Surgical instrument with lockout mechanism

Information

  • Patent Grant
  • 11986184
  • Patent Number
    11,986,184
  • Date Filed
    Wednesday, October 26, 2022
    2 years ago
  • Date Issued
    Tuesday, May 21, 2024
    8 months ago
Abstract
Surgical clamping and cutting instruments are disclosed. In one aspect, a surgical instrument comprises an elongate shaft with an end effector having first and second jaws, a release member movably coupled to the end effector and a drive member configured to translate relative to the end effector. The instrument further includes a locking member movable from a first position permitting distal translation of the drive member, to a second position preventing distal translation of the drive member. The locking member moves into the second position after the drive member has been driven distally. This inhibits or prevents hazardous actuation of a knife or drive beam when, for example, there is a spent or previously fired cartridge in place.
Description
BACKGROUND
1. Technical Field

The present description relates to surgical clamping and cutting instruments having a locking mechanism to prevent firing of the instruments.


2. Background of the Related Art

Surgical clamping and cutting instruments, such as, for example, surgical stapling instruments, may include an end effector having opposing jaws that clamp tissue and a knife that cuts the clamped tissue. It is often advantageous for an end effector of a surgical stapling instrument to be reusable. To that end, staple cartridges can be fitted into one jaw of the end effector prior to each use of the surgical stapling instrument.


It is desirable to prevent firing of a surgical stapling instrument while a spent cartridge remains in place on the jaw. Thus, a need exists for effective mechanisms to prevent firing of a surgical stapling instrument while a spent staple cartridge is in place in the end effector of the surgical stapling instrument.


SUMMARY

The following presents a simplified summary of the claimed subject matter in order to provide a basic understanding of some aspects of the claimed subject matter. This summary is not an extensive overview of the claimed subject matter. It is intended to neither identify key or critical elements of the claimed subject matter nor delineate the scope of the claimed subject matter. Its sole purpose is to present some concepts of the claimed subject matter in a simplified form as a prelude to the more detailed description that is presented later.


The present description relates to improved surgical stapling instruments having a locking mechanism. Surgical stapling instruments described herein employ a proximal to distal knife movement, thereby orienting the knife to greatly reduce the likelihood of unintentionally cutting tissue while removing the surgical instrument from the surgical site. The surgical stapling instrument has a locking mechanism to prevent hazardous actuation of a knife or drive beam when there is a spent or previously fired cartridge in place.


In one aspect, a drive assembly for use with a surgical stapling instrument is provided, which drive assembly includes a drive member configured to releasably engage and translate at least one of a knife or a shuttle of a stapling instrument in a distal direction through a staple firing stroke. A locking member is mounted to the drive member and movable from a first position permitting distal translation of the drive member through the staple firing stroke, to a second position inhibiting distal translation of the drive member through the staple firing stroke. A spring is configured to bias the locking member toward the second position.


In another aspect, a surgical stapling instrument is provided, which surgical stapling instrument includes an anvil jaw assembly, and a staple jaw assembly, including a knife. A drive member is configured to releasably engage the knife, the knife disengaging from the drive member upon subsequent distal movement of the drive member. The surgical stapling instrument further includes a locking member supported by the drive member and being pivotable from a first position permitting distal translation of the drive member, to a second position preventing distal translation of the drive member. The knife, when proximally positioned, releasably engages the locking member to maintain the locking member in the first position, the knife disengaging from the locking member after the drive member has been driven distally. A slot is configured to engage the locking member when the locking member is in the second position.


In another aspect, a surgical stapling instrument is provided, which surgical stapling instrument includes an anvil jaw assembly, and a staple jaw assembly, including a knife. A drive member is configured to releasably engage a shuttle, the shuttle disengaging from the drive member upon subsequent distal movement of the drive member. The surgical stapling instrument further includes a locking member supported by the drive member and being pivotable from a first position permitting distal translation of the drive member, to a second position preventing distal translation of the drive member. The shuttle, when proximally positioned, releasably engages the locking member to maintain the locking member in the first position, the shuttle disengaging from the locking member after the drive member has been driven distally. A slot is configured to engage the locking member when the locking member is in the second position.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features, and advantages of the devices described herein will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:



FIG. 1A is a perspective view of an illustrative surgical stapling instrument;



FIG. 1B is an exploded view of an illustrative end effector of a surgical stapling instrument;



FIG. 2 depicts a side view of a drive assembly;



FIG. 3 is a partial side, cross-sectional view of a surgical stapling instrument including the drive assembly of FIG. 2, with the jaws of the end effector in the open position and a fresh reload positioned in the staple jaw assembly;



FIG. 3A is a perspective view of the anvil jaw assembly;



FIG. 4 is a partial side, cross-sectional view of the surgical stapling instrument of FIG. 3 with the jaw assemblies of the end effector in the closed position and the drive assembly in the home position;



FIG. 5 is a partial side, cross-sectional view of the surgical stapling instrument of FIG. 3 with the jaw assemblies of the end effector in the closed position and the drive assembly partially advanced distally;



FIG. 6 is a partial side, cross-sectional view of a surgical stapling instrument of FIG. 3 with the jaws of the end effector in the closed position and the drive assembly moved proximally after completion of a firing stroke and ejection of staples from the staple cartridge;



FIG. 7 is a partial side, cross-sectional view of a surgical stapling instrument of FIG. 3 with the jaws of the end effector in the closed position with a spent cartridge in place in the lower jaw assembly, thereby activating the lockout mechanism;



FIG. 8 depicts a side view of a drive assembly in accordance with another embodiment;



FIG. 9 is a partial side, cross-sectional view of a surgical stapling instrument including the drive assembly of FIG. 8, with the jaws of the end effector in the open position and a fresh reload positioned in the staple jaw assembly;



