The disclosure relates generally to surgical instruments for endoscopic use and, more specifically, to surgical instruments including adapter assemblies that articulate an attached surgical loading unit.
Various types of surgical instruments used to endoscopically treat tissue are known in the art, and are commonly used, for example, for closure of tissue or organs in transection, resection, anastomoses, for occlusion of organs in thoracic and abdominal procedures, and for electrosurgically fusing or sealing tissue.
One example of such a surgical instrument is a surgical stapling instrument. Typically, surgical stapling instruments include an end effector having an anvil assembly and a cartridge assembly for supporting an array of surgical staples, an approximation mechanism for approximating the cartridge and anvil assemblies, and a firing mechanism for ejecting the surgical staples from the cartridge assembly.
During laparoscopic or endoscopic surgical procedures, access to a surgical site is achieved through a small incision or through a narrow cannula inserted through a small entrance wound in a patient. Because of limited area available to access the surgical site, many endoscopic instruments include mechanisms for articulating the end effector of the instrument in relation to a body portion of the instrument to improve access to tissue to be treated.
In an aspect of the disclosure, an adapter assembly includes a cam member defining a first cam slot and a second cam slot, an outer tube extending distally from the cam member and having a distal end portion configured to be coupled to a surgical loading unit, and first and second articulation shafts each having a proximal end portion and a distal end portion. The proximal end portion of the first articulation shaft is operably coupled to the proximal cam slot of the cam member and the proximal end portion of the second articulation shaft is operably coupled to the distal cam slot of the cam member. The distal end portion of each of the first and second articulation shafts is configured to be coupled to the surgical loading unit. The first and second articulation shafts are configured to translate in opposite directions in response to a rotation of the cam member to articulate the surgical loading unit relative to the outer tube.
In aspects, the adapter assembly may further include a proximal ring member and a distal ring member each disposed about the cam member. The proximal ring member may have a projection received in the first cam slot, and the distal ring member may have a projection received in the second cam slot. The proximal and distal ring members may be configured to move axially in opposite longitudinal directions in response to the rotation of the cam member.
In aspects, the proximal end portion of the first articulation shaft may be axially restrained to the proximal ring member, and the proximal end portion of the second articulation shaft may be axially restrained to the distal ring member. The first and second articulation shafts may be configured to move axially with the respective proximal and distal ring members.
In aspects, the first and second articulation shafts may be rotatable relative to and about the respective proximal and distal ring members.
In aspects, the proximal ring member may define an outer annular groove therein, and the proximal end portion of the first articulation shaft may have an annular protrusion slidably received in the annular groove. The distal ring member may define an outer annular groove therein, and the proximal end portion of the second articulation shaft may have an annular protrusion slidably received in the annular groove of the distal ring member.
In aspects, the adapter assembly may further include a knob housing disposed about a proximal end portion of the outer tube. The proximal end portion of each of the first and second articulation shafts may be non-rotationally coupled to the knob housing and axially movable relative to the knob housing.
In aspects, the knob housing may include an inner surface defining a pair of longitudinally-extending slots, and the proximal end portion of each of the first and second articulation shafts may have a longitudinally-extending ridge received in the respective pair of longitudinally-extending slots of the knob housing.
In aspects, the proximal end portion of the first articulation shaft may have an inwardly-extending protrusion, and the distal end portion of the outer tube may define a longitudinally-extending slot having received therein the protrusion of the first articulation shaft, such that the distal end portion of the outer tube rotates with the first articulation shaft about the longitudinal axis in response to a rotation of the knob housing.
In aspects, the proximal end portion of each of the first and second articulation shafts may be disposed about the outer tube and the cam member.
In accordance with another aspect of the disclosure, a surgical instrument is provided and includes a surgical loading unit and an adapter assembly. The adapter assembly includes a coupling mechanism having a drive shaft, a cam member operably coupled to the drive shaft and defining a proximal cam slot and a distal cam slot, an outer tube extending distally from the cam member and having a distal end portion configured to be coupled to the surgical loading unit, and first and second articulation shafts each having a proximal end portion and a distal end portion. The proximal end portion of the first articulation shaft is operably coupled to the proximal cam slot of the cam member and the proximal end portion of the second articulation shaft is operably coupled to the distal cam slot of the cam member. The distal end portion of each of the first and second articulation shafts is configured to be coupled to the surgical loading unit. The first and second articulation shafts are configured to translate in opposite directions in response to a rotation of the cam member to articulate the surgical loading unit relative to the outer tube.
