Surgical instrument guide

Information

  • Patent Grant
  • 8858544
  • Patent Number
    8,858,544
  • Date Filed
    Tuesday, May 15, 2012
    12 years ago
  • Date Issued
    Tuesday, October 14, 2014
    9 years ago
Abstract
A surgical instrument guide for facilitating treatment of a target tissue is provided. The surgical instrument guide may be placed between two groups of tissue such that a first group of tissue is cut and a second group of tissue is protected from being cut. The surgical instrument guide may lift tissue and slide tissue along a surface so that a target tissue may be cut to a desired depth more easily during a surgical procedure. The surgical instrument guide may be releasably attachable to a surgical instrument or integrally formed therewith.
Description
THE FIELD OF THE INVENTION

The present invention relates to surgical instrument guides. More specifically, the present invention relates to guides for use with surgical instruments to facilitate cutting of certain tissue while protecting other tissues from being cut.


BACKGROUND

In surgery, a surgeon cuts into tissue at defined locations to access underlying structures or to perform some desirable restructuring of the tissue being cut. Damage to tissues outside of the defined location is usually undesirable. In some cases, a surgeon may wish to prevent damage to tissues underneath a tissue to be cut. Thus, a surgeon may need to carefully examine the depth of the cut while monitoring the length of cut and other variables—such as heat transfer to surrounding tissue, blood loss in the tissue, etc. This monitoring of multiple variables may cause the surgeon to take a slower approach to cutting through tissue or may cause a momentary distraction which results in tissue damage beyond that desired by the surgeon.


In some cases, a surgeon may use multiple tools to separate a tissue to be cut and other tissue(s) he or she wishes to avoid cutting. The use of multiple tools may demand the surgeon's otherwise free hand or require the surgeon to switch back and forth between instruments. In fact, in electrosurgical applications, a surgeon may use an instrument to separate or retract tissue with one hand, use the other hand to operate a cutting instrument and control the power output with a foot pedal to avoid having to let go of either the cutting instrument or the separating/retracting instrument. Thus, a surgeon may have to concentrate on simultaneously using at least three of his or her appendages during an operation.


Thus, there is a need for an improved device and method for reducing the number of variables that require the surgeon's attention such that the speed of surgery may be increased and/or the risk to the patient may be decreased. Additionally, it is desirable that the improved device and method reduce collateral tissue damage outside of a defined surgical location.


SUMMARY OF THE INVENTION

It is an object of the present invention to provide an improved to surgical instrument guide.


According to one aspect of the invention, a surgical instrument guide may be placed between two groups of tissue such that a first group of tissue is cut and a second group of tissue is protected from being cut.


According to another aspect of the invention, a surgical instrument guide may lift tissue and slide tissue along a surface such that the tissue stretches and a straight cut may be made more easily during a surgical procedure. As the cutting blade or surgical element may be recessed within the guide, the guide may lift and direct a cut such that cutting does not release an adjacent portion of tissue that may be cut.


According to another aspect of the invention, the surgical instrument guide may be attached to existing surgical instruments either permanently, or may be attached and removed whenever desired.


These and other aspects of the present invention are realized in a surgical instrument guide as shown and described in the following figures and related description.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present invention are shown and described in reference to the numbered drawings wherein:



FIG. 1 shows a perspective view of the working end of a surgical tool with a surgical instrument guide attached thereto;



FIG. 2 shows a perspective view of the surgical tool of FIG. 1 cutting through tissue with the surgical instrument guide attached;



FIG. 2A shows a side view of the surgical tool of FIG. 1 and the surgical instrument guide cutting through a top layer of tissue while preventing the cutting of a lower layer of tissue;



FIG. 3 shows a perspective view of a surgical instrument guide according to principles of the present invention;



FIG. 4 shows a front view of a surgical instrument guide;



FIG. 5 shows a rear view of a surgical instrument guide;



FIG. 6 shows a side view of a surgical instrument guide;



FIG. 7 shows a top view of a surgical instrument guide;



FIG. 8 shows a bottom view of a surgical instrument guide;



FIG. 9 shows a perspective view of a surgical instrument having an integral surgical instrument guide;



FIG. 10 shows a perspective view of a snap-on surgical instrument guide;



FIG. 10A shows a fragmented, perspective view of a surgical instrument and a surgical instrument guide according to principles of the present invention;



FIG. 11 shows a side view of an upward ramp surgical instrument guide generally positioned perpendicular to the surgical instrument;



FIG. 12 shows a side view of a downward ramp surgical instrument guide generally positioned perpendicular to the surgical instrument; and



FIG. 13 shows an inline ramp surgical instrument guide.