FIG. 10 is a partial side, cross-sectional view of the surgical stapling instrument of FIG. 9 with the jaw assemblies of the end effector in the closed position and the drive assembly in the home position;



FIG. 11 is a partial side, cross-sectional view of the surgical stapling instrument of FIG. 9 with the jaw assemblies of the end effector in the closed position and the drive assembly partially advanced distally;



FIGS. 12-14 are a partial side, cross-sectional views of a surgical stapling instrument of FIG. 9 with the jaws of the end effector in the closed position showing sequential stages of proximal movement of the drive assembly after completion of a firing stroke and ejection of staples from the staple cartridge;



FIG. 15 is a partial side, cross-sectional view of a surgical stapling instrument of FIG. 9 with the jaws of the end effector in the closed position with a spent cartridge in place in the lower jaw assembly, thereby activating the lockout mechanism;



FIG. 16 depicts a side view of a drive assembly in accordance with another embodiment;



FIG. 17 is a partial side, cross-sectional view of a surgical stapling instrument including the drive assembly of FIG. 16 with the jaw assemblies of the end effector in the closed position and the drive assembly in the home position;



FIG. 18 is a partial side, cross-sectional view of a surgical stapling instrument including another illustrative embodiment of a drive assembly, with the jaws of the end effector in the open position and a fresh reload positioned in the staple jaw assembly; and



FIG. 19 is a partial side, cross-sectional view of the surgical stapling instrument of FIG. 18 with the jaw assemblies of the end effector in the closed position and the drive assembly in the home position.





DETAILED DESCRIPTION

Particular embodiments of the present surgical stapling instruments are described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed embodiments are merely exemplary of the description and may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present description in virtually any appropriately detailed structure. Well-known functions or constructions are not described in detail to avoid obscuring the present description in unnecessary detail.


The present description relates to drive assemblies including a drive member, a locking member mounted to the drive member, and a spring. The drive member is configured to releasably engage at least one of a knife or a shuttle of a surgical stapling instrument and to translate the knife and/or shuttle in a distal direction through a staple firing stroke. Contact between the drive member and the knife and/or shuttle is releasable in that once the knife and/or shuttle are translated by the drive member in the distal direction through a staple firing stroke, the knife and/or shuttle disengages from the drive member, remains at a distal portion of the stapling instrument, and is not translated in a proximal direction by the drive member. The locking member is movable from a first position permitting distal translation of the drive member through the staple-firing stroke, and a second position inhibiting distal translation of the drive member through the staple firing stroke. The spring is configured to bias the locking member toward the second position.


While the following description is presented with respect to a linear surgical stapler where staples are sequentially fired, it should be understood that the present drive assemblies may be readily adapted for use in any type of surgical clamping and cutting instruments, whether or not the surgical clamping and cutting instrument applies a fastener. The surgical clamping and cutting instrument may be a minimally invasive (e.g., laparoscopic) instrument or an instrument used for open surgery.


Additionally, the present drive assemblies may be readily adapted for use in surgical instruments that are activated using any technique within the purview of those skilled in the art, such as, for example, manually activated surgical instruments, powered surgical instruments (e.g., electro-mechanically powered instruments), robotic surgical instruments, and the like.



FIG. 1A is a perspective view of an illustrative surgical stapling instrument 10 capable of utilizing a drive assembly and locking mechanism. Surgical stapling instrument 10 includes a handle assembly 12, and an end effector 100 including an anvil jaw assembly 102 and a staple jaw assembly 104 mounted on an elongated shaft 160 of the surgical stapling instrument 10.



FIG. 1B shows anvil jaw assembly 102, including an anvil 106 having staple forming pockets 103 (see FIG. 3A) supported thereon, and staple jaw assembly 104. Staple jaw assembly 104 and anvil jaw assembly 102 are configured to move from an open position to a closed position. In the open position, a fresh stapling cartridge can be loaded into jaw assembly 104, a spent staple cartridge removed from jaw assembly 104, and tissue may be positioned between the jaw assemblies 102, 104. In the closed position, jaw assemblies 102, 104 cooperate to close upon and clamp tissue such that cartridge 122 and anvil 106 are in close cooperative alignment. In the embodiment shown in FIGS. 1A and 1B, staple jaw assembly 104 is stationary and anvil jaw assembly 102 pivots to the open position. In other embodiments illustrated herein, the jaw assembly containing the anvil is stationary and the jaw assembly containing the staple cartridge pivots to the open position. As those skilled in the art reading this description will appreciate, in yet other embodiments both the anvil jaw assembly and the staple jaw assembly may pivot.


With continued reference to FIG. 1B, staple jaw assembly 104 includes a staple cartridge 122 supported in a channel 134 on jaw 123. Cartridge 122 includes a plurality of staples 124 that are supported on corresponding staple drivers 126 provided within respective staple apertures 128 formed in cartridge 122. Cartridge 122 also includes a shuttle 130 having an inclined distal portion 131 that, upon distal movement, sequentially acts on staple drivers 126, camming them upwardly thereby moving staples 124 into deforming contact with anvil 106. Cartridge 122 also includes a knife 150 configured to translate distally through a channel 127 in cartridge 122 and sever clamped, stapled tissue.



FIG. 1B further shows a drive assembly 101 that is movably supported on the surgical stapling instrument such that it may pass distally through cartridge 122 and staple jaw assembly 104 when the surgical stapling instrument is fired (e.g., actuated).


For a more detailed description of illustrative end effectors, reference may be made to U.S. Pat. Nos. 6,669,073 and 8,800,841, the entire contents of which are incorporated herein by this reference. It should of course, be understood that end effector shown in FIGS. 1A and 1B is merely illustrative, and that other end effectors may be employed, including but not limited to the end effectors shown in WO2014/106275, the entire contents of which are incorporated herein by this reference.