In aspects, the adapter assembly may further include a knob housing rotationally coupled to the coupling mechanism and disposed about a proximal end portion of the outer tube. The proximal end portion of each of the first and second articulation shafts may be non-rotationally coupled to the knob housing and axially movable relative to the knob housing.
In aspects, the proximal end portion of each of the first and second articulation shafts may be curved and disposed about the outer tube and the cam member.
Surgical instruments including exemplary aspects of the disclosed adapter assemblies are disclosed herein with reference to the drawings, wherein:
As used herein, the term “distal” refers to that portion of the surgical instrument which is farthest from a clinician, while the term “proximal” refers to that portion of the surgical instrument which is closest to the clinician. In addition, as used herein, the term clinician refers to medical staff including doctors, nurses and support personnel.
The disclosure is directed to a surgical instrument including an adapter assembly configured to be actuated by a hand-held actuator or a surgical robotic system, and a surgical loading unit coupled to the adapter assembly. The adapter assembly includes an articulation mechanism that drives an articulation of the surgical loading unit relative to the adapter assembly. The articulation mechanism includes a rotatable cam member that defines a pair of cam slots, each of which receiving a corresponding pin of a pair of ring members. As the cam member rotates, the cam slots drive an opposing longitudinal motion of the pair of ring members, which translate first and second articulation shafts in opposing longitudinal directions. Translation of the articulation shafts in opposite longitudinal directions articulates the surgical loading unit relative to an outer tube of the adapter assembly. Additional advantages of the disclosed surgical instruments and components thereof are described below.
As shown in
The outer tube 24 (
With reference to
The projection 110b of the proximal ring member 110 extends through a first longitudinally-extending guide slot 126 (
As best shown in
Each of the housing halves 120a, 122a of the left and right articulation shafts 120, 122 has an inwardly-extending, annular protrusion 134, 136 disposed at a proximal end thereof. The annular protrusion 134 of the left housing half 120a is slidably received in the annular groove 114 of the distal ring member 112 due to the left housing half 120a being shorter than the right housing half 122a. The annular protrusion 136 of the right housing half 122a is slidably received in the annular groove 116 of the proximal ring member 110. As such, longitudinal motion of the proximal and distal ring members 110a, 112 is transferred to the respective right and left articulation shafts 122, 120 while allowing for the right and left articulation shafts 122, 120 to rotate about the proximal and distal ring members 110, 112 and with the knob housing 21 (
An outer surface of each of the housing halves 120a, 122a has a longitudinally-extending ridge 128 (the ridge of the right housing half 122a is not explicitly shown) extending outwardly. Each of the ridges 128 is slidably received in a corresponding longitudinally-extending channel or slot 130 defined in an inner surface 132 of the knob housing 21. The engagement of the ridges 128 of the left and right housing halves 120a, 122a with the channels 130 defined in the opposite sides of the knob housing 21 allows for the left and right articulation shafts 120, 122 to translate relative to and within the knob housing 21 while also forming a non-rotatable engagement with the knob housing 21 such that the articulation shafts 120, 122 are rotatable with the knob housing 21.
The left and right housing halves 120a, 122a of the left and right articulation shafts 120, 122 each further include an inwardly-extending projection or tab 138, 140 (
With reference to
The first articulation link 150 (
The surgical loading unit 30 is adapted to be attached to the distal tube 24b of the adapter assembly 20 and may be configured for a single use, or may be configured to be used more than once. A pivot joint 26 (