It will be appreciated that the drawings are illustrative and not limiting of the scope of the invention which is defined by the appended claims. The embodiments shown accomplish various aspects and objects of the invention. It is appreciated that it is not possible to clearly show each element and aspect of the invention in a single figure, and as such, multiple figures are presented to separately illustrate the various details of the invention in greater clarity. Similarly, not every embodiment need accomplish all advantages of the present invention.


DETAILED DESCRIPTION

The invention and accompanying drawings will now be discussed in reference to the numerals provided therein so as to enable one skilled in the art to practice the present invention. The drawings and descriptions are exemplary of various aspects of the invention and are not intended to narrow the scope of the appended claims.


Turning now to FIG. 1, there is shown a perspective view of the working end of a surgical instrument 10 engaged with a surgical instrument guide 20 according to principles of the present invention. The working end of the surgical instrument 10 may engage the surgical instrument guide 20 to aid in surgery. The surgical instrument guide 20 may aid the surgeon in treating a target tissue while substantially preventing undesired damage in other tissue adjacent the target tissue. For example, the surgical instrument guide 20 may facilitate cutting of the target tissue while substantially preventing cutting of tissue adjacent the target tissue. It will be appreciated that the term “tissue” as used herein may refer to a single tissue type, a single tissue layer, multiple tissue types, multiple tissue layers, and/or other material on which a surgical instrument may be used.


In accordance with one aspect of the invention, a surgical instrument guide may cause a target tissue to be spaced apart from a tissue adjacent the target tissue prior to and/or during treatment of the target tissue by a surgical instrument. For example, the surgical instrument guide 20 may lift up and direct a target tissue toward an active element 50 of the surgical instrument 10. By lifting and directing the target tissue, a degree of separation and/or barrier may be made between the target tissue being cut and other tissue thus substantially preventing damage to the other tissue by the active element 50. The active element 50 may use thermal energy to treat tissue. For example, the active element 50 may include a ferromagnetic coated conductor to treat tissue such as thermally adjustable ferromagnetic conductors disclosed in U.S. Publication Nos. 2010-0268207, 2010-0268214, 2010-0268208, 2010-0268209, 2010-0268215, 2010-0268205, 2010-0268210, 2010-0268212, 2010-0268213, 2010-0268211, 2010-0268216, 2010-0268206, all of which are expressly incorporated herein by reference.


The guide 20 may engage the surgical instrument 10 such that a sufficient transfer of thermal energy from the active element 50 to the guide 20 in order to heat the guide is substantially prevented. Under these circumstances, the likelihood of thermal damage to any tissue contacted by the guide 20 is decreased or even eliminated. Thus, the guide 20 may aid a user to direct the active element 50 of the surgical tool to only specific tissue.


The working end of the surgical tool 10 may include a body 30, a tip 40 and an active element 50. The active element 50 may be a conventional cutting blade or an electrosurgical cutting element. The surgical instrument guide 20 may include a coupling member, such as a collar 60, an arm 70 which extends away from the surgical instrument 10 and a tissue shield 80 formed as a foot or other extension for protecting tissue other than the target tissue from being cut, etc. The surgical instrument guide 20 may be attached to the surgical instrument 10 by connecting the coupling member 60 to the body 30, for example, by slidably engaging the coupling member 60 with the body 30. The arm 70 may extend past the tip 40 such that tissue shield 80 is positioned a short distance beyond the active element 50. The tissue shield 80 has a top surface 100 and a bottom surface, and may include a channel, groove or depression 90 that allows the active element 50 to extend beyond the top surface 100 (but preferably not below the bottom surface) of the tissue shield 80 without contacting the tissue shield 80. Thus, the active element 50 may be said to intersect a plane extending along the top surface 100 of the tissue shield 80. According to one aspect of the invention, the guide 20 is connected to the surgical instrument 10 such that the active element 50 extends into the channel 90. Thus, the active element 50 may engage tissue that is positioned across the top surface 100 of the tissue shield 80 (e.g. the target tissue) and cut completely through the target tissue while the tissue shield 80 prevents the active element 50 from contacting tissue(s) along the bottom surface of the tissue shield 80.


A chamfer, incline or wedge, etc. 110 may be used to engage a target tissue and aid in lifting the target tissue away from other tissue(s) prior to treating the target tissue using the active element 50. As the wedge 110 slides along the tissue, it lifts the target tissue away from lower tissues and stretches it slightly over and across the top surface 100 of the tissue shield 80 and channel 90. This facilitates cutting the tissue cleanly. Tissue that is not pulled to the top of the tissue shield 80 may be pushed under the tissue shield 80. Thus, the tissue shield 80 may act as a barrier to prevent damage to any tissue under the tissue shield 80 caused by the active element 50.


It should be recognized that while the tools may be discussed in a surgical sense, such as surgical instrument 10, the system may have applicability in other areas, such as the cutting of meat or other membranes. For ease of understanding, however, the system may be described in a surgical context.


