Surgical instrument including an adapter assembly and an articulating surgical loading unit

Information

  • Patent Grant
  • 11369378
  • Patent Number
    11,369,378
  • Date Filed
    Thursday, March 19, 2020
    4 years ago
  • Date Issued
    Tuesday, June 28, 2022
    a year ago
Abstract
An adapter assembly includes a cam housing defining a proximal cam slot and a distal cam slot, a first elongate shaft, and a second elongate shaft. The first elongate shaft has a proximal end portion received in the proximal cam slot, and a distal end portion configured to be coupled to a surgical loading unit. The second elongate shaft has a proximal end portion received in the distal cam slot, and a distal end portion configured to be coupled to the surgical loading unit. The first and second elongate shafts are configured to move in opposing longitudinal directions in response to a rotation of the cam housing to articulate the surgical loading unit.
Description
BACKGROUND
Technical Field

The present disclosure relates generally to surgical instruments for endoscopic use and, more specifically, to surgical instruments including adapter assemblies that articulate an attached surgical loading unit.


Background of Related Art

Various types of surgical instruments used to endoscopically treat tissue are known in the art, and are commonly used, for example, for closure of tissue or organs in transection, resection, anastomoses, for occlusion of organs in thoracic and abdominal procedures, and for electrosurgically fusing or sealing tissue.


One example of such a surgical instrument is a surgical stapling instrument. Typically, surgical stapling instruments include an end effector having an anvil assembly and a cartridge assembly for supporting an array of surgical staples, an approximation mechanism for approximating the cartridge and anvil assemblies, and a firing mechanism for ejecting the surgical staples from the cartridge assembly.


During laparoscopic or endoscopic surgical procedures, access to a surgical site is achieved through a small incision or through a narrow cannula inserted through a small entrance wound in a patient. Because of limited area available to access the surgical site, many endoscopic instruments include mechanisms for articulating the end effector of the instrument in relation to a body portion of the instrument to improve access to tissue to be treated. In addition, some end effectors have a knife shaft that translates therethrough to tissue grasped by jaws of the end effector. During articulation of the end effector, the knife shaft experiences a bending moment and/or a shear force that may degrade the knife shaft over continued articulation of the end effector.


Accordingly, it would be beneficial to provide an improved surgical instrument, which includes a mechanism for articulating the end effector relative to the body portion in a variety of orientations without damaging a knife shaft that moves through the end effector.


SUMMARY

In an aspect of the present disclosure, an adapter assembly includes a first input shaft, a cam housing operably coupled to the first input shaft and defining a proximal cam slot and a distal cam slot, a first elongate shaft, and a second elongate shaft. The first elongate shaft has a proximal end portion received in the proximal cam slot, and a distal end portion configured to be coupled to a surgical loading unit. The second elongate shaft has a proximal end portion received in the distal cam slot, and a distal end portion configured to be coupled to the surgical loading unit. The first and second elongate shafts are configured to move in opposing first and second longitudinal directions in response to a rotation of the cam housing to articulate the surgical loading unit.


In aspects, the proximal cam slot may have one of a right-handed helical configuration or a left-handed helical configuration, and the distal cam slot has the other of the right-handed helical configuration or the left-handed helical configuration.


In some aspects, the adapter assembly may further include a first link and a second link. The first link may have a proximal end portion pivotably coupled to a distal end portion of the first elongate shaft, and a distal end portion configured to be pivotably coupled to the surgical loading unit. The second link may have a proximal end portion pivotably coupled to a distal end portion of the second elongate shaft, and a distal end portion configured to be pivotably coupled to the surgical loading unit, such that the first and second links articulate the surgical loading unit in response to an actuation of the first input shaft.


In further aspects, the first and second elongate shafts may be disposed on opposite sides of a central longitudinal axis defined by the cam housing.


In other aspects, the cam housing may include a tubular shaft defining a longitudinally-extending channel. The proximal and distal cam slots may be defined in the tubular shaft.


In aspects, the proximal and distal cam slots may be disposed around a central longitudinal axis defined by the tubular shaft of the cam housing.


In some aspects, the proximal and distal cam slots may be longitudinally spaced from one another.


In further aspects, the adapter assembly may further include a ring gear operably coupled to the first input shaft and fixed to the cam housing, such that a rotation of the first input shaft results in a rotation of the cam housing.


In other aspects, the adapter assembly may further include a spur gear cluster operably coupling the ring gear and the first input shaft.


In aspects, the first elongate shaft may have a pin extending laterally from the proximal end portion thereof into the proximal cam slot, and the second elongate shaft may have a pin extending laterally from the proximal end portion thereof into the distal cam slot.


In some aspects, the adapter assembly may further include an outer housing having the first input shaft and the cam housing rotationally supported therein, and an outer tube extending distally from the outer housing. The outer tube may have the first and second elongate shafts axially supported therein.


