Surgical instrument with electrical connection

Information

  • Patent Grant
  • 11862884
  • Patent Number
    11,862,884
  • Date Filed
    Monday, August 16, 2021
    2 years ago
  • Date Issued
    Tuesday, January 2, 2024
    3 months ago
Abstract
A surgical instrument including a housing, an elongated portion, and a loading unit is disclosed. The elongated portion extends distally from the housing, defines a longitudinal axis, and includes an electrical contact. The loading unit is configured to releasably engage the elongated portion. The loading unit includes an electronic component, a proximal portion including an electrical contact in electrical communication with the electronic component, and an end effector coupled to the proximal portion and configured to manipulate tissue. Engagement between the elongated portion and the loading unit causes the electrical contact of the elongated portion to engage the electrical contact of the loading unit thereby electrically connecting the elongated portion and the loading unit.
Description
BACKGROUND
Technical Field

The present disclosure relates generally to instruments for surgically manipulating tissue and, more specifically, to surgical instruments that form an electrical connection with a loading unit.


Background of Related Art

Various types of surgical instruments used to surgically manipulate and join tissue are known in the art, and are commonly used, for example, for closure of tissue or organs in transection, resection, anastomoses, for occlusion of organs in thoracic and abdominal procedures, and for electrosurgically fusing or sealing tissue.


Surgical instruments may be operated manually, robotically, with powered components, or any combination thereof.


Additionally, a loading unit (e.g., a single use loading unit or a disposable loading unit) may be attached to an elongated or endoscopic portion of several types of surgical instruments. Such loading units allow surgical instruments to have greater versatility, for example. The loading units may be configured for a single use, and/or may be configured for multiple uses.


Further, some loading units include an identification chip and/or other electronic components. When such a loading unit is used with the remainder of the surgical instrument (e.g., when the loading unit having an identification chip is engaged with an elongated portion of a surgical instrument), it may be important to relay the information included on the identification chip of the loading unit to the surgical instrument engaged therewith. Thus, it may be suitable to provide a surgical instrument that can provide an electrical connection with a loading unit engaged therewith.


SUMMARY

The disclosure relates to a surgical instrument comprising a housing, an elongated portion, and a loading unit. The elongated portion extends from the housing, defines a longitudinal axis, and includes an electrical contact. The loading unit is configured to releasably engage the elongated portion. The loading unit includes an electronic component, a proximal portion including an electrical contact in electrical communication with the electronic component, and an end effector coupled to the proximal portion and configured to manipulate tissue. Engagement between the elongated portion and the loading unit causes the electrical contact of the elongated portion to engage the electrical contact of the loading unit thereby electrically connecting the elongated portion and the loading unit.


In aspects, the electrical contact of the elongated portion may be movable toward and away from the longitudinal axis.


In aspects, the electrical contact of the elongated portion may include at least five linear segments. In disclosed aspects, three linear segments of the five linear segments of the electrical contact of the elongated portion may form a flat-bottom V-shape. In further disclosed aspects, the electrical contact of the elongated portion may be made from sheet metal.


In aspects, the electrical contact of the loading unit may be movable toward and away from the longitudinal axis.


In aspects, a distal end of the electrical contact of the loading unit may be fixed from movement relative to the longitudinal axis, and a proximal end of the electrical contact of the loading unit may be movable toward and any from the longitudinal axis.


In aspects, a proximal end of the electrical contact of the loading unit may form an acute angle with the longitudinal axis.


The disclose also relates to a surgical instrument configured to releasably engage a loading unit having an electronic component. The surgical instrument comprises a powered handle assembly, an elongated portion, and an electrical contact. The elongated portion extends distally from the powered handle assembly, defines a longitudinal axis, and includes an outer wall. The electrical contact is disposed within the outer wall of the elongated portion. At least a portion of the electrical contact is movable toward and away from the longitudinal axis. The electrical contact is configured to communicate with the electronic component of the loading unit when the surgical instrument is engaged with the loading unit.


In aspects, the electrical contact may include at least five linear segments. In disclosed aspects, three linear segments of the five linear segments of the electrical contact may form a flat-bottom V-shape. In further disclosed aspects, the electrical contact may be made from sheet metal.