FIG. 2 shows an illustrative drive assembly 101 for a surgical stapling instrument, including drive member 110, spring 114, and lockout member 116.


Drive member 110 may be any structure capable of pushing at least one of a shuttle or a knife of a surgical stapling instrument with the necessary force to effectively sever or staple human tissue. Drive member 110 may be an I-beam, an E-beam, or any other type of drive member capable of performing similar functions. In the embodiment shown in FIG. 2, drive member 110 is an I-beam and includes a first flange 113a that travels in a channel 108 (see FIG. 3A) in the anvil jaw assembly 102, and a second flange 113b that travels in a channel 115 (see FIG. 5) in the staple jaw assembly 104. Spring 114 is mounted to the drive member 110 by any technique within the purview of those skilled in the art. In embodiments, spring 114 is welded to drive member 110 on upper face 112 of drive member 110. Spring 114 is configured to bias engagement portion 118 of locking member 116 in the direction of Arrow “B”, urging engagement portion 118 to extend beyond upper face 112 of drive member 110 to enable the locking mechanism. Distal movement of drive assembly 101 advances shuttle 130 by contact with a lower distal end portion 111 of drive member 110 and advances knife 150 by contact with upper distal portion 113 of drive member 110.



FIG. 3 shows the proximal end of a fresh reload 122 including shuttle 130 and knife 150 loaded into jaw 123 while jaw assemblies 102, 104 are in the open position. In FIG. 3, drive member 110 is in the proximal home position of the surgical stapling instrument.


Once the jaw assemblies 102, 104 are approximated to grasp tissue, knife 150 engages a footer 119 of locking member 116 overcoming the bias of spring 114, keeping engagement portion 118 at or below upper face 112 of drive member 110, disabling the locking mechanism and permitting locking member 116 to bypass slot 170 formed in jaw assembly 102 as the drive member moves distally, as best seen in FIG. 5. Locking member 116 is generally L-shaped. Slot 170 is located on jaw assembly 102 in a position proximal of staple forming pockets 107 of anvil 106 (see FIG. 3A).


In FIG. 4, the fresh reload is shown in place. The proximal end 132 of shuttle 130 is engaging lower distal end portion 111 of drive member 110 so that drive member 110 drives shuttle 130 distally upon firing. Similarly, a proximal portion 152 of knife 150 engages an upper distal portion 113 of drive member 110 so that knife 150 may be driven distally. In FIG. 5, drive member 110 continues to drive shuttle 130 and knife 150 distally. Because knife 150 engages footer 119 of locking member 116, locking member 116 is maintained in a first position and unable rotate upwardly to interact with slot 170, permitting continued distal translation of drive member 110 through a complete firing stroke.


Once drive member 110 translates distally through a complete firing stroke during which stapling and severing of tissue have occurred, drive member 110 can be retracted, leaving shuttle 130 and knife 150 parked at a position in a distal portion of cartridge 122. In embodiments, shuttle 130 may be unable to move proximally towards the home position due to friction with cartridge 122. In embodiments, knife 150 may be parked in a predetermined position in a distally located garage 165 (not shown), the garage 165 including lateral surfaces that face the cutting tip of knife 150. As drive member 110 is retracted, despite the biasing force of spring 114, engagement portion 118 of locking member 116 is unable to rotate upward as it is blocked by contact with surface 103 of upper jaw assembly 102, as shown in FIG. 6.


Further retraction of drive member 110 positions locking member 116 proximal of slot 170. Because the staple cartridge is spent and there is no knife to restrain movement of locking member 116, any attempt to re-fire the surgical stapling instrument will be prevented by the rotation of locking member 116, under the bias of spring 114, above upper surface 112 of drive member 110 and into slot 170, as seen in FIG. 7.



FIG. 8 shows an alternative embodiment of a driver assembly 201 for a surgical stapling instrument, including drive member 210, spring 214, and lockout member 216.


Drive member 210 may be any structure capable of pushing at least one of a shuttle or a knife of a surgical stapling instrument with the necessary force to effectively sever and/or staple human tissue. As shown, drive member 210 is an I-beam and includes a first flange 213a that travels in a channel 208 (see FIG. 9) in the anvil jaw assembly 202, and a second flange 213b that travels in a channel 215 (see FIG. 9) in the staple jaw assembly 204. Spring 214 is welded to upper face 212a drive member 210. Spring 214 is configured to bias engagement portion 218 of locking member 216 in the direction of Arrow “B”, urging engagement portion 218 to rotate below lower face 212b of drive member 210 to enable the locking mechanism. In this embodiment, locking member 116 is substantially linear.


In operation, distal movement of drive assembly 201 advances shuttle 230 by contact with lower distal end portion 211 of drive member 210 and advances knife 250 by contact with upper distal portion 213 of drive member 210.



FIG. 9 shows the proximal end of a fresh reload 222 including shuttle 230 and knife 250 loaded into jaw 223 while the jaw assemblies 202, 204 are in the open position. In FIG. 9, drive member 210 is in the proximal home position of the surgical stapling instrument.


Once the upper and lower jaw assemblies are in position to grasp tissue, knife 250 engages locking member 216 overcoming the bias of spring 214, keeping engagement portion 218 aligned with lower face 212b of drive member 210, permitting locking member 216 to bypass a pocket 270 formed in a lower surface of channel 208 of jaw assembly 202 as the drive member moves distally, as best seen in FIG. 10.


In FIG. 10, the fresh reload is in place. The proximal end 232 of shuttle 230 engages a lower-distal portion 211 of drive member 210 so that drive member 210 drives shuttle 230 distally upon firing. Similarly, a proximal portion 252 of knife 250 engages an upper distal portion 213 of drive member 210 so that knife 250 may be driven distally. As drive member 210 continues distally, because knife 250 engages locking member 216, locking member 216 is maintained in a first position and unable rotate downwardly to interact with pocket 270 (see FIG. 11), and the locking mechanism is disengaged, permitting continued distal translation of drive member 210 through a complete firing stroke.