In further aspects, the adapter assembly may further include a second input shaft extending through the cam housing and configured to effect a clamping and firing of the surgical loading unit.


In other aspects, the adapter assembly may further include a nut disposed within the cam housing and threadedly coupled to the second input shaft, and a knife shaft having a proximal end portion coupled to the nut and a distal end portion configured to cut tissue. The nut may be configured to distally move the knife shaft in response to a rotation of the second input shaft.


In aspects, the adapter assembly may further include a firing rod having a proximal end portion fixed to the nut, and a distal end portion fixed to the proximal end portion of the knife shaft. The second input shaft may extend through the firing rod.


In another aspect of the present disclosure, a surgical instrument is provided and includes an adapter assembly and a surgical loading unit. The adapter assembly includes a first axially movable elongate shaft, a second axially movable elongate shaft, a first link, and a second link. The first link has a proximal end portion pivotably coupled to a distal end portion of the first elongate shaft, and the second link has a proximal end portion pivotably coupled to a distal end portion of the second elongate shaft. The surgical loading unit has a proximal end portion pivotably coupled to a distal end portion of the first link and a distal end portion of the second link, such that the first and second links articulate the surgical loading unit in response to longitudinal motion of the first and second elongate shafts.


In aspects, the first link may include an inner surface facing the second link and having a concave intermediate portion.


In some aspects, the inner surface of the first link may have a convex proximal end portion and a convex distal end portion. The intermediate portion may be disposed between the proximal and distal end portions of the inner surface of the first link.


In further aspects, the surgical instrument may further include an axially movable I-beam assembly disposed between the first and second links. The intermediate portion of the inner surface of the first link may be dimensioned to receive a first lateral side of the I-beam assembly upon the surgical loading unit articulating relative to the adapter assembly in a first direction.


In other aspects, the surgical loading unit may include an anvil plate and a staple cartridge chassis pivotably coupled to the anvil plate. The I-beam assembly may have a distal end portion slidably coupled to both the anvil plate and the staple cartridge chassis, such that distal movement of the I-beam assembly pivots the staple cartridge chassis toward the anvil plate.


In aspects, the second link may include an inner surface facing the first link and having a concave intermediate portion dimensioned to receive a second lateral side of the I-beam assembly upon the surgical loading unit articulating relative to the adapter assembly in a second direction, opposite the first direction.





BRIEF DESCRIPTION OF THE DRAWINGS

Surgical instruments including embodiments of the presently disclosed adapter assemblies are disclosed herein with reference to the drawings, wherein:



FIG. 1A is a perspective view of a surgical instrument including an adapter assembly and a surgical loading unit, with a staple cartridge body of the surgical loading unit shown removed from a chassis of the surgical loading unit;



FIG. 1B is a perspective view of the surgical instrument of FIG. 1A, with the staple cartridge body of the surgical loading unit shown installed in the chassis;



FIG. 2 is a perspective view of internal components of the adapter assembly of FIG. 1A;



FIG. 3 is a perspective view, with parts removed, of the internal components of the adapter assembly shown in FIG. 2;



FIG. 4 is a rear, perspective view of a cam housing and a ring gear of the internal components of the adapter assembly of FIG. 2;



FIG. 5 is a side, perspective view of the cam housing and ring gear of FIG. 4 shown in phantom;



FIG. 6 is a side, cross-sectional view of the cam housing and ring gear of FIG. 4;



FIG. 7 is a side, cross-sectional view of a proximal section of the adapter assembly of FIG. 1A;



FIG. 8 is a side, perspective view of a pair of first and second elongate shafts of the adapter assembly of FIG. 7;



FIG. 9 is a top, cross-sectional view of a distal section of the adapter assembly and the surgical loading unit of FIG. 1;



FIG. 10 is an enlarged, top, cross-sectional view of the adapter assembly and surgical loading unit of FIG. 9;



FIG. 11 is a top, cross-sectional view of the distal section of the adapter assembly and the surgical loading unit of FIG. 9, with the surgical loading unit illustrated in an articulated position relative to the adapter assembly;



FIG. 12 is a side, cross-sectional view of the adapter assembly of FIG. 1A;



FIG. 13 is a side, cross-sectional view of the proximal section of the adapter assembly of FIG. 12;



FIG. 14 is a side view of an I-beam assembly of the adapter assembly of FIG. 12;



FIG. 15 is a front, cross-sectional view of the surgical loading unit and the I-beam assembly of FIG. 14;



FIG. 16A is a side, cross-sectional view of the surgical loading unit in an open configuration, illustrating the I-beam assembly in a retracted position;



FIG. 16B is a side, cross-sectional view of the surgical loading unit in a closed configuration, illustrating the I-beam assembly in an advanced position;



FIG. 17 is a rear, perspective view of the adapter assembly of FIG. 1A, with the outer housing shown in phantom; and



FIG. 18 is a rear, perspective view of internal components of the adapter assembly of FIG. 17.