In aspects, the surgical instrument may include at least one of a processor or a storage unit disposed in electrical communication with the electrical contact.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the disclosure are illustrated herein with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view of a surgical instrument in accordance with an embodiment of the disclosure;



FIG. 2 is a perspective, assembly view of the surgical instrument of FIG. 1 illustrating a loading unit and part of an elongated portion;



FIG. 3 is an enlarged view of the area of detail indicated in FIG. 2, showing a proximal portion of the loading unit;



FIG. 4 is an enlarged view illustrating distal portions of the elongated portion engaged with proximal portions of the loading unit of the surgical instrument within the area of detail indicated in FIG. 1;



FIG. 5 is a perspective view illustrating portions of the loading unit and the elongated portion in a partially-engaged position; and



FIG. 6 is a perspective view illustrating portions of the loading unit and the elongated portion in a fully-engaged position.





DETAILED DESCRIPTION

Embodiments of the disclosed surgical instrument are described in detail with reference to the drawings, wherein like reference numerals designate corresponding elements in each of the several views. As is common in the art, the term “proximal” refers to that part or component closer to the user or operator, e.g., surgeon or physician, while the term “distal” refers to that part or component farther away from the user.



FIGS. 1-6 illustrate a surgical instrument in accordance with an aspect of the disclosure generally designated as reference numeral 100. While the surgical instrument 100 in the accompanying figures is depicted as a surgical stapling instrument, the surgical instrument 100 of the disclosure is not limited to a surgical stapling instrument; the surgical instrument 100 may be any suitable surgical instrument including but not limited to a vessel sealing instrument, a surgical grasper, a surgical clip applier, a circular stapling instrument, etc.


With particular reference to FIG. 1, the surgical instrument 100 includes a housing 105, a handle assembly 110, an adapter assembly 115, an elongated portion 120 extending distally from the adapter assembly 115 and defining a longitudinal axis “A-A,” and a loading unit 200 engaged with a distal end of the elongated portion 120. The loading unit 200 includes a proximal portion 210 and an end effector 220, and is releasably engageable with the elongated portion 120. While FIG. 1 illustrates the surgical instrument 100 including a powered handle assembly including a first actuator 112 and a second actuator 114, other types of handles can be used such as, for example, those including a pivotable handle, motor-driven, hydraulic, ratcheting, etc. As used herein, “handle assembly” encompasses all types of handle assemblies. Additionally, the surgical instrument 100 and components thereof are usable as part of a robotic surgical system.


Referring now to FIGS. 2 and 3, details of the loading unit 200 are shown. The proximal portion 210 of the loading unit 200 includes a plurality of electrical contacts 250 adjacent a proximal end 212 thereof. Each electrical contact of the plurality of electrical contacts 250 is configured to store and relay information, and may either include or be in electrical communication with an electronic component 270 via leads 272, for instance (shown schematically in FIG. 4). The electronic component 270 may be a storage device, such as an EPROM or any suitable flash storage device, configured to store information relating to the type of end effector 220 (e.g., used for surgical stapling, vessel sealing, etc.) included on the loading unit 200, the length of the loading unit 200, the diameter of the loading unit 200, the number of fasteners included within the end effector 220, etc. In aspects, the electronic component 270 may be a sensor or an actuator.


With reference to FIG. 4, each electrical contact of the plurality of electrical contacts 250 includes an arm 252 and a finger 260. A distal end 254 of the arm 252 is engaged with a mounting portion 214 of the proximal portion 210 of the loading unit 200. The finger 260 of each electrical contact of the plurality of electrical contacts 250 extends proximally from a proximal end 256 of the arm 252. In this arrangement, the finger 260 and parts of the arm 252 of each electrical contact of the plurality of electrical contacts 250 are cantilevered thereby enabling portions of the plurality of electrical contacts 250 to flex toward and away from the longitudinal axis “A-A.” In aspects, the structure of the plurality of electrical contacts 250 biases the plurality of electrical contacts 250 radially outward away from the longitudinal axis “A-A.”


With particular reference to FIGS. 4-6, engagement between the loading unit 200 and the elongated portion 120 of the surgical instrument 100 is shown. For clarity, an outer wall 122 of the elongated portion 120 is shown in phantom in FIG. 4 and is omitted in FIGS. 5 and 6. The elongated portion 120 includes an engagement interface 130 that is configured to selectively engage portions of the loading unit 200. More particularly, the engagement interface 130 of the elongated portion 120 includes a base 140, a plurality of electrical contacts 150, a loading linkage 160, and a biasing element 170. In aspects, the number of electrical contacts of the plurality of electrical contacts 150 of the elongated portion 120 is equal to the number of electrical contacts of the plurality of electrical contacts 250 of the loading unit 200. In other aspects, the number of electrical contacts of the plurality of electrical contacts 150 of the elongated portion 120 is greater than or less than the number of electrical contacts of the plurality of electrical contacts 250 of the loading unit 200.