Turning now to FIG. 2, a perspective view of a surgical instrument 10 with guide 20 cutting through tissue 120 is shown. When the surgical instrument 10 is moved in a forward direction, the wedge 110 (FIG. 1) of the tissue shield 80 lifts the tissue 120 up and away from structures beneath the tissue 120 and slides along the tissue 120 as the active element 50 is advanced. As the active element 50 may cut the tissue 120, the cut portions of the tissue slide by the arm 70 which may be beveled or otherwise contoured depending on the application. Thus, the guide 20 may ensure that the cut along tissue 120 is made at a desired depth allowing the user to focus on the direction of the cut. Therefore, the tissue guide 20 may allow the user to perform a quicker cut with less risk of unintended damage.


Turning now to FIG. 2A, there is shown a side view of a the working end of a surgical instrument 10 as shown in FIGS. 1 and 2 as the guide 10 is moved through a first layer of tissue 124 above a second layer of tissue 128. Those skilled in the art will appreciate that there are numerous situations in which a surgeon desires to cut one layer of tissue and not another. For example, the spinal cord is wrapped in a membrane called the Dura Mater. A surgeon may need to access the spinal cord, but does not desire to cut into the spinal cord. To open the Dura Mater, the physician need only make a very small incision in the membrane and then slide the tissue shield 80 through the incision so that the tissue shield is disposed between the spinal cord and the Dura Mater. Once this is accomplished, the surgeon can cut along the Dura Mater without fear that he or she is also cutting into the spinal cord. There are numerous similar structures in the body where it is desirable for one layer of tissue to be cut without cutting an adjacent layer of tissue. The guide 20 both protects the underlying tissue 128 and lifts and helps separate the upper tissue 124 during cutting, thereby simplifying the procedure for the surgeon.


Turning now to FIGS. 3 to 8 generally, different perspectives of a surgical tool guide 20 are shown. FIG. 3 shows a perspective view of the surgical guide 20. It will be appreciated that the guide 20 may be independent from the surgical instrument 10 with which the guide 20 is used. The guide 20 may be snap fit, have a threaded engagement or otherwise attach to the surgical instrument 10. Thus, in some embodiments, the guide 20 may be used only when desired and then removed so as to not interfere with the surgeon's use of the surgical instrument 10 during the remainder of the procedure.


As shown in FIG. 3, the lower portion of tissue shield 80 of the guide is disposed generally perpendicular to the arm 70. It will be appreciated that a variety of angles may be desirable for use in different medical procedures and the view in FIG. 3 should be deemed to be only exemplary of the principles of the present invention.



FIG. 4 shows a front view of a surgical tool guide shown in FIGS. 1-3. FIG. 4 provides a clearer view of the groove or channel 90 into which the cutting or active element (not shown) may extend so as to clearly cut through tissue passing up the incline or wedge 110 and over the top surface 100 of the tissue shield 80.



FIG. 5 shows a rear view of a surgical instrument guide 20. While the arm 70 is shown as being fairly broad, it will be appreciated that the arm 70 can be thin and may be tapered or have a beveled edge to facilitate spreading apart of target tissue or tissues which are cut.



FIG. 6 shows a side view of the surgical instrument guide. FIG. 6 provides a better view of the incline or wedge 110 at the front of the tissue shield 80 that helps lift the target tissue over the channel 90 to facilitate cutting of the target tissue.



FIGS. 7 and 8 show a top view and bottom view, respectively, of the surgical instrument guide 20 shown in FIGS. 1-6. The top view looks through an opening in the coupling member 60 through which a portion of a surgical instrument may extend, such as the working end of a scalpel or electrosurgical element. The coupling member 60 may include a variety of attachment mechanisms for holding the guide 20 in place, such as depressions or projections which interact with the tool, a snap fit, etc. FIG. 7 also shows a top view of portions of the tissue shield 80, including the depression or channel 90 and the incline or wedge 110 which lifts the target tissue onto the top surface 100 of the tissue shield 80 for cutting.



FIGS. 1-8 show various parts of the surgical tool guide 20. For example, a surgical tool guide 20 according to principles of the present invention may include a coupling member 60 (such as a collar), an arm 70 and a tissue shield 80. The tissue shield 80 may contain a channel or depression 90, a top surface 100 and a wedge 110. It will be appreciated that the embodiment shown in FIGS. 1-8 is intended to be exemplary only, and is not intended to limit the scope of the principles of the present invention.



FIGS. 9 and 10, show different mechanisms of connecting the guide 20 to a surgical instrument 10. The guide 20 may be attached or coupled to the surgical tool 10 in multiple ways. In FIG. 9, the guide 20 is integrally formed with the surgical instrument body 30 and thus remains with the surgical instrument throughout use. The arm 70, integrally formed with the surgical tool body 30, extends down to the tissue shield 80. Thus, the entire device body, including the guide 20, may be formed as one piece.