DETAILED DESCRIPTION

Persons skilled in the art will understand that the adapter assemblies and surgical loading units specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.


As used herein, the term “distal” refers to that portion of the surgical instrument which is farthest from a clinician, while the term “proximal” refers to that portion of the surgical instrument which is closest to the clinician. In addition, as used herein, the term clinician refers to medical staff including doctors, nurses and support personnel.


The present disclosure is directed to a surgical instrument including an adapter assembly configured to be actuated by a hand-held actuator or a surgical robotic system, and a surgical loading unit coupled to the adapter assembly. The adapter assembly includes an articulation mechanism that drives an articulation of the surgical loading unit relative to the adapter assembly. The articulation mechanism includes a cam housing that defines a pair of cam slots, each of which receiving a corresponding pin of a pair of elongate shafts. As the cam housing rotates, the cam slots drive an opposing longitudinal motion of the pair of elongate shafts, which articulate the surgical loading unit. Additional advantages of the presently disclosed surgical instruments and components thereof are described below.



FIGS. 1A and 1B illustrate a surgical instrument 10 including a handle assembly 12, an adapter assembly 20 configured to be coupled to the handle assembly 12, and a surgical loading unit 30 pivotably coupled to the adapter assembly 20. While the depicted surgical instrument 10 may be configured to fire staples, it is contemplated that the surgical instrument 10 may be adapted to fire any other suitable fastener such as clips and two-part fasteners. Additionally, while the figures depict a linear surgical stapling instrument 10, it is envisioned that certain components described herein may be adapted for use in other types of endoscopic surgical instruments including non-linear surgical stapler loading units, endoscopic forceps, graspers, dissectors, other types of surgical stapling instruments, powered vessel sealing and/or cutting devices, etc.


Generally, the adapter assembly 20 of the surgical instrument 10 includes an outer housing 21 and an outer tube 24 extending distally from the outer housing 21. The outer housing 21 includes a knob housing 22 and a coupling mechanism 25 extending proximally from the knob housing 22 and configured to be operably coupled to the handle assembly 12 or a surgical robotic system (not shown) responsible for actuating the surgical instrument 10. The outer tube 24 has a proximal end portion fixed within the distal end portion of the knob housing 22. In other embodiments, the outer tube 24 may be rotatable relative to and within the knob housing 22. The surgical loading unit 30 is adapted to be attached to a distal end portion of the outer tube 24 of the adapter assembly 20 and may be configured for a single use, or may be configured to be used more than once.


The surgical loading unit 30 includes a collar 32 pivotably coupled to the distal end portion of the outer tube 24 and an end effector 34 supported on the collar 32. The end effector 34 includes an anvil plate 36 non-rotationally coupled to the collar 32, and a staple cartridge assembly 37 disposed in opposed relation with the anvil plate 36. The staple cartridge assembly 37 has a chassis 38 pivotably coupled to the collar 32 and a staple cartridge body 40 configured for removable receipt in a channel 42 of the chassis 38.


For a detailed description of the handle assembly 12, reference may be made to U.S. Patent Application Publication No. 2015/0157320, filed on Nov. 21, 2014, and U.S. Patent Application Publication No. 2016/0310134, filed on Apr. 12, 2016, the entire contents of each of which being incorporated by reference herein.


With reference to FIGS. 2 and 3, the articulation mechanism of the adapter assembly 20 will now be described. The adapter assembly 20 includes an articulation input shaft 50, a firing input shaft 52, and a rotation input shaft 54 each rotationally supported in the coupling mechanism 25 of the outer housing 21 (FIG. 1A). The articulation input shaft 50 has a proximal end portion 50a configured to be drivingly coupled to a corresponding drive member 13a of the handle assembly 12 to effect a rotation of the articulation input shaft 50. The articulation input shaft 50 has a distal end portion 50b having a gear 56 (e.g., a spur gear) fixed thereabout.


The adapter assembly 20 includes a ring gear 58 operably coupled to the articulation input shaft 50 and non-rotationally coupled to a cam housing 60. The ring gear 58 has an inner surface defining gear teeth 62 interfacing with gear teeth of a first gear 64a of a spur gear cluster 64. The spur gear cluster 64 has a second gear 64b fixed to and disposed adjacent the first gear 64a and having a larger diameter than the first gear 64a. The second gear 64b of the spur gear cluster 64 interfaces with the gear 56 non-rotationally fixed about the distal end portion 50b of the articulation input shaft 50. As such, a rotation of the articulation input shaft 50 rotates the first gear 64a and second gear 64b of the spur gear cluster 64, which, in turn, drives a rotation of the ring gear 58.


