of the trigger is inhibited. On the other hand, in the proximally pivoted position, activation of the trigger is inhibited.
In an aspect of the present disclosure, the trigger includes a toggle and a disc body. The disc body is pivotably coupled to the housing to permit actuation of the trigger from the distal position to the proximally pivoted position. The toggle is pivotably coupled to the disc body and pivotable relative thereto for activating the trigger from the neutral position to the laterally pivoted position.
In another aspect of the present disclosure, the trigger is selectively activatable from the neutral position to first and second opposed laterally pivoted positions.
In still another aspect of the present disclosure, the trigger defines a distally-facing surface configured to facilitate manual manipulation of the trigger from the distal position to the proximally pivoted position. The trigger may further define a pair of side wing surfaces extending from opposing sides of the distally-facing surface and configured to facilitate manual manipulation of the trigger from the neutral position to the laterally pivoted position.
In yet another aspect of the present disclosure, the end effector assembly includes first and second jaw members. One or both of the jaw members is movable relative to the other between a spaced-apart position and an approximated position.
In still yet another aspect of the present disclosure, a movable handle is operably coupled to the housing and movable relative thereto between an initial position and a compressed position for moving the jaw members between the spaced-apart position and the approximated position.
In another aspect of the present disclosure, in the initial position of the movable handle, the movable handle interferes with the trigger to inhibit activation of the trigger from the neutral position towards the laterally pivoted position.
In another aspect of the present disclosure, an activation assembly including at least switch is disposed within the housing. The at least one switch is positioned such that, upon activation of the trigger from the neutral position to the laterally pivoted position, a portion of the trigger activates the at least one switch. The at least one switch may be a dome switch configured to produce at least one of an audible or tactile output in response to activation thereof.
Another surgical instrument provided in accordance with aspects of the present disclosure includes a housing, a shaft extending distally from the housing, an end effector assembly disposed at a distal end of the shaft, a movable handle operably coupled to the housing, a knife slidably disposed within the shaft, and a trigger operably coupled to the housing. The end effector assembly includes first and second jaw members adapted to connect to a source of energy to supply energy to tissue to treat tissue. One or both of the jaw members is movable relative to the other between a spaced-apart position and an approximated position. The movable handle is movable between an initial position and a compressed position to move the jaw members between the spaced-apart position and the approximated position. The knife is slidably disposed within the shaft and movable between a retracted position and an extended position, wherein the knife extends at least partially between the first and second jaw members. The trigger is laterally pivotable to supply energy to the first and second jaw members and proximally pivotable to move the knife from the retracted position to the extended position. In the initial position of the movable handle, at least a portion of the movable handle interferes with the trigger to inhibit lateral pivoting thereof.
In an aspect of the present disclosure, the trigger includes a toggle and a disc body. The disc body is pivotably coupled to the housing to permit proximal pivoting of the trigger, while the toggle is pivotably coupled to the disc body and pivotable relative thereto to permit lateral pivoting of the trigger.
In another aspect of the present disclosure, the trigger is laterally pivotable in either direction from a neutral position to a laterally pivoted position to supply energy to the first and second jaw members.
In another aspect of the present disclosure, the trigger defines a distally-facing surface configured to facilitate proximal pivoting of the trigger. The trigger may further define a pair of side wing surfaces extending from opposing sides of the distally-facing surface. The side wing surfaces are configured to facilitate lateral pivoting of the trigger. In the initial position of the movable handle, the side wing surfaces at least partially surround the movable handle.
In yet another aspect of the present disclosure, the surgical instrument further includes a drive assembly operably coupled between the end effector assembly and the movable handle such that movement of the movable handle from the initial position to the compressed position moves the jaw members from the spaced-apart position to the approximated position.
In still another aspect of the present disclosure, at least one linkage is operably coupled between the trigger and the knife such that proximal pivoting of the trigger moves the knife from the retracted position to the extended position.
In still yet another aspect of the present disclosure, the knife defines a distal cutting edge having a dual rake configuration.
In another aspect of the present disclosure, the surgical instrument further includes an activation assembly including at least switch disposed within the housing. The at least one switch is positioned such that, upon lateral pivoting of the trigger, the trigger activates the at least one switch to supply energy to the first and second jaw members.
In still another aspect of the present disclosure, a first portion of the housing interferes with the trigger to inhibit proximal pivoting of the trigger when the trigger is laterally pivoted, and a second portion of the housing interferes with the trigger to inhibit lateral pivoting of the trigger when the trigger is proximally pivoted.
Various aspects and features of the present disclosure are described herein with reference to the drawings, wherein like reference numerals identify similar or identical components, and wherein:
Referring generally to
With reference to
Handle assembly 30 is operably coupled to housing 20 and includes a movable handle 40 extending from housing 20 adjacent fixed handle portion 50 of housing 20 to permit manual manipulation of movable handle 40 by a user. Trigger assembly 60 is also operably coupled to housing 20 and similarly includes a trigger 62 extending from housing 20 to permit manual manipulation thereof by a user.
Shaft 80 extends distally from housing 20, defines a longitudinal axis “A-A,” and includes end effector assembly 100 disposed towards the distal end thereof. Shaft 80 may be configured as an integral, rigid component. Rotation assembly 70 may be disposed about the distal end of housing 20 and operably coupled to shaft 80 such that rotation of rotation nose 72 of rotation assembly 70 rotates shaft 80 and end effector assembly 100 relative to housing 20.