In operation, with reference to
The proximal movement of the proximal ring member 110 drives a proximal movement of the right articulation shaft 122, in the direction indicated by arrow “A” in
In particular, due to the first articulation link 150 acting as a pivotable coupling between the left articulation shaft 120 of the adapter assembly 20 and the left side of the surgical loading unit 30, and the second articulation link 152 acting as a pivotable coupling between the right articulation shaft 122 of the adapter assembly 20 and the right side of the surgical loading unit 30, proximal movement of the right articulation shaft 122 and distal movement of the left articulation shaft 120 drives an articulation of the surgical loading unit 30 in the right direction indicated by arrow “C” in
To rotate the surgical loading unit 30 about the longitudinal axis “X” of the outer tube 24, the knob housing 21 may be manually rotated about the longitudinal axis “X.” Since the ridge 128 (
Persons skilled in the art will understand that the adapter assemblies and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary aspects of the disclosure. It is envisioned that the elements and features illustrated or described in connection with one exemplary aspect of the disclosure may be combined with the elements and features of another without departing from the scope of the disclosure. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described aspects of the disclosure. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2777340 | Hettwer et al. | Jan 1957 | A |
2957353 | Babacz | Oct 1960 | A |
3111328 | Di Rito et al. | Nov 1963 | A |
3695058 | Keith, Jr. | Oct 1972 | A |
3734515 | Dudek | May 1973 | A |
3759336 | Marcovitz et al. | Sep 1973 | A |
4162399 | Hudson | Jul 1979 | A |
4606343 | Conta et al. | Aug 1986 | A |
4705038 | Sjostrom et al. | Nov 1987 | A |
4722685 | de Estrada et al. | Feb 1988 | A |
4823807 | Russell et al. | Apr 1989 | A |
4874181 | Hsu | Oct 1989 | A |
5129118 | Walmesley | Jul 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5152744 | Krause et al. | Oct 1992 | A |
5301061 | Nakada et al. | Apr 1994 | A |
5312023 | Green et al. | May 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5350355 | Sklar | Sep 1994 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5427087 | Ito et al. | Jun 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5476379 | Disel | Dec 1995 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5526822 | Burbank et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5540375 | Bolanos et al. | Jul 1996 | A |
5540706 | Aust et al. | Jul 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5647526 | Green et al. | Jul 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5762603 | Thompson | Jun 1998 | A |
5766169 | Fritzsch et al. | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5863159 | Lasko | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5993454 | Longo | Nov 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6126651 | Mayer | Oct 2000 | A |
6129547 | Cise et al. | Oct 2000 | A |
6165169 | Panescu et al. | Dec 2000 | A |
6171316 | Kovac et al. | Jan 2001 | B1 |
6239732 | Cusey | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6321855 | Barnes | Nov 2001 | B1 |
6329778 | Culp et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6343731 | Adams et al. | Feb 2002 | B1 |
6348061 | Whitman | Feb 2002 | B1 |
6368324 | Dinger et al. | Apr 2002 | B1 |
6371909 | Hoeg et al. | Apr 2002 | B1 |
6434507 | Clayton et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6461372 | Jensen et al. | Oct 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6537280 | Dinger et al. | Mar 2003 | B2 |
6610066 | Dinger et al. | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6645218 | Cassidy et al. | Nov 2003 | B1 |
6654999 | Stoddard et al. | Dec 2003 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6699177 | Wang et al. | Mar 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6743240 | Smith et al. | Jun 2004 | B2 |
6783533 | Green et al. | Aug 2004 | B2 |
