The present application is related to the following, concurrently-filed U.S. patent applications, which are incorporated herein by reference:
(1) U.S. patent application Ser. No. 11/651,715, now U.S. Patent Publication No. 2008/0167522, entitled “SURGICAL INSTRUMENT WITH WIRELESS COMMUNICATION BETWEEN CONTROL UNIT AND SENSOR TRANSPONDERS,” by J. Giordano et al.;
(2) U.S. patent application Ser. No. 11/651,807, now U.S. Patent Publication No. 2008/0167672, entitled “SURGICAL INSTRUMENT WITH WIRELESS COMMUNICATION BETWEEN CONTROL UNIT AND REMOTE SENSOR,” by J. Giordano et al.;
(3) U.S. patent application Ser. No. 11/651,806, now U.S. Patent Publication No. 2008/0167671, entitled “SURGICAL INSTRUMENT WITH ELEMENTS TO COMMUNICATE BETWEEN CONTROL UNIT AND END EFFECTOR,” by J. Giordano et al.;
(4) U.S. patent application Ser. No. 11/651,768, now U.S. Pat. No. 7,721,931, entitled “PREVENTION OF CARTRIDGE REUSE IN A SURGICAL INSTRUMENT,” by F. Shelton et al.;
(5) U.S. patent application Ser. No. 11/651,771, now U.S. Pat. No. 7,738,971, entitled “POST-STERILIZATION PROGRAMMING OF SURGICAL INSTRUMENTS,” by J. Swayze et al.; and
(6) U.S. patent application Ser. No. 11/651,788, now U.S. Pat. No. 7,721,936, entitled “INTERLOCK AND SURGICAL INSTRUMENT INCLUDING SAME, by F. Shelton et al.
Endoscopic surgical instruments are often preferred over traditional open surgical devices since a smaller incision tends to reduce the post-operative recovery time and complications. Consequently, significant development has gone into a range of endoscopic surgical instruments that are suitable for precise placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors engage the tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, staplers, clip applier, access device, drug/gene therapy delivery device, and energy device using ultrasound, RF, laser, etc.).
Known surgical staplers include an end effector that simultaneously makes a longitudinal incision in tissue and applies lines of staples on opposing sides of the incision. The end effector includes a pair of cooperating jaw members that, if the instrument is intended for endoscopic or laparoscopic applications, are capable of passing through a cannula passageway. One of the jaw members receives a staple cartridge having at least two laterally spaced rows of staples. The other jaw member defines an anvil having staple-forming pockets aligned with the rows of staples in the cartridge. The instrument includes a plurality of reciprocating wedges which, when driven distally, pass through openings in the staple cartridge and engage drivers supporting the staples to effect the firing of the staples toward the anvil.
An example of a surgical stapler suitable for endoscopic applications is described in U.S. Pat. No. 5,465,895, which discloses an endocutter with distinct closing and firing actions. A clinician using this device is able to close the jaw members upon tissue to position the tissue prior to firing. Once the clinician has determined that the jaw members are properly gripping tissue, the clinician can then fire the surgical stapler with a single firing stroke, thereby severing and stapling the tissue. The simultaneous severing and stapling avoids complications that may arise when performing such actions sequentially with different surgical tools that respectively only sever and staple.
One specific advantage of being able to close upon tissue before firing is that the clinician is able to verify via an endoscope that the desired location for the cut has been achieved, including that a sufficient amount of tissue has been captured between opposing jaws. Otherwise, opposing jaws may be drawn too close together, especially pinching at their distal ends, and thus not effectively forming closed staples in the severed tissue. At the other extreme, an excessive amount of clamped tissue may cause binding and an incomplete firing.
Endoscopic staplers/cutters continue to increase in complexity and function with each generation. One reason for this is the quest to lower force-to-fire (FTF) to a level that all or a great majority of surgeons can handle. One known solution to lower FTF uses CO2 or electrical motors. These devices have not faired much better than traditional hand-powered devices, but for a different reason. Surgeons typically prefer to experience proportionate force distribution to that being experienced by the end effector in the forming of the staple to assure them that the cutting/stapling cycle is complete, with the upper limit within the capabilities of most surgeons (usually around 15-30 lbs). They also typically want to maintain control of deploying the staples and being able to stop at anytime if the forces felt in the handle of the device feel too great or for some other clinical reason.
To address this need, so-called “power-assist” endoscopic surgical instruments have been developed in which a supplemental power source aids in the firing of the instrument. For example, in some power-assist devices, a motor provides supplemental electrical power to the power input by the user from squeezing the firing trigger. Such devices are capable of providing loading force feedback and control to the operator to reduce the firing force required to be exerted by the operator in order to complete the cutting operation. One such power-assist device is described in U.S. patent application Ser. No. 11/343,573, filed Jan. 31, 2006 by Shelton et al., entitled “Motor-driven surgical cutting and fastening instrument with loading force feedback,” (“the '573 application”) which is incorporated herein by reference.
Another reason for the increase in complexity and function of endoscopic surgical instruments is the quest to monitor and provide increased control over instrument components. For example, sensors and control systems are now being used to implement new functionality in surgical instruments including, for example, electronic lock-outs. For example, One such lockout device is described in U.S. patent application Ser. No. 11/343,439, filed Jan. 31, 2006 by Swayze et al., entitled, “Electronic Lockouts And Surgical Instrument Including Same,” which is incorporated herein by reference.
One challenge in using electronics in any kind of surgical instrument is providing a suitable power source. Most surgical instruments are stocked in sealed, sterilized packages. Because of this, it is usually not practical to access an instrument after it is packaged to verify the status of its power source or recharge if necessary. Accordingly, the shelf-life of the instrument is limited by the time that the power source is able to reliably hold a charge. For many kinds of instruments, though, it is desirable to choose a power source with a high peak power output. A high peak power output makes a power source more suitable for driving the motors, sensors and control systems used in surgical instruments. Sources with a high peak power output, however, such as lithium ion batteries, typically do not hold a full charge for a suitably long time. Accordingly, the choice of a power source must compromise the need for high peak power with a corresponding need for a long shelf-life.
In one general aspect, the present invention is directed to an assembly including a component of a surgical instrument, such as an endoscopic or laparoscopic instrument. The assembly may comprise a package; a surgical instrument component within the package; and a power source within the package. The power source may be configured to be placed in electrical communication with the surgical instrument component. The assembly may also comprise an auxiliary power source within the package and a circuit element, where the circuit element is in electrical communication with the power source and the auxiliary power source.
In another general aspect, the present invention is directed to an end effector cartridge for use with a surgical instrument. The end effector cartridge may comprise an electrical component; a power source; and a circuit element. The circuit element may be configured to electrically connect the power source and the electrical component when the end effector cartridge is installed in a surgical instrument.
