Surgical instrument having a plastic surface

Information

  • Patent Grant
  • 9022271
  • Patent Number
    9,022,271
  • Date Filed
    Monday, July 13, 2009
    15 years ago
  • Date Issued
    Tuesday, May 5, 2015
    9 years ago
Abstract
A surgical instrument including a handle portion, a body portion, a movable handle, a tool assembly, a drive beam and a closure apparatus is disclosed. At least one of the closure apparatus and a contact surface of the tool assembly include a plastic surface. The body portion extends distally from the handle portion. The movable handle is located on the handle portion and is in mechanical cooperation with a drive member. The tool assembly includes an anvil, a cartridge assembly and a contact surface. The drive beam includes a proximal engagement portion and is configured to engage a portion of the drive member. The closure apparatus is configured to engage the contact surface of the tool assembly. At least a partial actuation of the movable handle moves the closure apparatus distally into engagement with the contact surface to approximate the anvil and the cartridge assembly.
Description
TECHNICAL FIELD

The present disclosure relates to a surgical instrument and disposable loading unit including a plastic surface thereon. More particularly, the present disclosure relates to a surgical instrument which includes a plastic surface on at least one of a closure apparatus and a contact surface of a tool assembly.


BACKGROUND

Surgical devices wherein tissue is first grasped or clamped between opposing jaw structure and then joined by surgical fasteners are well known in the art. In some instruments, a knife is provided to cut the tissue which has been joined by the fasteners. The fasteners are typically in the form of surgical staples but two part polymeric fasteners can also be utilized.


Instruments for this purpose may include two elongated members which are respectively used to capture or clamp tissue. Typically, one of the members carries a staple cartridge that houses a plurality of staples arranged in at least two lateral rows while the other member has an anvil that defines a surface for forming the staple legs as the staples are driven from the staple cartridge. In some instruments, the closure of the two elongated members, or tool assembly, is affected by actuation of a movable handle which moves a drive beam having a closure apparatus thereon into a contact surface of a tool assembly, thus approximating the members of the tool assembly. A large frictional force may be present between the closure apparatus and the contact surface of the tool assembly, thus possibly requiring a relatively large amount of force to be applied to the movable handle.


SUMMARY

The present disclosure relates to a surgical instrument including a handle portion, a body portion, a movable handle, a tool assembly, a drive beam and a closure apparatus, where at least one of the closure apparatus and a contact surface of the tool assembly include a plastic surface. The body portion extends distally from the handle portion and defines a first longitudinal axis. The movable handle is located on the handle portion and is in mechanical cooperation with a drive member. The tool assembly is supported adjacent a distal end of the body portion and includes an anvil, a cartridge assembly and a contact surface. The drive beam includes a proximal engagement portion located adjacent a proximal end thereof and is configured to engage a portion of the drive member. The closure apparatus is located adjacent a distal end of the drive beam and is configured to engage the contact surface of the tool assembly and includes a cutting surface in a disclosed embodiment. At least a partial actuation of the movable handle moves the closure apparatus distally into engagement with the contact surface to approximate the anvil and the cartridge assembly.


In an embodiment, the closure apparatus includes at least one plastic cap at least partially covering a portion of the closure apparatus, e.g., a horizontal surface. It is disclosed that at least a portion of the closure apparatus is made of plastic or overmolded with plastic.


In a disclosed embodiment, the drive beam includes a plurality of layers. It is also disclosed that the closure apparatus has an I-shaped cross section.


In an embodiment, the tool assembly defines a second longitudinal axis and is movable from a first position where the second longitudinal axis is substantially aligned with the first longitudinal axis to a second position in which the second longitudinal axis is disposed at an angle to the first longitudinal axis. In this embodiment, the tool assembly is able to be articulated.


In an embodiment, the closure apparatus is part of a disposable loading unit. The present disclosure also relates to a disposable loading unit that includes features of the closure apparatus and the tool assembly, as described above





DESCRIPTION OF THE DRAWINGS

Various embodiments of the presently disclosed surgical instrument are disclosed herein with reference to the drawings, wherein:



FIG. 1 is a side perspective view from the distal end of one embodiment of the presently disclosed surgical instrument with articulating tool assembly;



FIG. 1A is a side perspective view from the proximal end of a disposable loading unit (DLU) of the surgical instrument shown in FIG. 1 including the tool assembly;



FIG. 2 is a side perspective view of the distal end of mounting assembly and tool assembly, with parts separated, of the DLU of the surgical instrument shown in FIG. 1;



FIG. 3 is a side perspective view of the mounting assembly and the proximal body portion of the DLU shown in FIG. 1A with parts separated;



FIG. 3A is a side perspective view of a coupling member of the surgical instrument shown in FIG. 1;



FIG. 3B is a side perspective view of an upper mounting portion of the mounting assembly of the DLU of the surgical instrument shown in FIG. 1;



FIG. 3C is a side perspective view of a lower mounting portion of the mounting assembly of the DLU of the surgical instrument shown in FIG. 1;



FIG. 3D is a side perspective view from above the proximal body portion, the mounting assembly and the tool assembly of the DLU of the surgical instrument with the tool assembly in its non-articulated position;



FIG. 3E is a side perspective view from above the proximal body portion, the mounting assembly and the tool assembly shown in FIG. 3D with the tool assembly in an articulated position;



FIG. 3F is a side perspective view from below the proximal body portion, the mounting assembly and the tool assembly of the DLU of the surgical instrument with the tool assembly in its non-articulated position;



FIG. 3G is a side perspective view from below the proximal body portion, the mounting assembly and the tool assembly shown in FIG. 3F with the tool assembly in an articulated position;



FIG. 4 is a side cross-sectional view of the tool assembly of the DLU shown in FIG. 1A;



FIG. 5 is a top perspective view of the lock member actuator of the proximal body portion locking mechanism shown in FIG. 3;



FIG. 6 is a bottom perspective view of a locking member of the locking mechanism shown in FIG. 3;



FIG. 7 is a top view of the proximal end of the DLU proximal body portion shown in FIG. 1A with the locking mechanism in its locked position;



FIG. 8 is a cross-sectional view taken along section lines 8-8 of FIG. 7;



FIG. 9 is a top view of the proximal end of the DLU proximal body portion shown in FIG. 1A with the locking mechanism in its unlocked position;



FIG. 10 is a cross-sectional view taken along section lines 10-10 of FIG. 9;



FIG. 11 is a side perspective view of the DLU and surgical instrument shown in FIG. 1 prior to attachment of the DLU to the surgical instrument;



FIG. 12 is a top view of the proximal end of the DLU and the distal end of the surgical instrument shown in FIG. Il prior to attachment to the distal end of the surgical instrument;