With reference to FIGS. 2-7, the cam housing 60 of the adapter assembly 20 is rotationally supported in the knob housing 22. The cam housing 60 includes an annular plate or disc 66 and a tubular shaft 68 extending distally from the annular plate 66. The annular plate 66 may be disposed within, and pinned to, the ring gear 58, such that the cam housing 60 rotates with a rotation of the ring gear 58. The tubular shaft 68 of the cam housing 60 defines a longitudinally-extending channel 70 therethrough. The channel 70 is dimensioned for receipt of various components of the articulation and firing mechanisms of the adapter assembly 20, thereby allowing for a more compact design of the adapter assembly 20.


With reference to FIGS. 4-7, the tubular shaft 68 of the cam housing 60 defines a proximal cam slot 72a in communication with the channel 70, and a distal cam slot 72b located distally of the proximal cam slot 72a and in communication with the channel 70. The proximal and distal cam slots 72a, 72b are longitudinally spaced from one another and wrap around a central longitudinal axis “X” (FIG. 7) defined by the channel 70 of the tubular shaft 68 of the cam housing 60. The proximal and distal cam slots 72a, 72b each have opposite helical configurations. For example, the proximal cam slot 72a may have a left-handed helical configuration, whereas the distal cam slot 72b may have a right-handed helical configuration, the importance of which being described in detail below.


The proximal and distal cam slots are longitudinally spaced from one another such that at least a majority of the proximal cam slot is disposed proximally of a proximal end of the distal cam slot.


With reference to FIGS. 7-11, the adapter assembly 20 further includes a pair of first and second axially movable elongate shafts 74, 76 and a pair of first and second articulation links 86, 88. The first and second elongate shafts 74, 76 are disposed on opposite sides of the central longitudinal axis “X” of the cam housing 60. Each of the first and second elongate shafts 74, 76 has a proximal end portion 74a, 76a disposed within the knob housing 22, and a distal end portion 74b, 76b disposed within the outer tube 24.


The proximal end portion 74a of the first elongate shaft 74 has a radially-outwardly extending projection or pin 82 received within the proximal cam slot 72a. The proximal end portion 76a of the second elongate shaft 76 has a radially-outwardly extending projection or pin 84 received in the distal cam slot 72b. Due to the proximal and distal cam slots 72a, 72b of the cam housing 60 having opposing helical configurations (e.g., right-handed vs. left-handed threading), rotation of the cam housing 60 drives the first and second elongate shafts 74, 76 in opposing longitudinal directions.


The first articulation link 86 of the surgical instrument 10 has a proximal end portion 86a pivotably coupled to the distal end portion 74b of the first elongate shaft 74, and the second articulation link 88 has a proximal end portion 88a pivotably coupled to the distal end portion 76b of the second elongate shaft 76. The first and second links 86, 88 each have a distal end portion 86b, 88b pivotably coupled to opposite sides of the collar 32 of the surgical loading unit 30. As such, the opposing longitudinal motion of the first and second elongate shafts 74, 76, induced by a rotation of the cam housing 60, pushes and pulls the corresponding first and second links 86, 88 to articulate the surgical loading unit 30 relative to the adapter assembly 20.


With specific reference to FIGS. 10 and 11, the first articulation link 86 includes an inner-facing surface 90 and the second articulation link 88 includes an inner-facing surface 92 that faces the inner-facing surface 90 of the first link 86. The inner-facing surface 90 of the first link 86 has a concave intermediate portion 90c disposed between a convex proximal end portion 90a of the inner-facing surface 90 and a convex distal end portion 90b of the inner-facing surface 90. Similarly, the inner-facing surface 92 of the second link 88 has a concave intermediate portion 92c disposed between a convex proximal end portion 92a of the inner-facing surface 92 and a convex distal end portion 92b of the inner-facing surface 92. The inner-facing surfaces 90, 92 of the first and second links 86, 88 are configured to guide and support blow-out plates 102a, 102b and a knife shaft 104 of an I-beam assembly 100 of the adapter assembly 20 during articulation of the surgical loading unit 30. While intermediate portions 90c and 92c ore shown as concave, it has been found that straight or convex intermediate portions may also support blow-out plates 102a and 102b depending on the desired support and restraint at different articulation positions.


In particular, the concave intermediate portion 90c of the inner-facing surface 90 of the first link 86 is dimensioned to receive a first blow-out plate 102a of the I-beam assembly 100 during articulation of the surgical loading unit 100 in a first direction, indicated by arrow “A” in FIG. 11, whereas the concave intermediate portion 92c of the inner-facing surface 92 of the second link 88 is dimensioned to receive a second blow-out plate 102b of the I-beam assembly 100 during articulation of the surgical loading unit 100 in a second direction, indicated by arrow “B” in FIG. 11.