In yet another general aspect, the present invention is directed to an assembly comprising a package and an end effector cartridge within the package. The end effector cartridge may comprise an electrical component. The assembly may also comprise a power source within the package and a circuit element within the package. The circuit element may be configured to electrically connect the power source and the electrical component when the end effector cartridge is installed in a surgical instrument. Methods of reconditioning surgical instruments and components thereof are also disclosed.
Various embodiments of the present invention are described herein by way of example in conjunction with the following figures wherein:
Various embodiments of the present invention are directed generally to surgical instruments and/or instrument components having power sources whose charges can be applied or maintained while the instruments and/or components are sealed in a sterile package. The present invention may be used with any type of surgical instrument comprising at least one power source, such as endoscopic or laparoscopic surgical instruments. Before describing aspects of the system, one type of surgical instrument in which embodiments of the present invention may be used—an endoscopic stapling and cutting instrument (i.e., an endocutter)—is first described by way of illustration.
The handle 6 of the instrument 10 may include a closure trigger 18 and a firing trigger 20 for actuating the end effector 12. It will be appreciated that instruments having end effectors directed to different surgical tasks may have different numbers or types of triggers or other suitable controls for operating the end effector 12. The end effector 12 is shown separated from the handle 6 by the preferably elongate shaft 8. In one embodiment, a clinician or operator of the instrument 10 may articulate the end effector 12 relative to the shaft 8 by utilizing the articulation control 16, as described in more detail in pending U.S. patent application Ser. No. 11/329,020, filed Jan. 10, 2006, entitled “Surgical Instrument Having An Articulating End Effector,” by Geoffrey C. Hueil et al., which is incorporated herein by reference.
In this example, the end effector 12 includes, among other things, a staple channel 22 and a pivotally translatable clamping member, such as an anvil 24, which are maintained at a spacing that assures effective stapling and severing of tissue clamped in the end effector 12. The handle 6 includes a pistol grip 26 towards which a closure trigger 18 is pivotally drawn by the clinician to cause clamping or closing of the anvil 24 toward the staple channel 22 of the end effector 12 to thereby clamp tissue positioned between the anvil 24 and channel 22. The firing trigger 20 is farther outboard of the closure trigger 18. Once the closure trigger 18 is locked in the closure position, the firing trigger 20 may rotate slightly toward the pistol grip 26 so that it can be reached by the operator using one hand. Then the operator may pivotally draw the firing trigger 20 toward the pistol grip 12 to cause the stapling and severing of clamped tissue in the end effector 12. The '573 application describes various configurations for locking and unlocking the closure trigger 18. In other embodiments, different types of clamping members besides the anvil 24 could be used, such as, for example, an opposing jaw, etc.
It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping the handle 6 of an instrument 10. Thus, the end effector 12 is distal with respect to the more proximal handle 6. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical” and “horizontal” are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
The closure trigger 18 may be actuated first. Once the clinician is satisfied with the positioning of the end effector 12, the clinician may draw back the closure trigger 18 to its fully closed, locked position proximate to the pistol grip 26. The firing trigger 20 may then be actuated. The firing trigger 20 returns to the open position (shown in
It should be noted that, although the embodiments of the instrument 10 described herein employ an end effector 12 that staples the severed tissue, in other embodiments different techniques for fastening or sealing the severed tissue may be used. For example, end effectors that use RF energy or adhesives to fasten the severed tissue may also be used. U.S. Pat. No. 5,709,680, entitled “Electrosurgical Hemostatic Device” to Yates et al., and U.S. Pat. No. 5,688,270, entitled “Electrosurgical Hemostatic Device With Recessed And/Or Offset Electrodes” to Yates et al., which are incorporated herein by reference, disclose cutting instruments that use RF energy to fasten the severed tissue. U.S. patent application Ser. No. 11/267,811 to Morgan et al and U.S. patent application Ser. No. 11/267,363 to Shelton et al., which are also incorporated herein by reference, disclose cutting instruments that use adhesives to fasten the severed tissue. Accordingly, although the description herein refers to cutting/stapling operations and the like, it should be recognized that this is an exemplary embodiment and is not meant to be limiting. Other tissue-fastening techniques may also be used.
A bearing 38, positioned at a distal end of the staple channel 22, receives the helical drive screw 36, allowing the helical drive screw 36 to freely rotate with respect to the channel 22. The helical screw shaft 36 may interface a threaded opening (not shown) of the knife 32 such that rotation of the shaft 36 causes the knife 32 to translate distally or proximately (depending on the direction of the rotation) through the staple channel 22. Accordingly, when the main drive shaft 48 is caused to rotate by actuation of the firing trigger 20 (as explained in more detail below), the bevel gear assembly 52a-c causes the secondary drive shaft 50 to rotate, which in turn, because of the engagement of the drive gears 54, 56, causes the helical screw shaft 36 to rotate, which causes the knife 32 to travel longitudinally along the channel 22 to cut any tissue clamped within the end effector. The sled 33 may be made of, for example, plastic, and may have a sloped distal surface. As the sled 33 traverses the channel 22, the sloped forward surface may push up or drive the staples in the staple cartridge 34 through the clamped tissue and against the anvil 24. The anvil 24 turns the staples, thereby stapling the severed tissue. When the knife 32 is retracted, the knife 32 and sled 33 may become disengaged, thereby leaving the sled 33 at the distal end of the channel 22.
According to various embodiments, as shown
The handle 6 may also include a run motor sensor 110 in communication with the firing trigger 20 to detect when the firing trigger 20 has been drawn in (or “closed”) toward the pistol grip portion 26 of the handle 6 by the operator to thereby actuate the cutting/stapling operation by the end effector 12. The sensor 110 may be a proportional sensor such as, for example, a rheostat or variable resistor. When the firing trigger 20 is drawn in, the sensor 110 detects the movement, and sends an electrical signal indicative of the voltage (or power) to be supplied to the motor 65. When the sensor 110 is a variable resistor or the like, the rotation of the motor 65 may be generally proportional to the amount of movement of the firing trigger 20. That is, if the operator only draws or closes the firing trigger 20 in a little bit, the rotation of the motor 65 is relatively low. When the firing trigger 20 is fully drawn in (or in the fully closed position), the rotation of the motor 65 is at its maximum. In other words, the harder the user pulls on the firing trigger 20, the more voltage is applied to the motor 65, causing greater rates of rotation. In another embodiment, for example, the control unit (described further below) may output a PWM control signal to the motor 65 based on the input from the sensor 110 in order to control the motor 65.