End effector assembly 100 includes first and second jaw members 110, 120, at least one of which is movable relative to the other and shaft 80 between a spaced-apart position and an approximated position. Drive assembly 130 (
Knife assembly 160 (
Referring again to
With additional reference to
Distal portion 84 of shaft 80 and end effector assembly 100 cooperate to define a length “X” that is less than the overall cooperative length of shaft 80 and end effector assembly 100. Distal portion 84 defines a rectangular cross-sectional configuration including a pair of opposed short sides 85a and a pair of opposed long sides 85b. Each of the opposed long sides 85b of distal portion 84 of shaft 80 defines a width that approximates the diameter of the circular cross-sectional proximal portion 82 of shaft 80, although other configurations are also contemplated. Each of the opposed short sides 85a of distal portion 84 of shaft 80 defines a width that is less than a diameter of the circular cross-sectional proximal portion 82 of shaft 80 such that distal portion 84 of shaft 80 defines a narrowed configuration as compared to proximal portion 82 of shaft 80. This narrowed configuration facilitates visualization of end effector assembly 100 and insertion of end effector assembly 100 and shaft 80 through cannula 200 and into an internal surgical site, as detailed below. Further, the narrowed configuration of distal portion 84 of shaft 80 allows for positioning of other instrumentation, e.g., irrigation and/or suction tubes, a camera, a sensor(s), a light source, an energizable probe, a navigation tool, etc. alongside distal portion 84 of shaft 80 without extending beyond or extending minimally beyond the outer dimension of proximal portion 82 of shaft 80. The additional instrumentation may be incorporated into forceps 10, e.g., extending through proximal portion 82 of shaft 80 and alongside distal portion 84 of shaft 80, may be releasably engagable with distal portion 84 of shaft 80, or may be wholly separate from forceps 10.
Distal portion 84 of shaft 80 may be centered relative to the longitudinal axis “A-A” of shaft 80 or may be offset relative thereto, e.g., such that one of the long sides 85b is closer to the longitudinal axis “A-A” than the other long side 85b. Further, other narrowed configurations, e.g., square, oval, semi-circle, smaller-diametered circle, etc., are also contemplated. Intermediate portion 86 of shaft 80 provides a smooth, continuous transition between proximal and distal portions 82, 84, respectively, thus inhibiting potential snag points along shaft 80 and facilitating insertion thereof into and through cannula 200.
End effector assembly 100, as noted above, includes first and second jaw members 110, 120. Jaw members 110, 120 define curved configurations, wherein jaw members 110, 120 curve off of the longitudinal axis “A-A” of shaft 80 towards one of the long sides 85b of distal portion 84 of shaft 80 (and away from the other long side 85b of distal portion 84 of shaft 80). Jaw members 110, 120 are sufficiently curved such that the distal ends of jaw members 110, 120 extend beyond the outer dimension of the circular cross-sectional proximal portion 82 of shaft 80. Thus, the maximum width dimension defined by shaft 80 and end effector assembly 100 extends transversely from the distal tips “W1” of jaw members 110, 120 to the outer-most dimension of the opposite side “W2” of proximal portion 82 of shaft 80 (see
Referring to
Referring to
In use, cannula 200 is positioned within an opening in tissue such that proximal housing 210 remains external while distal sleeve 220 extends through the opening in tissue into the internal surgical site. When forceps 10 (
With end effector assembly 100 positioned at the internal surgical site, at least a portion of proximal portion 82 of shaft 80 has entered cannula 200 such that seal member 230 is disposed about the circular cross-sectional proximal portion 82 of shaft 80, thus ensuring an effective fluid-tight seal. Once this position has been achieved, forceps 10 (
Referring to
Each jaw member 110, 120 of end effector assembly 100 includes a proximal flange 111, 121 and a distal body 112, 122. Proximal flanges 111, 121 define aligned pivot apertures (not shown) and oppositely-angled cam slots 113, 123. The pivot apertures are configured to receive a pivot pin 103 for pivotably coupling jaw members 110, 120 to clevis 88 of distal portion 86 of shaft 80. Oppositely-angled cam slots 113, 123 receive a drive pin 105 that is operably coupled to drive bar 132 of drive assembly 130 (
Distal bodies 112, 122 of jaw members 110, 120 each define a curved configuration, as noted above, wherein distal bodies 112, 122 curve laterally in similar directions. Distal jaw bodies 112, 122 each further define opposing tissue-contacting surfaces 116, 126. Tissue-contacting surfaces 116, 126 are formed at least partially from an electrically-conductive material and either or both are adapted to connect to a source of energy as well as activation assembly 180 (
Turning to
Movable handle 40 and fixed handle portion 50 further include cooperating engagement components 48, 58, respectively, e.g., a pin and corresponding track, to enabling locking of movable handle 40 in the compressed position upon achieving the compressed position, thereby retaining the jaw members 110, 120 in the approximated position. Cooperating engagement components 48, 58 may be disengaged, allowing movable handle 40 to return to the initial position, upon moving movable handle 40 further towards fixed handle portion 50 to an over-compressed position and then releasing or returning movable handle 40 towards the initial position.
With reference to
Manipulation portion 65a of toggle 63 of trigger 62 extends from housing 20 and defines a distally-facing contact surface 65b and a pair of side wing surfaces 65c extending from either side of distally-facing contact surface 65b in a proximal direction. Distally-facing contact surface 65b is configured to facilitate actuation of trigger 62, e.g., proximal pivoting of trigger 62 from an un-actuated position (
Disc body 66 of trigger 62, as noted above, is rotatably coupled about upper flange 64a. More specifically, disc body 66 includes a circular pivot aperture 67a received within a circular pivot member 67b defined within upper flange 64a of toggle 63 such that toggle 63 is laterally pivotable relative to disc body 66, e.g., between the neutral and activated positions (
Referring to
As illustrated in
Referring generally to
With tissue grasped between jaw members 110, 120 of end effector assembly 100, trigger 62 may be activated by laterally pivoting trigger 62 from the neutral position (
Once tissue has been sufficiently treated, or where it is only desired to grasp and divide tissue, with trigger 62 disposed in (or returned to) the neutral position, trigger 62 may be pivoted proximally from the un-actuated position to the actuated position to thereby deploy knife 162 (
The above-detailed aspects and features of the present disclosure may be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the surgeon and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the surgeon during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.
The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another surgeon (or group of surgeons) remotely control the instruments via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.
The robotic arms of the surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, etc.) which may complement the use of one or more of the embodiments described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).
The master handles may include various sensors to provide feedback to the surgeon relating to various tissue parameters or conditions, e.g., tissue resistance due to manipulation, cutting or otherwise treating, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, etc. As can be appreciated, such sensors provide the surgeon with enhanced tactile feedback simulating actual operating conditions. The master handles may also include a variety of different actuators for delicate tissue manipulation or treatment further enhancing the surgeon's ability to mimic actual operating conditions.
