Surgical instrument with discrete articulation

Information

  • Patent Grant
  • 9474527
  • Patent Number
    9,474,527
  • Date Filed
    Tuesday, April 26, 2011
    13 years ago
  • Date Issued
    Tuesday, October 25, 2016
    8 years ago
  • CPC
  • Field of Search
    • US
    • 227 1751-1821
    • CPC
    • A61B17/07207
    • A61B2017/2927
    • A61B2017/00473
    • A61B2017/2923
  • International Classifications
    • A61B17/00
    • A61B17/068
    • Term Extension
      1152
Abstract
An exemplary surgical apparatus may include an end effector; a shaft extending proximally from the end effector, the shaft including an articulation region; and a handle including at least one button, where actuation of the button causes said the effector to articulate through a discrete increment relative to the shaft.
Description
FIELD OF THE INVENTION

The invention generally relates to surgical instruments, and more specifically to the articulation of surgical instruments.


BACKGROUND

Minimally invasive surgery is performed through small incisions in the body, into which trocar ports may or may not be placed. One or more surgical instruments are inserted through each incision in order to perform the surgical procedure. In order to effectuate one of the objectives of minimally invasive surgery, which is the minimization of incisions to the body to reduce healing time and scarring, it is desirable to minimize the number of incisions made in the body. The number of incisions and their placement are determined by the particular surgical procedure to be performed and the configuration of the instruments used to carry out that procedure.


One problem encountering during the performance of a minimally invasive surgical procedure is access to the tissue to be treated. Depending on the specific anatomy of the patient, it may be difficult to reach an area to be treated with a specific surgical instrument. As a result, one or more additional incisions may need to be made in the patient in order to access that tissue. The surgeon may need to obtain a different surgical instrument, adding to the time and expense of the procedure. Additionally, where more incisions may be made or additional instruments may be utilized, it can be difficult and/or time-consuming for the surgeon to find the surgical site again.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a surgical tool.



FIG. 2 is a perspective view of an exemplary surgical tool.



FIG. 3 is a perspective view of the end effector of the exemplary surgical tool of FIG. 2.



FIG. 4 is a perspective cutaway view of an articulation assembly located in the handle of the exemplary surgical tool of FIG. 2, in a neutral configuration.



FIG. 5 is a perspective view of an articulation button of the articulation assembly of FIG. 4.



FIG. 6 is an end view of the articulation button of FIG. 5.



FIG. 7 is a perspective view of an articulation gear of the articulation assembly of FIG. 4.



FIG. 8 is a side view of the articulation gear of FIG. 7.



FIG. 9 is a perspective cutaway view of the articulation assembly of FIG. 4.



FIG. 10 is a perspective cutaway view of the articulation assembly of FIG. 4.



FIG. 11 is a perspective cutaway view of the articulation buttons and articulation gear during articulation through a first discrete angle.



FIG. 12 is a perspective cutaway view of the articulation buttons and articulation gear at completion of articulation through a first discrete angle



FIG. 13 is a perspective cutaway view of the articulation assembly at the limit of articulation.



FIG. 14 is a perspective view of a feeder belt to which staples are frangibly connected.





The use of the same reference symbols in different figures indicates similar or identical items.


DETAILED DESCRIPTION

U.S. Patent Application Publication No. 2009/0065552, published on Mar. 12, 2009 (the “Endocutter Document”), is hereby incorporated by reference herein in its entirety.


Referring to FIGS. 1-2, an exemplary end effector 4 of a surgical tool 2 may include a staple holder 8 and an anvil 6, where at least one of the staple holder 8 and the anvil 6 are rotatable and/or otherwise movable relative to one another. The staple holder 8 and anvil 6 need not be directly connected together in order to move relative to one another, as set forth in greater detail below. However, the staple holder 8 and the anvil 6 may be directly connected to one another in any suitable manner, if desired. The staple holder 8 and anvil 6 may be configured substantially as set forth in the Endocutter Document, as modified by the contents of this document. The staple holder 8 and anvil 6 may be fabricated from any suitable material or materials. As one example, both the staple holder 8 and anvil 6 may be fabricated from stainless steel. As another example, at least one of the staple holder 8 and anvil 6 may be fabricated at least in part from a ceramic material, to provide enhanced stiffness. As another example, the end effector 4 may be any other suitable item for treating or visualizing tissue, such as but not limited to at least one electrode (bipolar or otherwise), adhesive applicator, camera, ultrasound emitter, forceps, or other items. The end effector 4 may be connected to the distal end of a shaft 10. The shaft 10 may be rigid along part or all of its length, and/or may include an articulating region 12, such as described in U.S. patent application Ser. No. 12/400,760, filed on Mar. 9, 2009 (the “Articulation Document”), which is hereby incorporated by reference in its entirety. As another example, the shaft 10 may be proximally spaced apart from the end effector 4, such that the articulating region 14 is connected to the end effector 4 and thereby spaces the shaft 10 apart from the end effector 4.