Referring to FIG. 4, each electrical contact of the plurality of electrical contacts 150 of the elongated portion 120 includes a plurality of segments 152. More particularly, in the illustrated aspect, each electrical contact of the plurality of electrical contacts 150 includes five segments 152: a first segment 152a, a second segment 152b, a third segment 152c, a fourth segment 152d, and a fifth segment 152e. Each electrical contact of the plurality of electrical contacts 150 may include more or fewer than five segments 152. Additionally, in the illustrated aspect, the first segment 152a, the third segment 152c, and the fifth segment 152e are parallel or generally parallel to each other and to the longitudinal axis “A-A,” and the second segment 152b and the fourth segment 152d are disposed at angles relative to their adjoining segments such that the second segment 152b, the third segment 152c, and the fourth segment 152d form a flat-bottom V-shape. Further, in aspects, the plurality of electrical contacts 150 is made of sheet metal.


Upon engagement between the loading unit 200 and the elongated portion 120 of the surgical instrument 100, the plurality of electrical contacts 250 of the loading unit 200 are moved proximally relative to the plurality of electrical contacts 150 of the elongated portion 120. Upon initial engagement, and as shown in FIG. 5, the plurality of electrical contacts 250 of the loading unit 200 and the plurality of electrical contacts 150 of the elongated portion 120 are free from physical contact with each other.


Upon continued and full engagement, and as shown in FIGS. 4 and 6, the plurality of electrical contacts 250 of the loading unit 200 and the plurality of electrical contacts 150 of the elongated portion 120 are in physical contact with each other. More particularly, in this position, the third segment 152c of each electrical contact of the plurality of electrical contacts 150 of the elongated portion 120 is in physical contact with the finger 260 of one electrical contact of the plurality of electrical contacts 250 of the loading unit 200 (see FIG. 4). This engagement is facilitated by the angled fourth segment 152d of the plurality of electrical contacts 150 of the elongated portion 120, by a ramped proximal portion 262 of the finger 260 of the plurality of electrical contacts 250 of the loading unit 200, and by the ability of both the plurality of electrical contacts 150 of the elongated portion 120 and the plurality of electrical contacts 250 of the loading unit 200 to be able to flex relative to the longitudinal axis “A-A,” for instance.


With reference to FIGS. 5 and 6, the base 140, the loading linkage 160, and the biasing element 170 are shown. FIG. 5 illustrates initial engagement between the loading unit 200 and the elongated portion 120. Here, the loading linkage 160 is in a proximal position relative to the base 140. In aspects, a portion of the base 140 may physically contact a portion of the loading linkage 160 to resist the distally-directed force of the biasing element 170. Additionally, as discussed above, in this initial engagement, the plurality of electrical contacts 150 of the elongated portion 120 are not in physical contact with the plurality of electrical contacts 250 of the loading unit 200.



FIG. 6 illustrates complete engagement between the loading unit 200 and the elongated portion 120. Here, the biasing element 170 has urged the loading linkage 160 to its distal position relative to the base 140. Moreover, as discussed above, in this complete or full engagement, each electrical contact of the plurality of electrical contacts 150 of the elongated portion 120 is in physical contact with one electrical contact of the plurality of electrical contacts 250 of the loading unit 200.


Additionally, upon proper engagement, the information stored on the plurality of electrical contacts 250 and/or the electronic component 270 of the loading unit 200 is electrically communicated through the plurality of electrical contacts 150 of the elongated portion 120, and through leads 300 (schematically illustrated in FIG. 4), to a processor and/or storage unit 350 (schematically illustrated in FIG. 4) which is engaged with the elongated portion 120, the housing 105, the handle assembly 110, and/or the adapter assembly 115, thereby allowing the surgical instrument 100 to receive the information stored on the loading unit 200.