Turning to
Each of the robot arms 1002, 1003 may include a plurality of members, which are connected through joints, and an attaching device 1009, 1011, to which may be attached, for example, a surgical tool “ST” supporting an end effector 1100. Suitable surgical tools “ST” include forceps 10, and end effector assembly 100 thereof (see
Robot arms 1002, 1003 may be driven by electric drives (not shown) that are connected to control device 1004. Control device 1004 (e.g., a computer) may be set up to activate the drives, in particular by means of a computer program, in such a way that robot arms 1002, 1003, their attaching devices 1009, 1011 and thus the surgical tool (including end effector 1100) execute a desired movement according to a movement defined by means of manual input devices 1007, 1008. Control device 1004 may also be set up in such a way that it regulates the movement of robot arms 1002, 1003 and/or of the drives.
Medical work station 1000 may be configured for use on a patient 1013 lying on a patient table 1012 to be treated in a minimally invasive manner by means of end effector 1100. Medical work station 1000 may also include more than two robot arms 1002, 1003, the additional robot arms likewise being connected to control device 1004 and being telemanipulatable by means of operating console 1005. A medical instrument or surgical tool (including an end effector 1100) may also be attached to the additional robot arm. Medical work station 1000 may include a database 1014, in particular coupled to with control device 1004, in which are stored, for example, pre-operative data from patient/living being 1013 and/or anatomical atlases.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as examples of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
The present application claims the benefit of and priority to U.S. Provisional Application Ser. No. 62/419,018, filed on Nov. 8, 2016 the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
371664 | Brannan et al. | Oct 1887 | A |
702472 | Pignolet | Jun 1902 | A |
728883 | Downes | May 1903 | A |
1586645 | Bierman | Jun 1926 | A |
1813902 | Bovie | Jul 1931 | A |
2002594 | Wappler et al. | May 1935 | A |
2011169 | Wappler | Aug 1935 | A |
2031682 | Wappler et al. | Feb 1936 | A |
2176479 | Willis | Oct 1939 | A |
2279753 | Knopp | Apr 1942 | A |
2305156 | Grubel | Dec 1942 | A |
2632661 | Cristofv | Mar 1953 | A |
2668538 | Baker | Feb 1954 | A |
2688538 | Baker | Sep 1954 | A |
2796065 | Kapp | Jun 1957 | A |
3459187 | Pallotta | Aug 1969 | A |
3643663 | Sutter | Feb 1972 | A |
3651811 | Hildebrandt et al. | Mar 1972 | A |
3720896 | Beierlein | Mar 1973 | A |
3862630 | Balamuth | Jan 1975 | A |
3862830 | Stern | Jan 1975 | A |
3863339 | Reaney et al. | Feb 1975 | A |
3866610 | Kletschka | Feb 1975 | A |
3911766 | Fridolph et al. | Oct 1975 | A |
3920021 | Hiltebrandt | Nov 1975 | A |
3921641 | Hulka | Nov 1975 | A |
3937222 | Banko | Feb 1976 | A |
3938527 | Rioux et al. | Feb 1976 | A |
3952749 | Fridolph et al. | Apr 1976 | A |
3970088 | Morrison | Jul 1976 | A |
3987795 | Morrison | Oct 1976 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4041952 | Morrison, Jr. et al. | Aug 1977 | A |
4043342 | Morrison, Jr. | Aug 1977 | A |
4074718 | Morrison, Jr. | Feb 1978 | A |
4088134 | Mazzariello | May 1978 | A |
4112950 | Pike | Sep 1978 | A |
4127222 | Adams | Nov 1978 | A |
4128099 | Bauer | Dec 1978 | A |
4165746 | Burgin | Aug 1979 | A |
4167944 | Banko | Sep 1979 | A |
4233734 | Bies | Nov 1980 | A |
4300564 | Furihata | Nov 1981 | A |
D263020 | Rau, III | Feb 1982 | S |
4370980 | Lottick | Feb 1983 | A |
4375218 | DiGeronimo | Mar 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4418692 | Guay | Dec 1983 | A |
4452246 | Bader et al. | Jun 1984 | A |
D276790 | Laske | Dec 1984 | S |
4492231 | Auth | Jan 1985 | A |
4552143 | Lottick | Nov 1985 | A |
4574804 | Kurwa | Mar 1986 | A |
4597379 | Kihn et al. | Jul 1986 | A |
4600007 | Lahodny et al. | Jul 1986 | A |
4655215 | Pike | Apr 1987 | A |
4655216 | Tischer | Apr 1987 | A |
4657016 | Garito et al. | Apr 1987 | A |
4662372 | Sharkany et al. | May 1987 | A |
4671274 | Sorochenko | Jun 1987 | A |
4685459 | Koch et al. | Aug 1987 | A |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
4754892 | Retief | Jul 1988 | A |
4763669 | Jaeger | Aug 1988 | A |
4827929 | Hodge | May 1989 | A |
4846171 | Kauphusman et al. | Jul 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4887612 | Esser et al. | Dec 1989 | A |
4938761 | Ensslin | Jul 1990 | A |
4985030 | Melzer et al. | Jan 1991 | A |
5007908 | Rydell | Apr 1991 | A |
5007917 | Evans | Apr 1991 | A |
5026370 | Lottick | Jun 1991 | A |
5035695 | Weber, Jr. et al. | Jul 1991 | A |
5084057 | Green et al. | Jan 1992 | A |
5099840 | Goble et al. | Mar 1992 | A |
5106364 | Hayafuji et al. | Apr 1992 | A |
5116332 | Lottick | May 1992 | A |
5146921 | Terwilliger et al. | Sep 1992 | A |
5147357 | Rose et al. | Sep 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5176695 | Dulebohn | Jan 1993 | A |
5190541 | Abele et al. | Mar 1993 | A |
5196009 | Kirwan, Jr. | Mar 1993 | A |