6792390 | Burnside et al. | Sep 2004 | B1 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6899538 | Matoba | May 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
RE39152 | Aust et al. | Jun 2006 | E |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7122029 | Koop et al. | Oct 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7172104 | Scirica et al. | Feb 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7238021 | Johnson | Jul 2007 | B1 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7419080 | Smith et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7565993 | Milliman et al. | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7588175 | Timm et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7673780 | Shelton, IV et al. | Mar 2010 | B2 |
7699835 | Lee et al. | Apr 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7758613 | Whitman | Jul 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7793812 | Moore et al. | Sep 2010 | B2 |
7799039 | Shelton, IV et al. | Sep 2010 | B2 |
7802712 | Milliman et al. | Sep 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7819896 | Racenet | Oct 2010 | B2 |
7822458 | Webster, III et al. | Oct 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7905897 | Whitman et al. | Mar 2011 | B2 |
7918230 | Whitman et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7922719 | Ralph et al. | Apr 2011 | B2 |
7947034 | Whitman | May 2011 | B2 |
7951071 | Whitman et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7959051 | Smith et al. | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7967178 | Scirica et al. | Jun 2011 | B2 |
7967179 | Olson et al. | Jun 2011 | B2 |
7992758 | Whitman et al. | Aug 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8035487 | Malackowski | Oct 2011 | B2 |
8052024 | Viola et al. | Nov 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8114118 | Knodel et al. | Feb 2012 | B2 |
8132705 | Viola et al. | Mar 2012 | B2 |
8152516 | Harvey et al. | Apr 2012 | B2 |
8157150 | Viola et al. | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8182494 | Yencho et al. | May 2012 | B1 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8186587 | Zmood et al. | May 2012 | B2 |
8220367 | Hsu | Jul 2012 | B2 |
8235273 | Olson et al. | Aug 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8245898 | Smith et al. | Aug 2012 | B2 |
8272554 | Whitman et al. | Sep 2012 | B2 |
8292150 | Bryant | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8303581 | Arts et al. | Nov 2012 | B2 |
8342379 | Whitman et al. | Jan 2013 | B2 |
8348855 | Hillely et al. | Jan 2013 | B2 |
8353440 | Whitman et al. | Jan 2013 | B2 |
8357144 | Whitman et al. | Jan 2013 | B2 |
8365633 | Simaan et al. | Feb 2013 | B2 |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8372057 | Cude et al. | Feb 2013 | B2 |
8391957 | Carlson et al. | Mar 2013 | B2 |
8424739 | Racenet et al. | Apr 2013 | B2 |
8454585 | Whitman | Jun 2013 | B2 |
8505802 | Viola et al. | Aug 2013 | B2 |
8517241 | Nicholas et al. | Aug 2013 | B2 |
8551076 | Duval et al. | Oct 2013 | B2 |
8561871 | Rajappa et al. | Oct 2013 | B2 |
8623000 | Humayun et al. | Jan 2014 | B2 |
8632463 | Drinan et al. | Jan 2014 | B2 |
8647258 | Aranyi et al. | Feb 2014 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8657177 | Scirica et al. | Feb 2014 | B2 |
8672206 | Aranyi et al. | Mar 2014 | B2 |
8696552 | Whitman | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8758391 | Swayze et al. | Jun 2014 | B2 |
8806973 | Ross et al. | Aug 2014 | B2 |
8851355 | Aranyi et al. | Oct 2014 | B2 |
8858571 | Shelton, IV et al. | Oct 2014 | B2 |
8875972 | Weisenburgh, II et al. | Nov 2014 | B2 |
8893946 | Boudreaux et al. | Nov 2014 | B2 |
8899462 | Kostrzewski et al. | Dec 2014 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8960519 | Whitman et al. | Feb 2015 | B2 |
8961396 | Azarbarzin et al. | Feb 2015 | B2 |
8967443 | McCuen | Mar 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
9064653 | Prest et al. | Jun 2015 | B2 |
9113875 | Viola et al. | Aug 2015 | B2 |
9216013 | Scirica et al. | Dec 2015 | B2 |
9282961 | Whitman et al. | Mar 2016 | B2 |