FIG. 13 is a top view of the proximal end of the DLU shown in FIG. 11 as the DLU is advanced linearly into the distal end of the surgical instrument;



FIG. 14 is a top view of the proximal end of the DLU and the distal end of the surgical instrument shown in FIG. 12 after the DLU has been advanced linearly but prior to locking the DLU to the surgical instrument;



FIG. 15 is a top view of the proximal end of the DLU and the distal end of the surgical instrument shown in FIG. 13 after the DLU has been advanced linearly and rotatably locked onto the surgical instrument;



FIG. 16 is a perspective view of a locking assembly for use with a surgical instrument in accordance with an embodiment of the present disclosure;



FIG. 17 is a perspective view of various components of the locking assembly of FIG. 16;



FIG. 18 is an enlarged perspective view of a portion of the locking assembly of FIGS. 16 and 17 illustrated with the articulating tool assembly in a non-articulated position;



FIG. 19 is an enlarged perspective view of a portion of the locking assembly of FIGS. 16-18 and including a link;



FIG. 20 is an enlarged perspective view of a portion of the locking assembly of FIGS. 16-19 illustrated with the articulating tool assembly in an articulated position;



FIG. 21 is an enlarged perspective view of another locking assembly for use with a surgical instrument in accordance with an embodiment of the present disclosure;



FIG. 22 is an enlarged bottom perspective view of the locking assembly of FIG. 21;



FIG. 23 is a perspective view of a drive beam having a plurality of layers and a closure apparatus in accordance with an embodiment of the present disclosure;



FIG. 24 is a perspective view of the drive beam and closure apparatus of FIG. 23 with parts separated;



FIG. 25 is a cross-sectional view of a portion of the drive beam and closure apparatus of FIGS. 23 and 24;



FIG. 26 is a cross-sectional view of a drive beam and a closure apparatus in accordance with an embodiment of the present disclosure;



FIG. 27 is a cross-sectional view of the drive beam and closure apparatus of FIG. 26;



FIG. 28 is a perspective view of a tool assembly in accordance with an embodiment of the present disclosure; and



FIG. 29 is an assembly view of the tool assembly of FIG. 28.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed surgical instrument and DLU will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views.


Referring to FIG. 1, surgical instrument 500 includes a handle portion 510, a body portion 512, and a disposable loading unit (“DLU”) 16. Handle portion 510 includes a stationary handle 514 and a movable handle or trigger 516. Movable handle 516 is movable in relation to stationary handle 514 to advance a control rod 520 which projects from the distal end of body portion 512. Handle portion 510 and body portion 512 may be constructed in the manner disclosed in U.S. Pat. No. 6,330,965 which is hereby incorporated herein in its entirety by reference. Alternately, other surgical instruments can be used with DLU 16 to perform endoscopic surgical procedures.


Referring to FIGS. 1 and 1A, briefly, DLU 16 includes a tool assembly 17, a proximal body portion 200 and a mounting assembly 202. Body portion 200 has a proximal end adapted to releasably engage the distal end of a surgical instrument 500 (FIG. 11) in the manner to be discussed in detail below. Mounting assembly 202 is pivotally secured to a distal end of body portion 200 and is fixedly secured to a proximal end of tool assembly 17. Pivotal movement of mounting assembly 202 about an axis perpendicular to a longitudinal axis of body portion 200 affects articulation of tool assembly 17 between a non-articulated position in which the longitudinal axis of tool assembly 17 is aligned with the longitudinal axis of body portion 200 and an articulated position in which the longitudinal axis of tool assembly 17 is disposed at an angle to the longitudinal axis of body portion 200.


Referring to FIGS. 2-4, tool assembly 17 includes a cartridge assembly 18 and an anvil assembly 20. Anvil assembly 20 includes an anvil portion 28 having a plurality of staple deforming concavities 30 (FIG. 4) and a cover plate 32 secured to a top surface of anvil portion 28. Cover plate 32 and anvil portion 28 define a cavity 34 (FIG. 4) therebetween which is dimensioned to receive a distal end of a drive assembly 212 (FIG. 3). Cover plate 32 encloses the distal end of drive assembly 212 to prevent pinching of tissue during actuation of DLU 16. A longitudinal slot 38 extends through anvil portion 28 to facilitate passage of a retention flange 40 of drive assembly 212. A camming surface 42 formed on anvil portion 28 is positioned to engage a pair of cam members 40a supported on retention flange 40 of drive assembly 212 to effect approximation of the anvil and cartridge assemblies. A pair of pivot members 44 are formed. A pair of stabilizing members 50 engage a respective shoulder 52 formed on carrier 48 to prevent anvil portion 28 from sliding axially in relation to staple cartridge 54 as camming surface 42 is pivoted about pivot members 44.


Cartridge assembly 18 includes carrier 48 which defines an elongated support channel 56 which is dimensioned and configured to receive staple cartridge 54. Corresponding tabs 58 and slots 60 formed along staple cartridge 54 and elongated support channel 56, respectively, function to retain staple cartridge 54 at a fixed location within support channel 56. A pair of support struts 62 formed on staple cartridge 54 are positioned to rest on side walls of carrier 48 to further stabilize staple cartridge 54 within support channel 56. Carrier 48 has slots 46 for receiving pivot members 44 of anvil portion 28 and allowing anvil portion 28 to move between spaced and approximated positions.


Staple cartridge 54 includes retention slots 64 (FIG. 2) for receiving a plurality of staples or fasteners 66 and pushers 68. A plurality of laterally spaced apart longitudinal slots 70 extend through staple cartridge 54 to accommodate upstanding cam wedges 72 of an actuation sled 74 (FIG. 2). A central longitudinal slot 76 extends along substantially the length of staple cartridge 54 to facilitate passage of a knife blade 78 (FIG. 4). During operation of surgical stapler 10, drive assembly 212 abuts actuation sled 74 and pushes actuation sled 74 through longitudinal slots 70 of staple cartridge 54 to advance cam wedges 72 into sequential contact with pushers 68. Pushers 68 translate vertically along cam wedges 72 within fastener retention slots 64 and urge fasteners 66 from retention slots 64 into staple deforming cavities 30 (FIG. 4) of anvil assembly 20.


Referring to FIG. 3, mounting assembly 235 includes an upper mounting portion 236 and a lower mounting portion 238. A centrally located pivot member 284 extends from upper mounting portion 236 through a respective opening 246a formed in a first coupling member 246. Lower mounting portion 238 includes a bore 239 for receiving pivot member 284 (see FIG. 3F). Pivot member 284 extends through bore 239 and opening 247a of a second coupling member 247. Each of coupling members 246, 247 includes an interlocking proximal portion 246b, 247b configured to be received in grooves 290 formed in the distal end of an inner housing which is formed from upper and lower housing halves 250 and 252. Coupling members 246, 247 retain mounting assembly 235 and upper and lower housing halves 250 and 252 in a longitudinally fixed position in relation to each other while permitting pivotal movement of mounting assembly 235 in relation thereto.