In FIG. 10, the guide 20 includes a snap-on collar 130. According to one aspect of the invention, the snap-on collar 130 may be held on by elastic force. According to another aspect of the invention, a collar joint 140 includes a protrusion 144 from a first collar section 150A that slides into a channel 154 of a second collar section 150B. The engagement between the protrusion 144 and the channel 154 may lock and thus become essentially permanent, or may be releasable.


While the figures show a channel or depression 90, it should be recognized that other configurations are possible. For example, the tissue shield 80 may be constructed without a channel 90 and the active element 50 may extend so as to be substantially adjacent the top surface 100 of the top surface 100 of the tissue shield 80. According to another aspect of the invention, the active element 50 may extend into the tissue shield 80 as shown in FIG. 10A.


Turning now to FIGS. 11 to 13, variations of the tissue shield 80 of the guide 20 are discussed. More specifically, the tissue shield 80 and wedge 110 may be altered according to the surgical need. Thus, the angle at which the tissue shield 80 is disposed relative to a surgical instrument 10 may vary and the wedge 110 may be altered to match the desired use and/or positioning of the surgical instrument guide 20.


In FIG. 11, a side view of an alternate configuration of a surgical instrument guide 20a is shown. As shown, the surgical instrument 10a may be held at about a right angle relative to the target tissue to be cut. The guide 20a includes a tissue shield 80a which may extend at about a 90 degree angle relative to the surgical instrument 10a and/or arm 70a for spacing the tissue shield from the surgical instrument. The incline or wedge 110a may have an upper surface 100a with an upward slope. The upward slope causes the target tissue to be lifted along the upper surface 110a of the tissue shield 80a where it contacts the active element 50. The active element 50 may extend into the tissue shield 80a, rather than extending into a depression therein.


Turning now to FIG. 12, a side view of surgical instrument 10b and surgical instrument guide 20b. Rather than an upward incline similar to 110 and 110a in the figures discussed above, the guide 20b includes a downward incline along the tissue shield 80b when the surgical instrument 10b is held vertically. The downward incline 110b allows the tissue shield 80b to function as a hook. The leading edge 80b′ can be placed under a target tissue to be cut and the surgical instrument 10b drawn through the target tissue. The hook-like tissue shield 80b lifts the tissue to be cut into contact with the active element 50b, to thereby assist in cutting the target tissue. It also helps prevent tissue(s), other than the target tissue, from contacting the active element 50b.


Turning now to FIG. 13, an inline ramp surgical instrument guide 20c is shown. As can be seen, the guide 20c may allow the surgical tool 10c to be held behind the desired direction of cutting, with the action of pushing the active element 50c along the desired direction of the cut. The wedge or incline 110c at the front of the tissue shield 80c is placed underneath the target tissue and pushed along the direction of the cut. The tissue shield 80c may extend substantially parallel or in-line with the surgical instrument 10c and/or from an arm 70c. The wedge 110c may have a surface 100c having an upward slope toward the active element 50c. The upward slope causes the tissue to be lifted along the top surface 100c of the tissue shield 80c to the active element 50c.


There is thus disclosed a surgical instrument guide. The guide assists a surgeon in cutting through a first layer of tissue, a membrane, etc., while protecting tissue or other physiological structures below or adjacent the target material from being cut. Thus, it will be understood that the term tissue shield may also refer to protecting structures other than tissue. It will be appreciated that numerous changes may be made to the present invention without departing from the scope of the claims.