The convex distal end portions 90b, 92b of the inner-facing surfaces 90, 92 of the first and second links 86, 88 further support the blow-out plates 102a, 102b and the knife shaft 104 of the I-beam assembly 100 during articulation of the surgical loading unit 30. In this way, the inner-facing surfaces 90, 92 of the respective first and second links 86, 88 accommodate the flexing of the knife shaft 104 and blow-out plates 102a, 102b as the surgical loading unit 30 articulates to resist wear and tear of the knife shaft 104 and the blow-out plates 102a, 102b. For example, as best shown in FIG. 11, articulation of the surgical loading unit 30 in the first direction causes the knife shaft 104 and the blow-out plates 102a, 102b to assume a curved shape, whereby the outer blow-out plate (e.g., the first blow-out plate 102a) is guided and supported by the concave intermediate portion 90c of the inner-facing surface 90 of the first link 86, and the inner blow-out plate (e.g., the second blow-out plate 102b) is guided and supported by the convex distal end portion 92b of the inner-facing surface 92 of the second link 88. As can be appreciated, during articulation of the surgical loading unit 30 in the second direction, the first and second links 86, 88 work together in a similar manner to accommodate a flexing of the blow-out plates 102a, 102b and the knife shaft 104.


In operation, to articulate the surgical loading unit 30, the articulation input shaft 50 is rotated via an actuation of the handle assembly 12. The articulation input shaft 50 transfers rotational motion from the gear 56 fixed thereabout to the ring gear 58 via the spur gear cluster 64. Since the cam housing 60 is fixed to the ring gear 58, the cam housing 60 rotates with the ring gear 58 about the central longitudinal axis “X.” As the cam housing 60 rotates, the proximal cam slot 72a of the cam housing 60 drives the pin 82 of the first elongate shaft 74 through the proximal cam slot 72 in a distal direction, indicated by arrow “C” in FIG. 7, and the distal cam slot 72b of the cam housing 60 drives the pin 84 of the second elongate shaft 76 through the distal cam slot 72b in a proximal direction, indicated by arrow “D” in FIG. 7.


Due to the first articulation link 86 acting as a pivotable coupling between the first elongate shaft 74 of the adapter assembly 20 and the first side of the surgical loading unit 30, and the second link 88 acting as a pivotable coupling between the second elongate shaft 76 of the adapter assembly 20 and the second side of the surgical loading unit 30, distal movement of the first elongate shaft 74 and proximal movement of the second elongate shaft 76 drives an articulation of the surgical loading unit 30 in the first direction indicated by arrow “A” in FIG. 11. Similarly, proximal movement of the first elongate shaft 74 and distal movement of the second elongate shaft 76 drives an articulation of the surgical loading unit 30 in the second direction indicated by arrow “B” in FIG. 11.


With reference to FIGS. 12-16, the firing and clamping mechanism of the adapter assembly 20 will now be described. The firing input shaft 52 of the adapter assembly 20 is centrally located between the articulation and rotation input shafts 50, 54 and is configured to effect a clamping and stapling function of the surgical loading unit 30. The firing input shaft 52 has a proximal end portion 52a configured to be drivingly coupled to the drive member 13b of the handle assembly 12 to drive a rotation of the firing input shaft 52. It is contemplated that the firing input shaft 52 may be configured as a drive screw having a threaded outer surface 106.


The adapter assembly 20 further includes an I-beam assembly 100, briefly described above, having a nut 108, a firing rod or tube 110, and a knife shaft 104. The nut 108 of the I-beam assembly 100 is disposed within the tubular shaft 68 of the cam housing 60 and is keyed to an inner tube 112, such that rotation of the nut 108 within the inner tube 112 is prevented during rotation of the firing input shaft 52. The nut 108 being disposed within the cam housing 60 of the articulation mechanism gives the adapter assembly 20 a compact design.


The firing rod 110 of the I-beam assembly 100 has a proximal end portion 110a fixed to the nut 108, and a distal end portion 110b fixed to a proximal end portion 104a of the knife shaft 104 of the I-beam assembly 100. In embodiments, the nut 108 may be directly attached to the proximal end portion 104a of the knife shaft 104 rather than be coupled via the firing rod 110. Since the knife shaft 104 of the I-beam assembly 100 is fixed to the nut 108, axial movement of the nut 108 through the outer tube 24, in response to a rotation of the firing input shaft 52, drives an axial movement of the knife shaft 104.


With reference to FIGS. 15, 16A, and 16B, the knife shaft 104 of the I-beam assembly includes a plurality of stacked elongated, rectangular blades 114. The plurality of blades 114 have an upper portion 114a extending through a longitudinally-extending slot 116 defined in the anvil plate 36, and a lower portion 114b extending through a longitudinally-extending slot 118 defined in the chassis 38 of the staple cartridge assembly 37. As shown in FIG. 15, the upper portion 114a of the blades 114 overlap with the anvil plate 36, and the lower portion 114b of the blades 114 overlap with the chassis 38. It has been found that this overlapping arrangement is critical and prevents buckling of the knife shaft 104 during firing.