Referring to FIGS. 3A-3C, each coupling member 246, 247 includes a cantilevered spring arm 246c which has a distal end 246d positioned to engage mounting assembly 235. More specifically, upper mounting portion 236 includes a top surface 236a which includes a recess 236b dimensioned to receive distal end 246d of spring arm 246c of a respective coupling member 246. Lower mounting portion 238 includes a bottom surface 238a having a pair of raised surfaces 238b which define a recess 238c which is dimensioned to receive spring arm 247c of a respective coupling member 247. Alternatively, at least one recess may be formed in the proximal end of tool assembly 17.


As illustrated in FIGS. 3D-3G, when distal end of spring arms 246c, 247c of coupling members 246, 247 are positioned in recesses 236b and 238c of upper and lower mounting portions 236 and 238, respectively, spring arms 246c, 247c retain mounting assembly 235 in a non-articulated position. Spring arms 246c, 247c will retain mounting assembly 235 in its non-articulated position until a predetermined force sufficient to deflect spring arms 246c from recesses 236b and 238c is applied to effect articulation of mounting assembly 235 and tool assembly 17. When the predetermined force is applied to the mounting assembly 235 and tool assembly 17, spring arms 246c, 247c will spring or deflect outwardly from recesses 236b and 238c, as shown in FIGS. 3E and 3G, to permit pivotal movement of mounting assembly 235 (and, thus, tool assembly 17) in relation to the distal end of proximal body portion 200 of the DLU 16.


As discussed above, spring arms 246c and recesses 236b and 238c maintain tool assembly 17 in its non-articulated position until a predetermined force has been applied to mounting assembly 235 to disengage spring arms 246c, 247c from recesses 236b and 238c of mounting assembly 235. It is envisioned that the spring arms/recesses could be incorporated into any articulating surgical device including staplers, graspers (See FIG. 3H), powered sealing devices, e.g., RF sealing devices, etc. Further, although two spring arms/recesses are shown, a single spring arm can be provided. Moreover, the articulating tool assembly need not form part of a DLU but rather can be supported directly on the distal end of a surgical instrument. For example, the mounting assembly can be removably or irremovably secured to the tool assembly and secured directly to the distal end of a surgical instrument.


Upper housing half 250 and lower housing half 252 are contained within an outer sleeve 251 of body portion 200 (FIG. 3). Body portion 200 includes a cutout 251a dimensioned to receive a boss or projection 250a formed on upper housing half 250. The positioning of projection 250a within cutout 251a prevents axial and rotational movement of upper and lower housing halves 250 and 252 within outer sleeve 251 of body portion 200. In one embodiment, boss 250a has a substantially rectangular configuration having a greater axial dimension than lateral dimension. The greater axial dimension provides increased surface area for preventing rotation of upper and lower housing halves 250 and 252 within sleeve 251. A proximal portion 250b of boss 250a is ramped. Ramped proximal portion 250b allows sleeve 251 to be slid over boss 250a as upper and lower housing halves 250 and 252 are positioned within sleeve 251. It is envisioned that boss 250a may assume other configurations, e.g., circular, square, triangular, etc., and still achieve its intended function. Further, boss 250a can be repositioned anywhere along upper housing half 250 or, in the alternative, be positioned on lower housing half 252 or partly on each housing half 250 and 252.


The proximal end or insertion tip 193 of upper housing half 250 includes engagement nubs 254 for releasably engaging the distal end of a surgical instrument in a bayonet-type fashion (see FIGS. 1A and 7). Housing halves 250 and 252 define a channel 400 for slidably receiving axial drive assembly 212 therein. An articulation link 256 is dimensioned to be slidably positioned within a slot 402 formed between upper and lower housing halves 250 and 252. A pair of H-block assemblies 255 are positioned adjacent the distal end of housing portion 200 and adjacent the distal end of axial drive assembly 212 to prevent outward buckling and bulging of drive assembly 212 during articulation and firing of surgical stapling apparatus 10. Each H-block assembly 255 includes a flexible body 255a which includes a proximal end fixedly secured to body portion 200 and a distal end fixedly secured to mounting assembly 235 (FIG. 3).


A retention member 288 is supported on engagement section 270 of axial drive assembly 212. Retention member 288 includes a pair of fingers 288a which are releasably positioned within slots or recesses 252a formed in lower housing half 252. In operation, when SULU 16 is attached to a surgical instrument and axial drive assembly 212 is actuated by applying a predetermined force to an actuation member 516 of the surgical instrument 500 (FIG. 11), axial drive assembly 212 is advanced distally to move drive assembly 212 and retention member 288 distally. As retention member 288 is advanced distally, fingers 288a are forced from recesses 252a to provide an audible and tactile indication that the surgical instrument has been actuated. Retention member 288 is designed to prevent inadvertent partial actuation of DLU 16, such as during shipping, by maintaining axial drive assembly 212 at a fixed position within DLU 16 until a predetermined axial force has been applied to axial drive assembly 212.


Axial drive assembly 212 includes an elongated drive beam 266 including a distal working head 268 and a proximal engagement section 270. In one embodiment, drive beam 266 is constructed from multiple stacked sheets of material. Engagement section 270 includes a pair of resilient engagement fingers 270a and 270b which mountingly engage a pair of corresponding retention slots formed in drive member 272. Drive member 272 includes a proximal porthole 274 configured to receive distal end of a control rod 520 (FIG. 11) of a surgical instrument when the proximal end of DLU 16 is engaged with the body portion 512 of a surgical instrument 500.


Referring also to FIGS. 5-10, DLU 16 further includes a locking mechanism including a locking member 300 and a locking member actuator 302. Locking member 300 (FIG. 6) is rotatably supported within a longitudinal or axial slot 310 (FIG. 7) formed in a proximal portion of upper housing half 250 of body portion 200 of DLU 16. Locking member 300 is movable from a first position (FIGS. 7 and 8), in which locking member 300 maintains drive assembly 212 in a prefired position, to a second position (FIGS. 9 and 10), in which drive assembly 212 is free to move axially.


As illustrated in FIG. 6, locking member 300 includes semi-cylindrical body 312 which is slidably positioned within transverse slot 310 formed in upper housing half 250 of body portion 200. Body 312 includes a radially inwardly extending cam member 314 and a radially inwardly extending finger 316. Finger 316 is dimensioned to be slidably received within a notch or slot 270c (FIG. 3) formed in drive assembly 212. Engagement of finger 316 in notch 270c of drive assembly 212 prevents drive assembly 212 from moving linearly within body portion 200 and, thus, prevents actuation of DLU 16.