The handle 6 may include a middle handle piece 104 adjacent to the upper portion of the firing trigger 20. The handle 6 also may comprise a bias spring 112 connected between posts on the middle handle piece 104 and the firing trigger 20. The bias spring 112 may bias the firing trigger 20 to its fully open position. In that way, when the operator releases the firing trigger 20, the bias spring 112 will pull the firing trigger 20 to its open position, thereby removing actuation of the sensor 110, thereby stopping rotation of the motor 65. Moreover, by virtue of the bias spring 112, any time a user closes the firing trigger 20, the user will experience resistance to the closing operation, thereby providing the user with feedback as to the amount of rotation exerted by the motor 65. Further, the operator could stop retracting the firing trigger 20 to thereby remove force from the sensor 100, to thereby stop the motor 65. As such, the user may stop the deployment of the end effector 12, thereby providing a measure of control of the cutting/fastening operation to the operator.
The distal end of the helical gear drum 80 includes a distal drive shaft 120 that drives a ring gear 122, which mates with a pinion gear 124. The pinion gear 124 is connected to the main drive shaft 48 of the main drive shaft assembly. In that way, rotation of the motor 65 causes the main drive shaft assembly to rotate, which causes actuation of the end effector 12, as described above.
The ring 84 threaded on the helical gear drum 80 may include a post 86 that is disposed within a slot 88 of a slotted arm 90. The slotted arm 90 has an opening 92 at its opposite end 94 that receives a pivot pin 96 that is connected between the handle exterior side pieces 59, 60. The pivot pin 96 is also disposed through an opening 100 in the firing trigger 20 and an opening 102 in the middle handle piece 104.
In addition, the handle 6 may include a reverse motor (or end-of-stroke sensor) 130 and a stop motor (or beginning-of-stroke) sensor 142. In various embodiments, the reverse motor sensor 130 may be a limit switch located at the distal end of the helical gear drum 80 such that the ring 84 threaded on the helical gear drum 80 contacts and trips the reverse motor sensor 130 when the ring 84 reaches the distal end of the helical gear drum 80. The reverse motor sensor 130, when activated, sends a signal to the control unit which sends a signal to the motor 65 to reverse its rotation direction, thereby withdrawing the knife 32 of the end effector 12 following the cutting operation.
The stop motor sensor 142 may be, for example, a normally-closed limit switch. In various embodiments, it may be located at the proximate end of the helical gear drum 80 so that the ring 84 trips the switch 142 when the ring 84 reaches the proximate end of the helical gear drum 80.
In operation, when an operator of the instrument 10 pulls back the firing trigger 20, the sensor 110 detects the deployment of the firing trigger 20 and sends a signal to the control unit which sends a signal to the motor 65 to cause forward rotation of the motor 65 at, for example, a rate proportional to how hard the operator pulls back the firing trigger 20. The forward rotation of the motor 65 in turn causes the ring gear 78 at the distal end of the planetary gear assembly 72 to rotate, thereby causing the helical gear drum 80 to rotate, causing the ring 84 threaded on the helical gear drum 80 to travel distally along the helical gear drum 80. The rotation of the helical gear drum 80 also drives the main drive shaft assembly as described above, which in turn causes deployment of the knife 32 in the end effector 12. That is, the knife 32 and sled 33 are caused to traverse the channel 22 longitudinally, thereby cutting tissue clamped in the end effector 12. Also, the stapling operation of the end effector 12 is caused to happen in embodiments where a stapling-type end effector is used.
By the time the cutting/stapling operation of the end effector 12 is complete, the ring 84 on the helical gear drum 80 will have reached the distal end of the helical gear drum 80, thereby causing the reverse motor sensor 130 to be tripped, which sends a signal to the control unit which sends a signal to the motor 65 to cause the motor 65 to reverse its rotation. This in turn causes the knife 32 to retract, and also causes the ring 84 on the helical gear drum 80 to move back to the proximate end of the helical gear drum 80.
The middle handle piece 104 includes a backside shoulder 106 that engages the slotted arm 90 as best shown in
Components of an exemplary closure system for closing (or clamping) the anvil 24 of the end effector 12 by retracting the closure trigger 18 are also shown in
In operation, when the yoke 250 rotates due to retraction of the closure trigger 18, the closure brackets 256, 258 cause the proximate closure tube 40 to move distally (i.e., away from the handle end of the instrument 10), which causes the distal closure tube 42 to move distally, which causes the anvil 24 to rotate about the pivot point 25 into the clamped or closed position. When the closure trigger 18 is unlocked from the locked position, the proximate closure tube 40 is caused to slide proximately, which causes the distal closure tube 42 to slide proximately, which, by virtue of the tab 27 being inserted in the window 45 of the distal closure tube 42, causes the anvil 24 to pivot about the pivot point 25 into the open or unclamped position. In that way, by retracting and locking the closure trigger 18, an operator may clamp tissue between the anvil 24 and channel 22, and may unclamp the tissue following the cutting/stapling operation by unlocking the closure trigger 18 from the locked position.
The control unit (described further below) may receive the outputs from end-of-stroke and beginning-of-stroke sensors 130, 142 and the run-motor sensor 110, and may control the motor 65 based on the inputs. For example, when an operator initially pulls the firing trigger 20 after locking the closure trigger 18, the run-motor sensor 110 is actuated. If the staple cartridge 34 is present in the end effector 12, a cartridge lockout sensor (not shown) may be closed, in which case the control unit may output a control signal to the motor 65 to cause the motor 65 to rotate in the forward direction. When the end effector 12 reaches the end of its stroke, the reverse motor sensor 130 will be activated. The control unit may receive this output from the reverse motor sensor 130 and cause the motor 65 to reverse its rotational direction. When the knife 32 is fully retracted, the stop motor sensor switch 142 is activated, causing the control unit to stop the motor 65.
In other embodiments, rather than a proportional-type sensor 110, an on-off type sensor could be used. In such embodiments, the rate of rotation of the motor 65 would not be proportional to the force applied by the operator. Rather, the motor 65 would generally rotate at a constant rate. But the operator would still experience force feedback because the firing trigger 20 is geared into the gear drive train.
The instrument 10 may include a number of sensors in the end effector 12 for sensing various conditions related to the end effector 12, such as sensors for determining the status of the staple cartridge 34 (or other type of cartridge depending on the type of surgical instrument), user input loads, the progress of the stapler during closure and firing, a compatible surgical instrument or instruments for the cartridge 34, etc. The sensors may be passively powered by inductive signals, or may be powered by a remote power source, such as a battery in the end effector 12, for example. The sensor(s) could include magnetoresistive, optical, electromechanical, radio frequency identification (RFID), micro-electrical-mechanical systems (MEMS), motion or pressure sensors, for example. These sensors may be in communication with a control unit 300, which may be located in the handle 6 of the instrument 10, for example, as shown in
As shown in
According to various embodiments, the control unit 300 may be embodied as a single component, such as a microcontroller, a system-on-chip (SoC) or a system-in-package (SIP). Alternatively, the control unit 300 may be embodied as two or more discrete components. As shown in
In the embodiments described above, the battery 64 or other suitable power source powers (at least partially) the firing operation of the instrument 10. As such, the instrument may be a so-called “power-assist” device. More details and additional embodiments of power-assist devices are described in the '573 application, which is incorporated herein. It should be recognized, however, that the instrument 10 need not be a power-assist device and that this is merely an example of a type of device that may utilize aspects of the present invention. For example, the instrument 10 may include a user display (such as a LCD or LED display) that is powered by the battery 64 and controlled by the control unit 300. Data from the sensor transponders 368 in the end effector 12 may be displayed on such a display.