The knife shaft 104 of the I-beam assembly 100 has a distal end portion 104b disposed within the surgical loading unit 30. The distal end portion 104b of the knife shaft 104 is configured to pivot the staple cartridge assembly 37 toward the anvil plate 36 during distal advancement of the knife shaft 104. The distal end portion 104b of the knife shaft 104 has an upper foot 120 disposed within a channel 121 defined by the anvil plate 36, a lower foot 122 disposed outside of the chassis 38 of the staple cartridge assembly 37, and a sharp distally-oriented surface 124 extending between the upper and lower foots 120, 122. The distally-oriented surface 124 is configured to sever tissue during distal advancement thereof through the end effector 34.


In operation, to fire and clamp the surgical loading unit 30, the firing input shaft 52 is rotated via an actuation of the handle assembly 12 attached to the coupling mechanism 25 of the adapter assembly 20. The firing input shaft 52 drives a translation of the nut 108 in a distal direction, indicated by arrow “C” in FIG. 13, relative to the firing input shaft 52. Given that the I-beam assembly 100, including the nut 108, the firing rod 110, and the knife shaft 104, is one integral unit, the firing rod 110 and the knife shaft 104 advance distally with the nut 108. The distal end portion 104b of the knife shaft 104 of the I-beam assembly 100 advances distally through the anvil plate 36 and the chassis 38 to pivot the chassis 38 toward the anvil plate 36. As the distal end portion 104b of the knife shaft 104 advances distally through the anvil plate 36 and the chassis 38, any tissue disposed therebetween is severed by the sharp, distally-oriented surface 124 of the knife shaft 104.


With reference to FIGS. 17 and 18, the rotation mechanism of the adapter assembly 20 will now be described. The rotation input shaft 54 of the adapter assembly 20 has a proximal end portion 54a configured to be drivingly coupled to a drive member 13c of the handle assembly 12 to drive a rotation of the rotation input shaft 54. The rotation input shaft 54 has a gear 126 fixed about a distal end portion 54b thereof. The gear 126 of the rotation input shaft 54 is operably coupled to teeth 128 of a rotation ring gear 130 via an idler gear 132. In embodiments, the gear 126 of the rotation input shaft 54 may directly interface with the rotation ring gear 130.


The rotation ring gear 130 has a pair of tabs 134a, 134b extending radially outward from opposite radial positions of the rotation ring gear 130. The tabs 134a, 134b of the rotation ring gear 130 interlock with corresponding recesses (not explicitly shown) defined in an inner surface of the knob housing 22, such that the knob housing 22 is rotatable with the rotation ring gear 130 relative to the coupling mechanism 25. In embodiments, the rotation ring gear 130 may have any suitable feature that fastens the rotation ring gear 130 to the knob housing 22, such as, for example, threaded engagement, frictional engagement, lock and key engagement, latches, buttons, bayonet-type connections, welding, adhesives and/or other mechanisms.


In operation, to rotate the surgical loading unit 30, the rotation input shaft 54 is rotated via an actuation of the handle assembly 12 attached to the coupling mechanism 25 of the adapter assembly 20. Rotational motion of the rotation input shaft 54 is transferred to the rotation ring gear 130 via the idler gear 132. Since the tabs 134a, 134b of the rotation ring gear 130 lock the knob housing 22 thereto, rotation of the rotation ring gear 130 results in a rotation of the knob housing 22 relative to the coupling mechanism 25 and around the input shafts 50, 52, 54. The outer tube 24 of the adapter assembly 20 is fastened to the knob housing 22 and, as such, rotates with the knob housing 22, which, in turn, causes the surgical loading unit 30 to rotate about the longitudinal axis of the adapter assembly 20.