Referring to FIGS. 3, 5 and 7, a locking member actuator 302 is slidably positioned within a axial slot 320 (FIG. 7) formed in upper housing half 250 of body portion 200 of DLU 16. Actuator 302 includes a proximal abutment member 322, a distal spring guide 324, and a central cam slot 326. Axial slot 320 intersects transverse slot 310 such that cam member 314 of locking member 300 is slidably positioned within cam slot 326 of locking member actuator 302. A biasing member or spring 328 (FIG. 7) is positioned about spring guide 324 between a distal surface 330 of actuator 302 and a wall 332 (FIG. 7) defining the distal end of axial slot 320. Spring 328 urges actuator 302 to its retracted position within axial slot 320. In its retracted position, abutment member 322 is positioned on and extends radially outwardly of the proximal end of DLU 16 adjacent insertion tip 193 of proximal body portion 200 and cam slot 326 is positioned to locate cam member 314 such that finger 316 of lock member 300 is positioned within notch 270c of drive assembly 212.



FIGS. 11-15 illustrate DLU 16 and surgical instrument 500 prior to and during attachment of DLU 16 to surgical instrument 500. Prior to attachment of DLU 16 onto surgical instrument 500, spring 328 urges actuator 302 to its retracted position to move lock member 300 to its locked position as discussed above. When insertion tip 193 DLU 16 is linearly inserted into the open end 522 (FIG. 11) of the body portion 512 (FIG. 13) of a surgical instrument 500, nubs 254 move linearly through slots (not shown) formed in open end 522 of body portion 512. As nubs 254 pass through the slots, the proximal end 322a of abutment member 322, which is angularly offset from nubs 254, abuts a wall 276c defining the slots for receiving nubs 254. As DLU 16 is moved further into body portion 512, locking member actuator 302 is moved from its retracted position to its advanced position in the direction indicated by arrow “T” in FIG. 14. As actuator 302 is moved to its advanced position, lock member 300 is cammed in the direction indicated by arrow “U” in FIG. 14 from its locked position (FIG. 8) engaged with drive assembly 212 to its unlocked position (FIG. 10) to move finger 316 from notch 270c. The locking mechanism including locking member 300 and locking member actuator 302 prevents accidental or inadvertent advancement or manipulation of the drive member of DLU 16 such as during loading of DLU 16 onto a surgical instrument 500.


When DLU 16 has been moved linearly in relation to instrument 500 to a position wherein a proximal surface 530 of body portion 200 abuts inner surface 276c of body portion 512 (FIG. 15), DLU 16 can be rotated in relation to body portion 512 in a bayonet-type action to position nubs 254 within openings 536 of body portion 512 to lock DLU 16 onto body portion 512. It is envisioned that other coupling types besides bayonet couplings may be used to connect DLU 16 to instrument 500, e.g., spring detent or snap-fit couplings, friction fit couplings, interlocking members, threaded couplings etc.


In an embodiment of the present disclosure illustrated in FIGS. 16-20, a locking assembly 600 is illustrated for use with surgical instrument 500 and disposable loading unit 16 (see FIG. 1, for example). In the illustrated embodiments, locking assembly 600 includes a housing 602, a pusher 604, a rod 606, a slide 608, at least one spring 610, a cam finger 612, a pivot plate 614 having slots 616 and a link 618. Locking assembly 600 generally helps tool assembly 17 (see FIG. 1, for example) maintain its position during firing of surgical instrument 500.


Referring to FIGS. 16 and 17, a portion of locking assembly 600 is at least partially contained within a housing 602. FIG. 16 illustrates locking assembly 600 disposed in relation to housing 602, while FIG. 17 illustrates locking assembly 600 isolated from housing 602. In the illustrated embodiment of FIG. 17, pusher 604 is shown with rod 606 extending distally therefrom. Slide 608 extends distally from rod 606 and is in a slidable relationship therewith, thus allowing slide 608 to move axially with respect to rod 606. Spring 610 or pair of springs (not explicitly shown in this embodiment) distally biases slide 608 from rod 606.


Now referring to FIGS. 18-20, cam finger 612 and pivot plate 614 are illustrated. Cam finger 612 extends distally from slide 608 and pivot plate 614 may be disposed on mounting assembly 235 (see FIG. 3), for example. It is envisioned that pivot plate 614 may be disposed on or incorporated with a portion of tool assembly 17. A plurality of slots 616 (five slots 616 are illustrated) is disposed on pivot plate 614 and are sized to accept at least a portion of cam finger 612 therein. Upon different amounts of articulation of tool assembly 17 (including no substantial articulation) with respect to body portion 512 (see FIG. 1, for example), cam finger 612 is approximately aligned with an individual slot 616 of pivot plate 614. FIGS. 18 and 19 illustrate cam finger 612 substantially aligned with a center slot 616a (hidden from view in FIG. 19) and FIG. 20 illustrates cam finger 612 substantially aligned with a side slot 616b.


Link 618, illustrated in FIGS. 17 and 19, is in mechanical engagement with pivot plate 614 and cam finger 612. (In FIG. 18, the link has been removed.) Link 618 is illustrated having an opening 620 and a slot 622 (FIG. 19). Opening 620 is in a pivotal relationship with a boss 624 on pivot plate 614 and slot 622 is slidably engaged with cam finger 612. This relationship allows for articulation of pivot plate 614 with respect to body portion 512 and for longitudinal translation of slide 608 with respect to pivot plate 614.


In operation, upon at least a partial actuation of movable handle 516 (see FIG. 1, for example), pusher 604 is forced distally, e.g., via control rod 520 (see FIG. 11, for example), thus causing distal translation of cam finger 612 at least partially into a slot 616 of pivot plate 614. It is envisioned that actuating movable handle 516 to approximate cartridge assembly 18 and an anvil assembly 20 (see FIG. 1A, for example) also functions to translate cam finger 612 distally. In such an embodiment, when articulating tool assembly 17 is in place and clamped on tissue, further articulation cannot be accomplished (without releasing movable handle 516, for example). Thus, locking assembly 600 helps maintain articulating tool assembly 17 in position with respect to body portion 512, prior to emplacing staples into tissue, for example.


As discussed above, spring 610 distally biases slide 608 from rod 606. This biasing provided by spring 610 helps ensure cam finger 612 is not accidentally or prematurely dislodged from slot 616 of pivot plate 614, which may result in a significant amount of “play” therebetween. Additionally, the distal bias provided by spring 610 helps eliminate manufacturing tolerances and/or clearances that are present between slide 608 and pivot plate 614. It is also envisioned that at least a portion of cam finger 612 and/or slot 616 may be wedge-shaped to help reduce any unintended movement therebetween. In such an embodiment, a distal portion of cam finger 612 and slot 616 would be narrower than a corresponding proximal portion.