The handle 12 may be attached to the proximal end of the shaft 10, or any other suitable portion of the shaft 10. The shaft 10 may be fabricated integrally with the handle 12. Alternately, the shaft 10 and the handle 12 may be two separate items that are connected together in any suitable manner. The handle 12 may include any mechanism, mechanisms, structure or structures that are suitably configured to actuate the end effector 4. The handle 12 may be actuated purely by hand, meaning that the handle 12 mechanically converts force applied thereto by hand to force utilized to actuate the end effector 4. As another example, the handle 12 may include a source of stored energy for actuating the end effector 4. The source of stored energy may be mechanical (such as a spring), electrical (such as a battery), pneumatic (such as a cylinder of pressurized gas) or any other suitable source of stored energy. The source of stored energy, its regulation, and its use in actuating the end effector 4 may be as described in the U.S. patent application Ser. No. 11/054,265, filed on Feb. 9, 2005, which is herein incorporated by reference in its entirety. The handle 12 may instead, or also, include a connector or connectors suitable for receiving stored energy from an external source, such as a hose connected to a hospital utility source of pressurized gas or of vacuum, or an electrical cord connectable to a power source.


Referring to FIGS. 3-4, one or more articulation bands 16 extend proximally from the end effector 4 through the articulation region 14 and the shaft 10 to the handle 12. The articulation bands 16 may be generally rectangular in cross section, where the bands 16 may be significantly greater in the height dimension than in the lateral dimension. In this way, the articulation bands 16 have a suitably low moment of inertia to allow lateral flexing of the articulation region 14. Alternately, the articulation bands 16 may have any other suitable cross-section, and such cross-section need not be constant along the length of either articulation band 16. Further, the articulation bands 16 may be composed of a material such as spring steel that allows the articulation bands 16 to provide resistance to compressive force. Each articulation band 16 may be fixed at or near its distal end to the end effector 4 by welding, adhesive, or any other suitable connection. Each articulation band 16 may extend to a different lateral side of the end effector 4. Alternately, at least one articulation band 16 may be oriented relative to the end effector 4.


A central core 18 may be located proximal to the end effector 4. The central core 18 may be fixed to the end effector 4, such as at or near the proximal end of the end effector 4. As another example, the central core 18 may be compressed between the end effector 4 and the shaft 6 or a fitting in the shaft 6 proximal to the articulation region 14. The central core 18 may extend into and/or completely through the articulation region 14. Consequently, at least the portion of the central core 18 that is located in the articulation region 14 is flexible and/or bendable. As one example, at least the portion of the central core 18 located in the articulation region 14 may be composed of a flexible material, such as but not limited to silicone or elastomer. This flexible material may be resilient, meaning that it tends to return to a neutral state after deflection, or nonresilient, meaning that it tends to remain in a deflected state after deflection. As another example, at least the portion of the central core 18 located in the articulation region 14 may include a plurality of segments. As another example, the central core 18 may be the articulation insert described in U.S. patent application Ser. No. 12/436,087, filed on May 5, 2009 or U.S. patent application Ser. No. 12/477,065, filed on Jun. 2, 2009 (collectively referred to as the “Insert Documents”), both of which are herein incorporated by reference in their entirety. The central core 18 may include passages 20 defined generally longitudinally therein along which the articulation bands 16 are slidable. In this way, the passages 20 guide the articulation bands 16, particularly as articulation begins.


Referring to FIGS. 2 and 4, at least one articulation button 22 may be connected to the handle 12. Each articulation button 22 may be held within a knob 24. Optionally, the knob 24 may be fixed to the shaft 10, and the shaft 10 may be rotatable relative to the handle 12 such that rotation of the knob 24 causes the shaft 10, or at least the portion of the shaft 10 rigid and proximal to the articulation region 12, to rotate about its longitudinal axis relative to the handle 12. However, the knob 24 may be fixed relative to the handle 12 such that it does not rotate or move relative to the handle 12. As another example, the knob 24 may be omitted altogether.