Persons skilled in the art will understand that the adapter assemblies and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. An adapter assembly, comprising: a first input shaft;a cam housing operably coupled to the first input shaft and defining a proximal cam slot and a distal cam slot, the cam housing being configured to rotate;a first elongate shaft having a proximal end portion received in the proximal cam slot, and a distal end portion configured to be coupled to a surgical loading unit; anda second elongate shaft having a proximal end portion received in the distal cam slot, and a distal end portion configured to be coupled to the surgical loading unit, wherein the first and second elongate shafts are configured to move in opposing first and second longitudinal directions in response to a rotation of the cam housing to articulate the surgical loading unit, wherein the proximal and distal cam slots are longitudinally spaced from one another such that at least a majority of the proximal cam slot is disposed proximally of a proximal end of the distal cam slot.
  • 2. The adapter assembly according to claim 1, wherein the proximal cam slot has one of a right-handed helical configuration or a left-handed helical configuration, and the distal cam slot has the other of the right-handed helical configuration or the left-handed helical configuration.
  • 3. The adapter assembly according to claim 1, further comprising: a first link having a proximal end portion pivotably coupled to a distal end portion of the first elongate shaft, and a distal end portion configured to be pivotably coupled to the surgical loading unit; anda second link having a proximal end portion pivotably coupled to a distal end portion of the second elongate shaft, and a distal end portion configured to be pivotably coupled to the surgical loading unit, such that the first and second links articulate the surgical loading unit in response to an actuation of the first input shaft.
  • 4. The adapter assembly according to claim 1, wherein the first and second elongate shafts are disposed on opposite sides of a central longitudinal axis defined by the cam housing.
  • 5. The adapter assembly according to claim 1, wherein the cam housing includes a tubular shaft defining a longitudinally-extending channel, the proximal and distal cam slots defined in the tubular shaft.
  • 6. The adapter assembly according to claim 5, wherein the proximal and distal cam slots are disposed around a central longitudinal axis defined by the tubular shaft of the cam housing.
  • 7. The adapter assembly according to claim 1, further comprising a ring gear having an inner surface defining a plurality of gear teeth that are operably coupled to the first input shaft and fixed to the cam housing, such that a rotation of the first input shaft results in a rotation of the cam housing.
  • 8. The adapter assembly according to claim 7, further comprising a spur gear cluster operably coupling the ring gear and the first input shaft.
  • 9. The adapter assembly according to claim 1, wherein the first elongate shaft has a pin extending laterally from the proximal end portion thereof into the proximal cam slot, and the second elongate shaft has a pin extending laterally from the proximal end portion thereof into the distal cam slot.
  • 10. The adapter assembly according to claim 1, further comprising: an outer housing having the first input shaft and the cam housing rotationally supported therein; andan outer tube extending distally from the outer housing, the outer tube having the first and second elongate shafts axially supported therein.
  • 11. The adapter assembly according to claim 1, further comprising a second input shaft extending through the cam housing and configured to effect a clamping and firing of the surgical loading unit.
  • 12. The adapter assembly according to claim 11, further comprising: a nut disposed within the cam housing and threadedly coupled to the second input shaft; anda knife shaft having a proximal end portion coupled to the nut and a distal end portion configured to cut tissue, wherein the nut is configured to distally move the knife shaft in response to a rotation of the second input shaft.
  • 13. The adapter assembly according to claim 12, further comprising a firing rod having a proximal end portion fixed to the nut, and a distal end portion fixed to the proximal end portion of the knife shaft, wherein the second input shaft extends through the firing rod.
  • 14. A surgical instrument, comprising: an adapter assembly including: a first axially movable elongate shaft;a second axially movable elongate shaft;a first link having a proximal end portion pivotably coupled to a distal end portion of the first elongate shaft; anda second link having a proximal end portion pivotably coupled to a distal end portion of the second elongate shaft, the first link including an inner surface facing the second link and having a concave intermediate portion;a surgical loading unit having a proximal end portion pivotably coupled to a distal end portion of the first link and a distal end portion of the second link, such that the first and second links articulate the surgical loading unit in response to longitudinal motion of the first and second elongate shafts; andan axially movable I-beam assembly disposed between the first and second links, wherein the concave intermediate portion of the inner surface of the first link contacts a first lateral side of the I-beam assembly upon the surgical loading unit articulating relative to the adapter assembly in a first direction.
  • 15. The surgical instrument according to claim 14, wherein the inner surface of the first link has a convex proximal end portion and a convex distal end portion, the concave intermediate portion being disposed between the convex proximal and distal end portions of the inner surface.
  • 16. The surgical instrument according to claim 14, wherein the surgical loading unit includes: an anvil plate; anda staple cartridge chassis pivotably coupled to the anvil plate, the I-beam assembly having a distal end portion slidably coupled to both the anvil plate and the staple cartridge chassis, such that distal movement of the I-beam assembly pivots the staple cartridge chassis toward the anvil plate.