While the above description contains many specifics, these specifics should not be construed as limitations on the scope of the present disclosure, but merely as illustrations of various embodiments thereof. Therefore, the above description should not be construed as limiting, but merely as exemplifications of various aspects. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A surgical instrument, comprising: a housing;an elongated portion extending distally from the housing, defining a longitudinal axis, and including an electrical contact having at least five segments including a first segment, a second segment, a third segment, a fourth segment, and a fifth segment, the second segment being adjacent to and extending distally from the first segment, the third segment being adjacent to and extending distally from the second segment, the fourth segment being adjacent to and extending distally from the third segment, and the fifth segment being adjacent to and extending distally from the fourth segment; anda loading unit configured to releasably engage the elongated portion, the loading unit including: an electronic component;a proximal portion including an electrical contact in electrical communication with the electronic component; andan end effector coupled to the proximal portion and configured to manipulate tissue;wherein engagement between the elongated portion and the loading unit causes the electrical contact of the elongated portion to engage the electrical contact of the loading unit thereby electrically connecting the elongated portion and the loading unit.
  • 2. The surgical instrument according to claim 1, wherein the electrical contact of the elongated portion is movable toward and away from the longitudinal axis.
  • 3. The surgical instrument according to claim 1, wherein three segments of the at least five segments of the electrical contact of the elongated portion form a flat-bottom V-shape.
  • 4. The surgical instrument according to claim 3, wherein the electrical contact of the elongated portion is made from sheet metal.
  • 5. The surgical instrument according to claim 1, wherein the electrical contact of the loading unit is movable toward and away from the longitudinal axis.
  • 6. The surgical instrument according to claim 1, wherein a distal end of the electrical contact of the loading unit is fixed from movement relative to the longitudinal axis, and wherein a proximal end of the electrical contact of the loading unit is movable toward and any from the longitudinal axis.
  • 7. The surgical instrument according to claim 1, wherein a proximal end of the electrical contact of the loading unit forms an acute angle with the longitudinal axis.
  • 8. The surgical instrument according to claim 1, wherein a proximal end of the electrical contact of the loading unit defines a ramp, the ramp configured to contact the fourth segment of the electrical contact of the elongated portion during engagement between the elongated portion and the loading unit.
  • 9. The surgical instrument according to claim 1, wherein the second segment of the electrical contact of the elongated portion is disposed at an angle with respect to the first segment, the third segment is disposed at an angle with respect to the second segment, the fourth segment is disposed at an angle with respect to the third segment, and the fifth segment is disposed at an angle with respect to the fourth segment.
  • 10. The surgical instrument according to claim 9, wherein the first segment, the third segment, and the fifth segment are parallel to each other.
  • 11. The surgical instrument according to claim 9, wherein the first segment, the third segment, and the fifth segment are parallel to the longitudinal axis.
  • 12. The surgical instrument according to claim 1, wherein each of the first segment, the second segment, the third segment, the fourth segment, and the fifth segment of the electrical contact of the elongated portion is linear.
US Referenced Citations (419)
Number Name Date Kind
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4504227 Lohn Mar 1985 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4722685 de Estrada et al. Feb 1988 A
4810139 Regan Mar 1989 A
4823807 Russell et al. Apr 1989 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350355 Sklar Sep 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5427087 Ito et al. Jun 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5609560 Ichikawa et al. Mar 1997 A
5632432 Schulze et al. May 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5797536 Smith et al. Aug 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Lasko Jan 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6090123 Culp et al. Jul 2000 A
6126651 Mayer Oct 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger et al. Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6783533 Green et al. Aug 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6899538 Matoba May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7111769 Wales et al. Sep 2006 B2