Referring also to FIGS. 5-6, each articulation button 22 may include a depression surface 26 that a user may press, as described in greater detail below. The depression surface 26 may be the most proximal surface of the articulation button 22, or may be any other suitable surface of the articulation button 22. A compression spring 28 may extend from the distal end of the articulation button 22, or from any other suitable portion of the articulation button 22. At least one pushing arm 30 may extend from the articulation button 22. Each pushing arm 30 may extend generally longitudinally, and flare inward near its distal end. As another example, at least one pushing arm 30 may be oriented or configured differently. At least one holding arm 32 may extend from the articulation button 22. As one example, each holding arm 32 may extending generally transversely, and flare vertically near its distal end. As another example, at least one holding arm 32 may be oriented or configured differently. Two articulation buttons 22 may be utilized: a left articulation button 22a and a right articulation button 22b, where “left” and “right” are defined relative to the longitudinal centerline of the shaft 10 viewed from the proximal end toward the distal end. Alternately, only a single articulation button 22 may be utilized. Where two pushing arms 30 and two holding arms 32 extend from each articulation button 22, optionally only one of each arm 30, 32 may be used by each articulation button 20 to actually control articulation. By providing two arms 30, 32 on each articulation button 20, the same articulation button 20 can be flipped such that the same configuration of articulation button 20


Referring to FIGS. 4 and 7-8, an articulation gear 40 is shown. The gear 40 may be generally circular in shape. The articulation gear 40 may include outer teeth 42 defined along at least a portion of its outer perimeter 44. The gear 40 may include an upper surface 46 and a lower surface 48. At least one upper tooth 50 may extend upward from the upper surface 46. The upper teeth 50 may be organized into two separate arcs on the upper surface 46. The outer arc may include the outer, upper teeth 50a, and the inner arc may include the inner, upper teeth 50b. As another example, the upper teeth 50b may be omitted, and the upper teeth 50a may be organized into a single arc on the upper surface 46. The outer, upper teeth 50a may be organized into an arc, where a neutral tooth 50c occupies the center of the arc. The neutral tooth 50c may have two substantially vertical lateral walls 52. The upper surface 53 of the neutral tooth 50c may be substantially horizontal. On each side of the neutral tooth 50c, each outer, upper tooth 50a may include a ramp surface 54 sloping upward and away from the neutral tooth 50c. Each upper tooth 50a may include a vertical wall 56 opposite the ramp surface 54. The upper surface 58 of each upper tooth 50a may be substantially horizontal. As another example, each upper tooth 50a may be shaped in a different manner. The vertical wall 56 of each upper tooth 50a, and an arbitrary line parallel to the upper surface 46 of the gear 40 lying on the ramp surface 54 of each upper tooth 50a, may be substantially aligned with a radius of the gear 40. Alternately, at least one upper tooth 50a may be oriented differently on the upper surface 46 of the gear. The inner, upper teeth 50b may be organized into an arc as well, where the neutral tooth 50c is positioned further from the center of the gear 40 than the inner, upper teeth 50b. On each side of the neutral tooth 50c, each inner, upper tooth 50b may include a ramp surface 60 sloping upward and away from the neutral tooth 50c. Each inner, upper tooth 50b may include a vertical wall 62 opposite the ramp surface 60. The upper surface 64 of each upper tooth 50a may be substantially horizontal. As another example, each inner, upper tooth 50b may be shaped in a different manner. The vertical wall 56 of each upper tooth 50a, and an arbitrary line parallel to the upper surface 46 of the gear 40 lying on the ramp surface 54 of each upper tooth 50a, may be substantially angled relative to a radius of the gear 40, and thus out of alignment with a radius of the gear 40. Alternately, at least one upper tooth 50a may be oriented differently on the upper surface 46 of the gear 40.


A spindle 70 may extend substantially perpendicular to the gear 40. The longitudinal centerline of the spindle 70 may extend through the center of the gear 40. Alternately, the longitudinal centerline of the spindle 70 may be offset from the center of the gear 40. The spindle 70 may include an upper spindle 72 that extends upward from the upper surface 46 of the gear 40 and a lower spindle 74 that extends downward from the lower surface 48 of the gear 40. Referring also to FIG. 9, the spindle 70 is received in at least one receiver 76 defined in the knob 24. Advantageously, the upper spindle 72 and lower spindle 74 are each received in a separate receiver 76 in the knob 24. The gear 40 may be passive, and may be biased to a neutral position by a torsion spring 78. An anchor 80 may extend downward from the lower surface 48 of the gear 40, spaced radially apart from the lower spindle 74. The torsion spring 78 wraps around the spindle 70 and the anchor 80, which are spaced apart from one another, such that the torsion spring 78 biases the gear 40 to a neutral position.


Spindle teeth 82 may extend radially outward from the spindle 70. As one example, the spindle teeth 82 extend radially outward from the upper spindle 72. As another example, the spindle teeth 82 may extend radially outward from any other portion of the spindle 70. The spindle teeth 82 may be generally rectangular, or may have any other suitable shape. For example, the spindle teeth 82 may be spiral or cylindrical. The spindle teeth 82 may be oriented such that their longer dimension is substantially vertical and their shorter dimension is horizontal. However, the spindle teeth 82 may be oriented in any other suitable direction or directions. Referring also to FIG. 10, apertures 84 may be defined through the articulation bands 16, near the proximal ends thereof. The apertures 84 may be sized and shaped to receive the spindle teeth 82 therein. As described in greater detail, rotation of the gear 40 about the spindle 70 causes the spindle teeth 82 to rotate and thereby cause differential motion of the articulation bands 16, urging one articulation band 16 proximally and the other articulation band 16 distally.