Claims
  • 1. A system for treating tissue comprising: a surgical instrument comprising an active element shaped for treating tissue; anda guide configured for extending from the surgical instrument, the guide including a tissue shield having an inclined surface disposed thereon;wherein the tissue shield is disposed adjacent the active element and the inclined surface lifts target tissue into contact with the active element while separating the target tissue from one or more adjacent physiologic structures;wherein the tissue shield substantially prevents contact of the active element with the one or more adjacent physiologic structures.
  • 2. The system for treating tissue of claim 1, wherein the tissue shield has a depression formed therein and wherein the active element extends into the depression.
  • 3. The system for treating tissue of claim 1, wherein the tissue shield comprises a planar surface, and wherein the active elements intersects the planar surface.
  • 4. The system for treating tissue of claim 1, wherein the active element extends into the tissue shield.
  • 5. The system for treating tissue of claim 1, wherein the guide comprises a coupling member and wherein the guide is slidably attached to the surgical instrument using the coupling member.
  • 6. The system for treating tissue of claim 1, wherein the guide comprises a coupling member and wherein the coupling member forms a snap-fit connection with the surgical instrument.
  • 7. The system for treating tissue of claim 1, wherein the guide is integrally formed with the surgical instrument.
  • 8. The system for treating tissue of claim 1, wherein the guide is removably attachable to the surgical instrument.
  • 9. The system for treating tissue of claim 1, wherein the active element is a ferromagnetic coated conductor.
  • 10. A guide comprising: a coupling member;an arm having a first end and a second end, wherein the first end of the arm is attached to the coupling member and the second end of the arm extends away from the coupling member; anda shield attached to the second end of the arm.
  • 11. The guide of claim 10, wherein the shield has a top surface having a channel formed therein.
  • 12. The guide of claim 10, further comprising a wedge disposed on the shield for engaging and lifting a material.
  • 13. The guide of claim 10, wherein the arm includes a beveled edge.
  • 14. The guide of claim 10, wherein the shield is disposed substantially perpendicular with the arm.
  • 15. The guide of claim 10, wherein the shield is disposed substantially parallel with the arm.
  • 16. The guide of claim 10, wherein the coupling member is a collar.
  • 17. A method of cutting tissue, the method comprising: selecting a surgical instrument having an active element;attaching a guide to the surgical instrument such that the guide extends from the surgical instrument adjacent the active element, the guide having a tissue shield with a cutting surface;engaging a target tissue with the tissue shield;advancing the guide so that tissue slides along the cutting surface of the tissue shield and into contact with the active element to cut the target tissue and substantially prevent the active element from damaging physiologic structures adjacent the target tissue.
  • 18. The method of claim 17, wherein the tissue shield includes an inclined surface for engaging the target tissue, and the method further comprises the step of positioning the inclined surface of the tissue shield between the target tissue and a second tissue and moving the guide such that the inclined surface of the tissue shield separates the target tissue from the second tissue prior to the active element cutting the target tissue.
  • 19. The method of claim 17, wherein the cutting surface of the tissue shield comprises a depression and wherein the guide is attached to the surgical instrument so that the active element extends into the depression and below at least a portion of the cutting surface of the tissue shield.
  • 20. The method of claim 17, wherein the active element is a thermal element, and wherein the method further comprises attaching the guide to the surgical instrument such that transfer of thermal energy from the thermal element to the guide is substantially prevented.
  • 21. The method of claim 17, wherein the active element is a thermally adjustable ferromagnetic coated conductor, and wherein the method further comprises attaching the guide to the surgical instrument such that transfer of thermal energy from the thermally adjustable ferromagnetic coated conductor to the guide is substantially prevented.
RELATED APPLICATIONS

The present application claims the benefit of U.S. Provisional Application Ser. No. 61/486,623, filed May 16, 2011, which is incorporated herein in its entirety.