9282963 | Bryant | Mar 2016 | B2 |
9295522 | Kostrzewski | Mar 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9351726 | Leimbach | May 2016 | B2 |
9597104 | Nicholas | Mar 2017 | B2 |
9757126 | Cappola | Sep 2017 | B2 |
9918713 | Zergiebel et al. | Mar 2018 | B2 |
20010031975 | Whitman et al. | Oct 2001 | A1 |
20020049454 | Whitman et al. | Apr 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20030038938 | Jung et al. | Feb 2003 | A1 |
20030165794 | Matoba | Sep 2003 | A1 |
20040111012 | Whitman | Jun 2004 | A1 |
20040133189 | Sakurai | Jul 2004 | A1 |
20040176751 | Weitzner et al. | Sep 2004 | A1 |
20040193146 | Lee et al. | Sep 2004 | A1 |
20050131442 | Yachia et al. | Jun 2005 | A1 |
20060142656 | Malackowski et al. | Jun 2006 | A1 |
20060142740 | Sherman et al. | Jun 2006 | A1 |
20060142744 | Boutoussov | Jun 2006 | A1 |
20060259073 | Miyamoto et al. | Nov 2006 | A1 |
20060273135 | Beetel | Dec 2006 | A1 |
20060278680 | Viola et al. | Dec 2006 | A1 |
20070023476 | Whitman et al. | Feb 2007 | A1 |
20070023477 | Whitman et al. | Feb 2007 | A1 |
20070027468 | Wales et al. | Feb 2007 | A1 |
20070027469 | Smith et al. | Feb 2007 | A1 |
20070029363 | Popov | Feb 2007 | A1 |
20070055219 | Whitman et al. | Mar 2007 | A1 |
20070084897 | Shelton et al. | Apr 2007 | A1 |
20070102472 | Shelton | May 2007 | A1 |
20070152014 | Gillum et al. | Jul 2007 | A1 |
20070175947 | Ortiz et al. | Aug 2007 | A1 |
20070175949 | Shelton et al. | Aug 2007 | A1 |
20070175950 | Shelton et al. | Aug 2007 | A1 |
20070175951 | Shelton et al. | Aug 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070175956 | Swayze et al. | Aug 2007 | A1 |
20070175961 | Shelton et al. | Aug 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080058801 | Taylor et al. | Mar 2008 | A1 |
20080109012 | Falco et al. | May 2008 | A1 |
20080110958 | McKenna et al. | May 2008 | A1 |
20080167736 | Swayze et al. | Jul 2008 | A1 |
20080185419 | Smith et al. | Aug 2008 | A1 |
20080188841 | Tomasello et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080208195 | Shores et al. | Aug 2008 | A1 |
20080237296 | Boudreaux et al. | Oct 2008 | A1 |
20080251561 | Eades et al. | Oct 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080255607 | Zemlok | Oct 2008 | A1 |
20080262654 | Omori et al. | Oct 2008 | A1 |
20080308603 | Shelton et al. | Dec 2008 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090099876 | Whitman | Apr 2009 | A1 |
20090105750 | Price et al. | Apr 2009 | A1 |
20090108048 | Zemlok et al. | Apr 2009 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20090171147 | Lee et al. | Jul 2009 | A1 |
20090182193 | Whitman et al. | Jul 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090209990 | Yates et al. | Aug 2009 | A1 |
20090254094 | Knapp et al. | Oct 2009 | A1 |
20090314821 | Racenet | Dec 2009 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100193568 | Scheib et al. | Aug 2010 | A1 |
20100211053 | Ross et al. | Aug 2010 | A1 |
20100225073 | Porter et al. | Sep 2010 | A1 |
20110006101 | Hall et al. | Jan 2011 | A1 |
20110017801 | Zemlok et al. | Jan 2011 | A1 |
20110071508 | Duval et al. | Mar 2011 | A1 |
20110077673 | Grubac et al. | Mar 2011 | A1 |
20110121049 | Malinouskas et al. | May 2011 | A1 |
20110125138 | Malinouskas et al. | May 2011 | A1 |
20110139851 | McCuen | Jun 2011 | A1 |
20110155783 | Rajappa et al. | Jun 2011 | A1 |
20110155786 | Shelton, IV | Jun 2011 | A1 |
20110172648 | Jeong | Jul 2011 | A1 |
20110174099 | Ross et al. | Jul 2011 | A1 |
20110204119 | McCuen | Aug 2011 | A1 |
20110218522 | Whitman | Sep 2011 | A1 |
20110253765 | Nicholas et al. | Oct 2011 | A1 |
20110276057 | Conlon et al. | Nov 2011 | A1 |
20110290854 | Timm et al. | Dec 2011 | A1 |
20110295242 | Spivey et al. | Dec 2011 | A1 |
20110295269 | Swensgard et al. | Dec 2011 | A1 |
20120000962 | Racenet et al. | Jan 2012 | A1 |
20120074199 | Olson et al. | Mar 2012 | A1 |
20120089131 | Zemlok et al. | Apr 2012 | A1 |
20120104071 | Bryant | May 2012 | A1 |
20120116368 | Viola | May 2012 | A1 |
20120143002 | Aranyi et al. | Jun 2012 | A1 |
20120172924 | Allen, IV | Jul 2012 | A1 |
20120223121 | Viola et al. | Sep 2012 | A1 |