Referring also to FIG. 14, a portion of at least one feeder belt 90 may extend from the shaft 10 into, or be positioned within, the end effector 4. The feeder belt 90 and its associated hardware may be as set forth in U.S. patent application Ser. No. 11/851,379, filed Sep. 6, 2007; U.S. patent application Ser. No. 11/956,988, filed Dec. 14, 2007; and U.S. patent application Ser. No. 12/263,171, filed Oct. 31, 2008 (the “Endocutter Documents”), which are herein incorporated by reference in their entirety. In the interest of brevity, the feeder belt 90 will not be described in detail herein. Each feeder belt 90 may be a long, narrow, thin strip of material from which one or more staples 92 extend. At least one staple 90 may be integral with the feeder belt 90, and frangibly connected to the feeder belt 90 at one end, with the other end of the staple being free. One row 94 of staples 92 may be located along each side of the feeder belt 90. Each feeder belt 90 may be movable relative to the end effector 4, as set forth in the Endocutter Applications, such that the end effector 4 can be actuated multiple times without the need to exchange cartridges or remove the end effector 4 from the patient between actuations. The end effector 4 may be configured generally as set forth in the Endocutter Documents, as one example, or may be configured differently.


Operation


The user possesses the surgical tool 2. The end effector 4 is placed in the body in proximity to its desired location relative to tissue. Advantageously, the end effector 4 is advanced through a trocar port or other minimally-invasive opening into the body. Where the end effector 4 includes a staple holder 8 and anvil 6, the end effector 4 may be opened such that at least the distal end of the anvil 6 is spaced apart from the staple holder 8 to allow tissue to be placed therebetween. However, the end effector 4 may be any other implement for treating tissue.


Referring also to FIG. 4, in order to articulate the end effector 4 relative to the shaft 10, the user actuates one of the articulation buttons 22. For clarity, the articulation of the end effector 4 leftward is described here. Articulation “leftward” refers to motion of the end effector 4 generally to the left as viewed by the user from the proximal toward the distal direction. In order to articulate the end effector 4 leftward, the user actuates the right articulation button 22b. The “right” articulation button 22b is the one on the right as viewed by the user from the proximal toward the distal direction. Actuation of the right articulation button 22b may be performed by pressing the right articulation button 22b generally distally. This exertion of force on the right articulation button 22b overcomes the bias exerted by the compression spring 28 against the right articulation button 22b in the proximal direction.


Referring also to FIGS. 4-5, 7-8 and 10, as the right articulation button 22b advances distally relative to the knob 24 or other structure on the handle 12, the pushing arms 30 and holding arms 32 fixed to the right articulation button 22b advance distally as well. Referring also to FIG. 11, as the lower pushing arm 30 advances, it encounters and engages an outer tooth 42 of the articulation gear 40. Because the outer tooth 42 is laterally spaced from the spindle 70, the force exerted by the lower pushing arm 30 on the outer tooth 42 in the distal direction creates a moment about the spindle 70, causing the articulation gear 40 to rotate. As viewed from the underside of the articulation gear 40 in FIG. 11, the articulation gear 40 rotates in a clockwise direction. Consequently, as viewed from above, the articulation gear 40 rotates in a counterclockwise direction. As the right articulation button 22b continues its motion distally and the articulation gear 40 rotates, the outer, upper teeth 50a of the articulation gear 40 rotate with the articulation gear 40. Referring also to FIG. 12, during this rotation, the lower holding arm 32 of the left articulation button 22a slides up the ramp surface 54 of the outer, upper tooth 50a that is immediately to the left of the neutral tooth 50c, as viewed from the top. The lower holding arm 32 may flex as its distal end slides up the ramp surface 54, such that it snaps downward toward and/or against the upper surface 46 of the articulation gear 40 after it slides past the ramp surface 54 and the upper surface 58 of the outer, upper tooth 50a.


At such time, the right articulation button 22b has been depressed distally a sufficient amount, and may be released. The right articulation button 22b is urged proximally to its original position by the compression spring 28. As the right articulation button 22b moves proximally, the lower pushing arm 30 retracts out of engagement with the outer tooth 42 it had previously urged distally. However, the lower holding arm 32 of the left articulation button 22a holds the articulation gear 40 in place. The torsion spring 78 biases the articulation gear 40 in a direction opposite to the direction in which the articulation gear 40 had been rotated, such that the vertical wall 56 of the outer, upper tooth 50a adjacent to the tip of the lower holding arm 32 is biased against the lower holding arm 32. In this way, the lower holding arm 32 of the left articulation button 22a holds the articulation gear 40 in position.