Typically, surgical instruments, such as the instrument 10, are cleaned and sterilized prior to use. In one sterilization technique, the instrument 10 is placed in a closed and sealed package 280, such as a plastic and/or TYVEK container or bag, as shown in
The circuit element may regulate power transferred from the auxiliary power source 402 to the instrument 10 to ensure that the battery 64 or other power source of the instrument 10 has an appropriate charge when the instrument 10 is ready for use. Physically, the circuit element may be positioned in any suitable location including, for example, as a stand alone item within the package 280, within the auxiliary power source 402, within the instrument, etc. The connection 404 may be any suitable kind of connection including, for example, a direct wired connection, an inductive connection, etc. In an inductive connection, the connection 404 may include inductive elements in close proximity to one another. A current in a first inductive element may induce a corresponding current in a second inductive element, thus transferring electric power across the connection 404.
According to various embodiments, the auxiliary power source 402 may charge the instrument source 406 relatively quickly when the instrument 10 is ready for use. For example, referring to
As described above, some end effector cartridges 34 may have sensors or other electrical components that require a power source. For example,
End effector cartridges 34 may be stored and sterilized according to the methods described above. For example,
According to various embodiments, a cartridge power source 456 may have a small charge capacity. Accordingly, it may be desirable to prevent unnecessary use of this charge. For example, the cartridge power source 456 may be electrically isolated from its load until the cartridge 34 is ready for use. The cartridge 34 may include a cut-off switch or other circuit element that is closed when the cartridge 34 is installed in an end effector 12. When the cut-off switch is closed, the power source 456 may be connected to its load (e.g., any sensors or other powered electronics present in the cartridge 34).
The cut-off switch may be implemented in any suitable way. For example, as shown in
The various embodiments of the present invention have been described above in connection with cutting-type surgical instruments. It should be noted, however, that in other embodiments, the inventive surgical instrument disclosed herein need not be a cutting-type surgical instrument, but rather could be used in any type of surgical instrument including remote sensor transponders. For example, it could be a non-cutting endoscopic instrument, a grasper, a stapler, a clip applier, an access device, a drug/gene therapy delivery device, an energy device using ultrasound, RF, laser, etc. In addition, the present invention may be in laparoscopic instruments, for example.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
Although the present invention has been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Number | Name | Date | Kind |
---|---|---|---|
3490675 | Green et al. | Jan 1970 | A |
3643851 | Green et al. | Feb 1972 | A |
3662939 | Bryan | May 1972 | A |
3717294 | Green | Feb 1973 | A |
3819100 | Noiles et al. | Jun 1974 | A |
4331277 | Green | May 1982 | A |
4383634 | Green | May 1983 | A |
4396139 | Hall et al. | Aug 1983 | A |
4402445 | Green | Sep 1983 | A |
4415112 | Green | Nov 1983 | A |
4429695 | Green | Feb 1984 | A |
4475679 | Fleury, Jr. | Oct 1984 | A |
4489875 | Crawford et al. | Dec 1984 | A |
4500024 | DiGiovanni et al. | Feb 1985 | A |
4505273 | Braun et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4506671 | Green | Mar 1985 | A |
4522327 | Korthoff et al. | Jun 1985 | A |
4530453 | Green | Jul 1985 | A |
4566620 | Green et al. | Jan 1986 | A |
4573622 | Green et al. | Mar 1986 | A |
4580712 | Green | Apr 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4629107 | Fedotov et al. | Dec 1986 | A |
4641076 | Linden | Feb 1987 | A |
4655222 | Florez et al. | Apr 1987 | A |
4664305 | Blake, III et al. | May 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4715520 | Roehr, Jr. et al. | Dec 1987 | A |
4728020 | Green et al. | Mar 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4767044 | Green | Aug 1988 | A |
4805823 | Rothfuss | Feb 1989 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4819853 | Green | Apr 1989 | A |
4821939 | Green | Apr 1989 | A |
4869414 | Green et al. | Sep 1989 | A |
4869415 | Fox | Sep 1989 | A |
4941623 | Pruitt | Jul 1990 | A |
4944443 | Oddsen et al. | Jul 1990 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5071430 | de Salis et al. | Dec 1991 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5137198 | Nobis et al. | Aug 1992 | A |
5139513 | Segato | Aug 1992 | A |
5158567 | Green | Oct 1992 | A |
5211649 | Kohler et al. | May 1993 | A |
5221036 | Takase | Jun 1993 | A |
5222975 | Crainich | Jun 1993 | A |
5258009 | Conners | Nov 1993 | A |
5282806 | Haber et al. | Feb 1994 | A |
5282829 | Hermes | Feb 1994 | A |
5304204 | Bregen | Apr 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5342396 | Cook | Aug 1994 | A |
5350400 | Esposito et al. | Sep 1994 | A |
5356006 | Alpern et al. | Oct 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5383880 | Hooven | Jan 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5413272 | Green et al. | May 1995 | A |
5417361 | Williamson, IV | May 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5474566 | Alesi et al. | Dec 1995 | A |
5478354 | Tovey et al. | Dec 1995 | A |
5480089 | Blewett | Jan 1996 | A |
5484095 | Green et al. | Jan 1996 | A |
5484451 | Akopov et al. | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5487500 | Knodel et al. | Jan 1996 | A |