In an embodiment of the present disclosure illustrated in FIGS. 21 and 22, a locking assembly 700 is illustrated for use with surgical instrument 500 and disposable loading unit 16 (see FIG. 1, for example). In the illustrated embodiment, locking assembly 700 includes an adapter 702, a pusher 704, a pivot 706, a biasing element (e.g., a pair of springs 708) and a link 710. Locking assembly 700 generally helps maintain tool assembly 17 in a predetermined position.


With reference to FIG. 21, adapter 702 of locking assembly 700 is generally housed within body portion 512 (see FIG. 1, for example) of surgical instrument 500 or within disposable loading unit 16. In the illustrated embodiment, pusher 704 is located distally of a pair of springs 708. Pusher 704 is distally biased via the pair of springs 708 towards pivot 706 of articulating tool assembly 17. A distal portion of pusher 704 includes a pusher mating surface 712 (FIG. 22) which is shaped and dimensioned to mate with a pivot mating surface 714 (FIG. 22) disposed adjacent a proximal portion of pivot 706. Link 710 is illustrated in mechanical cooperation with a portion of pusher 704 and pivotably connected to a portion of pivot 706, thus allowing articulating tool assembly 17 to move between its first position and its second position with respect to body portion 512. More specifically, link 710 includes an opening 711 that fits over a protrusion 707 of pivot 706, thus allowing pivotal movement therebetween. Further, link 710 is slidably engaged with a portion of adapter 702, thus allowing longitudinal movement therebetween.


Now referring to FIG. 22, pusher mating surface 712 is substantially flat along a majority of its length in this embodiment. Correspondingly, pivot mating surface 714 is also flat along a majority of its length in the illustrated embodiment. Thus, the distal bias of pusher 704 towards pivot 706 (in the direction of arrow A) via the pair of springs 708, helps maintain articulating tool assembly 17 in its first, non-articulated, position, as the biasing force helps articulating tool assembly 17 resist pivoting. While two springs 708 are illustrated, more or fewer springs 708 may be provided.


To pivot articulating tool 17 from its first, non-articulated position, the distal biasing force from pair of springs 708 must be overcome. Such a pivoting action, moves pusher 704 proximally (in the direction of arrow B) against the bias of pair of springs 708. It is also envisioned that pusher mating surface 714 includes detents (not explicitly shown in this embodiment) to help stabilize articulating jaw member 17 in selected articulated positions.


With continued reference to FIG. 22, pivot 706 includes a shelf 716 thereon. As shown in FIG. 22, shelf 716 overlaps at least a portion of pusher 704 when pusher mating surface 712 is in contact with pivot mating surface 714. Shelf 716 is situated and configured to help prevent tissue from being pinched between pusher 704 and pivot 706 when articulating tool assembly 17 is rotated and/or articulated.


In an embodiment of the present disclosure illustrated in FIGS. 23-25, a multi-layered drive beam 750 having a plurality of layers 750a-750e is illustrated and may be included in a disposable loading unit 16 (see FIG. 1, for example). A closure apparatus 760, such as an I-beam, is also illustrated. Closure apparatus 760 includes a horizontal portion 762 that is advanceable into camming surface 42 (or other contact surface) to approximate tool assembly tool assembly 17, as described in detail above with reference to FIG. 2.


With reference to FIG. 24, multi-layered drive beam 750 having five layers 750a-750e is illustrated. It is envisioned and within the scope of the present disclosure that fewer or more layers may be used to form multi-layered drive beam 750. It is also envisioned that multi-layered drive beam 750 may replace drive beam 266 in other embodiments of this disclosure. Use of multi-layered drive beam 750 may provide increased strength and flexibility during use, specifically, for instance, while tool assembly 17 is in an articulated position.


A plurality of cutouts 770 is illustrated in FIGS. 23-25 which extend through each layer of multi-layered drive beam 750. Although the figures show between five and ten cutouts per layer of multi-layered drive beam 750, the exact number of cutouts 770 may be fewer than five, between five and ten, or greater than ten. Additionally, cutouts 770 of adjacent layers of drive beam 750 may or not align with each other. The use of cutouts 770 reduces cross-sectional dimensions of drive beam 750 and allows for bending force adjustment. While rectangular cutouts 770 are illustrated, the use of cutouts 770 having other regular or non-regular shapes is also contemplated.


The attachment of each layer 750a-750e of multi-layered drive beam 750 and the attachment to closure apparatus 760 are illustrated in FIG. 25. In the illustrated embodiment, an outer layer (750a or 750e of FIG. 24) is affixed to closure apparatus 760 in two locations (each location being indicated by numeral 780 in FIG. 25), via a pair of spot welds, for example. It is also envisioned that each outer layer 750a, 750e includes an aperture 776 that fits over a boss 778 protruding from closure apparatus 760. Each outer layer 750a, 750e is also affixed to an adjacent layer (e.g., 750b or 750d) in two locations (each location being indicated by numeral 781 in FIG. 25), possibly via a pair of spot welds. Further, each inner layer (e.g., 750b, 750c and 750d) is attached to an adjacent inner layer (for instance, 750b is attached to 750c; 750c is attached to 750b and 750d; and 750d is attached to 750c) in two locations, via spot welds, for example. While spot welding is disclosed as an attachment method, other methods for attaching each layer to each other and the outer layers to the closure apparatus are envisioned and within the scope of the present disclosure. The illustrated embodiments show attachments points 780 of inner layers adjacent closure apparatus 760, but it is envisioned and within the scope of the present disclosure that attachment points 780 are disposed in other locations on drive beam 750. Additionally, it is envisioned that at least one layer of drive beam 750 is made of a metal, such as stainless steel. Portions of drive beam 750 and/or closure apparatus 760 may also be made of or at least partially coated with a plastic material, as described below. Further, closure apparatus 790 may include a cutting surface 766 (FIG. 23) thereon for cutting tissue.


In an embodiment of the present disclosure illustrated in FIGS. 26 and 27, a closure apparatus 800 and a portion of drive beam 802 are shown. Closure apparatus and/or a contact surface (e.g., camming surface 42) of tool assembly 17 (see FIG. 2, for example) may include a plastic surface or plastic coating. In this embodiment, closure apparatus 800 is illustrated having a pair of caps 804 at least partially covering horizontal portions 806 of closure apparatus 800. Caps 804 may be made of plastic in this embodiment. Such plastic surfaces disposed on closure apparatus 800 and/or contact surface of tool assembly 17 generally reduce the amount of friction therebetween vis-à-vis two metal surfaces. That is, a plastic to metal or a plastic to plastic interaction may create less friction than interaction between a pair of metal surfaces. This reduced amount of friction may correspond to a reduced firing force.