During rotation of the articulation gear 40 as described above, the upper spindle 72 rotates with the articulation gear 40, as do the spindle teeth 82. The spindle teeth 82 engage apertures 84 of each articulation band 40. Rotation of the articulation gear 40 and upper spindle 72 in the direction described above—counterclockwise as viewed from the top—thus causes the right articulation band 16 to advance distally, and the left articulation band 16 to retract proximally. The left articulation band 16 may be fixed to the left side of the end effector 4, and the right articulation band 16 may be fixed to the right side of the end effector 4. As a result, that distal force exerted on the right side of the end effector 4 by the right articulation band 16, and the proximal force exerted on the left side of the end effector 4 by the left articulation band 16, cause a moment that bends the articulation region 12 laterally leftward. Bending of the articulation region 10 relative to the shaft 6 to change the orientation of the end effector 4 is referred to as “articulating” the end effector 4. In response to a complete depression and release of the right articulation button 22b, the end effector 4 has thus articulated leftward in a discrete increment. That is, the angular spacing between the outer, upper teeth 50a along the circumference of the articulation gear 40 defines increments in which the articulation gear 40 rotates, and in turn those increments of rotation are converted to increments of articulation of the end effector 4. Put another way, each actuation of an articulation button 22 causes the end effector 4 to articulate a discrete and known amount.


If further articulation of the end effector 4 is desired, the user may actuate the right articulation button 22b again. If so, the articulation gear 40 rotates as described above, and the end effector 4 articulates by another discrete amount, which may be the same as or different then the previous discrete amount. The end effector 4 may step through several discrete steps of articulation as a result of several depressions of the right articulation button 22b. Referring also to FIG. 13, the end effector 4 may continue to be articulated further leftward until the lower holding arm 32 of the left articulation button 22a is holding the last outer, upper tooth 50a. As one example, an additional actuation of the right articulation button 22a simply results in no further articulation of the end effector 4, because there is not another outer, upper tooth 50a for the lower holding arm 32 to engage. As another example, depression of the left articulation button 22a at this point (or at an earlier point in the articulation of the end effector 4) moves the lower holding arm 32 out of engagement with the outer, upper tooth 50a that it had previously engaged, and places the distal end of the lower holding arm 32 at a location inward toward the spindle 70 such that the distal end of the lower holding arm 32 is located radially inward from each of the outer, upper teeth 50a. As a result, the torsion spring 78 urges the articulation gear 40 back to its neutral position, and consequently the end effector 4 returns to its original, non-articulated position in which it is substantially longitudinally aligned with the shaft 10.


As another example, where the articulation gear 40 includes a set of inner, upper teeth 50b, the articulation gear 40 steps in reverse toward the neutral position upon depression of the left articulation button 22a. Referring also to FIGS. 4, 7 and 10, as the left articulation button 22a is depressed, the distal end of the lower holding arm 32 moves inward toward the spindle 70, out of engagement with the outer, upper tooth 50a it had previously engaged and held. As a result, the torsion spring 78 urges the articulation gear 40 back toward its neutral position. However, the distal end of the lower holding arm 32 encounters an inner, upper tooth 50b as the articulation gear 40 moves toward that neutral position. The angular force exerted by the torsion spring 78 may then hold the inner, upper tooth 50b against the lower holding arm 32, such that the articulation gear 40 rotates a discrete increment less than the discrete increments that it rotated during the previous articulation of the end effector 4 leftward. Consequently, the end effector 4 articulates rightward by a discrete angle that is less than the discrete angles through which it had articulated leftward. Alternately, the inner, upper tooth 50b simply arrests the motion of the articulation gear 40, and the lower holding arm 32 then slides proximally into engagement with the next outer, upper tooth 50a. In this way, the articulation gear 40 rotates a discrete increment the same as the discrete increments in which it had rotated previously, and the end effector 4 articulates rightward by a discrete angle substantially the same as the discrete angles through which it had rotated during the previous articulation of the end effector 4 leftward.


For conciseness and clarity, articulation of the end effector 4 in the left direction using the right articulation button 22b has been described above. Articulation of the end effector 4 in the right direction, using the left articulation button 22a, is performed substantially as set forth above, in a reversed, mirror-image manner. Optionally, the shaft 10 may be rotatable relative to the handle 12, as set forth in commonly-assigned U.S. Pat. No. 7,918,376, which is herein incorporated by reference in its entirety. In this manner, the end effector 4 can be rotated as well as articulated left and right, in order to place the end effector 4 in a desired position within a patient.