20120245428 | Smith et al. | Sep 2012 | A1 |
20120253329 | Zemlok et al. | Oct 2012 | A1 |
20120310220 | Malkowski et al. | Dec 2012 | A1 |
20120323226 | Chowaniec et al. | Dec 2012 | A1 |
20120330285 | Hartoumbekis et al. | Dec 2012 | A1 |
20130018361 | Bryant | Jan 2013 | A1 |
20130093149 | Saur et al. | Apr 2013 | A1 |
20130098966 | Kostrzewski et al. | Apr 2013 | A1 |
20130098968 | Aranyi et al. | Apr 2013 | A1 |
20130098969 | Scirica et al. | Apr 2013 | A1 |
20130181035 | Milliman | Jul 2013 | A1 |
20130184704 | Beardsley et al. | Jul 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130240596 | Whitman | Sep 2013 | A1 |
20130274722 | Kostrzewski et al. | Oct 2013 | A1 |
20130282052 | Aranyi et al. | Oct 2013 | A1 |
20130292451 | Viola et al. | Nov 2013 | A1 |
20130313304 | Shelton, IV et al. | Nov 2013 | A1 |
20130317486 | Nicholas et al. | Nov 2013 | A1 |
20130319706 | Nicholas et al. | Dec 2013 | A1 |
20130324978 | Nicholas et al. | Dec 2013 | A1 |
20130324979 | Nicholas et al. | Dec 2013 | A1 |
20130334281 | Williams | Dec 2013 | A1 |
20140012236 | Williams et al. | Jan 2014 | A1 |
20140012237 | Pribanic et al. | Jan 2014 | A1 |
20140012289 | Snow et al. | Jan 2014 | A1 |
20140025046 | Williams et al. | Jan 2014 | A1 |
20140110455 | Ingmanson et al. | Apr 2014 | A1 |
20140144970 | Aranyi et al. | May 2014 | A1 |
20140207125 | Applegate et al. | Jul 2014 | A1 |
20140207182 | Zergiebel et al. | Jul 2014 | A1 |
20140207185 | Goble et al. | Jul 2014 | A1 |
20140236173 | Scirica et al. | Aug 2014 | A1 |
20140236174 | Williams et al. | Aug 2014 | A1 |
20140263542 | Leimbach et al. | Sep 2014 | A1 |
20140263554 | Leimbach et al. | Sep 2014 | A1 |
20140263564 | Leimbach et al. | Sep 2014 | A1 |
20140263565 | Lytle, IV et al. | Sep 2014 | A1 |
20140276932 | Williams et al. | Sep 2014 | A1 |
20140277017 | Leimbach | Sep 2014 | A1 |
20140299647 | Scirica et al. | Oct 2014 | A1 |
20140303668 | Nicholas et al. | Oct 2014 | A1 |
20140358129 | Zergiebel et al. | Dec 2014 | A1 |
20140361068 | Aranyi et al. | Dec 2014 | A1 |
20140373652 | Zergiebel et al. | Dec 2014 | A1 |
20150048144 | Whitman | Feb 2015 | A1 |
20150076205 | Zergiebel | Mar 2015 | A1 |
20150080912 | Sapre | Mar 2015 | A1 |
20150157321 | Zergiebel et al. | Jun 2015 | A1 |
20150164502 | Richard et al. | Jun 2015 | A1 |
20150272577 | Zemlok et al. | Oct 2015 | A1 |
20150297199 | Nicholas et al. | Oct 2015 | A1 |
20150303996 | Calderoni | Oct 2015 | A1 |
20150320420 | Penna et al. | Nov 2015 | A1 |
20150327850 | Kostrzewski | Nov 2015 | A1 |
20150342601 | Williams et al. | Dec 2015 | A1 |
20150342603 | Zergiebel et al. | Dec 2015 | A1 |
20150374366 | Zergiebel et al. | Dec 2015 | A1 |
20150374370 | Zergiebel et al. | Dec 2015 | A1 |
20150374371 | Richard et al. | Dec 2015 | A1 |
20150374372 | Zergiebel et al. | Dec 2015 | A1 |
20150374449 | Chowaniec et al. | Dec 2015 | A1 |
20150380187 | Zergiebel et al. | Dec 2015 | A1 |
20160095585 | Zergiebel et al. | Apr 2016 | A1 |
20160095596 | Scirica et al. | Apr 2016 | A1 |
20160106406 | Cabrera et al. | Apr 2016 | A1 |
20160113648 | Zergiebel et al. | Apr 2016 | A1 |
20160113649 | Zergiebel et al. | Apr 2016 | A1 |
20160331375 | Shelton, IV et al. | Nov 2016 | A1 |
20190216532 | Worrell et al. | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
101856251 | Oct 2010 | CN |
1759652 | Mar 2007 | EP |
1908412 | Apr 2008 | EP |
1917929 | May 2008 | EP |
1952769 | Aug 2008 | EP |
2044888 | Apr 2009 | EP |
2044890 | Apr 2009 | EP |
2090247 | Aug 2009 | EP |
2245994 | Nov 2010 | EP |
2329773 | Jun 2011 | EP |
2377472 | Oct 2011 | EP |
2446834 | May 2012 | EP |
2581055 | Apr 2013 | EP |
2612609 | Jul 2013 | EP |
2668910 | Dec 2013 | EP |
2722011 | Apr 2014 | EP |
2815705 | Dec 2014 | EP |
2823771 | Jan 2015 | EP |
2881046 | Jun 2015 | EP |
3725237 | Oct 2020 | EP |
2861574 | May 2005 | FR |
20120022521 | Mar 2012 | KR |
2008121234 | Oct 2008 | WO |
2009039506 | Mar 2009 | WO |
2009039510 | Mar 2009 | WO |
Entry |
---|
European Search Report dated Apr. 16, 2021, issued in corresponding EP Appln. No. 20209845, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20210153863 A1 | May 2021 | US |