5489058 | Plyley et al. | Feb 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5509596 | Green et al. | Apr 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5543119 | Sutter et al. | Aug 1996 | A |
5553765 | Knodel et al. | Sep 1996 | A |
5554169 | Green et al. | Sep 1996 | A |
5560530 | Bolanos et al. | Oct 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5562241 | Knodel et al. | Oct 1996 | A |
5562682 | Oberlin et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5579978 | Green et al. | Dec 1996 | A |
5580067 | Hamblin et al. | Dec 1996 | A |
5586711 | Plyley et al. | Dec 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5588580 | Paul et al. | Dec 1996 | A |
5588581 | Conlon et al. | Dec 1996 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5605273 | Hamblin et al. | Feb 1997 | A |
5607094 | Clark et al. | Mar 1997 | A |
5609285 | Grant et al. | Mar 1997 | A |
5624452 | Yates | Apr 1997 | A |
5628446 | Geiste et al. | May 1997 | A |
5630539 | Plyley et al. | May 1997 | A |
5630540 | Blewett | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5634584 | Okorocha et al. | Jun 1997 | A |
5636780 | Green et al. | Jun 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5651491 | Heaton et al. | Jul 1997 | A |
5653373 | Green et al. | Aug 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5653677 | Okada et al. | Aug 1997 | A |
5655698 | Yoon | Aug 1997 | A |
5657921 | Young et al. | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5662258 | Knodel et al. | Sep 1997 | A |
5662260 | Yoon | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5680981 | Mililli et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5680983 | Plyley et al. | Oct 1997 | A |
5685474 | Seeber | Nov 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5697543 | Burdorff | Dec 1997 | A |
5702408 | Wales et al. | Dec 1997 | A |
5704087 | Strub | Jan 1998 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5709334 | Sorrentino et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5718360 | Green et al. | Feb 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5725554 | Simon et al. | Mar 1998 | A |
5730758 | Allgeyer | Mar 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5743456 | Jones et al. | Apr 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5779131 | Knodel et al. | Jul 1998 | A |
5779132 | Knodel et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5785232 | Vidal et al. | Jul 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5826776 | Schulze et al. | Oct 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5893506 | Powell | Apr 1999 | A |
5897562 | Bolanos et al. | Apr 1999 | A |
5901895 | Heaton et al. | May 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5911353 | Bolanos et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5919198 | Graves, Jr. et al. | Jul 1999 | A |
5941442 | Geiste et al. | Aug 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6083242 | Cook | Jul 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6102271 | Longo et al. | Aug 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6126058 | Adams et al. | Oct 2000 | A |
6171330 | Benchetrit | Jan 2001 | B1 |
6181105 | Cutolo et al. | Jan 2001 | B1 |
6202914 | Geiste et al. | Mar 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6346077 | Taylor et al. | Feb 2002 | B1 |
6387113 | Hawkins et al. | May 2002 | B1 |
RE37814 | Allgeyer | Aug 2002 | E |
6436107 | Wang et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6505768 | Whitman | Jan 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6578751 | Hartwick | Jun 2003 | B2 |
6588643 | Bolduc et al. | Jul 2003 | B2 |
6596432 | Kawakami et al. | Jul 2003 | B2 |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6616686 | Coleman et al. | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6629988 | Weadock | Oct 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6648816 | Irion et al. | Nov 2003 | B2 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6679410 | Würsch et al. | Jan 2004 | B2 |
6681978 | Geiste et al. | Jan 2004 | B2 |
6681979 | Whitman | Jan 2004 | B2 |
6695199 | Whitman | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6716233 | Whitman | Apr 2004 | B1 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6769594 | Orban, III | Aug 2004 | B2 |
6773438 | Knodel et al. | Aug 2004 | B1 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6805273 | Bilotti et al. | Oct 2004 | B2 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6817509 | Geiste et al. | Nov 2004 | B2 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6846307 | Whitman et al. | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
RE38708 | Bolanos et al. | Mar 2005 | E |
6874669 | Adams et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6945444 | Gresham et al. | Sep 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6978922 | Bilotti et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
6988650 | Schwemberger et al. | Jan 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7000819 | Swayze et al. | Feb 2006 | B2 |
7008435 | Cummins | Mar 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7032799 | Viola et al. | Apr 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7056330 | Gayton | Jun 2006 | B2 |
7070083 | Jankowski | Jul 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7080769 | Vresh et al. | Jul 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7083571 | Wang et al. | Aug 2006 | B2 |
7090684 | McGuckin, Jr. et al. | Aug 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7108709 | Cummins | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7114642 | Whitman | Oct 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7121446 | Arad et al. | Oct 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7140527 | Ehrenfels et al. | Nov 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7168604 | Milliman et al. | Jan 2007 | B2 |