It is envisioned that a portion of closure apparatus 800, such as pair of caps 804, is made of plastic, overmolded with plastic or includes a plastic coating. Additionally, a contact surface of tool assembly 17, or at least a portion thereof, may also be made of plastic, be overmolded with plastic or include a plastic coating.


In an embodiment of the disclosure, closure apparatus 800 may include an I-shaped cross section, as illustrated in FIGS. 26 and 27. Additionally, closure apparatus 800 and drive beam 802 may be part of a disposable loading unit 16 and/or part of a surgical instrument 500 that is able to articulate. Further, drive beam 802 may include a single layer or a plurality of layers (as shown in FIG. 26) and at least a portion of drive beam 802 may be made of plastic. Still further, closure apparatus 800 may include a cutting surface 808 (FIG. 27) thereon for cutting tissue.


With continued reference to FIGS. 26 and 27, plastic cap 804 may include a reinforced section 810 which may increase the strength of closure apparatus 800 or may provide a stronger connection between cap 804 and horizontal portion 806 of closure apparatus 800. It is also envisioned that cap 804 may be removably attached to closure apparatus 800. In such an embodiment, cap 804 may be removed and replaced if any substantial wearing or damage occurs.


In an embodiment of the present disclosure illustrated in FIGS. 28 and 29, a tool assembly 850 is illustrated. Tool assembly 850 of this embodiment includes a channel 852, a first attachment member 860, a second attachment member 870, an anvil assembly 880, a first attachment rod 890 and a second attachment rod 892. First and second attachment rods 890, 892 provide a strong connection facilitating the elements of tool assembly 850 to remain together.


Channel 852 includes an opening 854 (two openings are illustrated) adjacent its proximal end and first attachment member 860 includes a boss 862 (two bosses are illustrated) extending therefrom. Channel 852 is connectable to first attachment member by placing opening(s) 854 over boss(es) 862, thus providing a pivotal connection therebetween. Although not explicitly illustrated in the present embodiment, channel 852 may house a plurality of surgical fasteners or a staple cartridge.


Anvil assembly 880 includes an anvil cover 882 and an anvil 886. Anvil 886 is configured for mechanical engagement with anvil cover 882, e.g., via a snap-fit connection. An aperture 884 extends at least partially through a portion of anvil cover 882. Aperture 884 is configured to fit over a protrusion 872 disposed on second attachment member 870, thereby providing a connection between anvil assembly 880 and second attachment member 870. Additionally, anvil cover 882 includes at least one opening 888 extending at least partially therethrough in an embodiment of the disclosure. Opening 888 is configured to fit over boss 862 of first attachment member 860. In such an embodiment, anvil assembly 880 may be pivoted with respect to first attachment member 860 and second attachment member 870.


First attachment member 860 includes a first opening 864 and a second opening 866 extending therethrough. Second attachment member 870 also includes a first opening 874 and a second opening 876 extending therethrough (FIG. 29). Further, first attachment member 860 and second attachment member 870 are in mechanical engagement, such that first openings 864, 874 substantially align and second openings 866, 876 substantially align.


To secure first attachment member 860 with second attachment member 870 (and thus channel 852 and anvil assembly 880), first attachment rod 890, or a portion thereof, is inserted through first openings 864 and 874. To further secure the elements of tool assembly 850, second attachment rod 892, or a portion thereof, is inserted through second openings 866 and 876. It is envisioned that first attachment rod 890 and/or second attachment rod 892 are rivets, such as two-part rivets that are tightenable.


In an embodiment of the disclosure, tool assembly 850 is part of a disposable loading unit, which may be able to articulate. Articulation of tool assembly 850 may be facilitated by pivotably attaching tool assembly 850 to a body portion of a surgical instrument via protrusion 874 extending from second attachment member 870 and a link (such as link 710 in FIG. 21). Additionally, a method of assembling tool assembly 850, as described above, is contemplated by the present disclosure.


It will be understood that various modifications may be made to the embodiments disclosed herein. For example, the above-described lock assembly may be incorporated into a variety of surgical instruments which include DLUs and is not limited to use on linear staplers. Further, the DLU may be configured to receive an insertion tip of surgical instrument in contrast to that disclosed. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A surgical instrument, comprising: a body portion;a drive member extending through the body portion;a tool assembly positioned at a distal end of the body portion, the tool assembly including an anvil assembly and a cartridge assembly which are repositionable in relation to each other; anda closure apparatus operably connected to the drive member and including a pair of end portions of metallic construction configured and dimensioned to engage the anvil assembly and the cartridge assembly, whereby movement of the drive member effectuates distal advancement of the closure apparatus to move the tool assembly towards a closed position via engagement of the end portions of the closure apparatus with the anvil assembly and the cartridge assembly, the closure apparatus further including an intermediate portion positioned between the end portions and a cap member of non-metallic construction associated with at least one end portion to minimize friction between a metallic portion of the closure apparatus and a metallic portion of the tool assembly during distal movement of the closure apparatus, the cap member including a reinforced section extending at least partially into the intermediate portion to reduce inadvertent disconnection of the cap member from the end portion.
  • 2. The surgical instrument of claim 1, wherein the cap member is formed from a plastic material.
  • 3. The surgical instrument of claim 1, wherein the anvil assembly includes a first contact surface and the cartridge assembly includes a second contact surface, the first contact surface being configured and dimensioned for engagement with a first end portion of the closure apparatus and the second contact surface being configured and dimensioned for engagement with a second end portion of the closure apparatus.
  • 4. The surgical instrument of claim 3, wherein the first contact surface of the anvil assembly is of metallic construction and the second contact surface of the cartridge assembly is of metallic construction.
  • 5. The surgical instrument of claim 4, wherein at least one of the first contact surface and the second contact surface includes a plastic overmold.
  • 6. The surgical instrument of claim 3, wherein the first contact surface of the anvil assembly is of non-metallic construction and the second contact surface of the cartridge assembly is of non-metallic construction.
  • 7. The surgical instrument of claim 6, wherein the first contact surface of the anvil assembly and the second contact surface of the cartridge assembly are formed from plastic.
  • 8. The surgical instrument of claim 1, wherein the pair of end portions includes first and second end portions extending outwardly from the intermediate portion such that closure apparatus includes an I-shaped cross-sectional configuration.
  • 9. The surgical instrument of claim 8, wherein the closure apparatus includes a first cap member configured and dimensioned to at least partially cover the first end portion and a second cap member configured and dimensioned to at least partially cover the second end portion.
  • 10. The surgical instrument of claim 9, wherein the first cap member includes a first reinforced section extending at least partially into the intermediate portion to reduce any likelihood of inadvertent disconnection of the first cap member from the first end portion and the second cap member includes a second reinforced section extending at least partially into the intermediate portion to reduce any likelihood of inadvertent disconnection of the second cap member from the second end portion.
  • 11. The surgical instrument of claim 9, wherein the first cap member is removably connected to the first end portion of the closure apparatus, and the second cap member is removably connected to the second end portion of the closure apparatus.
  • 12. The surgical instrument of claim 1, wherein the intermediate portion of the closure apparatus includes a cutting surface.
  • 13. The surgical instrument of claim 1, wherein the drive beam is formed from a plurality of layers.
  • 14. The surgical instrument of claim 1, wherein the closure apparatus is a component of a disposable loading unit.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 11/544,982 filed Oct. 6, 2006 now U.S. Pat. No. 7,845,535, and the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.