5197964 | Parins | Mar 1993 | A |
5215101 | Jacobs et al. | Jun 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217458 | Parins | Jun 1993 | A |
5217460 | Knoepfler | Jun 1993 | A |
5219354 | Choudhury et al. | Jun 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5250047 | Rydell | Oct 1993 | A |
5250063 | Abidin et al. | Oct 1993 | A |
5258001 | Corman | Nov 1993 | A |
5258006 | Rydell et al. | Nov 1993 | A |
5261918 | Phillips et al. | Nov 1993 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5275615 | Rose | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5282799 | Rydell | Feb 1994 | A |
5290286 | Parins | Mar 1994 | A |
5304203 | El-Mallawany et al. | Apr 1994 | A |
5308357 | Lichtman | May 1994 | A |
5312423 | Rosenbluth et al. | May 1994 | A |
5312433 | Boebel et al. | May 1994 | A |
5314445 | Heidmueller et al. | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5324289 | Eggers | Jun 1994 | A |
5326806 | Yokoshima et al. | Jul 1994 | A |
5330471 | Eggers | Jul 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5334215 | Chen | Aug 1994 | A |
5336220 | Ryan et al. | Aug 1994 | A |
5336221 | Anderson | Aug 1994 | A |
5342359 | Rydell | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342393 | Stack | Aug 1994 | A |
5344424 | Roberts et al. | Sep 1994 | A |
5352222 | Rydell | Oct 1994 | A |
5354271 | Voda | Oct 1994 | A |
5356408 | Rydell | Oct 1994 | A |
5366477 | LeMarie, III et al. | Nov 1994 | A |
5368600 | Failla et al. | Nov 1994 | A |
5376089 | Smith | Dec 1994 | A |
5383897 | Wholey | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5391166 | Eggers | Feb 1995 | A |
5391183 | Janzen et al. | Feb 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5409013 | Clement | Apr 1995 | A |
5411519 | Tovey et al. | May 1995 | A |
5411520 | Nash et al. | May 1995 | A |
5413571 | Katsaros et al. | May 1995 | A |
5415657 | Taymor-Luria | May 1995 | A |
5422567 | Matsunaga | Jun 1995 | A |
5423810 | Goble et al. | Jun 1995 | A |
5425690 | Chang | Jun 1995 | A |
5425739 | Jessen | Jun 1995 | A |
5429616 | Schaffer | Jul 1995 | A |
5431672 | Cote et al. | Jul 1995 | A |
5431674 | Basile et al. | Jul 1995 | A |
5437292 | Kipshidze et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5441517 | Kensey et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443464 | Russell et al. | Aug 1995 | A |
5443480 | Jacobs et al. | Aug 1995 | A |
5445638 | Rydell et al. | Aug 1995 | A |
5445658 | Durrfeld et al. | Aug 1995 | A |
5451224 | Goble et al. | Sep 1995 | A |
5456684 | Schmidt et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5460629 | Shlain et al. | Oct 1995 | A |
5462546 | Rydell | Oct 1995 | A |
5472443 | Cordis et al. | Dec 1995 | A |
5478351 | Meade et al. | Dec 1995 | A |
5480409 | Riza | Jan 1996 | A |
5484436 | Eggers et al. | Jan 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5496347 | Hashiguchi et al. | Mar 1996 | A |
5499997 | Shame et al. | Mar 1996 | A |
5509922 | Aranyi et al. | Apr 1996 | A |
5514134 | Rydell et al. | May 1996 | A |
5527313 | Scott et al. | Jun 1996 | A |
5527332 | Clement | Jun 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5540684 | Hassler, Jr. | Jul 1996 | A |
5540685 | Parins et al. | Jul 1996 | A |
5540693 | Fisher | Jul 1996 | A |
5540715 | Katsaros et al. | Jul 1996 | A |
5542945 | Fritzsch | Aug 1996 | A |
5558671 | Yates | Sep 1996 | A |
5558672 | Edwards et al. | Sep 1996 | A |
5562699 | Heimberger et al. | Oct 1996 | A |
5569241 | Edwards | Oct 1996 | A |
5569243 | Kortenbach et al. | Oct 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5573424 | Poppe | Nov 1996 | A |
5573534 | Stone | Nov 1996 | A |
5573535 | Viklund | Nov 1996 | A |
5575805 | Li | Nov 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5585896 | Yamazaki et al. | Dec 1996 | A |
5590570 | LeMaire, III et al. | Jan 1997 | A |
5601601 | Tal et al. | Feb 1997 | A |
5603711 | Parins et al. | Feb 1997 | A |
5603723 | Aranyi et al. | Feb 1997 | A |
5611798 | Eggers | Mar 1997 | A |
5620453 | Nallakrishnan | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626578 | Tihon | May 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5630833 | Katsaros et al. | May 1997 | A |
5637110 | Pennybacker et al. | Jun 1997 | A |
5638003 | Hall | Jun 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5649959 | Hannam et al. | Jul 1997 | A |
5658281 | Heard | Aug 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5695522 | LeMaire, III et al. | Dec 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5702390 | Austin et al. | Dec 1997 | A |
5707369 | Vaitekunas et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5716366 | Yates | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5722421 | Francese et al. | Mar 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5727428 | LeMaire, III et al. | Mar 1998 | A |
5730752 | Alden et al. | Mar 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5741287 | Alden et al. | Apr 1998 | A |
5743906 | Parins et al. | Apr 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5766130 | Selmonosky | Jun 1998 | A |
5766166 | Hooven | Jun 1998 | A |