7188758 | Viola et al. | Mar 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7207472 | Wukusick et al. | Apr 2007 | B2 |
7210609 | Leiboff et al. | May 2007 | B2 |
7213736 | Wales et al. | May 2007 | B2 |
7220272 | Weadock | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7238195 | Viola | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7258262 | Mastri et al. | Aug 2007 | B2 |
7260431 | Libbus et al. | Aug 2007 | B2 |
7278562 | Mastri et al. | Oct 2007 | B2 |
7278563 | Green | Oct 2007 | B1 |
7296724 | Green et al. | Nov 2007 | B2 |
7303106 | Milliman et al. | Dec 2007 | B2 |
7303107 | Milliman et al. | Dec 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7303556 | Metzger | Dec 2007 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7328829 | Arad et al. | Feb 2008 | B2 |
7354447 | Shelton, IV et al. | Apr 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7398907 | Racenet et al. | Jul 2008 | B2 |
7398908 | Holsten et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7404509 | Ortiz et al. | Jul 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7410086 | Ortiz et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7424965 | Racenet et al. | Sep 2008 | B2 |
7431188 | Marczyk | Oct 2008 | B1 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7431730 | Viola | Oct 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7441685 | Boudreaux | Oct 2008 | B1 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7467740 | Shelton, IV et al. | Dec 2008 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7490749 | Schall et al. | Feb 2009 | B2 |
7494039 | Racenet et al. | Feb 2009 | B2 |
7500979 | Hueil et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7631793 | Rethy et al. | Dec 2009 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
20020117534 | Green et al. | Aug 2002 | A1 |
20030093103 | Malackowski et al. | May 2003 | A1 |
20030105478 | Whitman et al. | Jun 2003 | A1 |
20030130677 | Whitman et al. | Jul 2003 | A1 |
20040006372 | Racenet et al. | Jan 2004 | A1 |
20040034369 | Sauer et al. | Feb 2004 | A1 |
20040094597 | Whitman et al. | May 2004 | A1 |
20040108357 | Milliman et al. | Jun 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040164123 | Racenet et al. | Aug 2004 | A1 |
20040167572 | Roth et al. | Aug 2004 | A1 |
20040173659 | Green et al. | Sep 2004 | A1 |
20040222268 | Bilotti et al. | Nov 2004 | A1 |
20040232201 | Wenchell et al. | Nov 2004 | A1 |
20040243151 | Demmy et al. | Dec 2004 | A1 |
20040254608 | Huitema et al. | Dec 2004 | A1 |
20050032511 | Malone et al. | Feb 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050103819 | Racenet et al. | May 2005 | A1 |
20050119669 | Demmy | Jun 2005 | A1 |
20050125009 | Perry et al. | Jun 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050143759 | Kelly | Jun 2005 | A1 |
20050184121 | Heinrich | Aug 2005 | A1 |
20050187576 | Whitman et al. | Aug 2005 | A1 |
20050189397 | Jankowski | Sep 2005 | A1 |
20050192628 | Viola | Sep 2005 | A1 |
20050216055 | Scirica et al. | Sep 2005 | A1 |
20050240222 | Shipp | Oct 2005 | A1 |
20050263563 | Racenet et al. | Dec 2005 | A1 |
20050274768 | Cummins et al. | Dec 2005 | A1 |
20060011699 | Olson et al. | Jan 2006 | A1 |
20060025812 | Shelton, IV | Feb 2006 | A1 |
20060047307 | Ortiz et al. | Mar 2006 | A1 |
20060049229 | Milliman et al. | Mar 2006 | A1 |
20060052825 | Ransick et al. | Mar 2006 | A1 |
20060085033 | Criscuolo et al. | Apr 2006 | A1 |
20060100643 | Laufer et al. | May 2006 | A1 |
20060108393 | Heinrich et al. | May 2006 | A1 |
20060180634 | Shelton, IV et al. | Aug 2006 | A1 |
20060212069 | Shelton, IV | Sep 2006 | A1 |
20060226196 | Hueil et al. | Oct 2006 | A1 |
20060235469 | Viola | Oct 2006 | A1 |
20060241692 | McGuckin, Jr. et al. | Oct 2006 | A1 |
20060273135 | Beetel | Dec 2006 | A1 |
20060278680 | Viola et al. | Dec 2006 | A1 |
20060278681 | Viola et al. | Dec 2006 | A1 |
20060289602 | Wales et al. | Dec 2006 | A1 |
20070023476 | Whitman et al. | Feb 2007 | A1 |
20070023477 | Whitman et al. | Feb 2007 | A1 |
20070034668 | Holsten et al. | Feb 2007 | A1 |
20070045379 | Shelton, IV | Mar 2007 | A1 |
20070073341 | Smith | Mar 2007 | A1 |
20070084897 | Shelton, IV et al. | Apr 2007 | A1 |
20070102452 | Shelton, IV et al. | May 2007 | A1 |
20070102453 | Morgan et al. | May 2007 | A1 |
20070102472 | Shelton, IV | May 2007 | A1 |
20070102473 | Shelton, IV et al. | May 2007 | A1 |
20070102474 | Shelton, IV et al. | May 2007 | A1 |
20070106317 | Shelton, IV et al. | May 2007 | A1 |
20070114261 | Ortiz et al. | May 2007 | A1 |
20070158385 | Hueil et al. | Jul 2007 | A1 |
20070170225 | Shelton, IV et al. | Jul 2007 | A1 |
20070173806 | Orszulak et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070175949 | Shelton, IV et al. | Aug 2007 | A1 |
20070175950 | Shelton, IV et al. | Aug 2007 | A1 |
20070175951 | Shelton, IV et al. | Aug 2007 | A1 |
20070175953 | Shelton, IV et al. | Aug 2007 | A1 |
20070175955 | Shelton, IV et al. | Aug 2007 | A1 |
20070175956 | Swayze et al. | Aug 2007 | A1 |
20070175957 | Shelton, IV et al. | Aug 2007 | A1 |
20070175958 | Shelton, IV et al. | Aug 2007 | A1 |
20070175959 | Shelton, IV et al. | Aug 2007 | A1 |
20070175964 | Shelton, IV et al. | Aug 2007 | A1 |
20070179476 | Shelton, IV et al. | Aug 2007 | A1 |
20070181632 | Milliman | Aug 2007 | A1 |
20070194079 | Hueil et al. | Aug 2007 | A1 |
20070194080 | Swayze et al. | Aug 2007 | A1 |
20070194081 | Hueil et al. | Aug 2007 | A1 |
20070194082 | Morgan et al. | Aug 2007 | A1 |
20070233053 | Shelton, IV et al. | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20070295780 | Shelton et al. | Dec 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080029576 | Shelton et al. | Feb 2008 | A1 |
20080035701 | Racenet et al. | Feb 2008 | A1 |