Once drive member 210 translates distally through a complete firing stroke and severing and stapling of tissue have occurred, drive member 210 can be retracted, leaving shuttle 230 and knife 250 at a parked position in a distal portion of cartridge 222. As drive member 210 is retracted, despite the biasing force of spring 214, engagement portion 218 of locking member 216 is unable to rotate downward as it rides along the lower surface of channel 208 of jaw assembly 202 as shown in FIG. 12. Once locking member reaches slot 270, it may rotate downwardly as shown in FIG. 13, but such rotation will not interfere with proximal motion of drive member 210.


Once further retraction of drive member 210 positions locking member 216 proximal of pocket 270 (see FIG. 14), because the staple cartridge is spent and there is no knife to restrain downward movement of locking member 216, any attempt to re-fire the surgical stapling instrument will be prevented by activation of the locking mechanism when locking member 216 rotates under the bias of spring 214, downwardly below surface 212b of drive member 210 and into contact with notch 271 of pocket 270 as seen in FIG. 15.



FIGS. 16 and 17 depict an alternative embodiment of a drive assembly 301 for use with a surgical stapling instrument. In this embodiment, shuttle 330 maintains locking member 316 out of engagement with slot 370 in staple jaw assembly 304 (rather than a slot in the anvil jaw assembly), thereby allowing knife 350 to be mounted to, or a sharpened surface of, drive member 310.


Specifically, as seen in FIG. 16, drive assembly 301 includes drive member 310, spring 314, and lockout member 316. In this embodiment, spring 314 is configured to bias engagement portion 318 of locking member 316 in the direction of Arrow “B”, urging engagement portion 318 to rotate below lower face 312 of drive member 310 to enable the locking mechanism.


In FIG. 17, with a fresh reload in place, proximal end 332 of shuttle 330 engages a lower-distal portion 311 of drive member 310 so that drive member 310 drives shuttle 330 distally upon firing. Because shuttle 330 also engages portion 319 of locking member 216, locking member 316 is maintained in a first position and unable rotate downwardly to interact with slot 370, permitting distal translation of drive member 310 through a complete firing stroke. Unlike previously presented illustrative embodiments where the knife disables the locking mechanism, in this embodiment shuttle 330 is responsible for disabling the locking mechanism. Using shuttle 330 to restrain rotation of locking member 316 allows for knife 350 to be mounted to or formed directly on drive member 310, reducing cartridge cost.


Once drive member 310 translates distally through a complete firing stroke and severing and stapling of tissue have occurred, drive member 310 can be retracted, leaving shuttle 330 at a parked position at a distal portion of the cartridge. Further retraction of drive member 310 positions locking member 316 proximal of pocket 370. Because the staple cartridge is spent and there is no shuttle to restrain downward movement of locking member 316, any attempt to re-fire the surgical stapling instrument will be prevented by activation of the locking mechanism when locking member 316 rotates under the bias of spring 314, downwardly below surface 312 of drive member 310 and into contact with pocket 370 in essentially the same manner as described above.



FIGS. 18 and 19 show an alternative embodiment of a surgical stapling instrument 400. Surgical stapling instrument 400 includes a movable anvil jaw assembly 404 and a stationary staple jaw assembly 402 which are configured to move between an open position to a closed position. In the open position, a fresh staple cartridge 422 can be loaded into stationary staple jaw assembly 402, a spent staple cartridge removed from stationary staple jaw assembly 402, and tissue may be positioned between the jaw assemblies 402, 404. In the closed position, jaw assemblies 402, 404 cooperate to close upon and clamp tissue such that cartridge 422 and anvil 406 are in close cooperative alignment. Unlike the previously described embodiments, in surgical stapling instrument 400 the jaw containing cartridge 422 is stationary and the jaw assembly containing the anvil pivots to the open position.



FIG. 18 shows the proximal end of a fresh reload 422 including shuttle 430 loaded into stationary jaw assembly 402 while the jaw assemblies 402, 404 are in the open position. Knife 450 may be mounted to drive member 410, or it may be a sharpened surface of drive member 410, or a component of cartridge 422, either independent of, or mounted to shuttle 430.


With a fresh reload in place and the jaw assemblies 402, 404 in the closed position (see FIG. 18), proximal end 432 of shuttle 430 engages upper portion 411 of drive member 410, disabling the locking mechanism so that drive member 410 drives shuttle 430 distally upon firing. Because shuttle 430 also engages locking member 416, locking member 416 is maintained in a first position and unable rotate upwardly to interact with a slot 470 in stationary jaw assembly 402, permitting distal translation of drive member 410 through a complete firing stroke.


Once drive member 410 translates distally through a complete firing stroke and severing and stapling of tissue have occurred, drive member 410 can be retracted, leaving shuttle 430 at a parked position at a distal portion of the cartridge. Further retraction of drive member 410 positions locking member 416 proximal of pocket 470. Because the staple cartridge is spent and there is no shuttle to restrain movement of locking member 416, any attempt to re-fire the surgical stapling instrument will be prevented by activation of the locking mechanism when locking member 416 rotates under the bias of spring 414, upwardly above surface 412 of drive member 410 and into contact with pocket 470 in essentially the same manner as described above.