As another example, a single articulation button 22 may be provided, rather than the two articulation buttons 22a, 22b described above. If so, the neutral position of the articulation gear 40 is a rotation all the way to one side, such that the end effector 4 is fully articulated laterally in the neutral position. The end effector 4 then may be articulated in discrete increments from that neutral position, utilizing only a single articulation button 22.


Once the end effector 4 is in the desired position, the end effector 4 may be manipulated in any manner. As one example, the end effector 4 may be closed if it is open, such as by moving the anvil 32 toward the staple holder 30 to clamp tissue. The end effector 4 then may be actuated to treat tissue. As one example, where the surgical tool 2 includes one or more feeder belts 90, staples 92 may be deployed into tissue from the staple holder 6 against the anvil 4. The feeder belt or belts 90 then may be advanced, placing a fresh set of staples 92 in position for deployment within the staple holder 6. Such deployment and advancement may be accomplished as set forth in the Endocutter Documents. Afterwards, the end effector 4 may be reoriented in the manner described above, articulating the end effector 4 in a different direction, so the end effector 4 may treat tissue again. Alternately, the end effector 4 is simply withdrawn from the patient after the first tissue treatment.


The operation of the surgical tool 2 may be carried out in the course of testing at a factory or other location. If so, the user that possesses the surgical tool 2 may be a technician, machine or text fixture that exercises the surgical tool 2 in the course of testing. The term “tissue,” in the context of testing the surgical tool 2 only, includes any substance or material used as a substitute for tissue in the course of testing.


While the invention has been described in detail, it will be apparent to one skilled in the art that various changes and modifications can be made and equivalents employed, without departing from the present invention. It is to be understood that the invention is not limited to the details of construction, the arrangements of components, and/or the method set forth in the above description or illustrated in the drawings. The use of terms such as “upward” and “downward” in this document refers to the orientation of parts on the page for descriptive clarity, and in no way limits the orientation of the device in use. Statements in the abstract of this document, and any summary statements in this document, are merely exemplary; they are not, and cannot be interpreted as, limiting the scope of the claims. Further, the figures are merely exemplary and not limiting. Topical headings and subheadings are for the convenience of the reader only. They should not and cannot be construed to have any substantive significance, meaning or interpretation, and should not and cannot be deemed to indicate that all of the information relating to any particular topic is to be found under or limited to any particular heading or subheading. Therefore, the invention is not to be restricted or limited except in accordance with the following claims and their legal equivalents.