5766170 | Eggers | Jun 1998 | A |
5769849 | Eggers | Jun 1998 | A |
5772655 | Bauer et al. | Jun 1998 | A |
5772670 | Brosa | Jun 1998 | A |
5776128 | Eggers | Jul 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5779647 | Chau et al. | Jul 1998 | A |
5779701 | McBrayer et al. | Jul 1998 | A |
H1745 | Paraschac | Aug 1998 | H |
5792137 | Carr et al. | Aug 1998 | A |
5792177 | Kaseda | Aug 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797938 | Paraschac et al. | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5797958 | Yoon | Aug 1998 | A |
5800449 | Wales | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5810808 | Eggers | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810877 | Roth et al. | Sep 1998 | A |
5814043 | Shapeton | Sep 1998 | A |
5817083 | Shemesh et al. | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5820630 | Lind | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827279 | Hughett et al. | Oct 1998 | A |
5827281 | Levin | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5827548 | Lavallee et al. | Oct 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5843080 | Fleenor et al. | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5853412 | Mayenberger | Dec 1998 | A |
5860976 | Billings et al. | Jan 1999 | A |
5873886 | Larsen et al. | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5882567 | Cavallaro et al. | Mar 1999 | A |
5891141 | Rydell | Apr 1999 | A |
5891142 | Eggers et al. | Apr 1999 | A |
5893863 | Yoon | Apr 1999 | A |
5893875 | O'Connor et al. | Apr 1999 | A |
5893877 | Gampp, Jr. et al. | Apr 1999 | A |
5902301 | Olig | May 1999 | A |
5906630 | Anderhub et al. | May 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5908432 | Pan | Jun 1999 | A |
5911719 | Eggers | Jun 1999 | A |
5913874 | Berns et al. | Jun 1999 | A |
5921984 | Sutcu et al. | Jul 1999 | A |
5925043 | Kumar et al. | Jul 1999 | A |
5925056 | Thomas et al. | Jul 1999 | A |
5935126 | Riza | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5951549 | Richardson et al. | Sep 1999 | A |
5954720 | Wilson et al. | Sep 1999 | A |
5957923 | Hahnen et al. | Sep 1999 | A |
5960544 | Beyers | Oct 1999 | A |
5961514 | Long et al. | Oct 1999 | A |
5964758 | Dresden | Oct 1999 | A |
5964777 | Drucker | Oct 1999 | A |
5976132 | Morris | Nov 1999 | A |
5984939 | Yoon | Nov 1999 | A |
5989277 | LeMaire, III et al. | Nov 1999 | A |
5997565 | Inoue | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6010516 | Hulka | Jan 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024744 | Kese et al. | Feb 2000 | A |
6030384 | Nezhat | Feb 2000 | A |
6033399 | Gines | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6041679 | Slater et al. | Mar 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053914 | Eggers et al. | Apr 2000 | A |
6053933 | Balazs et al. | Apr 2000 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6059782 | Novak et al. | May 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
RE36795 | Rydell | Jul 2000 | E |
6083223 | Baker | Jul 2000 | A |
6086586 | Hooven | Jul 2000 | A |
6090107 | Borgmeier et al. | Jul 2000 | A |
6096037 | Mulier et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
6102909 | Chen et al. | Aug 2000 | A |
6110171 | Rydell | Aug 2000 | A |
6113596 | Hooven et al. | Sep 2000 | A |
6113598 | Baker | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126658 | Baker | Oct 2000 | A |
6152923 | Ryan | Nov 2000 | A |
6159179 | Simonson | Dec 2000 | A |
6162220 | Nezhat | Dec 2000 | A |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6179834 | Buysse et al. | Jan 2001 | B1 |
6179837 | Hooven | Jan 2001 | B1 |
6183467 | Shapeton et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193718 | Kortenbach et al. | Feb 2001 | B1 |
6206876 | Levine et al. | Mar 2001 | B1 |
6206877 | Kese et al. | Mar 2001 | B1 |
6217602 | Redmon | Apr 2001 | B1 |
6221039 | Durgin et al. | Apr 2001 | B1 |
6224593 | Ryan et al. | May 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270497 | Sekino et al. | Aug 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6277117 | Tetzlaff et al. | Aug 2001 | B1 |
6280458 | Boche et al. | Aug 2001 | B1 |
6283961 | Underwood et al. | Sep 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6299625 | Bacher | Oct 2001 | B1 |
6302424 | Gisinger et al. | Oct 2001 | B1 |
6319451 | Brune | Nov 2001 | B1 |
6322561 | Eggers et al. | Nov 2001 | B1 |
6325795 | Lindemann et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
6345532 | Coudray et al. | Feb 2002 | B1 |
6350264 | Hooven | Feb 2002 | B1 |
6352536 | Buysse et al. | Mar 2002 | B1 |
6358249 | Chen et al. | Mar 2002 | B1 |
6358268 | Hunt et al. | Mar 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6387094 | Eitenmuller | May 2002 | B1 |
6391035 | Appleby et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6402747 | Lindemann et al. | Jun 2002 | B1 |
6409728 | Ehr et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6419675 | Gallo, Sr. | Jul 2002 | B1 |
6425896 | Baltschun et al. | Jul 2002 | B1 |
6440144 | Bacher | Aug 2002 | B1 |
6443952 | Mulier et al. | Sep 2002 | B1 |