While several embodiments of the description have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of presently disclosed embodiments. Thus the scope of the embodiments should be determined by the appended claims and their legal equivalents, rather than by the examples given.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. As well, one skilled in the art will appreciate further features and advantages of the present disclosure based on the above-described embodiments. Accordingly, the present disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. A surgical instrument comprising: an elongate shaft with an end effector having first and second jaws;a release member movably coupled to the end effector;a drive member configured to translate relative to the end effector;a locking member movable from a first position permitting distal translation of the drive member, to a second position preventing distal translation of the drive member; andwherein the locking member moves into the second position after the drive member has been driven distally.
  • 2. The surgical instrument of claim 1, wherein the release member, when proximally positioned, is configured to releasably engage the locking member to maintain the locking member in the first position.
  • 3. The surgical instrument of claim 1, further comprising a slot configured to engage the locking member when the locking member is in the second position.
  • 4. The surgical instrument of claim 3, wherein the first jaw comprises an anvil jaw assembly and the second jaw comprises a staple jaw assembly including a removable staple cartridge.
  • 5. The surgical instrument of claim 4, further comprising a knife housed within the removable staple cartridge, wherein the knife comprises the release member.
  • 6. The surgical instrument of claim 4, further includes a shuttle having a distal inclined portion housed within the removable staple cartridge, wherein the shuttle comprises the release member.
  • 7. The surgical instrument of claim 4, wherein the slot resides in the anvil jaw assembly.
  • 8. The surgical instrument of claim 1, wherein the release member is configured to disengage from the locking member when the drive member has been driven distally.
  • 9. The surgical instrument of claim 1, wherein the drive member further includes a first flange configured to translate through a channel in the first jaw, and a second flange configured to translate through a channel in the second jaw.
  • 10. The surgical instrument of claim 1, wherein the locking member is generally L-shaped.
  • 11. The surgical instrument of claim 1, wherein the locking member is substantially linear.
  • 12. The surgical instrument of claim 1, further comprising a spring configured to bias the locking member towards the second position.
  • 13. The surgical instrument of claim 1, further comprising an actuator in contact with the drive member and configured to translate the drive member distally through the end effector, wherein the actuator includes a control device of a robotic surgical system.
  • 14. A surgical instrument comprising: an elongate shaft with an end effector having first and second jaws;a release member movably coupled to the end effector;a drive member configured to translate relative to the end effector;a locking member movable from a first position permitting distal translation of the drive member, to a second position preventing distal translation of the drive member, wherein the locking member is biased towards the second position; andwherein the locking member moves into the second position after the drive member has been driven distally.
  • 15. The surgical instrument of claim 14, wherein the release member, when proximally positioned, is configured to releasably engage the locking member to maintain the locking member in the first position, and configured to disengage from the locking member after the drive member has been driven distally.
  • 16. The surgical instrument of claim 14, further comprising a slot configured to engage the locking member when the locking member is in the second position.
  • 17. The surgical instrument of claim 14, wherein the first jaw comprises an anvil jaw assembly and the second jaw comprises a staple jaw assembly including a removable staple cartridge and further comprising a knife housed within the removable staple cartridge, wherein the knife comprises the release member.
  • 18. The surgical instrument of claim 14, further includes a shuttle having a distal inclined portion housed within the removable staple cartridge, wherein the shuttle comprises the release member.
  • 19. The surgical instrument of claim 14, wherein the locking member is substantially linear.
  • 20. The surgical instrument of claim 14, further comprising an actuator in contact with the drive member and configured to translate the drive member distally through the end effector, wherein the actuator includes a control device of a robotic surgical system.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. Nonprovisional Application No. 17,104,223 (now U.S. Pat. No. 11,504,124), which is a Continuation of U.S. Nonprovisional application Ser. No. 16/205,128, filed Nov. 29, 2018 (now U.S. Pat. No. 10,863,988), which claims the benefit of U.S. Provisional Application No. 62/592,330, filed on Nov. 29, 2017, the entire contents of each are incorporated herein by reference.