Claims
  • 1. A surgical apparatus, comprising: an end effector;a shaft extending proximally from said end effector, said shaft including an articulation region;a handle including a first button and a second button, wherein actuation of said first or second button causes said end effector to articulate through a discrete increment relative to said shaft, and wherein actuation of said first button causes lateral deflection of said end effector in a first direction and actuation of said second button causes lateral deflection of said end effector in a second direction.
  • 2. The surgical apparatus of claim 1, further comprising a gear that engages said first button and second button, and at least two articulation bands extending from said handle through said shaft, each articulation band connected to said end effector; wherein said articulation bands engage said gear.
  • 3. The surgical apparatus of claim 2, wherein said gear defines a plurality of outer teeth along at least a portion of its outer perimeter; and wherein at least one of said first button or said second button includes an arm that engages said outer teeth.
  • 4. The surgical apparatus of claim 2, further comprising a plurality of upper teeth on an upper surface of said gear; and wherein at least one of said first button or said second button includes an arm that engages said upper teeth.
  • 5. The surgical apparatus of claim 4, wherein said upper teeth are organized into two separate arcs on said upper surface of said gear.
  • 6. The surgical apparatus of claim 2, wherein said gear is passive, and said gear is biased to a neutral position.
  • 7. The surgical apparatus of claim 1; wherein said end effector is articulable in discrete increments through a predefined angle, and wherein further actuation of at least one of said first button or said second button after said end effector has articulated completely through said predefined angle causes said end effector to return directly to said original position.
  • 8. The surgical apparatus of claim 1; wherein said end effector is articulable in discrete increments through a predefined angle, and wherein further actuation at least one of said first button or said second button after said end effector has articulated completely through said predefined angle causes said end effector to move incrementally and discretely toward said original position.
  • 9. The surgical apparatus of claim 1, wherein said end effector comprises a staple holder, an anvil movably connected to said staple holder.
  • 10. The surgical apparatus of claim 9, further comprising a feeder belt extending into said staple holder, and a plurality of staples integral with and frangibly separable from said feeder belt.
  • 11. A surgical apparatus, comprising: an end effector;a shaft extending proximally from said end effector, wherein at least part of said shaft is bendable;a handle including at least one button, wherein actuation of said button causes said end effector to articulate from an initial position through a discrete increment relative to said shaft;a gear within said handle, wherein each said button is engageable with said gear; andat least two articulation bands extending from said handle through said shaft, each articulation band connected to said end effector wherein said articulation bands are configured to have a greater height than width; wherein said articulation bands engage said gear.
  • 12. The surgical apparatus of claim 11, wherein said gear includes a tower with a plurality of teeth, and wherein said articulation bands each include apertures that engage said teeth, such that rotation of said tower causes differential motion of said articulation bands and thereby causes articulation of said end effector.
  • 13. The surgical apparatus of claim 11, wherein said handle includes a left button and a right button, wherein actuation of said left button causes lateral deflection of said end effector in the right direction and actuation of said right button causes lateral deflection of said end effector in the left direction.
  • 14. The surgical apparatus of claim 11, wherein said button is movable longitudinally, and further comprising at least one spring biasing said button to an initial position.
  • 15. The surgical apparatus of claim 11, wherein said gear includes a plurality of teeth; and wherein said button includes a holding arm and an advancing arm configured to engage said teeth.
  • 16. The surgical apparatus of claim 11, wherein said end effector is articulable in discrete increments through a predefined angle, and wherein further actuation of at least one said button after said end effector has articulated completely through said predefined angle causes said end effector to move incrementally and discretely toward said original position.
US Referenced Citations (159)
Number Name Date Kind
2515366 Zublin Jul 1950 A
2915754 Wandel Dec 1959 A
3191455 Fuqua et al. Jun 1965 A
D210021 Prifogie Jan 1968 S
3497608 Elliott Feb 1970 A
3581551 Wilkinson Jun 1971 A
3583393 Takahashi Jun 1971 A
3650453 Smith, Jr. Mar 1972 A
3837555 Green Sep 1974 A
3899914 Akiyama Aug 1975 A
3986765 Shaffer Oct 1976 A
4086926 Green et al. May 1978 A
4127227 Green Nov 1978 A
4228895 Larkin Oct 1980 A
4328839 Lyons et al. May 1982 A
4475679 Fleury, Jr. Oct 1984 A
4589416 Green May 1986 A
4600037 Hatten Jul 1986 A
4633861 Chow et al. Jan 1987 A
4762260 Richards et al. Aug 1988 A
4869414 Green et al. Sep 1989 A
4969591 Richards et al. Nov 1990 A
5042707 Taheri Aug 1991 A
5143475 Chikama Sep 1992 A
5156315 Green et al. Oct 1992 A
5192288 Thompson et al. Mar 1993 A
5271543 Grant et al. Dec 1993 A