20080041917 | Racenet et al. | Feb 2008 | A1 |
20080078800 | Hess et al. | Apr 2008 | A1 |
20080078801 | Shelton et al. | Apr 2008 | A1 |
20080078802 | Hess et al. | Apr 2008 | A1 |
20080078803 | Shelton et al. | Apr 2008 | A1 |
20080078804 | Shelton et al. | Apr 2008 | A1 |
20080078806 | Omaits et al. | Apr 2008 | A1 |
20080078807 | Hess et al. | Apr 2008 | A1 |
20080078808 | Hess et al. | Apr 2008 | A1 |
20080082115 | Morgan et al. | Apr 2008 | A1 |
20080082124 | Hess et al. | Apr 2008 | A1 |
20080082125 | Murray et al. | Apr 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080083813 | Zemlok et al. | Apr 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080164296 | Shelton et al. | Jul 2008 | A1 |
20080167522 | Giordano et al. | Jul 2008 | A1 |
20080167670 | Shelton et al. | Jul 2008 | A1 |
20080167671 | Giordano et al. | Jul 2008 | A1 |
20080167672 | Giordano et al. | Jul 2008 | A1 |
20080167736 | Swayze et al. | Jul 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080169330 | Shelton et al. | Jul 2008 | A1 |
20080169331 | Shelton et al. | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080210738 | Shelton et al. | Sep 2008 | A1 |
20080237296 | Boudreaux et al. | Oct 2008 | A1 |
20080251568 | Zemlok et al. | Oct 2008 | A1 |
20080283570 | Boyden et al. | Nov 2008 | A1 |
20080290134 | Bettuchi et al. | Nov 2008 | A1 |
20080296343 | Schall et al. | Dec 2008 | A1 |
20080296345 | Shelton, IV et al. | Dec 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080296347 | Shelton, IV et al. | Dec 2008 | A1 |
20080300579 | Broehl et al. | Dec 2008 | A1 |
20080300580 | Shelton, IV et al. | Dec 2008 | A1 |
20080300613 | Shelton, IV et al. | Dec 2008 | A1 |
20080308601 | Timm et al. | Dec 2008 | A1 |
20080308602 | Timm et al. | Dec 2008 | A1 |
20080308603 | Shelton, IV et al. | Dec 2008 | A1 |
20080308606 | Timm et al. | Dec 2008 | A1 |
20080308607 | Timm et al. | Dec 2008 | A1 |
20080308608 | Prommersberger | Dec 2008 | A1 |
20080314954 | Boudreaux | Dec 2008 | A1 |
20080314955 | Boudreaux et al. | Dec 2008 | A1 |
20080314956 | Boudreaux | Dec 2008 | A1 |
20080314957 | Boudreaux | Dec 2008 | A1 |
20080314961 | Boudreaux et al. | Dec 2008 | A1 |
20080314962 | Boudreaux | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001122 | Prommersberger et al. | Jan 2009 | A1 |
20090001123 | Morgan et al. | Jan 2009 | A1 |
20090001124 | Hess et al. | Jan 2009 | A1 |
20090001125 | Hess et al. | Jan 2009 | A1 |
20090001126 | Hess et al. | Jan 2009 | A1 |
20090001128 | Weisenburgh, II et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090005807 | Hess et al. | Jan 2009 | A1 |
20090005808 | Hess et al. | Jan 2009 | A1 |
20090005809 | Hess et al. | Jan 2009 | A1 |
20090012556 | Boudreaux et al. | Jan 2009 | A1 |
20090076534 | Shelton, IV et al. | Mar 2009 | A1 |
20090157067 | Kane et al. | Jun 2009 | A1 |
20090200355 | Baxter, III et al. | Aug 2009 | A1 |
20090206123 | Doll et al. | Aug 2009 | A1 |
20090206124 | Hall et al. | Aug 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206128 | Hueil et al. | Aug 2009 | A1 |
20090206129 | Doll et al. | Aug 2009 | A1 |
20090206130 | Hall et al. | Aug 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090206132 | Hueil et al. | Aug 2009 | A1 |
20090206133 | Morgan et al. | Aug 2009 | A1 |
20090206134 | Swayze et al. | Aug 2009 | A1 |
20090206135 | Hall et al. | Aug 2009 | A1 |
20090206136 | Moore et al. | Aug 2009 | A1 |
20090206137 | Hall et al. | Aug 2009 | A1 |
20090206138 | Smith et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206140 | Scheib et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090206143 | Huitema et al. | Aug 2009 | A1 |
20090206144 | Doll et al. | Aug 2009 | A1 |
20090209946 | Swayze et al. | Aug 2009 | A1 |
20090218384 | Aranyi | Sep 2009 | A1 |
20090242610 | Shelton, IV et al. | Oct 2009 | A1 |
20090255974 | Viola | Oct 2009 | A1 |
20090255978 | Viola et al. | Oct 2009 | A1 |
20090289096 | Shelton, IV et al. | Nov 2009 | A1 |
20090292283 | Odom | Nov 2009 | A1 |
20100032470 | Hess et al. | Feb 2010 | A1 |
20100065605 | Shelton, VI et al. | Mar 2010 | A1 |
20100065609 | Schwemberger | Mar 2010 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100072251 | Baxter, III et al. | Mar 2010 | A1 |
20100072252 | Baxter, III et al. | Mar 2010 | A1 |
20100072253 | Baxter, III et al. | Mar 2010 | A1 |
20100072256 | Baxter, III et al. | Mar 2010 | A1 |
20100076474 | Yates et al. | Mar 2010 | A1 |
20100076475 | Yates et al. | Mar 2010 | A1 |
20100089970 | Smith et al. | Apr 2010 | A1 |
20100089974 | Shelton, IV | Apr 2010 | A1 |
20100096435 | Fuchs et al. | Apr 2010 | A1 |
20100133317 | Shelton, IV et al. | Jun 2010 | A1 |
20100133318 | Boudreaux | Jun 2010 | A1 |
20100179382 | Shelton, IV et al. | Jul 2010 | A1 |
20100181364 | Shelton, IV et al. | Jul 2010 | A1 |
20100193566 | Scheib et al. | Aug 2010 | A1 |
20100193567 | Scheib et al. | Aug 2010 | A1 |
20100193568 | Scheib et al. | Aug 2010 | A1 |
20100193569 | Yates et al. | Aug 2010 | A1 |
20100198220 | Boudreaux et al. | Aug 2010 | A1 |
20100213241 | Bedi et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2458946 | Mar 2003 | CA |
2512960 | Jan 2006 | CA |
2514274 | Jan 2006 | CA |
273689 | May 1914 | DE |
1775926 | Jan 1972 | DE |
9412228 | Sep 1994 | DE |
19924311 | Nov 2000 | DE |
69328576 | Jan 2001 | DE |
20112837 | Oct 2001 | DE |
20121753 | Apr 2003 | DE |
10314072 | Oct 2004 | DE |
0122046 | Oct 1984 | EP |
0070230 | Oct 1985 | EP |
0033548 | May 1986 | EP |
0276104 | Jul 1988 | EP |
0639349 | Feb 1994 | EP |
0324636 | Mar 1994 | EP |
0593920 | Apr 1994 | EP |
0600182 | Jun 1994 | EP |
0630612 | Dec 1994 | EP |
0634144 | Jan 1995 | EP |
0646356 | Apr 1995 | EP |
0646357 | Apr 1995 | EP |
0653189 | May 1995 | EP |
0669104 | Aug 1995 | EP |
0511470 | Oct 1995 | EP |
0679367 | Nov 1995 | EP |