US Referenced Citations (379)
Number Name Date Kind
3079606 Bobrov et al. Mar 1963 A
3490675 Green et al. Jan 1970 A
3777538 Weatherly et al. Dec 1973 A
4027510 Hiltebrandt Jun 1977 A
4086926 Green et al. May 1978 A
4111206 Vishnevsky et al. Sep 1978 A
4244372 Kapitanov et al. Jan 1981 A
4429695 Green Feb 1984 A
4505414 Filipi Mar 1985 A
4589413 Malyshev et al. May 1986 A
4602634 Barkley Jul 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4633861 Chow et al. Jan 1987 A
4633874 Chow et al. Jan 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4728020 Green et al. Mar 1988 A
4752024 Green et al. Jun 1988 A
4784137 Kulik et al. Nov 1988 A
4863088 Redmond et al. Sep 1989 A
4892244 Fox et al. Jan 1990 A
4978049 Green Dec 1990 A
4991764 Mericle Feb 1991 A
5040715 Green et al. Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5074454 Peters Dec 1991 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5111987 Moeinzadeh et al. May 1992 A
5129570 Schulze et al. Jul 1992 A
5141144 Foslien et al. Aug 1992 A
5170925 Madden et al. Dec 1992 A
5171247 Hughetti et al. Dec 1992 A
5246156 Rothfuss et al. Sep 1993 A
RE34519 Fox et al. Jan 1994 E
5282807 Knoepfler Feb 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5318221 Green et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5328077 Lou Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5336232 Green et al. Aug 1994 A
5358506 Green et al. Oct 1994 A
5364002 Green et al. Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5364011 Green et al. Nov 1994 A
5376095 Ortiz Dec 1994 A
5381943 Allen et al. Jan 1995 A
5382255 Castro et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5407293 Crainich Apr 1995 A
5413268 Green et al. May 1995 A
5415334 Williamson, IV et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417361 Williamson, IV May 1995 A
5423471 Mastri et al. Jun 1995 A
5425745 Green et al. Jun 1995 A
5431322 Green et al. Jul 1995 A
5431323 Smith et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5447265 Vidal et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5456401 Green et al. Oct 1995 A
5464300 Crainich Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5472132 Savage et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5482197 Green et al. Jan 1996 A
5484095 Green et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5486185 Freitas et al. Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5505363 Green et al. Apr 1996 A
5507426 Young et al. Apr 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5529235 Boiarski et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5551622 Yoon Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554164 Wilson et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5579107 Wright et al. Nov 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5607095 Smith et al. Mar 1997 A
5615820 Viola Apr 1997 A
5618291 Thompson et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5628446 Geiste et al. May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5630541 Williamson, IV et al. May 1997 A
5632432 Schulze et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636780 Green et al. Jun 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657921 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662259 Yoon Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662666 Onuki et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5690269 Bolanos et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713505 Huitema Feb 1998 A
5716366 Yates Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5749893 Vidal et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5769303 Knodel et al. Jun 1998 A
5772673 Cuny et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5794834 Hamblin et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5810811 Yates et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5836147 Schnipke Nov 1998 A
5862972 Green et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5871135 Williamson IV et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5897562 Bolanos et al. Apr 1999 A
5901895 Heaton et al. May 1999 A
5911353 Bolanos et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5922001 Yoon Jul 1999 A
5954259 Viola et al. Sep 1999 A
5980510 Tsonton et al. Nov 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6079606 Milliman et al. Jun 2000 A
6109500 Alli et al. Aug 2000 A
6197017 Brock et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6269977 Moore Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6315183 Piraka Nov 2001 B1
6315184 Whitman Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6436097 Nardella Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6463623 Ahn et al. Oct 2002 B2
6488196 Fenton, Jr. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6544274 Danitz et al. Apr 2003 B2
6554844 Lee et al. Apr 2003 B2
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6592597 Grant et al. Jul 2003 B2
6594552 Nowlin et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6612053 Liao Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6644532 Green et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6663641 Kovac et al. Dec 2003 B1
6669073 Milliman et al. Dec 2003 B2
6698643 Whitman Mar 2004 B2
6716232 Vidal et al. Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6731473 Li et al. May 2004 B2
6755338 Hahnen et al. Jun 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6808262 Chapoy et al. Oct 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6843403 Whitman Jan 2005 B2
RE38708 Bolanos et al. Mar 2005 E
6877647 Green et al. Apr 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6889116 Jinno May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7032799 Viola et al. Apr 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton IV et al. Jun 2006 B2
7083075 Swayze et al. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7111769 Wales et al. Sep 2006 B2