6443970 | Schulze et al. | Sep 2002 | B1 |
6451018 | Lands et al. | Sep 2002 | B1 |
6458125 | Cosmescu | Oct 2002 | B1 |
6458128 | Schulze | Oct 2002 | B1 |
6458130 | Frazier et al. | Oct 2002 | B1 |
6464701 | Hooven et al. | Oct 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6464704 | Schmaltz et al. | Oct 2002 | B2 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6527771 | Weadock et al. | Mar 2003 | B1 |
6558385 | McClurken et al. | May 2003 | B1 |
6562037 | Paton et al. | May 2003 | B2 |
6585735 | Frazier et al. | Jul 2003 | B1 |
6602252 | Mollenauer | Aug 2003 | B2 |
6616658 | Ineson | Sep 2003 | B2 |
6616661 | Wellman et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6626901 | Treat et al. | Sep 2003 | B1 |
6641595 | Moran et al. | Nov 2003 | B1 |
6652514 | Ellman et al. | Nov 2003 | B2 |
6652521 | Schulze | Nov 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6660072 | Chatterjee | Dec 2003 | B2 |
6669696 | Bacher et al. | Dec 2003 | B2 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6679882 | Komerup | Jan 2004 | B1 |
6682527 | Strul | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6685724 | Haluck | Feb 2004 | B1 |
6689131 | McClurken | Feb 2004 | B2 |
6692445 | Roberts et al. | Feb 2004 | B2 |
6695840 | Schulze | Feb 2004 | B2 |
6702810 | McClurken et al. | Mar 2004 | B2 |
6726068 | Miller | Apr 2004 | B2 |
6726686 | Buysse et al. | Apr 2004 | B2 |
6733498 | Paton et al. | May 2004 | B2 |
6736813 | Yamauchi et al. | May 2004 | B2 |
6743229 | Buysse et al. | Jun 2004 | B2 |
6743230 | Lutze et al. | Jun 2004 | B2 |
6747218 | Huseman | Jun 2004 | B2 |
6757977 | Dambal et al. | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773434 | Ciarrocca | Aug 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6776780 | Mulier et al. | Aug 2004 | B2 |
6790217 | Schulze et al. | Sep 2004 | B2 |
6796981 | Wham et al. | Sep 2004 | B2 |
D496997 | Dycus et al. | Oct 2004 | S |
6802843 | Truckai et al. | Oct 2004 | B2 |
6808525 | Latterell et al. | Oct 2004 | B2 |
D499181 | Dycus et al. | Nov 2004 | S |
6818000 | Muller et al. | Nov 2004 | B2 |
6860880 | Treat et al. | Mar 2005 | B2 |
6887240 | Lands et al. | May 2005 | B1 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6932816 | Phan | Aug 2005 | B2 |
6934134 | Mori et al. | Aug 2005 | B2 |
6936061 | Sasaki | Aug 2005 | B2 |
6942662 | Goble et al. | Sep 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6958070 | Witt et al. | Oct 2005 | B2 |
6960210 | Lands et al. | Nov 2005 | B2 |
6964662 | Kidooka | Nov 2005 | B2 |
6966907 | Goble | Nov 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6979786 | Aukland et al. | Dec 2005 | B2 |
6994707 | Ellman et al. | Feb 2006 | B2 |
6994709 | Iida | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7033354 | Keppel | Apr 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7044948 | Keppel | May 2006 | B2 |
7052496 | Yamauchi | May 2006 | B2 |
D525361 | Hushka | Jul 2006 | S |
7070597 | Truckai et al. | Jul 2006 | B2 |
7083618 | Couture et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090689 | Nagase et al. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7101373 | Dycus et al. | Sep 2006 | B2 |
7103947 | Sartor et al. | Sep 2006 | B2 |
7112199 | Cosmescu | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7115123 | Knowlton et al. | Oct 2006 | B2 |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
7118587 | Dycus et al. | Oct 2006 | B2 |
7131860 | Sartor et al. | Nov 2006 | B2 |
7131970 | Moses et al. | Nov 2006 | B2 |
7131971 | Dycus et al. | Nov 2006 | B2 |
7135020 | Lawes et al. | Nov 2006 | B2 |
D533942 | Kerr et al. | Dec 2006 | S |
7145757 | Shea et al. | Dec 2006 | B2 |
7147638 | Chapman et al. | Dec 2006 | B2 |
7150097 | Sremcich et al. | Dec 2006 | B2 |
7150749 | Dycus et al. | Dec 2006 | B2 |
D535027 | James et al. | Jan 2007 | S |
7156842 | Sartor et al. | Jan 2007 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7160298 | Lawes et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7179258 | Buysse et al. | Feb 2007 | B2 |
7195631 | Dumbauld | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7207990 | Lands et al. | Apr 2007 | B2 |
D541938 | Kerr et al. | May 2007 | S |
7223265 | Keppel | May 2007 | B2 |
7232440 | Dumbauld et al. | Jun 2007 | B2 |
7241288 | Braun | Jul 2007 | B2 |
7241296 | Buysse et al. | Jul 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7255697 | Dycus et al. | Aug 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7270660 | Ryan | Sep 2007 | B2 |
7270664 | Johnson et al. | Sep 2007 | B2 |
7276068 | Johnson et al. | Oct 2007 | B2 |
7300435 | Wham et al. | Nov 2007 | B2 |
7303557 | Wham et al. | Dec 2007 | B2 |
7314471 | Holman | Jan 2008 | B2 |
7329256 | Johnson et al. | Feb 2008 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
D564662 | Moses et al. | Mar 2008 | S |
7342754 | Fitzgerald et al. | Mar 2008 | B2 |
7344268 | Jigamian | Mar 2008 | B2 |
7367976 | Lawes et al. | May 2008 | B2 |
8192433 | Johnson et al. | Jun 2012 | B2 |
8540711 | Dycus et al. | Sep 2013 | B2 |
20020013583 | Camran et al. | Jan 2002 | A1 |
20020049442 | Roberts et al. | Apr 2002 | A1 |