US Referenced Citations (294)
Number Name Date Kind
300155 Starr Jun 1884 A
770368 Heath Sep 1904 A
1104053 Lea Jul 1914 A
1280052 Lidberg Sep 1918 A
1335987 Reid Apr 1920 A
1366231 Winter et al. Jan 1921 A
1401104 Kruesheld Dec 1921 A
1794296 Hyams Feb 1931 A
2027854 Breth et al. Jan 1936 A
2050904 Trice Aug 1936 A
2120598 Beuoy Jun 1938 A
2250602 Pierce Jul 1941 A
2278633 Bagnall Apr 1942 A
2375154 Volterra May 1945 A
2412977 Eskin Dec 1946 A
2501499 Crowley Mar 1950 A
2670425 Stone Dec 1954 A
2735797 Schjeldahl Feb 1956 A
2782290 Lannan et al. Feb 1957 A
2831242 Kieffer et al. Apr 1958 A
2846560 Jacoby et al. Aug 1958 A
2863036 Mitchell et al. Dec 1958 A
2947345 Schjeldahl Aug 1960 A
2960592 Pierce Nov 1960 A
3084242 Vogler et al. Apr 1963 A
3213259 Bennet et al. Oct 1965 A
3350544 Lennox Oct 1967 A
3352011 Alexander et al. Nov 1967 A
3400252 Hayakawa Sep 1968 A
3404202 Carlson et al. Oct 1968 A
3413442 Buiting et al. Nov 1968 A
3414705 Marcoux Dec 1968 A
3434476 Shaw et al. Mar 1969 A
3501619 Buiting et al. Mar 1970 A
3515837 Ando Jun 1970 A
3520043 Darling Jul 1970 A
3556953 Schulz Jan 1971 A
3768482 Shaw Oct 1973 A
3825004 Durden, III Jul 1974 A
3826263 Cage et al. Jul 1974 A
3834392 Lampman et al. Sep 1974 A
3978312 Barton et al. Aug 1976 A
RE29088 Shaw Dec 1976 E
4089336 Cage et al. May 1978 A
4091813 Shaw et al. May 1978 A
RE30190 Shaw Jan 1980 E
4185632 Shaw Jan 1980 A
4196734 Harris Apr 1980 A
4198957 Cage et al. Apr 1980 A
4206759 Shaw Jun 1980 A
4207896 Shaw Jun 1980 A
4209017 Shaw Jun 1980 A
4256945 Carter et al. Mar 1981 A
4364390 Shaw Dec 1982 A
4371861 Abdelrahman et al. Feb 1983 A
4374517 Hagiwara Feb 1983 A
RE31723 Shaw Nov 1984 E
4481057 Beard Nov 1984 A
4485810 Beard Dec 1984 A
4492231 Auth Jan 1985 A
4493320 Treat Jan 1985 A
4523084 Tamura et al. Jun 1985 A
4549073 Tamura et al. Oct 1985 A
4600018 James et al. Jul 1986 A
4622966 Beard Nov 1986 A
4701587 Carter et al. Oct 1987 A
4752673 Krumme Jun 1988 A
4807620 Strul Feb 1989 A
4839501 Cowell Jun 1989 A
4848337 Shaw et al. Jul 1989 A
4877944 Cowell et al. Oct 1989 A
4914267 Derbyshire Apr 1990 A
4915100 Green Apr 1990 A
4938761 Ensslin Jul 1990 A
5003991 Takayama et al. Apr 1991 A
5047025 Taylor et al. Sep 1991 A
5053595 Derbyshire Oct 1991 A
5057106 Kasevich et al. Oct 1991 A
5071419 Rydell et al. Dec 1991 A
5087256 Taylor et al. Feb 1992 A
5087804 McGaffigan Feb 1992 A
5098429 Sterzer Mar 1992 A
5107095 Derbyshire Apr 1992 A
5182427 McGaffigan Jan 1993 A
5189271 Derbyshire Feb 1993 A
5197649 Bessler et al. Mar 1993 A
5203782 Gudov et al. Apr 1993 A
5211646 Alperovich et al. May 1993 A
5217460 Knoepfler Jun 1993 A
5300068 Rosar et al. Apr 1994 A
5300750 Carter, Jr. et al. Apr 1994 A
5308311 Eggers et al. May 1994 A
5318564 Eggers Jun 1994 A
5370675 Edwards et al. Dec 1994 A
5376094 Kline Dec 1994 A
5382247 Cimino et al. Jan 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5425731 Daniel et al. Jun 1995 A
5445635 Denen et al. Aug 1995 A
5472443 Cordis et al. Dec 1995 A
5475203 McGaffigan Dec 1995 A
5480397 Eggers Jan 1996 A
5480398 Eggers Jan 1996 A
5496312 Klicek Mar 1996 A
5496314 Eggers Mar 1996 A
5507743 Edwards et al. Apr 1996 A
5540679 Fram et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5571153 Wallsten Nov 1996 A
5573533 Strul Nov 1996 A
5593406 Eggers et al. Jan 1997 A
5595565 Treat et al. Jan 1997 A
5611798 Eggers Mar 1997 A
5674219 Monson et al. Oct 1997 A
5707402 Heim Jan 1998 A
5807392 Eggers Sep 1998 A
5836874 Swanson et al. Nov 1998 A
5836943 Miller, III Nov 1998 A
5911719 Eggers Jun 1999 A
5964759 Yamanashi et al. Oct 1999 A
6004316 Laufer Dec 1999 A
6006755 Edwards Dec 1999 A
6015415 Avellanet Jan 2000 A
6035238 Ingle et al. Mar 2000 A
6066138 Sheffer et al. May 2000 A
6161048 Sluijter et al. Dec 2000 A
6190382 Ormsby et al. Feb 2001 B1
6228084 Kirwan, Jr. May 2001 B1
6241723 Heim et al. Jun 2001 B1
6287305 Heim et al. Sep 2001 B1