7114642 Whitman Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7159750 Racenet et al. Jan 2007 B2
7407078 Shelton, IV et al. Aug 2008 B2
7472815 Shelton et al. Jan 2009 B2
7506791 Omaits et al. Mar 2009 B2
20010018596 Selmon et al. Aug 2001 A1
20020004498 Doherty et al. Jan 2002 A1
20020009193 Deguchi et al. Jan 2002 A1
20020018323 Li et al. Feb 2002 A1
20020032948 Ahn et al. Mar 2002 A1
20020036748 Chapoy et al. Mar 2002 A1
20020045442 Silen et al. Apr 2002 A1
20020069595 Knudson et al. Jun 2002 A1
20020084304 Whitman Jul 2002 A1
20020111621 Wallace et al. Aug 2002 A1
20020143346 McGuckin, Jr. et al. Oct 2002 A1
20020177843 Anderson et al. Nov 2002 A1
20020188294 Couture Dec 2002 A1
20020190093 Fenton, Jr. Dec 2002 A1
20030009193 Corsaro Jan 2003 A1
20030105476 Sancoff et al. Jun 2003 A1
20030132268 Whitman Jul 2003 A1
20040004105 Jankowski Jan 2004 A1
20040007608 Ehrenfels Jan 2004 A1
20040050902 Green Mar 2004 A1
20040093029 Zubik et al. May 2004 A1
20040094597 Whitman May 2004 A1
20040108357 Milliman Jun 2004 A1
20040149802 Whitman Aug 2004 A1
20040173659 Green Sep 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040232199 Shelton, IV et al. Nov 2004 A1
20040232200 Shelton, IV et al. Nov 2004 A1
20040232201 Wenchell Nov 2004 A1
20040243151 Demmy Dec 2004 A1
20040267310 Racenet Dec 2004 A1
20050006429 Wales Jan 2005 A1
20050006430 Wales Jan 2005 A1
20050006431 Shelton, IV et al. Jan 2005 A1
20050006432 Racenet Jan 2005 A1
20050006433 Milliman Jan 2005 A1
20050006434 Wales et al. Jan 2005 A1
20050023324 Doll et al. Feb 2005 A1
20050023325 Gresham Feb 2005 A1
20050067457 Shelton Mar 2005 A1
20050067458 Swayze et al. Mar 2005 A1
20050067459 Swayze et al. Mar 2005 A1
20050067460 Milliman Mar 2005 A1
20050072827 Mollenauer Apr 2005 A1
20050101991 Ahlberg et al. May 2005 A1
20050103819 Racenet May 2005 A1
20050119669 Demmy Jun 2005 A1
20050127131 Mastri Jun 2005 A1
20050165415 Wales Jul 2005 A1
20050173490 Shelton, IV Aug 2005 A1
20050178813 Swayze et al. Aug 2005 A1
20050184123 Scirica et al. Aug 2005 A1
20050184124 Scirica et al. Aug 2005 A1
20050184125 Marczyk Aug 2005 A1
20050184126 Green et al. Aug 2005 A1
20050189397 Jankowski Sep 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050263562 Shelton, IV et al. Dec 2005 A1
20050279804 Scirica et al. Dec 2005 A1
20060000867 Shelton, IV et al. Jan 2006 A1
20060000868 Shelton, IV et al. Jan 2006 A1
20060011699 Olson et al. Jan 2006 A1
20060016853 Racenet Jan 2006 A1
20060022014 Shelton, IV et al. Feb 2006 A1
20060022015 Shelton, IV et al. Feb 2006 A1
20060049230 Shelton, IV et al. Mar 2006 A1
20060123634 Peterson et al. Jun 2006 A1
20060124688 Racenet et al. Jun 2006 A1
20060151567 Roy Jul 2006 A1
20060151568 Weller et al. Jul 2006 A1
20060175375 Shelton, IV et al. Aug 2006 A1
20060180634 Shelton, IV et al. Aug 2006 A1
20060201990 Mastri et al. Sep 2006 A1
20060201991 Mastri et al. Sep 2006 A1
20060219752 Arad et al. Oct 2006 A1
20060226195 Scirica et al. Oct 2006 A1
20060226196 Hueil et al. Oct 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060278681 Viola et al. Dec 2006 A1
20060289600 Wales et al. Dec 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070075114 Shelton et al. Apr 2007 A1
20080078801 Shelton et al. Apr 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080078803 Shelton et al. Apr 2008 A1
20080078804 Shelton et al. Apr 2008 A1
20080078806 Omaits et al. Apr 2008 A1
20080078807 Hess et al. Apr 2008 A1
20080082124 Hess et al. Apr 2008 A1
20080130677 Attarwala et al. Jun 2008 A1
Foreign Referenced Citations (79)
Number Date Country
5476586 Sep 1986 AU
2744824 Apr 1978 DE
2903159 Jan 1980 DE
3114135 Oct 1982 DE
4213426 Oct 1992 DE
4300307 Jul 1994 DE
0041022 Dec 1981 EP
0136950 Apr 1985 EP
0140552 May 1985 EP
0156774 Oct 1985 EP
0216532 Apr 1987 EP
0220029 Apr 1987 EP
0213817 Nov 1987 EP
0273466 Jul 1988 EP
0324166 Jul 1989 EP
0324635 Jul 1989 EP
0324637 Jul 1989 EP
0324638 Jul 1989 EP
0369324 May 1990 EP
0373762 Jun 1990 EP
0380025 Aug 1990 EP
0399701 Nov 1990 EP
0449394 Oct 1991 EP
0484677 May 1992 EP
0489436 Jun 1992 EP
0503662 Sep 1992 EP
0514139 Nov 1992 EP
0536903 Apr 1993 EP
0537572 Apr 1993 EP
0539762 May 1993 EP
0545029 Jun 1993 EP
0552050 Jul 1993 EP
0552423 Jul 1993 EP
0579038 Jan 1994 EP
0589306 Mar 1994 EP
0591946 Apr 1994 EP
0592243 Apr 1994 EP
0593920 Apr 1994 EP
0598202 May 1994 EP
0598579 May 1994 EP
0621006 Oct 1994 EP
0621009 Oct 1994 EP
0656188 Jun 1995 EP
0365153 Aug 1995 EP
0666057 Aug 1995 EP
0705571 Apr 1996 EP
1550412 Jul 2005 EP
1563791 Aug 2005 EP
1702568 Sep 2006 EP
1767156 Mar 2007 EP
1908414 Apr 2008 EP
2542188 Sep 1984 FR
2660851 Oct 1991 FR
2681775 Oct 1991 FR
1352554 Apr 1971 GB
1452185 Oct 1976 GB
1555455 Nov 1979 GB
2048685 Dec 1980 GB
2070499 Sep 1981 GB
2141066 Dec 1984 GB
2165559 Apr 1986 GB
51-149985 May 1975 JP
2063710 Jul 1996 RU
2066128 Sep 1996 RU
2110221 May 1998 RU
728848 May 1977 SU
566574 Jul 1977 SU
599799 Mar 1978 SU
659146 Apr 1979 SU
571948 Jul 1979 SU
980703 Dec 1982 SU
990220 Jan 1983 SU
WO 8200969 Apr 1982 WO
WO 8910094 Nov 1989 WO
WO 9210976 Jul 1992 WO
WO 9308754 May 1993 WO
WO 8302247 Jul 1993 WO
WO 9314706 Aug 1993 WO
WO 2004032754 Apr 2004 WO
Non-Patent Literature Citations (5)
Entry
Product Code 030735—the product (5 pages), product catalog (4 pages) and product package (1 page).
Michael Hansen, “Overmolding: A Multifaceted Medical Device Technology”, Medical Device & Diagnostic Industry, Jan. 2006.
European Search Report for EP 07253815.0-2310 date of completion is Aug. 27, 2009 (4 pages).
European Search Report, Application No. 08252893.6-2310, dated Jun. 25, 2009.
European Search Report for corresponding EP 11152265 application, date of completion is Apr. 21, 2011 (8 pages).
Related Publications (1)
Number Date Country
20090272787 A1 Nov 2009 US
Continuations (1)
Number Date Country
Parent 11544982 Oct 2006 US
Child 12501534 US