20020099372 | Schulze et al. | Jul 2002 | A1 |
20020107517 | Witt et al. | Aug 2002 | A1 |
20020111624 | Witt et al. | Aug 2002 | A1 |
20020188294 | Couture et al. | Dec 2002 | A1 |
20030014052 | Buysse et al. | Jan 2003 | A1 |
20030014053 | Nguyen et al. | Jan 2003 | A1 |
20030018331 | Dycus et al. | Jan 2003 | A1 |
20030018332 | Schmaltz et al. | Jan 2003 | A1 |
20030032956 | Lands et al. | Feb 2003 | A1 |
20030069571 | Treat et al. | Apr 2003 | A1 |
20030078578 | Truckai et al. | Apr 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030139742 | Wampler et al. | Jul 2003 | A1 |
20030158549 | Swanson | Aug 2003 | A1 |
20030181910 | Dycus et al. | Sep 2003 | A1 |
20030199869 | Johnson et al. | Oct 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030220637 | Truckai et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20030236325 | Bonora | Dec 2003 | A1 |
20040030330 | Brassell et al. | Feb 2004 | A1 |
20040030332 | Knowlton et al. | Feb 2004 | A1 |
20040049185 | Latterell et al. | Mar 2004 | A1 |
20040064151 | Mollenauer | Apr 2004 | A1 |
20040078035 | Kanehira et al. | Apr 2004 | A1 |
20040082952 | Dycus et al. | Apr 2004 | A1 |
20040087943 | Dycus et al. | May 2004 | A1 |
20040115296 | Duffin | Jun 2004 | A1 |
20040116924 | Dycus et al. | Jun 2004 | A1 |
20040116979 | Truckai et al. | Jun 2004 | A1 |
20040122423 | Dycus et al. | Jun 2004 | A1 |
20040143263 | Schechter et al. | Jul 2004 | A1 |
20040147925 | Buysse et al. | Jul 2004 | A1 |
20040162557 | Tetzlaff et al. | Aug 2004 | A1 |
20040176762 | Lawes et al. | Sep 2004 | A1 |
20040193153 | Sartor et al. | Sep 2004 | A1 |
20040225288 | Buysse et al. | Nov 2004 | A1 |
20040230189 | Keppel | Nov 2004 | A1 |
20040236325 | Tetzlaff et al. | Nov 2004 | A1 |
20040236326 | Schulze et al. | Nov 2004 | A1 |
20040243125 | Dycus et al. | Dec 2004 | A1 |
20040249371 | Dycus et al. | Dec 2004 | A1 |
20040249374 | Tetzlaff et al. | Dec 2004 | A1 |
20040250419 | Sremcich et al. | Dec 2004 | A1 |
20040254573 | Dycus et al. | Dec 2004 | A1 |
20040260281 | Baxter et al. | Dec 2004 | A1 |
20050004564 | Wham et al. | Jan 2005 | A1 |
20050004568 | Lawes et al. | Jan 2005 | A1 |
20050004570 | Chapman et al. | Jan 2005 | A1 |
20050021025 | Buysse et al. | Jan 2005 | A1 |
20050021026 | Baily | Jan 2005 | A1 |
20050021027 | Shields et al. | Jan 2005 | A1 |
20050033278 | McClurken et al. | Feb 2005 | A1 |
20050096645 | Wellman et al. | May 2005 | A1 |
20050101951 | Wham et al. | May 2005 | A1 |
20050101952 | Lands et al. | May 2005 | A1 |
20050107784 | Moses et al. | May 2005 | A1 |
20050107785 | Dycus et al. | May 2005 | A1 |
20050113818 | Sartor et al. | May 2005 | A1 |
20050113819 | Wham et al. | May 2005 | A1 |
20050113826 | Johnson et al. | May 2005 | A1 |
20050113827 | Dumbauld et al. | May 2005 | A1 |
20050113828 | Shields et al. | May 2005 | A1 |
20050119655 | Moses et al. | Jun 2005 | A1 |
20050149017 | Dycus | Jul 2005 | A1 |
20050149151 | Orszulak et al. | Jul 2005 | A1 |
20050187547 | Sugi | Aug 2005 | A1 |
20050197659 | Bahney | Sep 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20050240179 | Buysse et al. | Oct 2005 | A1 |
20060052778 | Chapman et al. | Mar 2006 | A1 |
20060064085 | Schechter et al. | Mar 2006 | A1 |
20060074417 | Cunningham et al. | Apr 2006 | A1 |
20060079888 | Mulier et al. | Apr 2006 | A1 |
20060079890 | Guerra | Apr 2006 | A1 |
20060079891 | Arts et al. | Apr 2006 | A1 |
20060116675 | McClurken et al. | Jun 2006 | A1 |
20060129146 | Dycus et al. | Jun 2006 | A1 |
20060161150 | Keppel | Jul 2006 | A1 |
20060167450 | Johnson et al. | Jul 2006 | A1 |
20060167452 | Moses et al. | Jul 2006 | A1 |
20060169981 | Joo | Aug 2006 | A1 |
20060173452 | Buysse et al. | Aug 2006 | A1 |
20060189980 | Johnson et al. | Aug 2006 | A1 |
20060189981 | Dycus et al. | Aug 2006 | A1 |
20060190035 | Hushka et al. | Aug 2006 | A1 |
20060217709 | Couture et al. | Sep 2006 | A1 |
20060224158 | Odom et al. | Oct 2006 | A1 |
20060259036 | Tetzlaff et al. | Nov 2006 | A1 |
20060264922 | Sartor et al. | Nov 2006 | A1 |
20060264931 | Chapman et al. | Nov 2006 | A1 |
20060287641 | Perlin | Dec 2006 | A1 |
20070016182 | Lipson et al. | Jan 2007 | A1 |
20070016187 | Weinberg et al. | Jan 2007 | A1 |
20070043352 | Garrison et al. | Feb 2007 | A1 |
20070043353 | Dycus et al. | Feb 2007 | A1 |
20070060919 | Isaacson et al. | Mar 2007 | A1 |
20070062017 | Dycus et al. | Mar 2007 | A1 |
20070074807 | Guerra | Apr 2007 | A1 |
20070078456 | Dumbauld et al. | Apr 2007 | A1 |
20070078458 | Dumbauld et al. | Apr 2007 | A1 |
20070078459 | Johnson et al. | Apr 2007 | A1 |
20070088356 | Moses et al. | Apr 2007 | A1 |
20070106295 | Garrison et al. | May 2007 | A1 |
20070106297 | Dumbauld et al. | May 2007 | A1 |
20070118111 | Weinberg | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070142833 | Dycus et al. | Jun 2007 | A1 |
20070142834 | Dumbauld | Jun 2007 | A1 |
20070156139 | Schechter et al. | Jul 2007 | A1 |
20070156140 | Baily | Jul 2007 | A1 |
20070173811 | Couture et al. | Jul 2007 | A1 |
20070173814 | Hixson et al. | Jul 2007 | A1 |
20070179499 | Garrison | Aug 2007 | A1 |