6290697 Tu et al. Sep 2001 B1
6350262 Ashley Feb 2002 B1
6358273 Strul et al. Mar 2002 B1
6533781 Heim et al. Mar 2003 B2
6602252 Mollenauer Aug 2003 B2
6604003 Fredricks et al. Aug 2003 B2
6626901 Treat et al. Sep 2003 B1
6632182 Treat Oct 2003 B1
6692489 Heim et al. Feb 2004 B1
6726683 Shaw Apr 2004 B1
6821273 Mollenauer Nov 2004 B2
6860880 Treat et al. Mar 2005 B2
6908463 Treat et al. Jun 2005 B2
6911026 Hall et al. Jun 2005 B1
6912911 Oh et al. Jul 2005 B2
6980862 Fredricks et al. Dec 2005 B2
6980865 Wang et al. Dec 2005 B1
7011656 McGaffigan Mar 2006 B2
7083613 Treat Aug 2006 B2
7122030 Flores et al. Oct 2006 B2
7164968 Treat et al. Jan 2007 B2
7175621 Heim et al. Feb 2007 B2
7211079 Treat May 2007 B2
7211080 Treat et al. May 2007 B2
7235073 Levine et al. Jun 2007 B2
7300452 Gleich Nov 2007 B2
7317275 Treat Jan 2008 B2
7326202 McGaffigan Feb 2008 B2
7329255 McGaffigan Feb 2008 B2
7377919 Heim et al. May 2008 B2
7396356 Mollenauer Jul 2008 B2
7473250 Makin et al. Jan 2009 B2
7494492 Da Silva et al. Feb 2009 B2
7528663 Naletov et al. May 2009 B2
7533719 Hinson May 2009 B2
7540324 de Rouffignac Jun 2009 B2
7549470 Vinegar Jun 2009 B2
7556095 Vinegar Jul 2009 B2
7556096 Vinegar Jul 2009 B2
7559367 Vinegar Jul 2009 B2
7559368 Vinegar Jul 2009 B2
7562706 Li et al. Jul 2009 B2
7562707 Miller Jul 2009 B2
7578815 Howell Aug 2009 B2
7581589 Roes et al. Sep 2009 B2
7584789 Mo et al. Sep 2009 B2
7588565 Marchitto et al. Sep 2009 B2
7588566 Treat et al. Sep 2009 B2
7591310 Minderhoud Sep 2009 B2
7597147 Vitek Oct 2009 B2
7604052 Roes Oct 2009 B2
7610962 Fowler Nov 2009 B2
7613523 Eggers et al. Nov 2009 B2
7631689 Vinegar Dec 2009 B2
7631690 Vinegar Dec 2009 B2
7632295 Flores Dec 2009 B2
7635023 Goldberg Dec 2009 B2
7635024 Karanikas Dec 2009 B2
7635025 Vinegar Dec 2009 B2
7702397 Fredricks et al. Apr 2010 B2
7871406 Nields et al. Jan 2011 B2
7922713 Geisel Apr 2011 B2
7938779 Sakurai et al. May 2011 B2
7951149 Carlton May 2011 B2
8100896 Rodhajsky Jan 2012 B2
20010014804 Goble et al. Aug 2001 A1
20020019644 Hastings et al. Feb 2002 A1
20020120261 Balbierz et al. Aug 2002 A1
20020173787 Buysse et al. Nov 2002 A1
20030004507 Francischelli et al. Jan 2003 A1
20030055417 Truckai et al. Mar 2003 A1
20030055424 Ciarrocca Mar 2003 A1
20030060818 Kannenberg et al. Mar 2003 A1
20030073987 Sakurai et al. Apr 2003 A1
20030073989 Hoey et al. Apr 2003 A1
20030144660 Mollenauer Jul 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030199755 Halperin Oct 2003 A1
20040006335 Garrison Jan 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040034349 Kirwan, Jr. et al. Feb 2004 A1
20040049185 Latterell et al. Mar 2004 A1
20040059345 Nakao et al. Mar 2004 A1
20040073256 Marchitto Apr 2004 A1
20040167506 Chen Aug 2004 A1
20040176756 McGaffigan Sep 2004 A1
20040243120 Orszulak et al. Dec 2004 A1
20050021016 Malecki et al. Jan 2005 A1
20050033338 Ferree Feb 2005 A1
20050072827 Mollenauer Apr 2005 A1
20050107776 Mcgaffigan et al. May 2005 A1
20050113824 Sartor et al. May 2005 A1
20050197661 Carrison et al. Sep 2005 A1
20050273111 Ferree et al. Dec 2005 A1
20050283067 Sobe Dec 2005 A1
20050283149 Thorne et al. Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060127706 Goebel et al. Jun 2006 A1
20060142824 Zikorus et al. Jun 2006 A1
20060161149 Privitera et al. Jul 2006 A1
20060167450 Johnson et al. Jul 2006 A1
20060212030 McGaffigan Sep 2006 A1
20060212031 McGaffigan et al. Sep 2006 A1
20060217706 Lau et al. Sep 2006 A1
20060241587 Heim et al. Oct 2006 A1
20060241588 Heim et al. Oct 2006 A1
20060241589 Heim et al. Oct 2006 A1
20060271037 Maroney et al. Nov 2006 A1
20070005054 Heim et al. Jan 2007 A1
20070005055 Heim et al. Jan 2007 A1
20070005056 Heim et al. Jan 2007 A1
20070005057 Heim et al. Jan 2007 A1
20070005058 Heim et al. Jan 2007 A1
20070005059 Heim et al. Jan 2007 A1
20070005060 Heim et al. Jan 2007 A1
20070060920 Weitzner Mar 2007 A1