7122029 Koop et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7172104 Scirica et al. Feb 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238021 Johnson Jul 2007 B1
7246734 Shelton, IV Jul 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7819896 Racenet Oct 2010 B2
7822458 Webster, III et al. Oct 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8132705 Viola et al. Mar 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8342379 Whitman et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8424739 Racenet et al. Apr 2013 B2
8454585 Whitman Jun 2013 B2
8505802 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8551076 Duval et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8623000 Humayun et al. Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8888762 Whitman Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9064653 Prest et al. Jun 2015 B2
9113875 Viola et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
9597104 Nicholas et al. Mar 2017 B2
9839425 Zergiebel et al. Dec 2017 B2
10548595 Zergiebel et al. Feb 2020 B2
10973514 Zergiebel Apr 2021 B2
20010031975 Whitman et al. Oct 2001 A1
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030165794 Matoba Sep 2003 A1
20040111012 Whitman Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20050131442 Yachia et al. Jun 2005 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175947 Ortiz et al. Aug 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070175961 Shelton et al. Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080118315 Brunson May 2008 A1
20080146353 Boffelli et al. Jun 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090194954 Hsu Aug 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20090261539 Paulsen Oct 2009 A1
20090273146 Dezheng et al. Nov 2009 A1
20090314821 Racenet Dec 2009 A1
20100056986 Allen et al. Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100081108 Webster Apr 2010 A1
20100089974 Shelton, IV Apr 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130018361 Bryant Jan 2013 A1
20130093149 Saur et al. Apr 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130211397 Parihar et al. Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140207185 Goble et al. Jul 2014 A1
20140236173 Scirica et al. Aug 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140299647 Scirica et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150148829 Kimball May 2015 A1
20150157320 Zergiebel et al. Jun 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150216525 Collins et al. Aug 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
20160174972 Shelton, IV Jun 2016 A1
20180168622 Shelton, IV Jun 2018 A1
20190000464 Shelton, IV Jan 2019 A1
20190000476 Shelton, IV Jan 2019 A1
20190000525 Messerly Jan 2019 A1
20190183493 Shelton, IV Jun 2019 A1
20190183503 Shelton, IV et al. Jun 2019 A1
20190290271 Scott Sep 2019 A1
20190290307 Posey Sep 2019 A1
20190290308 Worthington Sep 2019 A1
20200261089 Shelton, IV Aug 2020 A1
Foreign Referenced Citations (73)
Number Date Country
2451558 Jan 2003 CA
102247182 Nov 2011 CN
102008053842 May 2010 DE
0634144 Jan 1995 EP
0648476 Apr 1995 EP
0686374 Dec 1995 EP
0705571 Apr 1996 EP
1690502 Aug 2006 EP
1723913 Nov 2006 EP
1736112 Dec 2006 EP
1769754 Apr 2007 EP
1772105 Apr 2007 EP
1813199 Aug 2007 EP
1813203 Aug 2007 EP
1813211 Aug 2007 EP
1943954 Jul 2008 EP
1943956 Jul 2008 EP
1943958 Jul 2008 EP
1943976 Jul 2008 EP
2005898 Dec 2008 EP
2027819 Feb 2009 EP
2044890 Apr 2009 EP
2055243 May 2009 EP
2098170 Sep 2009 EP
2100561 Sep 2009 EP
2100562 Sep 2009 EP
2165664 Mar 2010 EP
2236098 Oct 2010 EP
2263568 Dec 2010 EP
2272443 Jan 2011 EP
2316345 May 2011 EP
2324776 May 2011 EP
2329773 Jun 2011 EP
2333509 Jun 2011 EP
2462878 Jun 2012 EP
2462880 Jun 2012 EP
2491872 Aug 2012 EP
2586382 May 2013 EP
2606834 Jun 2013 EP
2668910 Dec 2013 EP
2676615 Dec 2013 EP
2839786 Feb 2015 EP
2881046 Jun 2015 EP
3549545 Oct 2019 EP
3586767 Jan 2020 EP
3922193 Dec 2021 EP
2333509 Feb 2010 ES
08038488 Feb 1996 JP
2005125075 May 2005 JP
20120022521 Mar 2012 KR
9915086 Apr 1999 WO
0072760 Dec 2000 WO
0072765 Dec 2000 WO
03000138 Jan 2003 WO
03026511 Apr 2003 WO
03030743 Apr 2003 WO
03065916 Aug 2003 WO
03077769 Sep 2003 WO
03090630 Nov 2003 WO
2004107989 Dec 2004 WO
2006042210 Apr 2006 WO
2007016290 Feb 2007 WO
2007026354 Mar 2007 WO
2007137304 Nov 2007 WO
2008131362 Oct 2008 WO
2008133956 Nov 2008 WO
2009039506 Mar 2009 WO
2007014355 Apr 2009 WO
2009132359 Oct 2009 WO
2009143092 Nov 2009 WO
2009149234 Dec 2009 WO
2011108840 Sep 2011 WO
2012040984 Apr 2012 WO
Non-Patent Literature Citations (1)
Entry
International Search Report and Written Opinion dated Nov. 9, 2022, issued in corresponding international application No. PCT/IB2022/057375, 17 pages.
Related Publications (1)
Number Date Country
20230045887 A1 Feb 2023 US