  • 17. The surgical instrument according to claim 14, wherein the second link includes an inner surface facing the first link and having a concave intermediate portion dimensioned to receive a second lateral side of the I-beam assembly upon the surgical loading unit articulating relative to the adapter assembly in a second direction, opposite the first direction.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/835,786 filed Apr. 18, 2019, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (390)
Number Name Date Kind
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4722685 de Estrada et al. Feb 1988 A
4823807 Russell et al. Apr 1989 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5326013 Green Jul 1994 A
5350355 Sklar Sep 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5427087 Ito et al. Jun 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5609560 Ichikawa et al. Mar 1997 A
5632432 Schulze et al. May 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Lasko Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6090123 Culp et al. Jul 2000 A
6126651 Mayer Oct 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger et al. Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6783533 Green et al. Aug 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6905057 Swayze et al. Jun 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7111769 Wales et al. Sep 2006 B2
7122029 Koop et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7172104 Scirica et al. Feb 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238021 Johnson Jul 2007 B1
7246734 Shelton, IV Jul 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7819896 Racenet Oct 2010 B2
7822458 Webster, III et al. Oct 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8132705 Viola et al. Mar 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8303581 Arts et al. Nov 2012 B2
8342379 Whitman et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8424739 Racenet et al. Apr 2013 B2
8454585 Whitman Jun 2013 B2
8505802 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8551076 Duval et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8623000 Humayun et al. Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8752749 Moore et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9064653 Prest et al. Jun 2015 B2
9113875 Viola et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
9597104 Nicholas et al. Mar 2017 B2
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030165794 Matoba Sep 2003 A1
20040111012 Whitman Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20050131442 Yachia et al. Jun 2005 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060278680 Viola et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070055219 Whitman et al. Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070175961 Shelton et al. Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20100069942 Shelton, IV Mar 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20110006101 Hall et al. Jan 2011 A1
20110017801 Zemlok et al. Jan 2011 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110253765 Nicholas et al. Oct 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130018361 Bryant Jan 2013 A1
20130093149 Saur et al. Apr 2013 A1
20130098966 Kostrzewski et al. Apr 2013 A1
20130098968 Aranyi et al. Apr 2013 A1
20130098969 Scirica et al. Apr 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130240596 Whitman Sep 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140236173 Scirica et al. Aug 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140299647 Scirica et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150320437 Worrell et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150351747 Martin Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
20160174971 Baxter, III Jun 2016 A1
20170224330 Worthington Aug 2017 A1
20190125360 Shelton, IV May 2019 A1
Foreign Referenced Citations (84)
Number Date Country
2008229795 Apr 2009 AU
2451558 Jan 2003 CA
101856251 Oct 2010 CN
102247182 Nov 2011 CN
102008053842 May 2010 DE
0634144 Jan 1995 EP
0648476 Apr 1995 EP
0686374 Dec 1995 EP
0705571 Apr 1996 EP
1690502 Aug 2006 EP
1723913 Nov 2006 EP
1736112 Dec 2006 EP
1759652 Mar 2007 EP
1769754 Apr 2007 EP
1772105 Apr 2007 EP
1813199 Aug 2007 EP
1813203 Aug 2007 EP
1813211 Aug 2007 EP
1908412 Apr 2008 EP
1917929 May 2008 EP
1943954 Jul 2008 EP
1943956 Jul 2008 EP
1943958 Jul 2008 EP
1943976 Jul 2008 EP
1952769 Aug 2008 EP
2005898 Dec 2008 EP
2027819 Feb 2009 EP
2044890 Apr 2009 EP
2055243 May 2009 EP
2090247 Aug 2009 EP
2098170 Sep 2009 EP
2100561 Sep 2009 EP
2100562 Sep 2009 EP
2165664 Mar 2010 EP
2236098 Oct 2010 EP
2245994 Nov 2010 EP
2263568 Dec 2010 EP
2272443 Jan 2011 EP
2316345 May 2011 EP
2324776 May 2011 EP
2329773 Jun 2011 EP
2333509 Jun 2011 EP
2377472 Oct 2011 EP
2462878 Jun 2012 EP
2462880 Jun 2012 EP
2491872 Aug 2012 EP
2586382 May 2013 EP
2606834 Jun 2013 EP
2668910 Dec 2013 EP
2676615 Dec 2013 EP
2815705 Dec 2014 EP
2944276 Nov 2015 EP
3120780 Jan 2017 EP
3205272 Aug 2017 EP
3375386 Sep 2018 EP
3718484 Oct 2020 EP
2333509 Feb 2010 ES
2861574 May 2005 FR
08038488 Feb 1996 JP
2005125075 May 2005 JP
20120022521 Mar 2012 KR
9915086 Apr 1999 WO
0072760 Dec 2000 WO
0072765 Dec 2000 WO
03000138 Jan 2003 WO
03026511 Apr 2003 WO
03030743 Apr 2003 WO
03065916 Aug 2003 WO
03077769 Sep 2003 WO
03090630 Nov 2003 WO
2004107989 Dec 2004 WO
2006042210 Apr 2006 WO
2007016290 Feb 2007 WO
2007026354 Mar 2007 WO
2007137304 Nov 2007 WO
2008131362 Oct 2008 WO
2008133956 Nov 2008 WO
2009039506 Mar 2009 WO
2007014355 Apr 2009 WO
2009132359 Oct 2009 WO
2009143092 Nov 2009 WO
2009149234 Dec 2009 WO
2011108840 Sep 2011 WO
2012040984 Apr 2012 WO
Non-Patent Literature Citations (2)
Entry
European Search Report dated Dec. 22, 2020, issued in corresponding EP Appln. No. 20170135, 17 pages.
European Search Report dated Aug. 24, 2020, corresponding to counterpart European Application No. 20170135.6; 15 pages.
Related Publications (1)
Number Date Country
20200330095 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
62835786 Apr 2019 US