20070073282 McGaffigan et al. Mar 2007 A1
20070100336 McFarlin et al. May 2007 A1
20070106294 Nesbitt May 2007 A1
20070127897 John et al. Jun 2007 A1
20070131428 Boestert Jun 2007 A1
20070239151 Atalar et al. Oct 2007 A1
20070270924 McCann et al. Nov 2007 A1
20080017380 Vinegar Jan 2008 A1
20080033419 Nields et al. Feb 2008 A1
20080035346 Nair et al. Feb 2008 A1
20080035347 Brady Feb 2008 A1
20080035705 Menotti Feb 2008 A1
20080038144 Maziasz Feb 2008 A1
20080119841 Geisel May 2008 A1
20080128134 Mudunuri et al. Jun 2008 A1
20080135253 Vinegar Jun 2008 A1
20080135254 Vinegar Jun 2008 A1
20080142216 Vinegar Jun 2008 A1
20080142217 Pieterson Jun 2008 A1
20080161800 Wang et al. Jul 2008 A1
20080173444 Stone et al. Jul 2008 A1
20080174115 Lambirth Jul 2008 A1
20080185147 Vinegar Aug 2008 A1
20080217003 Kuhlman Sep 2008 A1
20080217016 Stegemeier Sep 2008 A1
20080236831 Hsu Oct 2008 A1
20080249526 Knowlton Oct 2008 A1
20080277113 Stegemeier Nov 2008 A1
20080281310 Dunning et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080319438 DeCarlo Dec 2008 A1
20090014180 Stegemeier Jan 2009 A1
20090014181 Vinegar Jan 2009 A1
20090093811 Koblish et al. Apr 2009 A1
20090112200 Eggers Apr 2009 A1
20090118729 Auth et al. May 2009 A1
20090118730 Mollenauer May 2009 A1
20090198224 McGaffigan Aug 2009 A1
20090248002 Takashino et al. Oct 2009 A1
20090292347 Asmus et al. Nov 2009 A1
20090306644 Mayse et al. Dec 2009 A1
20090312753 Shadduck Dec 2009 A1
20100152725 Pearson et al. Jun 2010 A1
20100198216 Palanker Aug 2010 A1
20100268218 Ormsby et al. Oct 2010 A1
20110004204 Dodde et al. Jan 2011 A1
Foreign Referenced Citations (20)
Number Date Country
0033958 Aug 1981 EP
0 130 671 Sep 1985 EP
2070486 Jun 2009 EP
2 022 974 Dec 1978 GB
1 546 624 May 1979 GB
03-051179 Jun 1987 JP
2558584 Sep 1996 JP
2 072 118 Jan 1997 RU
WO-8200746 Mar 1982 WO
WO 9217121 Oct 1992 WO
WO-9321839 Nov 1993 WO
WO-9626677 Nov 1996 WO
WO 9937227 Jul 1999 WO
WO-0106943 Feb 2001 WO
WO-2004014217 Feb 2004 WO
WO-2004076146 Sep 2004 WO
WO-2006017517 Feb 2006 WO
WO-2006029649 Mar 2006 WO
WO 2007080578 Jul 2007 WO
WO-2008060668 May 2008 WO
Non-Patent Literature Citations (16)
Entry
Translation of Office Action from related Japanese Patent Application No. 2012-506188, PCT US2010-031114.
Written Opinion of the International Preliminary Examining Authority from related PCT Patent Application No. PCT/US2011/050417, Feb. 6, 2013.
Center for Research in Scientific Computation. A Domain Wall Theory for Ferroelectric Hysteresis, Jan. 1999.
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2010/031114, Nov. 1, 2011.
International Search Report from related PCT Patent Application No. PCT/US2010/031114, Jan. 21, 2011.
Metcal Soldering Iron Catalog—2006.
URSI EMTS 2004, pp. 489-491, Electromagnetic Probes for Living Tissue Cauterization.
“High Temp Metals.” NI2001201 Technical Data. High Temp Metals, Inc., n.d. Web. Jul. 13, 2012. <http://www.hightempmetals.com/techdatafnitempNi200data.php.
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2012/032659, Nov. 23, 2012.
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2012/038005, Nov. 23, 2012.
International Preliminary Report on Patentability from related PCT Patent Application No. PCT/US2012/032656, Oct. 23, 2012.
International Search Report and Written Opinion from related PCT Application US2012/038005, Nov. 19, 2013.
International Search Report and Written Opinion from related PCT Application US2012/032659, Oct. 8, 2013.
International Search Report and Written Opinion from related PCT Application US2012/032565, Oct. 8, 2013.
International Search Report and Written Opinion from related PCT Application US2012/032661, Aug. 19, 2013.
Visioli, Antonio. Practice PID Control: London: Springer-Verlag, 2006. 1-18. Print.
Related Publications (1)
Number Date Country
20130006240 A1 Jan 2013 US
Provisional Applications (1)
Number Date Country
61486623 May 2011 US