US Referenced Citations (383)
Number Name Date Kind
4305539 Korolkov et al. Dec 1981 A
4319576 Rothfuss Mar 1982 A
4407286 Noiles et al. Oct 1983 A
4429695 Green Feb 1984 A
4509518 McGarry et al. Apr 1985 A
4605001 Rothfuss et al. Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4633874 Chow et al. Jan 1987 A
4767044 Green Aug 1988 A
4809695 Gwathmey et al. Mar 1989 A
4848637 Pruitt Jul 1989 A
4892244 Fox et al. Jan 1990 A
4930503 Pruitt Jun 1990 A
4978049 Green Dec 1990 A
5027834 Pruitt Jul 1991 A
5040715 Green et al. Aug 1991 A
5133735 Slater et al. Jul 1992 A
5133736 Bales, Jr. et al. Jul 1992 A
5147357 Rose et al. Sep 1992 A
5180092 Crainich Jan 1993 A
5275323 Schulze et al. Jan 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5334183 Wuchinich Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342396 Cook Aug 1994 A
5366133 Geiste Nov 1994 A
5452836 Huitema et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5465895 Knodel et al. Nov 1995 A
5480089 Blewett Jan 1996 A
5484095 Green et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5497931 Nakamura Mar 1996 A
5533521 Granger Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5554164 Wilson et al. Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5571285 Chow et al. Nov 1996 A
5573534 Stone Nov 1996 A
5615820 Viola Apr 1997 A
5624452 Yates Apr 1997 A
5628446 Geiste et al. May 1997 A
5651491 Heaton et al. Jul 1997 A
5652849 Conway et al. Jul 1997 A
5667626 Cayford et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5688269 Newton et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693042 Boiarski et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5700276 Benecke Dec 1997 A
5709680 Yates et al. Jan 1998 A
5752644 Bolanos et al. May 1998 A
5752973 Kieturakis et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5820009 Melling et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5833695 Yoon Nov 1998 A
5865361 Milliman et al. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5911353 Bolanos et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5941442 Geiste et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5959892 Lin et al. Sep 1999 A
6032849 Mastri et al. Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6079606 Milliman et al. Jun 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6202914 Geiste et al. Mar 2001 B1
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6330956 Willinger Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6488196 Fenton, Jr. Dec 2002 B1
6503259 Huxel et al. Jan 2003 B2
6585735 Frazier et al. Jul 2003 B1
6644532 Green et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6786382 Hoffman Sep 2004 B1
6817974 Cooper et al. Nov 2004 B2
6877647 Green et al. Apr 2005 B2
6905057 Swayze et al. Jun 2005 B2
6953139 Milliman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7114642 Whitman Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7258262 Mastri et al. Aug 2007 B2
7308998 Mastri et al. Dec 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7398908 Holsten et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7455676 Holsten et al. Nov 2008 B2
7472814 Mastri et al. Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7494039 Racenet et al. Feb 2009 B2
7565993 Milliman et al. Jul 2009 B2
7588174 Holsten et al. Sep 2009 B2
7654431 Hueil et al. Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7673783 Morgan et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721930 McKenna et al. May 2010 B2
7726539 Holsten et al. Jun 2010 B2
7770774 Mastri et al. Aug 2010 B2
7794475 Hess et al. Sep 2010 B2
7832611 Boyden et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7866526 Green et al. Jan 2011 B2
7942303 Shah et al. May 2011 B2
7950561 Aranyi May 2011 B2
8070035 Holsten et al. Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8127975 Olson et al. Mar 2012 B2
8157152 Holsten et al. Apr 2012 B2
8272553 Mastri et al. Sep 2012 B2
8308042 Aranyi Nov 2012 B2
8348127 Marczyk Jan 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8439246 Knodel May 2013 B1
8490851 Blier et al. Jul 2013 B2
8551091 Couture et al. Oct 2013 B2
8573465 Shelton, IV Nov 2013 B2
8579178 Holsten et al. Nov 2013 B2
8608047 Holsten et al. Dec 2013 B2
8672939 Garrison Mar 2014 B2
8701960 Manoux et al. Apr 2014 B1
8783541 Shelton, IV et al. Jul 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8858547 Brogna Oct 2014 B2
8864010 Williams Oct 2014 B2
8905287 Racenet et al. Dec 2014 B2
8925785 Holsten et al. Jan 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9055961 Manzo et al. Jun 2015 B2
9192378 Aranyi et al. Nov 2015 B2
9192379 Aranyi et al. Nov 2015 B2
9211120 Scheib et al. Dec 2015 B2
9216019 Schmid et al. Dec 2015 B2
9345479 Racenet et al. May 2016 B2
9717497 Zerkle et al. Aug 2017 B2
9717498 Aranyi et al. Aug 2017 B2
9936949 Measamer et al. Apr 2018 B2
10111659 Racenet et al. Oct 2018 B2
10130367 Cappola et al. Nov 2018 B2
10231732 Racenet et al. Mar 2019 B1
10285693 Kimsey et al. May 2019 B2
10646219 Racenet et al. May 2020 B2
10828027 Racenet et al. Nov 2020 B2
10863988 Patel Dec 2020 B2
11234700 Ragosta et al. Feb 2022 B2
11439390 Patel et al. Sep 2022 B2
11504124 Patel Nov 2022 B2
11517312 Wixey Dec 2022 B2
11642129 Burbank May 2023 B2
11723661 Wixey et al. Aug 2023 B2
20020165562 Grant et al. Nov 2002 A1
20030135204 Lee et al. Jul 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20040232199 Shelton et al. Nov 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050006430 Wales Jan 2005 A1