5340330 Dolson et al. Aug 1994 A
5381943 Allen et al. Jan 1995 A
5405073 Porter Apr 1995 A
5413272 Green et al. May 1995 A
5448989 Heckele Sep 1995 A
5456400 Shichman et al. Oct 1995 A
5465894 Clark et al. Nov 1995 A
5476206 Green Dec 1995 A
5485952 Fontayne Jan 1996 A
5580067 Hamblin et al. Dec 1996 A
5632432 Schulze et al. May 1997 A
5655698 Yoon Aug 1997 A
5662260 Yoon Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5692668 Schulze et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5749828 Solomon et al. May 1998 A
5772578 Heimberger et al. Jun 1998 A
5807241 Heimberger Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5855311 Hamblin et al. Jan 1999 A
5857964 Konstorum et al. Jan 1999 A
5894979 Powell Apr 1999 A
5918791 Sorrentino et al. Jul 1999 A
5964774 McKean et al. Oct 1999 A
6010054 Johnson et al. Jan 2000 A
6053922 Krause et al. Apr 2000 A
6306149 Meade Oct 2001 B1
6364828 Yeung et al. Apr 2002 B1
6391038 Vargas et al. May 2002 B2
6431904 Berelsman Aug 2002 B1
6602252 Mollenauer Aug 2003 B2
6656195 Peters et al. Dec 2003 B2
6716232 Vidal et al. Apr 2004 B1
6755338 Hahnen et al. Jun 2004 B2
6786382 Hoffman Sep 2004 B1
6817508 Racenet Nov 2004 B1
6827601 Haeberle Dec 2004 B1
6843403 Whitman Jan 2005 B2
7025747 Smith Apr 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7097089 Marczyk Aug 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7168604 Milliman et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7179267 Nolan et al. Feb 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7213736 Wales et al. May 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7234624 Gresham et al. Jun 2007 B2
7238195 Viola Jul 2007 B2
7300297 Wang Nov 2007 B1
7316575 Muschketat Jan 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7434716 Viola Oct 2008 B2
7486994 Zarembo et al. Feb 2009 B2
7506790 Shelton, IV Mar 2009 B2
7507109 Tran Mar 2009 B2
7559449 Viola Jul 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7585307 Fontayne et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7617961 Viola Nov 2009 B2
7654838 Zhuge Feb 2010 B1
7670334 Hueil et al. Mar 2010 B2
7708182 Viola May 2010 B2
7780054 Wales Aug 2010 B2
7819298 Hall et al. Oct 2010 B2
7954685 Viola Jun 2011 B2
8292889 Cunningham et al. Oct 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8475453 Marczyk et al. Jul 2013 B2
8672951 Smith et al. Mar 2014 B2
8870867 Walberg et al. Oct 2014 B2
20020143346 McGuckin et al. Oct 2002 A1
20030120284 Palacios et al. Jun 2003 A1
20030236551 Peterson Dec 2003 A1
20050139629 Schwemberger et al. Jun 2005 A1
20050184121 Heinrich Aug 2005 A1
20050209685 Shifrin et al. Sep 2005 A1
20050272978 Brunnen et al. Dec 2005 A1
20050283191 Fontayne et al. Dec 2005 A1
20060000867 Shelton et al. Jan 2006 A1
20060011699 Olson et al. Jan 2006 A1
20060025811 Shelton, IV Feb 2006 A1
20060041273 Ortiz et al. Feb 2006 A1
20060047307 Ortiz et al. Mar 2006 A1
20060151567 Roy Jul 2006 A1
20070023477 Whitman et al. Feb 2007 A1
20070027472 Hiles et al. Feb 2007 A1
20070034668 Holsten et al. Feb 2007 A1
20070068990 Shelton et al. Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070083234 Shelton, IV et al. Apr 2007 A1
20070118163 Boudreaux et al. May 2007 A1
20070125828 Rethy et al. Jun 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175947 Ortiz et al. Aug 2007 A1
20070187453 Smith et al. Aug 2007 A1
20070221700 Ortiz et al. Sep 2007 A1
20070221701 Ortiz et al. Sep 2007 A1
20080249364 Korner Oct 2008 A1
20080257935 Viola Oct 2008 A1
20080296345 Shelton et al. Dec 2008 A1
20090057370 Marczyk et al. Mar 2009 A1
20090065552 Knodel et al. Mar 2009 A1
20090076506 Baker Mar 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090090764 Viola Apr 2009 A1
20090177041 Stefanchik et al. Jul 2009 A1
20090206123 Doll et al. Aug 2009 A1
20090206124 Hall et al. Aug 2009 A1
20090206128 Hueil et al. Aug 2009 A1
20090206129 Doll et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090206138 Smith et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206140 Scheib et al. Aug 2009 A1
20090236399 Bilotti Sep 2009 A1
20100168722 Lee et al. Jul 2010 A1
20100243706 Cohen et al. Sep 2010 A1
20100308099 Marczyk et al. Dec 2010 A1
20110288573 Yates et al. Nov 2011 A1
20120074201 Baxter et al. Mar 2012 A1
20120080491 Shelton et al. Apr 2012 A1
20120168484 Scirica et al. Jul 2012 A1
20130112729 Beardsley et al. May 2013 A1
20140117066 Aranyi et al. May 2014 A1
Foreign Referenced Citations (7)
Number Date Country
1238634 Sep 1994 EP
2258281 Dec 2010 EP
2005160933 Jun 2005 JP
2080833 Jun 1997 RU
WO-8101953 Jul 1981 WO
WO-8501427 Apr 1985 WO
WO2004103430 Dec 2004 WO
Non-Patent Literature Citations (8)
Entry
Gong, Shao W., “Perfectly flexible mechanism and integrated mechanism system design”, Mechanism and Machine Theory 39 (2004), (Nov. 2004),1155-1174.
Lim, Jonas J., et al., “A review of mechanism used in laparascopic surgical instruments”, Mechanism and Machine Theory 38, (2003),1133-1147.
Lim, Jyue B., “Type Synthesis of a Complex Surgical Device”, Masters Thesis, (Feb. 21, 2001).
Lim, Jonas J., et al., “Application of Type Synthesis Theory to the Redesign of a Complex Surgical Instrument”, Journal of Biomechanical Engineering (124), (Jun. 2004),265-272.
Kolios, Efrossini et al., “Microlaparoscopy”, J. Endourology 18(9), (Nov. 2004),811-817.
Steichen, Felicien M., et al., “Mechanical Sutures in Surgery”, Brit. J. Surg. 60(3), (Mar. 1973),191-197.
“Cardica Microcutter Implant Delivery Device 510(k), Cover Sheet, Table 10.1, “Substantial Equivalence Comparison,” and Section 12, “Substantial Equivalence Discussion””.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, PCT/US2013/034322, mailed Jul. 12, 2013.