0392547 | Dec 1995 | EP |
0685204 | Dec 1995 | EP |
0699418 | Mar 1996 | EP |
0702937 | Mar 1996 | EP |
0705571 | Apr 1996 | EP |
0484677 | Jun 1996 | EP |
0541987 | Jul 1996 | EP |
0667119 | Jul 1996 | EP |
0770355 | May 1997 | EP |
0503662 | Jun 1997 | EP |
0578425 | Sep 1997 | EP |
0625335 | Nov 1997 | EP |
0552423 | Jan 1998 | EP |
0592244 | Jan 1998 | EP |
0648476 | Jan 1998 | EP |
0676173 | Sep 1998 | EP |
0603472 | Nov 1998 | EP |
0605351 | Nov 1998 | EP |
0878169 | Nov 1998 | EP |
0879742 | Nov 1998 | EP |
0760230 | Feb 1999 | EP |
0537572 | Jun 1999 | EP |
0552050 | May 2000 | EP |
1090592 | Apr 2001 | EP |
1256318 | May 2001 | EP |
0908152 | Jan 2002 | EP |
0872213 | May 2002 | EP |
1238634 | Sep 2002 | EP |
0656188 | Jan 2003 | EP |
0829235 | Jun 2003 | EP |
0813843 | Oct 2003 | EP |
0741996 | Feb 2004 | EP |
0705570 | Apr 2004 | EP |
1086713 | May 2004 | EP |
1426012 | Jun 2004 | EP |
0888749 | Sep 2004 | EP |
1477119 | Nov 2004 | EP |
1479345 | Nov 2004 | EP |
1479347 | Nov 2004 | EP |
1479348 | Nov 2004 | EP |
1520521 | Apr 2005 | EP |
1520523 | Apr 2005 | EP |
1520525 | Apr 2005 | EP |
1522264 | Apr 2005 | EP |
1550408 | Jul 2005 | EP |
1557129 | Jul 2005 | EP |
1064883 | Aug 2005 | EP |
1157666 | Sep 2005 | EP |
1621138 | Feb 2006 | EP |
1621139 | Feb 2006 | EP |
1621141 | Feb 2006 | EP |
1621145 | Feb 2006 | EP |
1621151 | Feb 2006 | EP |
1652481 | May 2006 | EP |
1382303 | Jun 2006 | EP |
1045672 | Aug 2006 | EP |
1617768 | Aug 2006 | EP |
1702567 | Sep 2006 | EP |
1129665 | Nov 2006 | EP |
1256317 | Dec 2006 | EP |
1728473 | Dec 2006 | EP |
1728475 | Dec 2006 | EP |
1479346 | Jan 2007 | EP |
1484024 | Jan 2007 | EP |
1754445 | Feb 2007 | EP |
1759812 | Mar 2007 | EP |
1769756 | Apr 2007 | EP |
1769758 | Apr 2007 | EP |
1785097 | May 2007 | EP |
1790293 | May 2007 | EP |
1800610 | Jun 2007 | EP |
1300117 | Aug 2007 | EP |
1813199 | Aug 2007 | EP |
1813201 | Aug 2007 | EP |
1813203 | Aug 2007 | EP |
1813207 | Aug 2007 | EP |
1813209 | Aug 2007 | EP |
1402821 | Dec 2007 | EP |
1872727 | Jan 2008 | EP |
1839596 | Feb 2008 | EP |
1897502 | Mar 2008 | EP |
1702568 | Jul 2008 | EP |
1970014 | Sep 2008 | EP |
1980213 | Oct 2008 | EP |
1759645 | Nov 2008 | EP |
1693008 | Dec 2008 | EP |
2000102 | Dec 2008 | EP |
1749486 | Mar 2009 | EP |
2090256 | Aug 2009 | EP |
1813206 | Apr 2010 | EP |
999646 | Feb 1952 | FR |
1112936 | Mar 1956 | FR |
2765794 | Jan 1999 | FR |
939929 | Oct 1963 | GB |
1210522 | Oct 1970 | GB |
2336214 | Oct 1999 | GB |
6007357 | Jan 1994 | JP |
7051273 | Feb 1995 | JP |
8033641 | Feb 1996 | JP |
8229050 | Sep 1996 | JP |
2000287987 | Oct 2000 | JP |
2001286477 | Oct 2001 | JP |
2002369820 | Dec 2002 | JP |
2005505322 | Feb 2005 | JP |
2005103293 | Apr 2005 | JP |
2187249 | Aug 2002 | RU |
2225170 | Mar 2004 | RU |
1377053 | Feb 1988 | SU |
1561964 | May 1990 | SU |
1722476 | Mar 1992 | SU |
WO 9308755 | May 1993 | WO |
WO 9518572 | Jul 1995 | WO |
WO 9523557 | Sep 1995 | WO |
WO 9529639 | Nov 1995 | WO |
WO 9622055 | Jul 1996 | WO |
WO 9635464 | Nov 1996 | WO |
WO 9734533 | Sep 1997 | WO |
WO 9739688 | Oct 1997 | WO |
WO 9817180 | Apr 1998 | WO |
WO 9830153 | Jul 1998 | WO |
WO 9912483 | Mar 1999 | WO |
WO 9915086 | Apr 1999 | WO |
WO 9934744 | Jul 1999 | WO |
WO 9945849 | Sep 1999 | WO |
WO 0024322 | May 2000 | WO |
WO 0057796 | Oct 2000 | WO |
WO 0064365 | Nov 2000 | WO |
WO 0072762 | Dec 2000 | WO |
WO 0072765 | Dec 2000 | WO |
WO 0105702 | Jan 2001 | WO |
WO 0110482 | Feb 2001 | WO |
WO 0154594 | Aug 2001 | WO |
WO 0162158 | Aug 2001 | WO |
WO 0162162 | Aug 2001 | WO |
WO 0162164 | Aug 2001 | WO |
WO 0191646 | Dec 2001 | WO |
WO 0207608 | Jan 2002 | WO |
WO 0207618 | Jan 2002 | WO |
WO 0217799 | Mar 2002 | WO |
WO 0219920 | Mar 2002 | WO |
WO 0230297 | Apr 2002 | WO |
WO 0232322 | Apr 2002 | WO |
WO 0243571 | Jun 2002 | WO |
WO 02058568 | Aug 2002 | WO |
WO 02060328 | Aug 2002 | WO |
WO 02067785 | Sep 2002 | WO |
WO 02098302 | Dec 2002 | WO |
WO 03000138 | Jan 2003 | WO |
WO 03001329 | Jan 2003 | WO |
WO 03013363 | Feb 2003 | WO |
WO 03020106 | Mar 2003 | WO |
WO 03020139 | Mar 2003 | WO |
WO 03079909 | Mar 2003 | WO |
WO 03030743 | Apr 2003 | WO |
WO 03037193 | May 2003 | WO |
WO 03047436 | Jun 2003 | WO |
WO 03057048 | Jul 2003 | WO |
WO 03057058 | Jul 2003 | WO |
WO 03063694 | Aug 2003 | WO |
WO 03077769 | Sep 2003 | WO |
WO 03082126 | Oct 2003 | WO |
WO 03088845 | Oct 2003 | WO |
WO 03090630 | Nov 2003 | WO |
WO 03094743 | Nov 2003 | WO |
WO 03094745 | Nov 2003 | WO |
WO 03094746 | Nov 2003 | WO |
WO 03094747 | Nov 2003 | WO |
WO 03101313 | Dec 2003 | WO |
WO 03105698 | Dec 2003 | WO |
WO 03105702 | Dec 2003 | WO |
WO 2004006980 | Jan 2004 | WO |
WO 2004028585 | Apr 2004 | WO |
WO 2004032754 | Apr 2004 | WO |
WO 2004032760 | Apr 2004 | WO |
WO 2004032762 | Apr 2004 | WO |
WO 2004032763 | Apr 2004 | WO |
WO 2004047653 | Jun 2004 | WO |
WO 2004049956 | Jun 2004 | WO |
WO 2004086987 | Oct 2004 | WO |
WO 2004096057 | Nov 2004 | WO |
WO 2004105621 | Dec 2004 | WO |
WO 2004112618 | Dec 2004 | WO |
WO 2004112652 | Dec 2004 | WO |
WO 2005027983 | Mar 2005 | WO |
WO 2005037329 | Apr 2005 | WO |
WO 2005078892 | Aug 2005 | WO |
WO 2005096954 | Oct 2005 | WO |
WO 2005112808 | Dec 2005 | WO |
WO 2005115251 | Dec 2005 | WO |
WO 2006044490 | Apr 2006 | WO |
WO 2006044581 | Apr 2006 | WO |
WO 2006044810 | Apr 2006 | WO |
WO 2006083748 | Aug 2006 | WO |
WO 2006115958 | Nov 2006 | WO |
WO 2006132992 | Dec 2006 | WO |
WO 2007002180 | Jan 2007 | WO |
WO 2007016290 | Feb 2007 | WO |
WO 2007018898 | Feb 2007 | WO |
WO 2007098220 | Aug 2007 | WO |
WO 2007121579 | Nov 2007 | WO |
WO 2007137304 | Nov 2007 | WO |
WO 2007139734 | Dec 2007 | WO |
WO 2007142625 | Dec 2007 | WO |
WO 2008039270 | Apr 2008 | WO |
WO 2008045383 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080167644 A1 | Jul 2008 | US |