20050006434 Wales et al. Jan 2005 A1
20050070925 Shelton, IV et al. Mar 2005 A1
20050070958 Swayze et al. Mar 2005 A1
20050101991 Ahlberg et al. May 2005 A1
20050113826 Johnson et al. May 2005 A1
20050178813 Swayze et al. Aug 2005 A1
20050187576 Whitman et al. Aug 2005 A1
20050273084 Hinman et al. Dec 2005 A1
20050273085 Hinman et al. Dec 2005 A1
20060000868 Shelton, IV et al. Jan 2006 A1
20060016853 Racenet Jan 2006 A1
20060022014 Shelton, IV et al. Feb 2006 A1
20060022015 Shelton, IV et al. Feb 2006 A1
20060024817 Deguchi et al. Feb 2006 A1
20060025809 Shelton, IV Feb 2006 A1
20060025810 Shelton, IV Feb 2006 A1
20060025811 Shelton, IV Feb 2006 A1
20060025812 Shelton, IV Feb 2006 A1
20060025813 Shelton et al. Feb 2006 A1
20060025816 Shelton, IV Feb 2006 A1
20060049230 Shelton, IV et al. Mar 2006 A1
20060097026 Shelton, IV May 2006 A1
20060111209 Hinman et al. May 2006 A1
20060111210 Hinman May 2006 A1
20060161190 Gadberry et al. Jul 2006 A1
20060190031 Wales et al. Aug 2006 A1
20060217706 Lau et al. Sep 2006 A1
20060226196 Hueil et al. Oct 2006 A1
20070010838 Shelton, IV et al. Jan 2007 A1
20070045379 Shelton, IV Mar 2007 A1
20070250113 Hegeman et al. Oct 2007 A1
20070262116 Hueil et al. Nov 2007 A1
20080023522 Olson et al. Jan 2008 A1
20080078804 Shelton et al. Apr 2008 A1
20080086114 Schmitz et al. Apr 2008 A1
20080308607 Timm et al. Dec 2008 A1
20090277947 Viola Nov 2009 A1
20100006620 Sorrentino et al. Jan 2010 A1
20100076474 Yates et al. Mar 2010 A1
20100108740 Pastorelli et al. May 2010 A1
20100145334 Olson et al. Jun 2010 A1
20100179545 Twomey et al. Jul 2010 A1
20100198248 Vakharia Aug 2010 A1
20100331857 Doyle et al. Dec 2010 A1
20110022078 Hinman Jan 2011 A1
20110036891 Zemlok et al. Feb 2011 A1
20110118707 Burbank May 2011 A1
20110121050 Nicholas et al. May 2011 A1
20110152879 Williams Jun 2011 A1
20110174863 Shelton, IV et al. Jul 2011 A1
20110251612 Faller et al. Oct 2011 A1
20110251613 Guerra et al. Oct 2011 A1
20110288573 Yates et al. Nov 2011 A1
20110290851 Shelton, IV Dec 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295270 Giordano et al. Dec 2011 A1
20110301603 Kerr et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120022584 Donnigan et al. Jan 2012 A1
20120071891 Itkowitz et al. Mar 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120228358 Zemlok et al. Sep 2012 A1
20120248167 Flanagan et al. Oct 2012 A1
20120255986 Petty et al. Oct 2012 A1
20120289999 Frank Nov 2012 A1
20120298719 Shelton, IV et al. Nov 2012 A1
20130015231 Kostrzewski Jan 2013 A1
20130046303 Evans et al. Feb 2013 A1
20130056521 Swensgard Mar 2013 A1
20130068821 Huitema et al. Mar 2013 A1
20130087599 Krumanaker et al. Apr 2013 A1
20130098965 Kostrzewski et al. Apr 2013 A1
20130126586 Zhang et al. May 2013 A1
20130148577 Terry et al. Jun 2013 A1
20130248577 Leimbach et al. Sep 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130296922 Allen, IV et al. Nov 2013 A1
20130327808 Chen et al. Dec 2013 A1
20140001236 Shelton, IV et al. Jan 2014 A1
20140005653 Shelton, IV et al. Jan 2014 A1
20140021239 Kostrzewski Jan 2014 A1
20140025071 Sims et al. Jan 2014 A1
20140100600 Kendrick Apr 2014 A1
20140175152 Hess et al. Jun 2014 A1
20140180286 Marczyk et al. Jun 2014 A1
20140183244 Duque et al. Jul 2014 A1
20140200596 Weir et al. Jul 2014 A1
20140214049 Jeong et al. Jul 2014 A1
20140257331 Kim et al. Sep 2014 A1
20140263546 Aranyi Sep 2014 A1
20140263559 Williams et al. Sep 2014 A1
20140263567 Williams Sep 2014 A1
20140263569 Williams et al. Sep 2014 A1
20140284372 Kostrzewski Sep 2014 A1
20140343550 Faller et al. Nov 2014 A1
20140343569 Turner Nov 2014 A1
20140364851 Batross et al. Dec 2014 A1
20150173789 Baxter, III et al. Jun 2015 A1
20150209037 Kostrzewski et al. Jul 2015 A1
20150250530 Manzo et al. Sep 2015 A1
20150256609 Morton et al. Sep 2015 A1
20150272575 Leimbach et al. Oct 2015 A1
20150272576 Cappola Oct 2015 A1
20150297227 Huitema et al. Oct 2015 A1
20150297235 Harris et al. Oct 2015 A1
20160038227 Garrison Feb 2016 A1
20160058450 Shelton, IV et al. Mar 2016 A1
20160066916 Overmyer et al. Mar 2016 A1
20160089148 Harris et al. Mar 2016 A1
20160120544 Shelton, IV et al. May 2016 A1
20160157863 Williams et al. Jun 2016 A1
20160174977 Lytle, IV et al. Jun 2016 A1
20160175033 Le Jun 2016 A1
20160192999 Stulen et al. Jul 2016 A1
20160235489 Gombert et al. Aug 2016 A1
20160249921 Cappola et al. Sep 2016 A1
20160270780 Hall et al. Sep 2016 A1
20160287251 Shelton, IV et al. Oct 2016 A1
20160338764 Krastins et al. Nov 2016 A1
20170010578 Miyakawa Jan 2017 A1
20170042604 McFarland et al. Feb 2017 A1
20170079710 Deville et al. Mar 2017 A1
20170097035 Zimmerman et al. Apr 2017 A1
20170135746 Tetzlaff et al. May 2017 A1
20170189028 Aranyi Jul 2017 A1
20170231653 Kapadia Aug 2017 A1
20170245857 Shelton, IV et al. Aug 2017 A1
20170290584 Jasemian et al. Oct 2017 A1
20170296172 Harris et al. Oct 2017 A1
20170296173 Shelton, IV et al. Oct 2017 A1
20180008265 Hatanaka et al. Jan 2018 A1
20180021042 Nicholas et al. Jan 2018 A1
20180161052 Weir et al. Jun 2018 A1
20180168581 Hunter et al. Jun 2018 A1
20180168622 Shelton, IV et al. Jun 2018 A1
20180168628 Hunter et al. Jun 2018 A1
20180168637 Harris et al. Jun 2018 A1
20180168641 Harris et al. Jun 2018 A1
20180168642 Shelton, IV et al. Jun 2018 A1
20180168649 Shelton, IV et al. Jun 2018 A1