20070203485 | Keppel | Aug 2007 | A1 |
20070213706 | Dumbauld et al. | Sep 2007 | A1 |
20070213707 | Dumbauld et al. | Sep 2007 | A1 |
20070213708 | Dumbauld et al. | Sep 2007 | A1 |
20070213712 | Buysse et al. | Sep 2007 | A1 |
20070255279 | Buysse et al. | Nov 2007 | A1 |
20070260235 | Podhajsky | Nov 2007 | A1 |
20070260238 | Guerra | Nov 2007 | A1 |
20070260241 | Dalla Betta et al. | Nov 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070265616 | Couture et al. | Nov 2007 | A1 |
20080004616 | Patrick | Jan 2008 | A1 |
20080009860 | Odom | Jan 2008 | A1 |
20080015575 | Odom et al. | Jan 2008 | A1 |
20080021450 | Couture | Jan 2008 | A1 |
20080033428 | Artale et al. | Feb 2008 | A1 |
20080039835 | Johnson et al. | Feb 2008 | A1 |
20080045947 | Johnson et al. | Feb 2008 | A1 |
20080058802 | Couture et al. | Mar 2008 | A1 |
20080082100 | Orton et al. | Apr 2008 | A1 |
20130267975 | Timm | Oct 2013 | A1 |
20140031819 | Dycus | Jan 2014 | A1 |
20140148803 | Taylor | May 2014 | A1 |
20150250531 | Dycus et al. | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
2104423 | Feb 1994 | CA |
2415263 | Oct 1975 | DE |
2627679 | Jan 1977 | DE |
8712328 | Feb 1988 | DE |
04303882 | Feb 1995 | DE |
29616210 | Nov 1996 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19751108 | May 1999 | DE |
0541930 | May 1993 | EP |
0572131 | Dec 1993 | EP |
0584787 | Mar 1994 | EP |
0589453 | Apr 1994 | EP |
0624348 | Jun 1995 | EP |
0364216 | Jan 1996 | EP |
0518230 | May 1996 | EP |
0541930 | Mar 1998 | EP |
0878169 | Nov 1998 | EP |
0623316 | Mar 1999 | EP |
0650701 | Mar 1999 | EP |
0923907 | Jun 1999 | EP |
0640317 | Sep 1999 | EP |
0986990 | Mar 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
0694290 | Nov 2000 | EP |
1050278 | Nov 2000 | EP |
1053719 | Nov 2000 | EP |
1053720 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1080694 | Mar 2001 | EP |
1082944 | Mar 2001 | EP |
1159926 | Mar 2003 | EP |
0717966 | Apr 2003 | EP |
1301135 | Apr 2003 | EP |
0887046 | Jul 2003 | EP |
1330991 | Jul 2003 | EP |
1330991 | Jul 2003 | EP |
1486177 | Jun 2004 | EP |
1472984 | Nov 2004 | EP |
0754437 | Dec 2004 | EP |
1025807 | Dec 2004 | EP |
0853922 | Feb 2005 | EP |
1527747 | May 2005 | EP |
1530952 | May 2005 | EP |
1532932 | May 2005 | EP |
1535581 | Jun 2005 | EP |
1609430 | Dec 2005 | EP |
1609430 | Dec 2005 | EP |
1034746 | Mar 2006 | EP |
1632192 | Mar 2006 | EP |
1645238 | Apr 2006 | EP |
1645238 | Apr 2006 | EP |
1645240 | Apr 2006 | EP |
1645240 | Apr 2006 | EP |
0875209 | May 2006 | EP |
1707143 | Oct 2006 | EP |
1707143 | Oct 2006 | EP |
2213416 | Aug 1989 | GB |
2214430 | Sep 1989 | GB |
61-501068 | Sep 1984 | JP |
6-502328 | Mar 1992 | JP |
5-5106 | Jan 1993 | JP |
05-40112 | Feb 1993 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
H08-56955 | May 1996 | JP |
08252263 | Oct 1996 | JP |
910223 | Jan 1997 | JP |
11244298 | Sep 1999 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001029356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
401367 | Oct 1973 | SU |
8900757 | Jan 1989 | WO |
9204873 | Apr 1992 | WO |
9206642 | Apr 1992 | WO |
9408524 | Apr 1994 | WO |
9420025 | Sep 1994 | WO |
9502369 | Jan 1995 | WO |
9507662 | Mar 1995 | WO |
9515124 | Jun 1995 | WO |
9605776 | Feb 1996 | WO |
96022056 | Jul 1996 | WO |
9613218 | Sep 1996 | WO |
9700646 | Jan 1997 | WO |
9700647 | Jan 1997 | WO |
9710764 | Mar 1997 | WO |
9724073 | Jul 1997 | WO |
9724993 | Jul 1997 | WO |
9727880 | Aug 1997 | WO |
9827880 | Jul 1998 | WO |
9827860 | Jul 1998 | WO |
9903407 | Jan 1999 | WO |
9903408 | Jan 1999 | WO |
9903409 | Jan 1999 | WO |
9903409 | Jan 1999 | WO |
9912488 | Mar 1999 | WO |
9940857 | Aug 1999 | WO |
9940861 | Aug 1999 | WO |
9940881 | Aug 1999 | WO |
99040861 | Aug 1999 | WO |
9951158 | Oct 1999 | WO |
9966850 | Dec 1999 | WO |
9966850 | Dec 1999 | WO |
0024330 | May 2000 | WO |
0024331 | May 2000 | WO |
0041638 | Jul 2000 | WO |
0047124 | Aug 2000 | WO |
0053112 | Sep 2000 | WO |
0117448 | Mar 2001 | WO |
0154604 | Aug 2001 | WO |
0207627 | Jan 2002 | WO |
02067798 | Sep 2002 | WO |
02080783 | Oct 2002 | WO |
02080784 | Oct 2002 | WO |
02080785 | Oct 2002 | WO |
02080786 | Oct 2002 | WO |
02080794 | Oct 2002 | WO |
02080795 | Oct 2002 | WO |
02080796 | Oct 2002 | WO |
02080797 | Oct 2002 | WO |
02080798 | Oct 2002 | WO |
02080799 | Oct 2002 | WO |
02080799 | Oct 2002 | WO |
02081170 | Oct 2002 | WO |
02080763 | Oct 2002 | WO |
02080793 | Oct 2002 | WO |
02080796 | Oct 2002 | WO |
03101311 | Dec 2003 | WO |
03090630 | Apr 2004 | WO |
04032777 | Apr 2004 | WO |
2004032776 | Apr 2004 | WO |
2004032777 | Apr 2004 | WO |
2004052221 | Jun 2004 | WO |
04073490 | Sep 2004 | WO |
2004073488 | Sep 2004 | WO |
2004073490 | Sep 2004 | WO |
2004073753 | Sep 2004 | WO |
2004082495 | Sep 2004 | WO |
2004098383 | Nov 2004 | WO |
04096383 | Nov 2004 | WO |
04103156 | Dec 2004 | WO |
2004103156 | Dec 2004 | WO |
2005004734 | Jan 2005 | WO |
2005004735 | Jan 2005 | WO |
05110264 | Apr 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20180125518 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62419018 | Nov 2016 | US |