20180168650 Shelton, IV et al. Jun 2018 A1
20180206844 Harris et al. Jul 2018 A1
20180214200 Nanditale et al. Aug 2018 A1
20180232951 Alterovitz et al. Aug 2018 A1
20180296213 Strobl Oct 2018 A1
20180310948 Stamm et al. Nov 2018 A1
20180317915 McDonald, II Nov 2018 A1
20190000454 Swayze et al. Jan 2019 A1
20190015124 Williams et al. Jan 2019 A1
20190059894 Kumada et al. Feb 2019 A1
20190083086 Klaffenböck et al. Mar 2019 A1
20190099181 Shelton, IV et al. Apr 2019 A1
20190125347 Stokes et al. May 2019 A1
20190133571 Racenet et al. May 2019 A1
20190142531 Wentworth et al. May 2019 A1
20190201146 Shelton, IV et al. Jul 2019 A1
20190231350 Scott et al. Aug 2019 A1
20190239881 Laurent et al. Aug 2019 A1
20190290374 Ramadorai Sep 2019 A1
20190298356 Shelton, IV et al. Oct 2019 A1
20190314107 Worrell et al. Oct 2019 A1
20190365458 Whitlock et al. Dec 2019 A1
20210000557 Mustufa et al. Jan 2021 A1
20210022736 Wixey Jan 2021 A1
20210177495 Ross et al. Jun 2021 A1
20210177500 Khalaji Jun 2021 A1
20210212683 Burbank Jul 2021 A1
20210267596 Fanelli et al. Sep 2021 A1
20210386427 Millman et al. Dec 2021 A1
20220015762 Wixey et al. Jan 2022 A1
20220015763 Wixey et al. Jan 2022 A1
20220015823 Wilson et al. Jan 2022 A1
20220054130 Overmyer et al. Feb 2022 A1
20220061836 Parihar et al. Mar 2022 A1
20220061840 Hites Mar 2022 A1
20220061841 Wixey et al. Mar 2022 A1
20220071632 Patel et al. Mar 2022 A1
20220079585 Egan Mar 2022 A1
20220125428 Ragosta et al. Apr 2022 A1
20220160358 Wixey May 2022 A1
20220183686 Wixey et al. Jun 2022 A1
20220192665 Wellman Jun 2022 A1
20220346790 Wellman Nov 2022 A1
20220378537 Hites et al. Dec 2022 A1
20220395270 Patel et al. Dec 2022 A1
20230020577 Kerver et al. Jan 2023 A1
20230052074 Wixey Feb 2023 A1
20230225731 Burbank Jul 2023 A1
Foreign Referenced Citations (48)
Number Date Country
112165909 Jan 2021 CN
0277532 Aug 1990 EP
0277529 Apr 1993 EP
0641546 Mar 1995 EP
1090592 Apr 2001 EP
1728473 Dec 2006 EP
1479346 Jan 2007 EP
1621141 Jul 2007 EP
1316290 Feb 2012 EP
1754445 Oct 2013 EP
2777530 Sep 2014 EP
2777532 Sep 2014 EP
3000408 Mar 2016 EP
3135225 Mar 2017 EP
3158947 Apr 2017 EP
3173029 May 2017 EP
2828952 Dec 2005 FR
5301166 Sep 2013 JP
2014530653 Nov 2014 JP
2016508792 Mar 2016 JP
2016513570 May 2016 JP
2017500146 Jan 2017 JP
2017513564 Jun 2017 JP
2017527396 Sep 2017 JP
6411461 Oct 2018 JP
2019141659 Aug 2019 JP
405234 Sep 1975 SU
886900 Dec 1981 SU
1333319 Aug 1987 SU
1442191 Dec 1988 SU
1459659 Feb 1989 SU
WO-8602254 Apr 1986 WO
WO-9005489 May 1990 WO
WO-9734533 Sep 1997 WO
WO-03094743 Nov 2003 WO
WO-03094746 Nov 2003 WO
WO-03094747 Nov 2003 WO
WO-2012142872 Oct 2012 WO
WO-2014106275 Jul 2014 WO
WO-2017026141 Feb 2017 WO
WO-2017034803 Mar 2017 WO
WO-2017156070 Sep 2017 WO
WO-2017214243 Dec 2017 WO
WO-2018005750 Jan 2018 WO
WO-2018071497 Apr 2018 WO
WO-2018118402 Jun 2018 WO
WO-2020081960 Apr 2020 WO
WO-2020131692 Jun 2020 WO
Non-Patent Literature Citations (21)
Entry
European Search Report (Corrected version) for Application No. EP19750317.0, dated Mar. 28, 2022, 26 pages.
International Search Report and Written Opinion for Application No. PCT/US2020/054568, dated Jan. 29, 2021, 13 pages.
International Preliminary Report on Patentability for Application No. PCT/US2019/017646, dated Aug. 27, 2020, 10 pages.
International Preliminary Report on Patentability for Application No. PCT/US2019/019501, dated Sep. 3, 2020, 7 pages.
International Search Report and Written Opinion for Application No. PCT/US2020/025655, dated Jul. 22, 2020, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US19/17646, dated Apr. 16, 2019, 11 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/019501, dated May 9, 2019, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/056979, dated Dec. 18, 2019, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/062344, dated Mar. 23, 2020, 17 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/062768, dated Mar. 9, 2020, 15 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/064861, dated Mar. 30, 2020, 18 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/066513, dated Apr. 21, 2020, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/066530, dated Apr. 21, 2020, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2020/020672, dated Jun. 29, 2020, 10 pages.
International Search Report and Written Opinion for Application No. PCT/US2020/033481, dated Sep. 3, 2020, 22 pages.
International Search Report and Written Opinion for Application No. PCT/US2021/012284 dated May 6, 2021, 23 pages.
Partial European Search Report for Application No. EP19757451.0, dated Feb. 2, 2022, 12 pages.
Supplementary European Search Report for Application No. EP19873128.3, dated Jun. 22, 2022, 7 pages.
Vertut, J, and Coiffet, P., “Robot Technology: Teleoperation and Robotics Evolution and Development,” English translation, Prentice-Hall, Inc., Inglewood Cliffs, NJ, USA 1986, vol. 3A, 332 pages.
International Search Report and Written Opinion for Application No. PCT/US202 1/065544 dated Jun. 2, 2022, 21 pages.
International Search Report and Written Opinion for Application No. PCT/US2021/065308, dated Apr. 21, 2022. 13 pages.
Related Publications (1)
Number Date Country
20230047784 A1 Feb 2023 US
Provisional Applications (1)
Number Date Country
62592330 Nov 2017 US
Continuations (2)
Number Date Country
Parent 17104223 Nov 2020 US
Child 17973806 US
Parent 16205128 Nov 2018 US
Child 17104223 US